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Abstract—In the first part of this work we show that, by working
in Fourier space, the Bohren decomposition and the Helmholtz’s
decomposition can be combined into one decomposition. This yields
a completely mathematical decomposition, which decomposes an
arbitrary vector field on R

3 into three components. A key property of
the decomposition is that it commutes both with the curl operator and
with the time derivative. We can therefore apply this decomposition to
Maxwell’s equations without assuming anything about the media. As
a result, we show that Maxwell’s equations split into three completely
uncoupled sets of equations. Further, when a medium is introduced,
these decomposed Maxwell’s equations either remain uncoupled, or
become coupled depending on the complexity of the medium.

In the second part of this work, we give a short introduction to
contact geometry and then study its relation to electromagnetism.
By studying examples, we show that the decomposed fields in the
decomposed Maxwell’s equations always seem to induce contact
structures. For instance, for a plane wave, the decomposed fields are
the right and left hand circulary polarized components, and each of
these induce their own contact structure. Moreover, we show that each
contact structure induces its own Carnot-Carathéodory metric, and the
path traversed by the circulary polarized waves seem to coincide with
the geodesics of these metrics.

This article is an abridged version of the author’s master’s thesis
written under the instruction of Doctor Kirsi Peltonen and under the
supervision of Professor Erkki Somersalo.



78 Dahl

1 Introduction

2 Helicity and Beltrami Fields

3 The Helicity Decomposition
3.1 The Moses Decomposition

4 Helicity Decomposition in Electromagnetics
4.1 Decomposition of Maxwell’s Equations
4.2 Decomposition of the Constitutive Equations
4.3 Scalar Formulation for Electromagnetics

5 Contact Geometry
5.1 Contact Structures
5.2 Contact Structures, Beltrami Fields, and Helicity
5.3 Darboux’s Theorem for Contact Structures
5.4 The Carnot-Carathéodory Metric
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1. INTRODUCTION

In electromagnetics, chiral media is media where electromagnetic
waves can propagate with different phase velocities depending on their
handedness. In other words, a left hand circulary polarized wave can
propagate with a different phase velocity than a right hand circulary
polarized wave. In modern electromagnetism, there are many (more
or less equivalent) macroscopic models for such media. One such
mathematical model is given by the constitutive equations

D = εE + ξH, (1)
B = µH + ζE. (2)

(In these equations we have used standard notation for the time
harmonic electromagnetic fields, and ε, µ, ξ, ζ are complex scalars that
describe the media [1, 2].) With the above constitutive equations
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one can, for instance, mathematically show that right and left
hand circulary polarized waves can propagate with a different phase
velocities. However, the main disadvantage of the above model is that
it is algebraic. That is, although equations (1)–(2) do model chiral
media, the equations in themselves do no have a direct geometrical
or physical interpretation related to chiral media. This means that
when we translate our physical description for chiral media into a
mathematical one, we loose the geometric insight that we might
have about handed behavior, circulary polarized waves, and mirror
asymmetry. Since handedness is a very important phenomena in nature
[3–5], it is motivated to search for a formulation for electromagnetism
which directly could describe these phenomena. In this work we shall
present one such formulation for electromagnetism. As an example, we
use this formulation to give a geometric model for chiral media.

This study is divided into two parts. In the first part (Sections
2–4) we derive a handed formulation for electromagnetism. This
formulation is derived from the traditional Maxwell’s equations by
a helicity decomposition, which decomposes Maxwell’s equations into
three parts. This decomposition can be seen as a generalization
of the Bohren decomposition and a refinement of the Helmholtz’s
decomposition. This decomposition is well-known in fluid mechanics
[6–10].

The aim of the second part of this work is to try to describe
the internal geometry of electromagnetism. In other words, the aim
is to find a geometric structure, which would describe the geometry
of space as an electromagnetic wave would see space. What we here
exactly mean by geometry is not clear since there does not seem to
exist any such geometric structure for electromagnetism (see [11]).
In this work we will neither present any such canonical geometric
structure for electromagnetism. However, we will show ample evidence,
which suggests two things. First, in order to study this geometry, one
must take into account the handed behavior of electromagnetism. For
instance, in the scattering of a plane wave in chiral media, one must
take into account the wave’s handedness. For this, the decomposed
Maxwell’s equations form an ideal framework. Second, we will show
that the geometry of electromagnetism seems to be related to contact
geometry. In Section 5 we give a short introduction to contact
geometry, and in Section 6 we give examples of contact structures
derived from the decomposed Maxwell’s equations. In the last section
of this work (Section 7) we draw the conclusions and give some
suggestions for further work.
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2. HELICITY AND BELTRAMI FIELDS

In Sections 2–4 we will work with possibly complex valued vector fields.
These are vector fields defined on an open simply connected set Ω ⊂ R

3

with possibly complex component functions. If Ω has a boundary, we
also assume that the boundary is smooth. We further assume that
the component functions of all vector fields are Lebesgue measurable
functions Ω → C. The Lebesgue integral of a measurable function
f : Ω → C is denoted by

∫
Ω f(x)dx. Similarly, the integral of a vector

field F is defined componentwise, and is denoted by
∫
Ω F (x)dx. In

this work i =
√
−1 is the complex unit, and �{x} and �{x} are the

real and imaginary parts of a complex number, vector, or matrix x.
Similarly, the complex conjugate of x is written as x∗.

We next define helicity. It is a scalar associated with a vector
field that measures the amount of handed twisting in the vector field.
Depending on how the vector field twists, it’s helicity can be positive,
negative, or zero.

