A Errata to [I]

The main result of $[\mathbf{I}]$ is the following claim:

If ε, μ are simultaneously diagonalizable with eigenvalues ε_i, μ_j , the induced geometry is Riemannian if and only if $\varepsilon_i \mu_j = \varepsilon_j \mu_i$ for some $i \neq j$.

The "only if" direction of this claim does not follow from [I]: If $\Delta_{ij} = 0$ in some open set, the *given* Hamiltonians in [I] need not be smooth with respect to the location variable. The aim of this errata is to prove that with a slight modification of the Hamiltonian functions, the claim holds.

Let us start with a counter-example. Suppose the media is defined by $m_i = 1$ for $i = 1, 2, 3, e_1 = 1 + x$, and $e_2 = e_3 = 1 - x$. In this case, $\Delta_{23} = 0$, $\Delta_{12} = \Delta_{13} = 4x$, and by Lemma 4.1 *(ii)*, the Hamiltonians are not smooth at x = 0.

To illustrate the underlying problem, suppose $\Delta_{23} = 0$. Then sign $\Delta_{12} = \text{sign } \Delta_{13}$ by Lemma 4.1. If $\Delta_{12} \ge 0$, the Hamiltonians are given by

$$h_{+} = \|\text{diag}(e_{2}m_{3}, e_{1}m_{3}, e_{1}m_{2}) \cdot \xi\|,$$

$$h_{-} = \|\text{diag}(e_{3}m_{2}, e_{3}m_{1}, e_{2}m_{1}) \cdot \xi\|.$$

Similarly, if $\Delta_{12} \leq 0$, the same expressions hold, but h_+ and h_- exchange places. (This follows from the definition of h_{\pm} and using Lemma 4.1 (*i*)-(*ii*).) Thus, if the two expressions for h_+ are not compatible near $\Delta_{12} = 0$, then h_+ will not be smooth.

To address this problem, one need to pointwise redefine the Hamiltonian functions as described in Section 4.1: If $\Delta_{ij} = 0$ on an open set U, and i, j, k are distinct, let use introduce new Hamiltonians \tilde{h}_{\pm} as follows

$$\dot{h}_{\pm} = h_{\pm \operatorname{sign} \Delta_{kj}}.$$
(29)

Suppose $\Delta_{23} = 0$ in U. Then, by the above properties for h_{\pm} , we have

$$\begin{split} h_{+} &= \| \text{diag} \ (e_{2}m_{3}, e_{1}m_{3}, e_{1}m_{2}) \cdot \xi \|, \\ \tilde{h}_{-} &= \| \text{diag} \ (e_{3}m_{2}, e_{3}m_{1}, e_{2}m_{1}) \cdot \xi \|, \end{split}$$

and these expressions are independent of sign Δ_{12} . Since h_{\pm} satisfy the geometrization assumptions on the Hamiltonians, the result follows for i = 2, j = 3. The other combinations are analogous.

With these modified Hamiltonians, one can remove the assumption Δ_{12} , $\Delta_{13} > 0$ from Example 5.2 and 5.4. Equation (29) can be used to translate Proposition 4.4.