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Chapter 1

Introduction

Designing new materials and to understand phenomena occurring at the atomic
level is often complicated and usually there are no simple models available. If
one is able to construct a model based on fundamental physical theories, which
is not specific to the system, theoretical modelling may become possible. At the
smallest length scales experimental methods may not be able to probe the system
accurately enough, and in this respect computer simulations are becoming in-
creasingly important in order to understand physics and chemistry at the atomic
level.

Performing ’experiments‘ with computers has become more and more attrac-
tive as the computing power has increased and efficient programs are available.
Computer simulations may provide results with much less work than experi-
ments; even more often computations and experiments complement each other,
and computations can help to interpret experimental results better. In some cases
computations are also able to provide information which is not accessible exper-
imentally, or they can predict totally new phenomena yet to be observed.

Computations must be based on theoretical models developed to describe
experimentally observed phenomena; the better the model the better agreement
one should obtain with experiments. Although theoretical models are always
simplifications of the reality and are not necessarily able to describe the true,
complete behaviour of the nature, they can provide new insights into the system,
which are otherwise impossible to obtain.

Although computations may appear to be much easier than experiments to
perform and they may seem to offer an easy short cut to the results, the impor-
tance of understanding the theory behind the models, and especially its limi-
tations, cannot be overemphasised. While experimental accuracy can often be
estimated by repeating the measurement sufficiently many times, with computa-
tional results the errors are usually systematic and cannot be so easily assessed.

The main theme of this thesis has been to investigate molecular systems
present in supramolecular and polymer chemistry using computational quantum
chemistry methods. Many of these investigations originate from experimental
needs to understand the underlying phenomena and observations more deeply.
To be able to study these kinds of systems using quantum chemical methods only
a small part of the system can be included in the model. In the summary part of
this thesis basic theoretical methods relevant to the work are discussed and an
overview on the publications included is given.
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Chapter 2

Theory

Computational chemistry is based on theoretical models describing the interac-
tions between chemical elements. Different models vary significantly in their
accuracy and computational cost, both of which are important factors to be con-
sidered when modelling is undertaken. Some models include all electrons ex-
plicitly, others consider atoms as classical points of mass connected by springs
with characteristic spring constants. To choose the right model for a particular
problem is not always straightforward, and often different models yield comple-
mentary information. However, more often the computational resources are the
limiting factor in determining which model can be used.

Although the mathematical equations describing quantum systems, like
atoms and molecules, were developed already in 1920s, there is still increasing
effort to solve these equations even approximately; at the same time, the inter-
esting systems become larger and more complex. An example of this ongoing
effort is that in 1998 the Noble prize in chemistry was awarded to Walter Kohn
and John Pople due to their contributions to computational chemistry. Usually
the more the equations are approximated, the faster computations become. The
drawback is that in this process the results also become less and less reliable.

Most of the computations presented in this thesis have been performed using
density functional theory as many of the systems have been so large that other,
more accurate, methods would have been exceedingly costly or impossible to
use with the programs and computers available at the time of work. Other meth-
ods like the second-order Møller-Plesset perturbation theory, the approximate
coupled cluster theory and semiempirical methods have been also used when
appropriate.

In the following the most common electronic structure methods are described.
Some of the methods are described, not because they are applied in this work, but
to provide a consistent overview on available methods and to show the similari-
ties and differences between the methods. Some of the methods are almost as old
as quantum theory itself and some were invented only few decades ago.

2.1 Electronic structure methods

There are two main approaches to describe electronic structure of atoms and
molecules: the wavefunction and density functional based methods. In the wave-
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function based methods an approximation for the actual wavefunction is con-
structed and the molecular properties are calculated based on it. In the other
approach the electron density is taken as the fundamental variable and this ap-
proach is known as the density functional theory. The aim in all electronic struc-
ture methods is to solve the Schrödinger equation, or in the relativistic case, the
Dirac equation. Usually the solution is obtained within some well defined ap-
proximations. The three basic ingredients which affect the accuracy of different
electronic structure methods are the choice of the basis set, the computational
level and the Hamiltonian. Additionally, molecular properties show different
kinds of dependence on these three components, and in order to model the par-
ticular molecular property accurately, the basis set, the computational level and
the Hamiltonian must be chosen appropriately.

The Dirac equation [1, 2] offers an exact framework to describe relativistic
effects1 for a one-particle system, like an electron. However, there are further
effects which are not included in the Dirac equation, like the Lamb shift [3] due
to the quantization of the electromagnetic field. These effects can be included
using quantum electrodynamics [4], but from the chemical point of view these
effects are usually so small that they can be neglected.

In order to treat many-electron systems relativistically, one has to introduce
interactions between the electrons. However, the classical Coulomb interaction
between two charged particles is not Lorentz covariant, i.e. it does not satisfy
the requirements of relativity. On the other hand, the fully relativistic interaction
between charged particles is very complicated, and for chemical purposes it is
usually sufficient to include only the first terms in the series expansion of the in-
teraction potential and this approximative form is known as the Coulomb-Breit
interaction; however, it not Lorentz covariant2. Adding this interaction into the
Dirac equation results in the Dirac-Coulomb-Breit (DCB) Hamiltonian. The four-
component equation can be reduced into two separate two-component equations
using the Foldy-Wouthuysen transformation [6] (which is exact only in the ab-
sence of interactions). Application of this transformation with the DCB Hamilto-
nian leads to the Breit-Pauli Hamiltonian [7], which can be expanded as a series
expansion in the inverse powers of the speed of light. The resulting terms in this
Hamiltonian can be given a physical interpretation, such as the spin-orbit cou-
pling, the mass-velocity correction, the Darwin correction, the dipole-dipole in-
teraction between two spins, the Fermi contact interaction etc. These interactions
are important, for example, in formulating expressions for quantum mechanical
calculations of the magnetic properties. As these additional terms often give only
small corrections to the energy, it is possible to include their effects perturbatively
in a nonrelativistic treatment. Alternative methods to decouple large and small
components in the Dirac equation are the zeroth-order regular approximation
(ZORA) [8], the Douglas-Kroll transformation [9] and Kutzelnigg’s formulation
of direct perturbation theory [10].