Definition 2.1 (Helicity) Let F and G be real valued vector fields
on a simply connected open set Ω ⊂ R

3. The helicity of F is the real
number defined as

H(F ) =
∫

Ω
F · ∇ × F dx. (3)

We will also say that F · ∇ × F is the helicity density of F . The
cross-helicity of F and G is defined as

H(F ,G) =
∫

Ω
F · ∇ × Gdx. (4)

(It should be pointed out that the above definition of helicity is slightly
non-standard. See e.g., [12]. However, the present definition of helicity
is motivated since it is related to contact geometry [11].) In the above
definition we have not defined the precise function space for F and G.
However, the aim of the present section is only to give a short heuristic
introduction to helicity. We therefore post-phone the definition of this
function space to Section 3. In the present section, we therefore tacitly
assume that all objects are sufficiently smooth and well behaved so
that all derivatives and integrals are well behaved.

We next show how helicity density is related to the polarization
of time harmonic plane waves. These are real valued vector fields in
R

3 that can be written as

F (z, t) = �
{

Aei(kz−ωt)
}

(5)
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Figure 1. E+ and E− in Example 2.2.

for some Cartesian coordinates x, y, z, some positive real numbers k, ω,
and a complex constant vector A with no z-component. For F , the
z-axis is the direction of propagation, and t is the time parameter.
The vector A determines the polarization of the wave. We define
the handedness of circulary polarized waves as follows. A circulary
polarized plane-wave is right-hand polarized, if its helicity density is
negative, and left-hand polarized, if its helicity density is positive. This
definition is motivated by the next example.

Example 2.2 (Helicity density and polarization) Let us define

E±(z, t) = �
{

(ux ± iuy)ei(kz−ωt)
}

.

For these fields, ∇×E± = ±kE±. In other words, the fields are parallel
and anti-parallel to their own curl. Hence the helicity densities of E+

and E− are positive, respectively negative, so E+ is left-hand circulary
polarized and E− is right-hand circulary polarized. Figure 1 shows
these fields for t = 0: E− rotates around the positive z-axis using the
“right-hand rule”, and E+ rotates around the positive z-axis using the
“left-hand rule”. Adding E+ and E− yields a linearly polarized plane
wave with zero helicity. It follows that a linearly polarized plane wave
carries no helicity, but it can be decomposed into two plane-waves with
positive/negative helicity densities. �

Helicity is closely related to Beltrami fields. These are vector
fields F : Ω → R

3 in a simply connected open set Ω ⊂ R
3 that

satisfy ∇ × F = fF for some function f : Ω → R. (Here, again,
we assume that all objects are sufficiently smooth.) Geometrically, the
above equation states that the rotation of F is everywhere parallel to
the field. A characteristic feature for such fields is a constant twisting
of the field. If f > 0, the field has positive helicity, and if f < 0, the
field has negative helicity. If f is constant (as in Example 2.2), the
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field is said to be a Trkalian field. Trkalian fields on R
3 are classified

in [13].
Beltrami fields appear in surprisingly many areas of physics. In

plasma physics Beltrami fields are also called force free fields. For
instance, the magnetic field inside ball lightnings and fusion reactors
have been modeled by Beltrami fields [14, 15]. In electromagnetics,
Beltrami fields are also called wave field [1, 2, 16]. Also, in fluid
mechanics, the motion of particles in tornadoes and waterspouts have
been modeled by Beltrami fields [17]. Beltrami fields also appear in
gravitation research, quark physics and thermoacoustics [17]. In [18]
it is shown that there is a one-to-one correspondence (up to a scaling)
between non-vanishing Beltrami fields and contact structures.

3. THE HELICITY DECOMPOSITION

We next define the helicity decomposition,which decomposes a vector
field on R

3 into three components: one with zero helicity, one with
positive helicity, and one with negative helicity. To define this
decomposition, we shall need the Fourier transform. We therefore
assume that the underlying space is R

3 with Cartesian coordinates.
For L1 vector fields (whose all component functions are L1 functions
on R

3), we define the Fourier transform F and it’s inverse F−1 as
follows:

F{F }(k) =
∫

R
3
F (x)e−2πik·xdx, (6)

F−1{F̂ }(x) =
∫

R
3
F̂ (k)e2πik·xdk. (7)

We shall also write F{F } = F̂ . Since L1∩L2 is dense in L2, the above
Fourier transform extends to L2 vector fields (see [19]). By means of the
L2 Fourier transform, we define curl and div as ∇×F = F−1(2πik×F̂ ),
and ∇ ·F = F−1(2πik · F̂ ). Since we shall work with electromagnetic
fields, it is natural to restrict our study to vector fields in L2

curl; L2

vector fields whose curl is also an L2 vector field.
From the definitions of curl and div, it follows that Helmholtz’s

decomposition for a vector field on R
3 has the following interpretation

in Fourier space: the curl-free component is normal to the |k|-sphere
and the divergence-free component is tangential to the |k|-sphere.
(Of course, since F̂ is complex, tangential and normal should here
be understood in a complex sense.) When k �= 0, we can further
decompose the tangential component using the projection operators
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induced by the involution dyadic iur × I [11]. Here ur = k
|k| . (For

an introduction to dyadic algebra, see [1, 11].) Also, the point k = 0
poses no problem, since it has zero measure.

Definition 3.1 (Helicity decomposition) Let F be a real valued
vector field in L2

curl. For λ = 0,±1, let

πλF = F−1
{

P λ · {F }
}

.

where

P λ(k) =




1
2

(
I + iλur × I

)
· P t when λ = ±1, k �= 0,

urur when λ = 0, k �= 0,
0 when k = 0,

and P t = (I − urur). We also write F λ = πλF .
Since P λ

∗(k) = P λ(−k), it follows that the decomposed fields
are real valued. They are also vector fields in L2

curl. We here note that
since we have set P λ to zero when k = 0, P λ are only dyadics almost
everywhere. Despite this we call P λ dyadics.

The P± dyadics can also be derived from the Bohren
decomposition known in electromagnetism. For the sourceless
Helmholtz’s equation ∇ × ∇ × E = k2E(k > 0 real), the Bohren
decomposition decomposes E as E = E+ + E−, where E± =
1
2(E± 1

k∇×E). If we Fourier transform Helmholtz’s equation, we can
formally show that Ê can be non-zero only on the shell |k| = k/(2π).
Using this result, we can simplify the expressions for E± and obtain
the same P± dyadics as in Definition 3.1.

We next list some properties of the helicity decomposition. For
a more detailed discussion, see [11]. First, from the definition of curl
and div, it follows that the decomposed fields satisfy ∇ · F± = 0
and ∇ × F 0 = 0. Hence, the helicity decomposition is a refinement
of Helmholtz’s decomposition. Also, using the identity ∇ × F λ =
F−1{2πλ|k|F̂ λ}, it follows that H(F 0) = 0, H(F +) ≥ 0, and
H(F−) ≤ 0 with equality only for F± = 0.

We also have that πλπκF = δλκπλF for all λ and κ. Since πλ

are self adjoint operators (in the real L2 inner product), it follows that
distinct components in the helicity decomposition are orthogonal and
have zero cross-helicity. A key property of the helicity decomposition
is that it commutes with the curl operator, i.e., for all λ

πλ(∇× F ) = ∇× (πλF ).
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This last relation is essential for decomposing Maxwell’s equations.
For a time dependent vector field, the helicity decomposition is

defined pointwise. If we can assume that time derivative and spatial
integration commutes, then the helicity decomposition commutes with
the time derivative, i.e.,

∂

∂t
πλF = πλ

∂

∂t
F .

The helicity decomposition also commutes with Cartesian coordinate
changes, spatial convolutions, and temporal convolutions [11].

3.1. The Moses Decomposition

Next we define the Moses decomposition [6] which provides a basis
in Fourier space for the helicity decomposition. Let u1,u2,u3

be an orthonormal basis for R
3, and let k =

∑
kiui and k =

|k|. Then the Moses decomposition introduces the complex basis
{Q0(k),Q+(k),Q−(k)} in Fourier space R

3\{0} by

Q0(k) = −(k1, k2, k3)/k,

and for λ = ±1,

Qλ(k) = − λ√
2

(
k1(k1 + iλk2)

k(k + k3)
− 1,

k2(k1 + iλk2)
k(k + k3)

− iλ,
k1 + iλk2

k

)
.

The properties of the Qλ vectors are investigated in [6]. In the same
reference the definition of the Qλ vectors is also motivated. Here we
only mention that they are both orthonormal, i.e., Qλ(k)·Q∗

κ(k) = δλκ

and complete. Moreover, they satisfy k × Qλ(k) = −iλ|k|Qλ(k)
for λ = ±1, which is the key property, which makes the Moses
decomposition well behaved under curl.

The Moses decomposition in physical space is defined as the
projection onto the Qλ basis in Fourier space. If we denote the
projection operators in physical space by π̃λ then

π̃λF = F−1{fλ(k)Qλ(k)},
where fλ(k) = F{F }(k) · Q∗

λ(k) and λ = 0,±1. The decomposed
field π̃λF are real valued if F is real valued. The corresponding
condition for fλ is as follows: π̃λF is real valued if and only if
fλ(−k) = φλ(k)f∗

λ(k), where φλ(k) = −k1−iλk2
k1+iλk2

[6]. Any such function
fλ can almost everywhere be written as

fλ(k) =
1
2

(ξ(k) + φλ(k)ξ(−k)) + i
1
2
(ξ(k) − φλ(k)ξ(−k))
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for some function ξ : R
3 → R. If follows that each decomposed field

in the Moses decomposition depends only on one scalar function from
R

3 to R Using computer algebra, we can show that the P λ dyadics
represent almost everywhere the same mapping as QλQ∗

λ
T [11]. Hence

the helicity decomposition is identical to the Moses decomposition
for L2 vector fields. In consequence each component in the helicity
decomposition depend only on one real scalar function.

4. HELICITY DECOMPOSITION IN
ELECTROMAGNETICS

In this section we apply the helicity decomposition to Maxwell’s
equations. Without any assumptions on the media we prove that
Maxwell’s equations for the fields E,D,B,H decompose into three
uncoupled sets of equations; one set involving only the +-components,
one set involving only the −-components, and one set involving only
the 0-components of the fields.

4.1. Decomposition of Maxwell’s Equations

Maxwell’s equations can be written down in a variety of different math-
ematical formalisms. However, to apply the helicity decomposition to
Maxwell’s equations, we formulate them using vector fields on R

3 with
Cartesian coordinates. Maxwell’s equations then read

∇× E = −∂B

∂t
− M , (8)

∇× H =
∂D

∂t
+ J , (9)

∇ · D = ρ, (10)
∇ · B = ρm. (11)

In the above, E and H are the electric and magnetic field intensities,
D and B are the electric and magnetic flux densities, and ρ and J are
the charge density and current. We have also included magnetic charge
density ρm and magnetic current M . To solve Maxwell’s equations,
these must be accompanied by a set of constitutive equations that relate
the fields E,D,B,H. We shall assume that D and B can be solved
as functionals of E and H, i.e.,

D = D(E,H), (12)
B = B(E,H). (13)
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We next apply the helicity decomposition to Maxwell’s equations. For
this purpose, we shall assume that all the vector fields in Maxwell’s
equations are time dependent vector fields in a function space where
the helicity decomposition is defined and time derivatives commute
with the decomposition.