There are different approaches to perform all-electron calculations includ-
ing the relativistic effects. One can use the full DCB Hamiltonian with all four-
components or the Dirac-Hartree-Fock method which ignores relativistic effects

1With relativity in this context it is meant special relativity excluding any effects arising from
gravity.

2Fully covariant treatment of two-particle problem results in the Bethe-Salpeter equation [5].
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in the interaction term and solves the resulting four-component equations [11].
Another approach is to use the Breit-Pauli Hamiltonian terms as perturbational
corrections in order to estimate relativistic corrections using some nonrelativistic
reference state. However, this type of perturbation theory should be used only
up to first order because it is not variationally stable [12].

The importance of relativistic effects is proportional to the second power of
the nuclear charge [13], and for lighter elements the relativistic effects can often
be neglected (the errors arising from other sources are often more significant). To
describe a quantum mechanical system nonrelativistically, one can start directly
from the Schrödinger equation3

i
∂Ψ

∂t
= ĤΨ, (2.1)

where Ĥ is the Hamiltonian and Ψ the wavefunction. Solving the Schrödinger
equation analytically, or even numerically, becomes intractable for systems with
more than a few particles, and therefore different levels of approximations must
be introduced. This results in a variety of computational methods with different
levels of accuracy.

The complete Hamiltonian including electronic and nuclear degrees of free-
dom, results in the Schrödinger equation containing non-adiabatic coupling
terms which mix different electronic states. In the adiabatic approximation
the mixings between different electronic states are neglected and only diagonal
coupling terms remain [14]. Furthermore, in the most frequently used Born-
Oppenheimer (BO) approximation [15] even the diagonal terms are neglected,
as they are proportional to the ratio of the electronic and nuclear masses. Within
the BO approximation the electronic Hamiltonian in the Schrödinger equation
becomes

Ĥ = −
∑

i

1

2
∇2

i −
∑

i

∑

K

ZK

|RK − ri|
+
∑

i

∑

j>i

1

|ri − rj |
+
∑

K

∑

L>K

ZKZL

|RK − RL|
,

(2.2)
where ri and RK are the coordinates of ith electron and Kth nucleus, respec-
tively, and ZK is the charge of the Kth nucleus. The BO approximation is based
on the fact that the nuclei are much more heavier than the electrons, and thus
move more slowly. The nuclei are assumed to be stationary with respect to the
electrons neglecting all coupling terms arising from the nuclear kinetic energy
operator with the electronic wavefunction. In practice this means that the total
wavefunction is written as a product of the nuclear and electronic wavefunc-
tions and the electronic wavefunction depends parametrically on the nuclear po-
sitions. Usually errors arising from this approximation are negligible. A direct
consequence of the BO approximation is potential energy surfaces (PESs), i.e. the
energy surface as a function of nuclear coordinates. The minimum on a PES de-
termines the equilibrium geometry of a molecule.

Both the BO and adiabatic approximations are good as long as different PESs
do not come too close to each other energetically. If two PESs cross each other,
and the wavefunctions have the same symmetry, the wavefunction changes its

3Atomic units are used throughout.
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character close to the crossing and switches from one PES to the other in order to
remain in the ground state. In one dimensional PES scan one sees that the PESs
cannot actually cross but they make an avoided crossing [14]. If the BO approx-
imation fails, the electronic character of the wavefunction does not change, and
the molecule continues along the PES which is no longer the electronic ground
state [16]. In general, such a point where two PESs with same symmetry become
degenerate is called a conical intersection [17].

The solution of the Schrödinger equation is based on the variational principle.
The variational principle establishes that the wavefunction resulting in the low-
est possible energy is also the ground state wavefunction of the system, i.e. other
wavefunctions correspond to a higher energy state, and the energy is always an
upper bound for the exact ground state energy. This basic principle forms the
foundation for many quantum chemical methods, where the aim is to find an
approximate wavefunction that minimises the energy. In practice, the wavefunc-
tions are represented through a set of parameters which in turn are optimised.
Often these parameters are not independent but the optimisation has to be car-
ried out with subject to some constraints. However, even if total energies given
by this process were variational, it does not imply that the energy differences
obtained by subtracting two variational total energies would also be variational.
On the other hand, with error cancellation the absolute energies can still be quite
far from the exact solution but the energy differences are much more accurate.
This can be the case, for example, while calculating energy differences of differ-
ent isomers.

Electrons are fermions and, therefore, their wavefunction must be antisym-
metric with respect to interchange of any two particles. Electrons have spin angu-
lar momenta which allows two electrons with opposite spins to occupy the same
energy level. Each electron state can be associated with a spin orbital. However,
in order to satisfy the correct antisymmetry of the total wavefunction, all pos-
sible permutations of electrons with respect to the orbitals must be taken. This
requirement is satisfied if the wavefunction is constructed using Slater determi-
nants with spin orbitals as their elements

Φ(x1,x2, . . . ,xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ2(x1) . . . φN (x1)
φ1(x2) φ2(x2) . . . φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.3)

Such a wavefunction is exact only for non-interacting particles but it can be used
as an approximate wavefunction. In general, the wavefunction can be expressed
as a linear combination of several Slater determinants. If the Slater determinants
are combined in such a way that the state is an eigenfunction of the total spin
operator, the combination is referred as a configuration state function (CSF).

Second quantisation [18, 19] provides an equivalent way to account for the
correct antisymmetry properties of the wavefunction without the need to use
explicit Slater determinants. Each Slater determinant in the Hilbert space can
be represented by an abstract vector space (Fock space) element, and there exists
one-to-one mapping between these elements and the Slater determinants [20, 21].
Basically, a Fock space element tells which spin orbitals are occupied by the elec-
trons. In the second quantisation the operators in the Hamiltonian (e.g. kinetic
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energy, electron-electron repulsion) are expressed using creation and annihila-
tion operators combined with numerical coefficients, which can be computed as
interaction integrals for the spin orbitals. The antisymmetry property of fermions
is included by requiring that the creation and annihilation operators must satisfy
specific fermionic anticommutation rules.