The +-component of the first two Maxwell’s equations (8)–(9) are

∇× E+ = −∂B+

∂t
− M+, (14)

∇× H+ =
∂D+

∂t
+ J+, (15)

the −-components are

∇× E− = −∂B−
∂t

− M−, (16)

∇× H− =
∂D−
∂t

+ J−, (17)

and the 0-components are

∂B0

∂t
= −M0, (18)

∂D0

∂t
= −J0. (19)

Further, inserting D = D0 + D+ + D− and B = B0 + B+ + B− into
equations (10)–(11) yields

∇ · D0 = ρ, (20)
∇ · B0 = ρm. (21)

Equations (14)–(21) constitute the decomposed Maxwell’s equations.
These equations give an alternative, but completely equivalent
formulation for nonrelativistic electromagnetism in R

3. Here, of course,
when we say electromagnetism, we mean it in the broad sense, and
not as the theory of the electric and the magnetic field. These fields
are not present in the above equations. In fact, none of the original
fields E,D,B,H,J or M are present in equations (14)–(21). Instead,
each of these have split into three components, and each component is
governed by its own set of equations: the +-components are governed
by equations (14)–(15), the −-components are governed by equations
(16)–(17), and the 0-components are governed by equations (18)–(21).
Since the 0-components of the electromagnetic fields are curl-free, we
can identify them with the non-radiating fields. Correspondingly, we
can identify the ±-components with the radiating fields.
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One interpretation of the above is that the fundamental quantities
in electromagnetic field theory are not the 6 vector fields E,D,B,H,J
and M , but the 18 decomposed fields Eλ,Dλ,Bλ,Hλ,Jλ and Mλ.
By Section 3.1, we know that each decomposed field depends only on
one real scalar function. Hence the decomposed fields have the same
degrees of freedom as the original fields, which depend on 18 Cartesian
coordinate functions in R

3. However, for the decomposed fields each
of the 18 components has a clear physical interpretation. This is not
true for the 18 Cartesian component functions for the original fields
since the choice of coordinate axes is arbitrary, i.e., does not depend
on physics.

We now see that the decomposed Maxwell’s equations for the
decomposed fields give a much more detailed view of electromagnetism
than the traditional Maxwell’s equations. For instance, we immediately
see the handed nature of electromagnetism. The fields with positive
helicity are governed by a different set of equations than the fields
with negative helicity. Although these +- and the −-equations are
structurally identical, they are formulated on different function spaces.
From this observation, it follows that Maxwell’s equations are not
handed; electromagnetism does not prefer one handedness over the
other. Another important observation is that there is no coupling
between the different sets of equations. For instance, the equations
for E+,D+,B+,H+ do not depend on E−,D−,B−,H− and vice-
versa. Physically this means that these fields propagate independently
of each other; the fields with positive helicity do not “see” the fields
with negative helicity. This is in sharp contrast to the traditional
Maxwell’s equations in Cartesian coordinates, where the curl operator
couples the x, y and z components of the fields [6].

From the decomposed Maxwell’s equations, it can also be seen that
the decomposed components of the fields are completely determined
by the corresponding components of the sources. This result can be
interpreted trough Curie’s principle. It is a general principle in science,
which states that a symmetry in the effect can be traced back to a
symmetry in the cause [5].

The main disadvantages of the decomposition is that it does not
preserve the support of the fields. For instance, even if J is non-zero
only in some small region of R

3 (for instance inside an antenna), the
decomposed fields Jλ can be non-zero in all of R

3 (see e.g., [20]). For
sources this is problematic since the Green’s dyad is singular in the
origin [1]. We will not consider this problem.
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4.2. Decomposition of the Constitutive Equations

In the previous section we saw that using the helicity decomposition,
Maxwell’s equations decompose into three uncoupled parts. This
result was independent of any choice of media. We also saw that
there were numerous advantages of treating these decomposed fields
as fundamental quantities in electromagnetism. It is therefore also
motivated to seek a formulation for the constitutive equations in terms
of these fields. Ideally, such a formulation could give qualitative
information about the coupling of say D− and E+ in different
scattering problems. However, even for simple geometries such as a
dielectric sphere, it seems to be very difficult to find such a formulation
for the constitutive equations. For instance, if D = ε(x)E, where ε(x)
is a real function, then

Dλ = πλ(ε(x)E+) + πλ(ε(x)E−) + πλ(ε(x)E0).

From this equation we can only deduce that depending on the
properties of ε(x) there might be coupling between E+,E−,E0, and
Dλ. Unfortunately, this equation gives no deeper insight or qualitative
information about the scattering process.

In vacuum, the constitutive equations for the decomposed fields
take the form

Dλ = εEλ,

Bλ = µHλ.

It follows that in this medium, the medium does not couple the
decomposition. In other words, the response of this medium does not
depend on the helicity of the fields.

For chiral media, let us introduce the constitutive equations

Dλ = ελEλ,

Bλ = µλHλ.

These equations contain six real (constant) medium parameters; ε0, µ0

describe the response of fields with zero helicity, ε+, µ+ describe the
response of the fields with positive helicity, and ε−, µ− describe the
response of the fields with negative helicity. Let us now use the
fact that the helicity decomposition (at least formally) contains the
Bohren decomposition as a special case. It then follows that right hand
circulary polarized waves see the medium as a different medium than a
left hand circulary polarized wave. We can therefore say that the above
constitutive equations have a direct geometrical interpretation. They
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also imply the following constitutive equations for the undecomposed
fields:

D =
ε+

√
ε−µ+ + ε−

√
ε+µ−√

ε−µ+ + √
ε+µ−

E + i(ε+ − ε−)
√

µ−µ+√
ε−µ+ + √

ε+µ−
H,

(22)

B =
µ+

√
ε+µ− + µ−

√
ε−µ+√

ε−µ+ + √
ε+µ−

H + i(µ− − µ+)
√

ε+ε−√
ε−µ+ + √

ε+µ−
E.

(23)

These equations are derived by a formal calculation similar to
the derivation of the helicity decomposition from the Bohren
decomposition. In this derivation, the sources are assumed to be zero
[11].

4.3. Scalar Formulation for Electromagnetics

In this section we use the Moses representation for the decomposed
fields to formulate the decomposed Maxwell’s equations. This will
yield a completely scalar formulation for electromagnetism. From this
formulation we derive a new duality transformation [1] with relation
to linear symplectic geometry [21].