In the second quantisation the electronic Hamiltonian can be written as [21]

Ĥ =
∑

pq
στ

hpσqτ â
†
pσâqτ +

1

2

∑

pqrs
στµν

gpσqτrµsν â
†
pσâ†rµâsν âqτ + hnuc, (2.4)

where â† and â are the creation and annihilation operators obeying the fermionic
anticommutation rules and hpσqτ and gpσqτrµsν are one- and two-electron inte-
grals over the spin orbitals and first quantised operators

hpσqτ =

∫

φ∗
pσ(x)

(

−1

2
∇2 −

∑

I

ZI

|RI − r|

)

φqτ (x) dx (2.5)

gpσqτrµsν =

∫∫

φ∗
pσ(x1)φqτ (x1)φ

∗
rµ(x2)φsν(x2)

|r1 − r2|
dx1 dx2, (2.6)

where integrations are over both spatial and spin degrees of freedom and Roman
letters refer to the spatial orbitals and Greek letters to the spin part. The first
quantised operators above are independent of spin and therefore it is possible to
perform the spin part of the integrals and the sum over the spin indices. In the
spin-free formalism the Hamiltonian becomes

Ĥ =
∑

pq

hpqÊpq +
1

2

∑

pqrs

gpqrsêpqrs + hnuc, (2.7)

where the singlet one- and two-electron excitation operators are defined as

Êpq = â†pαâqα + â
†
pβ âqβ (2.8)

êpqrs = ÊpqÊrs − δqrÊps. (2.9)

The integral terms are similar, except that they do not involve spin any more. If
the Hamiltonian contains spin dependent operators, like spin-orbit terms, other
types of excitation operators arise [21].

The total energy of a system described by a wavefunction |CSF〉 in the Fock
space is obtained as an expectation value of the Hamiltonian

E =
∑

pq

Dpqhpq +
1

2

∑

pqrs

dpqrsgpqrs + hnuc, (2.10)

where the one- and two-electron density matrices are defined as

Dpq = 〈CSF|Êpq|CSF〉 (2.11)
dpqrs = 〈CSF|êpqrs|CSF〉. (2.12)

From the set of orthonormal molecular orbitals (MOs) which define |CSF〉, one
can obtain a new set of orthonormal MOs using a unitary transformation

|CSF(κ)〉 = exp(−κ̂)|CSF〉, (2.13)
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where κ̂ is an anti-Hermitian one-electron operator

κ̂ =
∑

p>q

κpq(Êpq − Êqp). (2.14)

This transformation is also called an orbital rotation and it changes the orbitals
in such a way that the orbitals remain orthogonal. Additional constraints are
not needed. The exponential parametrisation of the orbital rotation matrix al-
lows nonredundant optimisation parameters to be more easily identified. The
electronic energy of the transformed orbitals can be written in the form

E(κ) = 〈CSF| exp(κ̂)Ĥ exp(−κ̂)|CSF〉. (2.15)

By expanding the exponential operator in a series expansion in terms of the or-
bital rotation parameters κ, one obtains expressions for the electronic gradient
and electronic Hessian, i.e. for the first and second derivatives of the energy with
respect to the wavefunction parameters. For real wavefunctions the electronic
gradient becomes [21]

E(1)
pq =

∂E

∂κpq

∣

∣

∣

∣

κ=0

= 2〈CSF|[Êpq, Ĥ]|CSF〉. (2.16)

Now imposing a condition that the energy becomes stationary, i.e. the electronic
gradient vanishes for a unitary transformation, leads to necessary (but not suffi-
cient) condition for an energy minimum to occur. Whether a stationary point is
a true minimum or not, can be determined from the eigenvalues of the electronic
Hessian. Using the commutator rules and definitions for density matrices, the
expression for the gradient can be written as

E(1)
pq = 2(Fpq − Fqp), (2.17)

where Fpq is defined as a generalised Fock matrix

Fpq =
∑

r

Dprhqr +
∑

rst

dprstgqrst. (2.18)

This general expression can be partitioned into inactive and active Fock matri-
ces leading to a multi-configurational self-consistent field method [22] discussed
later. On the other hand, in the Hartree-Fock method described next the density
matrix elements have special values, which simplify the expressions consider-
ably.

2.1.1 Hartree-Fock method

The Hartree-Fock (HF) approximation [23, 24] is based on estimating the wave-
function as a single Slater determinant and, by construction, it provides the best
possible approximate wavefunction that can be obtained this way. However, this
is only an approximation, and part of the electronic energy is not accounted for
by the HF approximation. The energy difference between the exact (nonrelativis-
tic) solution and the HF solution is usually referred as the correlation energy.
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In closed shell molecules, where all the spins are paired, each orbital can be
assumed to be occupied by two electrons with opposite spins. In the second
quantised formulation the closed shell single determinant HF wavefunction can
be expressed as

|CSF〉 =
∏

i

â
†
iαâ

†
iβ|vac〉, (2.19)

where i runs over the occupied orbitals. For this particular wavefunction, the
density matrix elements are

Dij = 2δij (2.20)

dijkl = DijDkl −
1

2
DilDkj, (2.21)

where i, j, k and l refer to the occupied orbitals. The energy for a closed shell
system is given by

E = 2
∑

i

hii +
∑

ij

(

2giijj − gijji

)

+ hnuc. (2.22)

The hii is the kinetic and nuclear attraction energy, giijj is the Coulomb (or
Hartree) term and gijji is the exchange term (which also cancels the self-
interaction present in the Coulomb term). In order to evaluate this expression,
one needs the numerical values for the integrals over the MOs. To determine
the ground state of a molecule, the MOs have to be chosen to minimise the en-
ergy. If there are some symmetry constraints imposed into the system, the energy
minimisation may converge into an excited state instead of the ground state.

In the previous section, the condition for the stationary state was derived
using the generalised Fock matrix: the MOs must be determined so that the gra-
dient vanishes. However, there are a few subtleties. Orbital rotations among the
occupied and virtual orbitals themselves are redundant; for these kinds of ro-
tations the gradient is always zero. Only rotations that change the energy (and
have non-zero gradient) are those between the occupied and virtual orbitals. It
follows that it is sufficient to require that the gradient vanishes for any orbital
rotation between occupied and virtual orbitals. This imposes restrictions which
the optimised HF state has to fulfil.