We shall use the same notation as in Section 3.1. If E is a vector
field, then Eλ = F−1{eλQλ}, so, for λ in {0,±1}, eλ are functions
R

3 → C that determines Eλ. Similarly, we denote by dλ, bλ, hλ, jλ,mλ

the functions that determine Dλ,Bλ,Hλ,JλMλ. Then, defining

e =




e−
h+

e+

h−


 , J =




1
1

−1
−1


 , f =




b+

d−
b−
d+


 , s =




m+

j−
m−
j+


 ,

Maxwell’s equations take the form

−2π|k|Je = ∂tf + s, (24)

and

∂tb0 = −m0, (25)
∂td0 = −j0, (26)

−2πi|k|b0 = ρ̂m, (27)
−2πi|k|d0 = ρ̂, (28)
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where ρ̂ and ρ̂m are the L2 scalar Fourier transforms of ρ and ρm, and
∂t is the time derivative.

We next derive a dual transformation for the linear equation (24).
To do this, we first make the assumption that we can write f = Me
for some, possibly complex, invertible 4× 4 matrix M, that is possibly
a function of k, but not a function of t. For f to be real valued, M
should also satisfy M(−k) = M∗(k). A necessary condition for writing
f = Me is that there is no coupling between the 0-components and the
±-components of the fields. In scattering problems, this assumption
should hold with good accuracy if the scatterer is much smaller than
the wavelength of the wave. Under this assumption, equation (24)
reads

−2π|k|Je = ∂tMe + s. (29)

This is a set of ordinary differential equations which can be solved
using traditional methods [6]. If equation (29) holds, then we say
that e is the solution corresponding to the source s in the medium M.
Next we introduce a transformation matrix T, which should have the
same properties as M. By writing e = T T−1e, equation (29) can be
manipulated into the form

−2π|k|J(T−1e) = ∂tJT−1J−1MT(T−1e) + JT−1J−1s.

This gives the following duality transformation. If e is the solution
corresponding to the source s in the medium M, then the transformed
field e′ = T−1e is a solution corresponding to the source s′ = JT−1J−1s
in the medium M′ = JT−1J−1MT.

Let us assume that T further satisfies the relation TJTH = J,
where TH = TT∗. Then s′ and M′ take the simple forms s′ = THs
and M′ = THMT. These forms are obtained using J−1 = JT = −J.
Here, the condition for T is a natural generalization of real symplectic
matrices to complex matrices; a real 4 × 4 matrix T is symplectic if
TJTT = J [21].

5. CONTACT GEOMETRY

Contact geometry is the study of contact structures. These are certain
topological structures that can exist on odd dimensional manifolds.
Similarly, symplectic geometry is the study of symplectic structures.
These are also certain topological structures, but these can only exist
on even dimensional manifolds. These theories are dual in the sense
that they are closely related and have many results in common. One
can very roughly say that if the fundamental quantity in Riemannian
geometry is length, then the fundamental quantity in symplectic
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geometry is directed area, and the fundamental quantity in contact
geometry is a certain twisting behavior. A characteristic feature for
both contact and symplectic geometry is that they have both been
found in numerous areas of physics and mathematics (see [11]).

Since both contact and symplectic structures are purely
topological structures, they do not depend on any metric structure
of the underlying space. Therefore it is not motivated to study
these structures using standard vector analysis, where geometry and
topology is intertwined. For these reasons, we will use the language of
differential forms on manifolds to describe contact geometry. We will
use the same definition of a manifold as in [22]. An n-dimensional
manifold Mn is a topological Hausdorff space with countable base
that is locally homeomorphic to R

n [22]. In addition, we shall always
assume that all transition functions are C∞-smooth. That is, we
shall only consider C∞-smooth manifolds. The space of differential
p-forms on Mn is denoted by Ωp(Mn), and the tangent space of
Mn is denoted by TMn. The Einstein summing convention is
used throughout. Hereafter, we shall assume that all mathematical
objects (e.g., functions, p-forms and vector fields) are C∞-smooth.
This is a standard assumption in differential geometry. However,
since the natural function space for electromagnetism is L2

curl, this
assumption gives some mathematical problems when studying “contact
and symplectic geometry in electromagnetism”. We shall not study
this problem.

5.1. Contact Structures

Contact geometry is, in general, an odd dimensional theory. However,
in view of our application to electromagnetism, we shall only study
contact structures in three dimensions. On a 3-manifold, we define a
contact structure as a plane field that is completely non-integrable:

Definition 5.1 (Planefield) A planefield ξ on a 3-manifold M3 is
a smooth mapping p �→ ξp defined for all p ∈ M3 such that ξp is a
2-dimensional vector subspace of the tangent space TpM

3 (the tangent
space of M3 at p).

Definition 5.2 Let ξ be a planefield on a 3-manifold M. Then ξ is
integrable at p ∈ M , if there exists a smooth surface S passing trough
p such that ξ is tangential to S in some neighborhood of p. Moreover
ξ is integrable, if ξ is integrable at every point of M.

Definition 5.3 [18] A planefield ξ on a 3-manifold M3 is a contact
structure, if and only if ξ is everywhere non-integrable.
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On a 3-manifold, a two dimensional planefield is locally
determined as the kernel of a 1-form. A contact structure ξ that
globally can be written as the kernel of a 1-form is said to be
transversally oriented. Then ξ = ker α for some α ∈ Ω1(M3), and
α is said to be a contact form for ξ. We will only consider such contact
structures. Due to the next theorem, this is a standard assumption in
contact geometry.

Theorem 5.4 (Frobenius theorem)[23, 24] Let α be a 1-form on a
3-manifold. The planefield ξ = kerα is a contact structure if and only
if α ∧ dα is nowhere zero.