Using the density matrix elements obtained from the HF wavefunction, the
generalised Fock matrix in equation (2.18) simplifies considerably, becoming
Fpi = 2fpi, where

fpi = hpi +
∑

j

(2gpijj − gpjji), (2.23)

and fpi is defined as the Fock matrix (not to be confused with the generalised
Fock matrix). When p is an occupied orbital, the gradient is zero. If p is a virtual
orbital, the second Fip term in the gradient is zero, and the only remaining term
is Fpi, which is a nonredundant occupied-virtual orbital rotation. Therefore, it
follows that the Fock matrix elements between the occupied and unoccupied ele-
ments must be zero, i.e. fai = 0, where a is a virtual and i an occupied orbital, in
order to the HF energy to be stationary. This condition is satisfied, for example,
when the Fock matrix is diagonal, i.e. only the diagonal elements are non-zero. A

8



block diagonal Fock matrix can also satisfy this condition, i.e. occupied and un-
occupied orbitals can be mixed between themselves. The diagonalisation of the
Fock matrix yields the canonical MOs as eigenvectors and the orbital energies as
eigenvalues. However, the solution must be found in an iterative fashion as the
one- and two-electron integrals, hpq and gpqrs, depend on the MOs themselves.
This iterative procedure is known as a self-consistent field (SCF) method.

Starting with a set of orthonormal orbitals, one can form a symmetric Fock
matrix and find its eigenvalues and eigenvectors. Using the eigenvectors to form
a new set of orthonormal MOs, a new Fock matrix can be calculated. By repeating
this procedure until the MOs do not change any more, the Fock matrix becomes
diagonal, and the MOs correspond to a stationary state. The particular orbitals
that diagonalise the Fock matrix are called the canonical orbitals and the eigen-
values are referred as the orbital energies.

The Hartree-Fock wavefunction provides an approximate solution for the ex-
act Hamiltonian. Another way to look at the problem is to ask whether there is
some approximate Hamiltonian for which this particular solution is exact. This
kind of an effective one-electron operator, or a Fock operator, can be identified as

f̂ =
∑

pq

fpqÊpq, (2.24)

where the Fock matrix elements are given by equation (2.23). This is also the rea-
son why in the Møller-Plesset perturbation theory the Hamiltonian is partitioned
in a way that the unperturbed Hamiltonian is chosen to be a sum of the Fock
operators, and the perturbation is the difference between the exact Hamiltonian
and the unperturbed one.

Usually the MOs are represented as linear combinations of the atomic orbitals
(AOs) and these AOs are referred as basis functions. In practice, the set of basis
functions is finite, and this leads to an approximate solution of the HF equations.
One could perform the computations by evaluating the matrix elements first in
the AO basis, then transform back into the MO basis and perform the SCF proce-
dure described above. However, this scheme scales as N5 in terms of the number
of basis functions due to the two-electron MO integrals. Therefore, it is better to
formulate the problem so that one can perform computations directly in the AO
basis. A MO can be expressed as

φp =
∑

µ

Cµpχµ, (2.25)

where χµ are AO basis functions and Cµp are MO coefficients to be optimised.
Inserting this into the energy expression gives the energy in terms of the MO co-
efficients. Although the MOs are orthonormal, the AO basis functions are usually
not.

The HF equations in a matrix form are

FC = SCε, (2.26)

where F is the Fock matrix, C the MO coefficient matrix, S the overlap matrix of
AO basis functions and ε is a diagonal matrix containing orbital energies. These
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equations are called the Roothaan-Hall equations [25, 26]. The matrix elements
of the Fock matrix in the AO basis are

Fµν = hµν +
∑

ρσ

Dρσ

(

gµνρσ − 1
2gµσρν

)

, (2.27)

where the AO density matrix is defined as

Dρσ = 2
∑

i

CρiCσi, (2.28)

and the summation is over the occupied orbitals. The main advantage with the
AO formulation is that the HF equations can be written as standard linear al-
gebra equations and they are of the form of a generalised eigenvalue problem.
Although the solution must usually be obtained through an iterative procedure
without a guarantee that such a procedure will converge, the eigenvalues (orbital
energies) and eigenvectors (MO coefficients) can in many cases be determined
self-consistently.

In the canonical formulation the orbital energies can be interpreted using
Koopmans’ theorem [27]. An occupied orbital energy is equal to the change in
the total energy if the electron is removed from that orbital while an unoccu-
pied orbital energy corresponds to the change in the total energy if an electron is
added to that orbital and all the other orbitals are supposed to remain the same.
Especially, the energy of the highest occupied molecular orbital (HOMO) can be
interpreted as an estimate for the (vertical) ionisation potential. Correlation ef-
fects, which are neglected in the HF approximation, will produce further correc-
tions to the ionisation potential. Often the correlation effects and the error arising
from not relaxing the orbitals tend to cancel each other, and values for the first
ionisation potentials are estimated reasonably good. On the other hand, electron
affinities are not estimated well using this approach as there the error cancella-
tion does not work any more [28]. The spatial distribution of canonical orbitals
seldom correlates with a notion of a localised chemical bond. However, occupied
orbitals can be transformed to obtain localised orbitals for this purpose and there
are several different schemes available [14].

In the case of closed shell molecules, instead of singly occupied spin orbitals,
the orbitals can be taken to be doubly occupied, i.e. two spin orbitals are com-
bined into a single spatial orbital which is occupied by two electrons with oppo-
site spins. This is called the restricted HF (RHF) method. When each electron is
allowed to occupy its own spatial orbital, without imposing double occupancy,
the method is called the unrestricted HF (UHF) method [29]. The UHF method
allows more flexibility for the wavefunction, and sometimes the UHF solution
has a lower energy than the RHF solution. This phenomenon is called triplet in-
stability due to the fact that the UHF wavefunction is not an eigenstate of the total
spin operator but the wavefunction contains some triplet, quintuplet etc. char-
acter as well, which is also known as spin-contamination. A triplet instability
indicates that the molecule has an open shell diradical state and such instability
occurs usually when the molecular bonds are stretched. Singlet instabilities are
less common and they occur when there exists a wavefunction with a lower en-
ergy which has lower symmetry than the molecule. In such case the electronic
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states cannot be classified according to the molecular point group. In addition to
the RHF and UHF methods there is a restricted open shell HF (ROHF) method
[30], where the wavefunction remains an eigenfunction of the total spin operator.
The ROHF wavefunction is not restricted to a single determinant but can contain
multiple determinants.