The above theorem shows that if M3 has a contact structure,
then the contact structure induces an orientation on M3 given by the
volume-form α ∧ dα. It is then possible to compare orientations of
contact structures as follows. The contact structures ker α and ker
α′ have the same (opposite) orientation, if α ∧ dα = fα′ ∧ dα′ for
a positive (negative) function f . If we scale α by some positive or
negative function f , then the planefield kerα is clearly invariant, so
kerα and ker fα have the same orientation. However, the induced
volume-form α ∧ dα depends on the choice of α.

Example 5.5 (The standard structures on R
3) On R

3 with
coordinates x, y, and z, let α± = xdy ± dz. Then α± ∧ dα± = ±dx ∧
dy ∧ dz, so kerα± are contact structures with opposite orientations.
Usually, either of these are called the standard contact structure on
R

3. Since we have no reason to prefer one orientation over the other,
we here call kerα+ and kerα− the standard contact structures on R

3.

Figure 2. The standard structures on R
3.

In Figure 2 the plane fields kerα+ and kerα− are plotted in the
xy-plane. Since α± do not depend on z, the planefields are only plotted
for z = 0. The plots show the vector spaces that α± map to zero as
small tiles. For instance, when x = 0, α± = ±dz. That means that
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(at x = 0) all vectors in the xy-plane are mapped to zero. At x = 0,
the tiles are thus oriented perpendicular to the z-direction. �

5.2. Contact Structures, Beltrami Fields, and Helicity

By definition, a contact structure can not be a tangential to any smooth
surface. In other words, contact structures must be constantly twisting
so that the planes, i.e., vector sub-spaces, can not be “stitched”
together into a smooth surface. This characteristic twisting can,
for instance, be seen in Figure 2. In Section 2, we noted that
Beltrami fields also posses a characteristic twisting. It is therefore
not surprising that there is a connection between Beltrami fields and
contact structures. This correspondence is established in [18]. It is
shown that every Beltrami field induces a contact structure and a
converse: If ξ is a contact structure, then there exist a Riemannian
metric and a vector field X (determined up to a scaling) such that
∇ × X = X. In this section we prove Proposition 5.6, which shows
how contact structures can be generated from certain Beltrami fields
on 3-manifolds. For this reason, we must first generalize the definition
of the curl operator and Beltrami fields to 3-manifolds.

To transform vectors into 1-forms and vice-versa, we use the
standard isomorphisms induced by the Riemannian metric g =
gijdx

i ⊗
dxj [24]. By contracting the metric with the vector field

X = Xi ∂
∂xi , we obtain the 1-form X� = gijX

idxj . This )-mapping
transforms vector fields into 1-forms. Since gij is positive definite, the
)-mapping also has an inverse, a *-mapping. If α = αidx

i is a 1-form,
then α� = gijαi

∂
∂xj where gij are the elements of the matrix (gij)−1 [24].

On an oriented Riemannian 3-manifold, we define the curl of a vector
field X as the vector field ∇×X for which (∇×X)� = ∗dX�. Here *
is the Hodge star operator [24, 25]. On an oriented 3-manifold M3, we
then say that an everywhere non-vanishing vector field X is a Beltrami
vector field, if *dX� = fX� for some smooth function f : M3 → R.
Reading this as an equation for the 1-form X�, it is motivated to call
X� a Beltrami 1-form. Further, if f does not vanish at any point of
M3, then α is a rotational Beltrami 1-form.

Theorem 5.6 (Etnyre, Ghrist) [18] Let M3 be a Riemannian 3-
manifold, and let α be a non-vanishing rotational Beltrami 1-form on
M3. Then α is a contact form on M3.

Proof. We have *dα = fα for some non-vanishing function f : M3 →
R. Then α∧dα = fα∧∗α. The claim follows since α∧∗α only vanishes
where α vanishes. �
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Example 5.7 (The standard overtwisted contact structures)
On R

3 with coordinates x, y, and z, let us define α± = cos(kx)dz ±
sin(kx)dy. For these, we have that *dα± = ±kα±, so α± are
rotational Beltrami 1-forms. Hence, by Theorem 5.6, it follows that
kerα± are contact structures (unless k = 0). We also have that
α± ∧ dα± = ±kdx ∧ dy ∧ dz. Thus kerα± are contact structures with
opposite orientations. The structures kerα± are called the standard
overtwisted contact structures on R

3. In Figure 3 these are plotted
when k = 1 and x range from −π to π. �

Figure 3. The standard overtwisted contact structures on R
3.

The previous example suggests that the orientation of a contact
structure is related to the handedness of the twisting in the contact
structure. This is indeed the case as we next show. More precisely, we
show that α ∧ dα is the equivalent to the helicity density F · ∇ × F
of a vector field. In Section 2 we showed that the sign of F · ∇ × F
is a measure of the handed twisting of a vector field. Therefore, since
α ∧ dα can never vanish (i.e., change sign) in a transversally oriented
contact structure, we can interpret contact structures as everywhere
twisting structures with a constant handedness.

On a Riemannian manifold, the dot product of two vector fields
X,Y is defined as X ·Y = g(X,Y ). Also, for 1-forms α and β, we have
that g(α�, β�)dV = α∧∗β. Then, from F ·∇×FdV = F �∧ (∇×F )� =
F � ∧ d(F �) it follows that it is not natural to define helicity for the
vector field F . Instead, helicity should be defined for the 1-form F �.
Then helicity does not depend on the metric.

Definition 5.8 (Helicity) Let α be a 1-form on a 3-manifold M. The
helicity of α is defined as

H(α) =
∫

M
α ∧ dα.
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This definition of helicity generalizes Definition 2.1: under the
assumptions in Definition 2.1, H(α�) = H(α).

5.3. Darboux’s Theorem for Contact Structures

A surprising property of contact structures (of same dimension) is that
they all locally look the same. This result is known as Darboux’s
theorem, and its interpretation is that all interesting information about
contact structures is of global nature. The study of these global
properties is called contact topology [26]. For the contact structures
in Examples 5.5 and 5.7, this local invariance can be seen by letting
x → 0. Then cos(x)dz ± sin(x)dy approaches dz ± xdy; the standard
structures on R

3. Thus, up to a rotation in the yz-plane, these
overtwisted structures locally look like the standard structures on R

3.

Definition 5.9 [21] Let ξ be a contact structure on a 3-manifold M,
and let η be a contact structure on a 3-manifold N. The structures ξ
and η are contactomorphic if there exists a diffeomorphism f : M → N
such that f∗ξ = η. Then f is a contactomorphism.

In the above definition f∗ is the push-forward of the map f : M →
N [24]. It maps vector fields on M to vector fields on N . The push-
forward map naturally extends to planefields on M . If ξ = span{X,Y },
then f∗ξ = span{f∗X, f∗Y }.
Theorem 5.10 (Darboux’s theorem) [21] Let ξ and ξ′ be contact
structures on two 3-manifolds M and N. Then ξ and ξ′ are locally
contactomophic.

The above result states the following. If x ∈ M and y ∈ N , then
there exist some neighborhoods U ⊂ M (x ∈ U) and V ⊂ N(y ∈ V )
and a diffeomorphism f : U → V , such that ξ|U is contactomorphic
to η|V . Here, ξ|U is the restriction of ξ to U . Darboux’s theorem,
for instance, states that any contact structure on a 3-manifold is
locally contactomorphic in an orientation preserving way to one of
the standard contact structures on R

3.

5.4. The Carnot-Carathéodory Metric

Theorem 5.11 [27] Let ξ be a contact structure on a connected 3-
manifold M3. Then any two points in M3 can be connected by a
piecewise smooth curve such that each component is tangential to the
contact structure.

Suppose ξ is a contact structure on a Riemannian 3-manifold M3.
Then we can use Theorem 5.11 to define a new metric on M3. If we
are given two points p and q on M3, then they can be connected by
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some curve tangential to ξ. Since M3 has a Riemannian metric, we
can measure the length of this curve. Further, if there are many ways
to connect the two points, we can take the infimum of the lengths of
all such curves. The Carnot-Carathéodory distance between p and q is
defined as this infimum. The Carnot-Carathéodory metric satisfies the
axioms for a metric. However, it is not a Riemannian metric. Also, due
to the infimum in the definition, it is usually only possible to calculate
an upper bound for the Carnot-Carathéodory metric.

6. CONTACT GEOMETRY FROM HELMHOLTZ’S
EQUATION

Next we study contact structures derived from solutions to Helmholtz’s
equation. More precisely, we start with a solution to Helmholtz’s
equations, decompose it, and show that the decomposed fields always
seem to induce contact structures. To perform the decomposition
in this section we shall use the Bohren decomposition. In Section
3 we saw that for solutions to the sourceless Helmholtz’s equation,
the helicity decomposition (at least formally) is equal to the Bohren
decomposition. Thus, if E is a solution to the sourceless Helmholtz’s
equations ∇ × (∇ × E) = k2E, the decomposed fields in the time
domain are

E± =
1
2
�

{(
E ± 1

k
∇× E

)
e−iωt

}
. (30)

The advantage of using this formula is that it is local. We can therefore
apply it to solutions which are not necessarily in L2

curl. (We will, for
instance, study contact structures for plane waves.) If E is a solution
to Helmholtz’s equation, then E± are Beltrami fields. If they, in
addition, do not vanish at any point, then they induce two contact
structures, ker (E+)� and ker (E−)�. In this section, we will always use
the Cartesian metric. We shall therefore make no distinction between
vector fields and 1-forms.

6.1. Contact Structures from Planewaves

From equation (30), it follows that the decomposed components for
the plane wave 5 are

E±(z, t) =
1
2
�

{
(A ± iuz × A)ei(kz−ωt)

}
. (31)

These are circulary polarized plane waves with opposite orientations.
More precisely, the helicity densities for the decomposed fields are
constant and proportional to the energy densities of the decomposed



Contact geometry in electromagnetism 97

fields [11]. Thus, in general, a plane wave induces two contact
structures; one for the RCP component and one for the LCP
component.

If we let A = ux, then the contact structures induced by the
fields E±, look like the standard overtwisted contact structures in
Figure 3, i.e., the contact planes constantly rotate around the direction
of propagation. Since the value of t does not modify this behavior, we
set t = 0 to simplify the analysis. Then we see that if an RCP (or
LCP) plane wave passes trough two points, then the path given by the
Carnot-Carathéodory metric between these points is the straight line
connecting the points. Thus, for a plane wave in isotropic homogeneous
space, the Carnot-Carathéodory metric describes the path traversed by
the wave.

Let us next consider an RCP wave which changes direction due to
a plane boundary. From this wave, we then get one contact structure.
(Here we do not take into account the (non-smooth) sudden change in
direction due to the boundary.) For this contact structure, it would
seem very plausible that the Carnot-Carathéodory metric describes
the propagation of the RCP wave. Indeed, suppose we take one
point above the boundary and one point below the boundary such
that the wave passes trough both points. Then the broken line that
describes how the wave connects these points is tangential to the
contact structure, i.e., an admissible path for the Carnot-Carathéodory
metric. Unfortunately, it seems to be quite difficult to show that
no shorter path tangential to the contact structure exists. It would,
however, seem very natural that the minimizing path would be the
piecewise straight line. If that is indeed the case, then at least for
plane waves and plane boundaries, the Carnot-Carathéodory metric
would correctly describe the path of RCP/LCP waves. Since the
RCP and LCP components induce two different contact structures and
thus two different Carnot-Carathéodory metrics, these induced metrics
would take into account the different scattering behaviors for different
polarizations in chiral media.