The SCF procedure is usually started with an initial guess for the orbitals
obtained with some simple method (e.g. extended Hückel method) and iterated
until the MO coefficients do not change any more (within some predefined tol-
erance). However, in general there is no guarantee that a SCF iteration should
converge, and in practice one has to use additional schemes to assist the conver-
gence. It is common that a SCF iteration oscillates between two states. These
oscillations can be decreased by damping or level shifting. Damping can be in-
troduced by taking a weighted average of consecutive density matrices. Oscilla-
tions can be reduced also by level shifting, i.e. by adding a constant value to the
diagonal elements of the virtual orbitals in the Fock matrix in the MO basis, or by
scaling down the off-diagonal elements between the occupied and virtual orbitals
[31]. Another very efficient method to improve the convergence is the direct in-
version of iterative subspace (DIIS) [32] in which the previous Fock matrices (or
the density matrices) are used to construct a new Fock matrix (or a density ma-
trix) as a linear combination. The weights of the old Fock matrices are chosen to
minimise the norm of the error vector, which can be taken, for example, as the
electronic gradient. A similar idea can be applied for a geometry optimisation
as well. When even DIIS fails to converge (or a very tightly converged wave-
function is needed) second-order optimisation methods, like Newton’s method,
which need also the electronic Hessian, must be used.

For small molecules it is possible to store all two-electron integrals in the
memory or on the disk. However, the number of integrals increases as N4 in
terms of the basis functions, and for large molecules storing all of them becomes
impossible. Furthermore, reading the values from the disk is often slower than
recomputing them. In the direct SCF approach the integrals are not stored but
recomputed at each iteration, multiplied with the density matrix elements and
added to the Fock matrix without the need to store them.

Although the number of two-electron integrals increases quartically, the num-
ber of significant integrals increases only quadratically when the system size be-
comes large enough [33]. This can be understood by considering an overlap in-
tegral between the localised basis functions. If the centres of basis functions are
sufficiently far apart, their overlap is almost zero (below some threshold value).
In order make use of this scaling, one has to determine before the integral is com-
puted, whether it is significant or not. One way is to use the Schwarz inequality to
derive an upper bound for the integral, but more sophisticated methods are also
available [34]. The new Fock matrix can be obtained as a sum of the previous
Fock matrix and a correction term which depends on the two-electron integrals
and the difference between the consecutive density matrices. As the computa-
tion converges, the density matrices change less and less. Therefore, it is possible
to consider only those two-electron integrals which are to be multiplied with a
density matrix difference large enough to contribute to the Fock matrix [33].

The Roothaan-Hall approach described above involves always diagonalisa-
tion of a matrix and this scales as N3. Instead of the molecular orbital coeffi-
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cients, it is possible to perform the optimisation using the density matrix directly,
avoiding the diagonalisation step altogether [35]. Multiplications of sparse ma-
trices scale linearly and it is in principle possible to obtain a linearly scaling HF
method for large enough systems. However, the optimisation of a density ma-
trix is not an easy task [36], and additionally this type of approach provides only
the occupied orbitals; the unoccupied orbitals are also needed for any correlation
method which uses the HF state as a reference state.

2.1.2 Electron correlation methods

The energy difference between the exact nonrelativistic solution of the
Schrödinger equation and the RHF energy is called the correlation energy. The
difference is due to that the RHF approximation restricts the ground state wave-
function to be described by a single determinant with doubly occupied orbitals,
but the many-body wavefunction cannot be represented in such a way. For some
properties the HF method gives results which are in a qualitative agreement with
more accurate methods. This is the case, for example, with energy differences be-
tween different molecular conformations, where the missing correlation energy
is more or less constant and therefore cancels.

The correlation energy can be qualitatively divided into two contributions.
In general, the wavefunction may contain multiple determinants other than the
HF determinant, which have almost the same energy and which mix with the
HF wavefunction. This deficiency is remedied by using a multiconfigurational
wavefunction including all the necessary determinants. This type of correlation
is called nondynamical (or static) correlation and although it is usually small for
closed shell molecules near the equilibrium geometry, it becomes important as
the bonds are distorted or broken.

Another deficiency in the HF approximation is that it is an independent par-
ticle approximation, i.e. an electron moves in an averaged field of the other elec-
trons and it does not actually feel the instantaneous repulsion. The HF MOs do
not minimise the actual electronic repulsion energy and, in reality, the electrons
are further away from each other reducing the repulsion energy. This contribu-
tion to the correlation energy arising from the lack of instantaneous interelec-
tronic interactions is referred as dynamical correlation. However, these defini-
tions are only qualitative and there is no rigorous and unique way to distinguish
between the two.

Electron correlation can be defined also from another point of view based on
probabilities. There the electron correlation means that the probability to find
two electrons at the specified locations is not just a product of their individual
probability densities, i.e. the events are not statistically independent but they are
correlated. The antisymmetry requirement excludes the possibility to find two
electrons with parallel spins at the same location in space. Due to the continuity
of the wavefunction, the probability to find an electron in the vicinity of an other
electron with parallel spin is also diminished, and this phenomenon is called a
Fermi hole. The Fermi hole is a consequence of the antisymmetry of the wave-
function having nothing to do with the Coulomb repulsion; it is already present
in the HF wavefunction. On the other hand, Coulomb interactions are indepen-
dent of the spin, and they reduce the probability of finding electrons close to
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each other, as this is energetically more favourable. This leads to a Coulomb hole
around the electron. These two concepts allow to partition electron correlation
into Fermi and Coulomb correlation. As the Fermi hole can be considered to be
a kinematical effect, i.e. having nothing to do with the electrostatic interactions
between the electrons, the Coulomb hole is a dynamical effect due to the interac-
tions.

Although the HF wavefunction does not include correlation effects, it is often
used as a starting point to describe the electron correlation using more accurate
methods. There are various approaches to include effects arising from the fact
that electronic motions are correlated. In the following, some common correla-
tion methods will be reviewed. Most of them are based on the idea of represent-
ing the wavefunction using the occupied and unoccupied orbitals obtained from
the HF solution. An exception is the density functional theory, where the electron
density (instead of the wavefunction) is taken to be the fundamental variable.

There are also other methods which can be used to calculated electronic corre-
lation and some of them are mentioned here. In the R12 approach one constructs
a trial variational wavefunction which contains an additional configuration with
an explicit linear dependence on the interelectronic distances rij [37]. There are
different implementations of R12 within configuration interaction, many-body
perturbation and coupled cluster theories. The main advantages is that such a
wavefunction satisfies the Coulomb cusp condition and results in more accurate
energies. Even more flexibility can be added to the wavefunction by making it
explicitly dependent on all powers of interelectronic distances, a form known as
Hylleraas expansion [38].

In quantum Monte Carlo (QMC) methods, which basically rely on the gener-
ation of random numbers, the Scrödinger equation is solved directly and, in prin-
ciple, errors are not due to additional approximations but arise from the statistical
character of the method itself. There are different flavours of QMC methodology
[39, 40, 41]. For example, in variational QMC the expectation value of the Hamil-
tonian is calculated using numerical integration making use of random sampling.
In the diffusion QMC the idea is to interpret the Schrödinger equation as a dif-
fusion equation. If the wavefunction is allowed to propagate long enough, the
ground state part becomes dominant one, and the ground state wavefunction in
terms of electron coordinates can be obtained. For some properties QMC can
provide very accurate results.

The electronic many-particle problem can also be formulated using Green’s
function (instead of the wavefunction) techniques. From the Green’s function
one can derive various properties of the system. However, the exact Green’s
function is usually not known, and it must be obtained through the Dyson equa-
tion starting from the Green’s function of a simple non-interacting system. This
is the basis of the so-called GW approximation [42], which allows to calculate ex-
cited state properties by approximating the self-energy so that screening effects
are still included [43].

There are other methods, which are actually not electronic structure meth-
ods, but include some of the correlation effects indirectly, and are computation-
ally much less demanding than the actual electron correlation methods. Semi-
empirical methods [14, 28] and molecular mechanics [14, 44] based methods
include part of the correlation effects through predetermined parameters. In
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semi-empirical methods some of the costly two-electron integral terms are ob-
tained from predetermined parametric values and some are approximated to
be zero. Only valence electrons are considered explicitly using minimum ba-
sis set. In molecular mechanics all interactions between atoms are parametrirsed
and these parameters constitute a force field. Force field parameters are deter-
mined based on experimental data and/or computations and force fields are
often parametrised for some particular purpose, e.g. to model small organic
molecules, polymers or proteins.

Configuration interaction

Electron correlation can be taken into account by giving the wavefunction more
flexibility than available in the HF approximation. A straightforward way to
achieve this is to construct a wavefunction as a linear combination of multiple
Slater determinants orthogonal to each other. Such determinants can be con-
structed using the orthonormal orbitals obtained from the canonical HF orbitals
by exciting electrons from the occupied to unoccupied orbitals, i.e. replacing an
occupied orbital with an unoccupied one in the determinant. This approach is
called the configuration interaction (CI) method. Based on the variational princi-
ple, the solution is found by minimising the energy with respect to the expansion
coefficients in front of the determinants.

If all possible determinants are included in the wavefunction expansion, the
method is called full CI (FCI), and it gives an exact solution to the Schrödinger
equation within the basis set used (with a finite basis set there is a finite num-
ber of determinants). FCI calculations are only possible with atoms or small
molecules and are usually undertaken only for benchmark purposes. The full
CI is an exceeding expensive method as the total number of CSFs increases fac-
torially as a function of basis functions and depends also on the number of elec-
trons [14]. The CI expansion for a wavefunction can be truncated, for example,
taking into account only single and double excitations, which is usually called
the CISD method. Single excitations do not mix with the HF reference, but af-
fect only through the double and triple excitations. Therefore, in the CIS method
the ground state properties are the same as in HF, but CIS can be useful to study
excited states, at least qualitatively.

Instead of generating all the determinants, and calculating the expectation
values thereof, the number of required determinants can be decreased by includ-
ing only particular spin states. The main advantage in this approach is that one
can specify the molecular spin state unambiguously beforehand. In atomic calcu-
lation, some additional problems with specifying spin and angular momentum
may arise. The determinants can be combined so that they form CSFs, which are
eigenfunctions of the total spin operator. Without spin-dependent operators, all
expectation values between CSFs belonging to different spin states are zero. Use
of CSFs usually reduces the dimension of the problem significantly.

A general CI wavefunction can be written as

|CI〉 =
∑

i

ci|i〉, (2.29)

where |i〉 are CSFs and ci are expansion coefficients to be determined by the vari-
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ational principle. The linear variation problem reduces into solving a secular
equation [45], i.e. finding the eigenvalues and eigenvectors of a matrix equation

HC = CE, (2.30)

where H is a matrix having the expectation values 〈i|Ĥ|j〉 between different CSFs,
C has the eigenvectors as columns and E the eigenvalues on its diagonal. The ma-
trix elements of H can be expressed in terms of one- and two-electron integrals
using Slater-Condon rules [46]. As the Hamiltonian contains only one- and two-
electron operators, all the expectation values between CSFs which differ by more
than two orbitals are zero. Additionally, all the matrix elements between the HF
reference and singly excited CSFs are zero due to Brillouin’s theorem [47]. Con-
sequently, the H matrix has a block diagonal structure and many of its blocks
are sparse; nonetheless, full diagonalisation of a large CI matrix can still be im-
possible. However, one is usually interested in the ground state (and maybe few
lowest lying excited states), and the corresponding eigenvalues and eigenvectors
can be found with iterative methods without the need to keep all the matrix ele-
ments in the memory [48, 49] and this kind of approach is called direct CI [50].

Both full and truncated CI methods are variational. However, the major
drawback of all truncated CI methods is that the energy does not scale properly
as a function of system size, and the dissociation of fragments yields incorrect
complexation energies. These two properties are referred as size extensivity and
size consistency [51]. Although these two concepts are sometimes used inter-
changeably, they are separate, however. These deficiencies in the truncated CI
method are related to the exclusion of the particular excited state determinants
from the wavefunction. As an example, CISD is equivalent to FCI for a hydrogen
molecule, because there are only two electrons in the system. One could expect
that for a system consisting of two non-interacting hydrogen molecules (e.g. at
an infinite distance from each other), the CISD energy would be two times that
of a single molecule. However, this is not the case. The total system has four
electrons and the CISD lacks triply and quadruply excited states, which would
be necessary to describe the system at the FCI level. The discrepancy becomes
even worse, as the number of non-interacting molecules increases. Therefore,
truncated CI methods are neither size consistent nor size extensive.