6.2. Contact Structures in a Rectangular Waveguide

In this section we consider solutions to Helmholtz’s equation in a
rectangular waveguide. Since explicit expressions for the solutions are
known, it is straightforward to decompose these using equation 30 (see
[11]). In Figures 4–6 the planefields induced by the +-components
of the electric field for the TE01, TE11, TM11, TE21 are shown. All
solution are 2π periodic, but they are only plotted for z = 0, 1

3
π
2 ,

2
3

π
2 ,

and π
2 as these plots show the basic twisting behavior for the planefield.

All the plots are plotted for t = 0. Also, we only plot the +-
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(a) (b)

(c) (d)

Figure 4. TE01 +-field at z = 0
3

π
2 , . . . ,

3
3

π
2 .

component since the −-component is symmetrical; it simply twists with
opposite helicity. Using computer algebra one can show that these are
contact structures. This shows that contact structures is not something
peculiar to only plane waves (i.e., linear optics), but contact structures
also exist in more complicated solutions to Helmholtz’s equation.

From these figures we can make an interesting observation.
Namely, the TE and TM solutions are somehow symmetrical. The
TE21 solution is obtained from the TM21 solution by shifting the
solution in the xy-plane. This would suggest that (at least from a
theoretical point of view) it is more natural to divide the fields inside a
waveguide into +-solutions and −-solutions. The advantage of such a
division would be that it would not be based on Cartesian coordinates
(see [11]). Instead, a +/− division would divide solutions in a
waveguide into two sets of solutions which propagate independently
of each other. This division thus has a physical interpretation. We
could also say that the +/− division represents the internal division of
the fields in a waveguide whereas the TE/TM division is based on our
Cartesian view of electromagnetism.
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(a) (b)

(c) (d)

Figure 5. TE21 +-field at z = 0
3

π
2 , . . . ,

3
3

π
2 .

6.3. Local Invariance of Helmholtz’s Equations

Suppose we have two solutions E and E′ to the Helmholtz’s equation.
By equation 30, these induce four Beltrami fields E± and E′

±. For
this section, let us assume that none of these fields vanish at any
point. Then, by Theorem 5.6, they induce four contact structures. By
Darboux’s theorem, we know that any two contact structures are locally
contactomorphic. Thus, the contact structures induced by E+ and E−
are locally contactomorphic to the contact structures induced by E′

+

and E′
−. In addition, since the volume forms (E±)� ∧ d(E±)� and

(E′
±)� ∧ d(E′

±)� have the same orientation, these contactomorphisms
are both orientation preserving. By adding a possible scaling to these
contactomorphisms, we can construct mappings f± as in the diagram
below.

E = E+ + E−
↓ f+ ↓ f−

E′ = E′
+ + E′

−

This means that if we have two solutions E and E′ to Helmholtz’s
equation, whose decomposed fields do not vanish, then locally E can be
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(a) (b)

(c) (d)

Figure 6. TM21 +-field at z = 0
3

π
2 , . . . ,

3
3

π
2 .

transformed into E′. From this result we can make two observations.
First, to transform a solution to Helmholtz’s equation into another
solution, one needs, in general, two mappings; one for E+ and E′

+,
and one for E− and E′

−. Second, the above result states that all
solutions to Helmholtz’s equation are, in some sense, similar to each
other. One interpretation is that the contact structures for E+ and
E− contain the necessary twisting for the field to radiate.

7. CONCLUSIONS

In this work we have studied contact and symplectic geometry and
their relation to electromagnetics. Since contact and symplectic
geometry has been found in numerous other areas of physics, this
study is highly motivated. In Section 6, we have shown that known
solutions to Helmholtz’s equation always seem to induce contact
structures. However, from the present work, we can not say whether
the decomposed fields of an arbitrary solution to Maxwell’s equations
also induce contact structures. The problem is that the helicity
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decomposition only assures that, say, for the electric field E, we have∫
R

3 E+ · ∇ × E+dx ≥ 0. To prove that kerE�
+ is a contact structure,

one should be able to conclude that E+ ·∇×E+ > 0. Since the helicity
decomposition is based on the Fourier transform, it can be very difficult
to prove such local properties for the decomposed fields. Probably the
most simple way to gain further insight into this problem, would be to
perform numerical experiments.

However, if the decomposed fields in Maxwell’s equations would
always induce contact structures, it would be a very attractive result
since it would give more “structure” to electromagnetism. If one
can always assume that a solution splits into three components, and
two of these would be contact structures, one can make much more
assumptions, and possibly derive quite general results for solutions to
Maxwell’s equations. For instance, since contact geometry has been
studied as a mathematical branch, there are many results, which could
be applied directly to electromagnetism. As an example, we used
Darboux’s theorem in Section 6.3 to derive a local invariance result
for solutions to Helmholtz’s equations. By similar argumentation, we
could use Darboux’s theorem to show that all solutions to Maxwell’s
equations locally look like the standard contact structure. This could
possibly be used to design a numerical solver for Maxwell’s equations.
For instance, if we compare the decomposed solutions in Figures 4–6
to the the figures of the standard structure in Figure 3, we see that
they are very similar. That would suggest that in such a solver, one
would not need too many elements to model the solution. However,
how the 0-field should be modeled in such a solver is not quite clear.

Another motivation for studying contact and symplectic geometry
in electromagnetism is that these structures are purely topological.
In other words, they do not require an external structure such as
a Riemannian metric. A very interesting result, which is related
to this, is that both contact and symplectic structures induce their
own internal “Hodge operators”, i.e., mappings Ωp(Mn) → Ωn−p(Mn)
[28]. In this work we have not studied these mappings. However,
it is quite possible that using these mappings, one could formulate
the constitutive equations. If that would be possible, it would yield
an almost topological formulation for electromagnetism. In such
a formulation, the only metrical dependence would be due to the
helicity decomposition. An alternative approach would be to treat
the decomposed fields as fundamental quantities of electromagnetism.
If one further assumes that these are contact structures, and that
the constitutive equations could be written using the induced Hodge
operators, that would yield a completely topological formulation for
electromagnetism.
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