Size consistency is essential, for example, when relative energies are consid-
ered. A method which is not size consistent cannot give complexation energies
in a proper manner. It is possible to reduce the error due to lack of size consis-
tency using the Davidson correction [52]. On the other hand, size extensivity is a
related, but a somewhat more general concept. It implies that the energy scales
correctly with the particle number, and particles can also interact with each other.
Size extensivity is a necessary requirement, for example, for computing potential
energy surfaces correctly. Size consistency is always related to the fragmenta-
tion of two or more subunits to the infinite distance, and it additionally requires
that the wavefunction behaves correctly. For example, for certain fragmenta-
tion processes the RHF wavefunction does not describe the system correctly, and,
therefore, in these particular cases RHF is not size consistent, although the RHF
method is always size extensive. Therefore, size extensivity does not imply size
consistency.
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Although FCI is an exact method and able to account for non-dynamical cor-
relation and the multireference character in the wavefunction, truncated CI in
general cannot. One way to include the multireference character in the wave-
function is to use multiple Slater determinants as reference states (instead of sin-
gle HF determinant) in the CI expansion. This approach is called multireference
configuration interaction (MRCI) [50] method, and it is able to account for both
dynamical and non-dynamical correlation; nonetheless, it is not size extensive
either.

Multiconfiguration self-consistent field

In the construction of the CI expansion, the molecular orbitals in the CSFs are
taken from the HF solution, and they remain the same during the calculation. In
the multiconfiguration self-consistent field (MCSCF) method the electronic en-
ergy is minimised with respect to both the molecular orbitals and the CSF co-
efficients. The MCSCF description of the wavefunction is necessary when the
wavefunction is not even qualitatively described correctly by a single determi-
nant. This may be the case with bond dissociation processes, excited states and
sometimes also with ground states in which degenerate orbitals are only par-
tially occupied, and the actual wavefunction is a linear combination of two (or
more) electron configurations [53]. The MCSCF wavefunction is able to account
for nondynamical correlation arising from degenerate electronic configurations,
whereas methods like configuration interaction, Møller-Plesset perturbation the-
ory and coupled cluster theory are based on improving the HF reference state,
and to account for dynamical correlation. The MCSCF method is variational, as
all the wavefunction parameters are optimised, and size extensive. It is also size
consistent as far as all the appropriate orbitals are included into the configuration
space.

The problematic part in MCSCF computations is often how to choose the con-
figuration space so that all essential configurations are included. With larger sys-
tems this is perhaps not even possible, and one is able to include only part of the
configurations. The computational cost increases fast with the size of the configu-
ration space, and too many configurations make computations quickly infeasible.
Although occupations obtained from the natural orbitals often give a good start-
ing point [14], sometimes one must choose the orbitals by chemical insight or by
trial and error. Due to the large number of parameters to be optimised, the opti-
misation may easily end up with a stationary point which is not a minimum, but
this problem is usually remedied by increasing the configuration space. Instead
of the iterative SCF procedure, MCSCF wavefunctions are usually optimised us-
ing other methods, such as the Newton-Raphson method, which make use of the
second derivatives of the energy with respect to the wavefunction parameters
in order to attain better convergence [54]. Due to these problems, the MCSCF
wavefunction expansions must be kept shorter relative to the CI expansions and
therefore MCSCF does not recover dynamical correlation as well as other meth-
ods.

One implementation of MCSCF is the complete active space SCF (CASSCF)
method [55], in which the orbitals are partitioned into active and inactive orbitals.
Within active orbitals all possible electron excitations are allowed, and these con-
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figurations are included into the MCSCF wavefunction. Although all MOs are
being optimised, electrons within inactive orbitals remain doubly occupied. The
generalised Fock matrix can be partitioned into inactive and active parts

Fip = 2(F I
ip + FA

ip ) (2.31)

Ftp =
∑

u

DtuF I
up + 2

∑

uvw

dtuvwgpuvw, (2.32)

where

F I
pq = hpq +

∑

j

(2gpqjj − gpjjq) (2.33)

FA
pq =

∑

vw

Dvw

(

gpqvw − 1

2
gpwvq

)

, (2.34)

and i and j refer to the inactive and t, u, v and w to the active orbitals. The elec-
tronic MCSCF gradient can be calculated using these equations, and it is also pos-
sible to obtain an expression for the electronic Hessian in terms of the generalised
Fock matrices, density matrices and AO integrals [22, 54]. Although all orbitals
are optimised, the electron correlation is recovered only for electrons in the active
orbitals. The rest of the correlation energy has to be accounted for using multiref-
erence CI methods, with MCSCF wavefunction as a reference wavefunction, or
using multireference perturbation theory.

Coupled cluster

In the coupled cluster (CC) theory [56] the wavefunction is constructed by includ-
ing excited state determinants into the HF ground state wavefunction, similar to
the CI method. Whereas the truncation of the CI expansion resulted in the loss
of size extensivity, in the CC approach size extensivity is retained. The configu-
ration interaction method was not size consistent, because the CI wavefunction
for two non-interacting systems could not be represented as an antisymmetric
product of individual CI wavefunctions of both subsystems. The lack of higher
excitations, which become more and more pronounced as the number of elec-
trons increases, is the main reason for the lack of size extensivity.

In the CC approach the truncation is not done in the wavefunction but in
the exponential operator generating the excitations. The basic idea is that in the
wavefunction the amplitudes of higher order excitations (cf. CI coefficients) are
expressed as products of lower order excitation amplitudes (disconnected terms)
and as genuine amplitudes (connected terms) corresponding to the particular
excitation level. When the truncation is done, the connected terms from a certain
excitation level onwards are missing but all disconnected terms are still present
up to infinite order. The CC wavefunction is usually built from the HF reference
state, and in order to perform well, non-dynamical correlation effects should be
absent [51].

The uncorrelated wavefunction can be represented by creation operators act-
ing on the vacuum state. In the uncorrelated description all the electrons reside
in the occupied orbitals, and no excitations to the unoccupied ones take place.

17



When electron correlation is taken into account, the correlated motion of elec-
trons is included through the excitations from the occupied to the virtual or-
bitals. Each excitation is accompanied by an amplitude related to the probability
that the excitation occurs. In the CC method there are multiple ways to obtain
excited configurations, each having an individual weight. The total probabil-
ity amplitude of a configuration is the sum of these weights. The main idea of
the CC theory is to make the wavefunction multiplicatively separable, which in
turn makes the energy additively separable and guarantees size extensivity. This
can be obtained by using an exponential excitation operator. In general, the CC
wavefunction can be written as

|CC〉 = exp(T̂ )|HF〉, (2.35)

where the cluster operator for a system containing N electrons is defined as

T̂ = T̂1 + T̂2 + · · · + T̂N , (2.36)

and, for example, the operators for single and double excitations are given by

T̂1 =
∑

ai

tai â
†
aâi (2.37)

T̂2 =
∑

a>b
i>j

tab
ij â†aâiâ

†
bâj, (2.38)

where tai and tab
ij are called cluster amplitudes. If the full cluster operator in (2.36)

is used, the description is equivalent to the FCI method.
The remaining problem is to find the cluster amplitudes. The CC wavefunc-

tion (2.35) satisfies the Scrödinger equation

Ĥ|CC〉 = E exp(T̂ )|HF〉. (2.39)

This equation can be projected onto the HF reference state and onto different
excitations |µ〉, and the resulting equations give a system of nonlinear equations

〈HF| exp(−T̂ )Ĥ exp(T̂ )|HF〉 = E (2.40)

〈µ| exp(−T̂ )Ĥ exp(T̂ )|HF〉 = 0, (2.41)

from which the values for amplitudes can be solved iteratively
Although the exponential operator is expressed as an infinite series, the pro-

jected equations contain no higher than quartic amplitude terms due to the struc-
ture of the cluster operator. With some approximate amplitude values, equations
(2.41) are not zero, and these equations can be used to construct a vector function.
In order to find a solution, this vector function can be optimised using, for exam-
ple, Newton’s method [21]. For practical purposes it is often more convenient
to derive the amplitude equations using a similarity transformed Hamiltonian
which yields the same energy and amplitudes [57].

The lowest order CC method giving corrections to the ground state energy is
obtained when only the double excitations are present, and the cluster operator
contains only the T̂2 term. In the exponential expression the contribution from
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the double excitations are called as connected clusters. However, in the CCD
wavefunction there are additional terms called disconnected clusters which arise
as products of the T̂2 operators. Therefore, the amplitudes of the higher order
(quadruple, hextuple, etc.) excitations are approximated as products of those of
double excitations. These disconnected clusters are essential in making the CCD
method size extensive. On the other hand, in the CID wavefunction only the
doubly excited determinants would be present without contributions from any
higher order terms.

The CCD method is the simplest CC approximation; including also single ex-
citations gives the CCSD method, which scales as N6, where N is the number
of basis functions, and triple excitations the CCSDT method scaling as N8. The
contribution from the triple excitations can be also approximated perturbatively,
and this approach is known as CCSD(T), which scales as N7. One can also intro-
duce additional approximations to the CCSD and CCSDT methods, and obtain
computationally order of magnitude less demanding methods known as the ap-
proximate coupled cluster singles and doubles (CC2) model [58] and the approx-
imate coupled cluster singles, doubles and triples (CC3) model [59]. Although
the coupled cluster methods are not variational, they are size extensive, which is
a major advantage as compared to the CI method.

For molecular properties the nonvariational projection method used to obtain
the amplitude equations in the CC theory is not well suited because the wave-
function is not fully variational. This can be circumvented by formulating the CC
energy expression in the presence of a perturbation using a new Lagrangian and
a set of undetermined multipliers so that the new expression for the CC energy
becomes fully variational with respect to both the amplitudes and the multipli-
ers [57]. The properties of excited states can be obtained using the CC response
theory by calculating the first derivatives of the corresponding CC energy with
respect to the external field related to the property. Relaxed properties are calcu-
lated by allowing the orbitals to relax due to the external field already at the SCF
stage [60], while in the unrelaxed case the orbitals do not response to the external
field [58]. Closely related to the CC response theory is a so-called equation-of-
motion CC (EOM-CC) method [61], which also allows the calculation of excited
states. The excitations are generated from the CC wavefunction using a linear
excitation operator similar to the CI method. This approach can be regarded as a
conventional CI method using the similarity transformed Hamiltonian.

There is a variation of the CC theory which is based on the fact that the contri-
bution from the single excitations is usually small when the canonical HF orbitals
are used. This method is called the Brueckner coupled cluster theory [62], and
there the MOs are optimised so that the amplitudes from single excitations are
zero. Nonetheless, the results are usually very similar to those obtained with
standard CC theory at the corresponding level.

Perturbation theory

Perturbation theory relies on the assumption that the unperturbed system de-
scribed by the Hamiltonian Ĥ0 can be solved exactly, and the introduction of a
small perturbation V̂ changes the energies and wavefunctions only slightly com-
pared to the unperturbed ones. The Schrödinger equation for the perturbed sys-
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tem is
(Ĥ0 + λV̂ )|0〉 = E|0〉, (2.42)

and the exact wavefunction and energy are assumed to be given by series expan-
sions

|0〉 =

∞
∑

k=0

λk|0(k)〉 (2.43)

E =
∞
∑

k=0

λkE(k), (2.44)

where λ is a formal coupling parameter of the order of perturbation (in the final
expressions λ = 1). Inserting the above series expansions into the Scrödinger
equation and collecting the terms of the same order in λ together, gives a set of
coupled equations. Through these equations it is possible to solve the energies
and wavefunction corrections recursively up to any order. The total wavefunc-
tion is assumed to be intermediately normalised, i.e. all the corrections are or-
thogonal to the unperturbed wavefunction.

The Møller-Plesset (MP) perturbation theory [63] arises from the application
of the Rayleigh-Schrödinger perturbation theory using the specific partitioning of
the Hamiltonian into the unperturbed part and perturbation. In the MP method
the unperturbed Hamiltonian is the sum of Fock operators, and the perturbation
is the difference between the exact Hamiltonian (within the Born-Oppenheimer
approximation) and the unperturbed Hamiltonian. The unperturbed wavefunc-
tion is the HF wavefunction, and any excited Slater determinant, obtained by
replacing an occupied orbital by a virtual one, is orthogonal to the unperturbed
wavefunction. The excited Slater determinants form a complete set, and correc-
tions to the unperturbed wavefunction can be expressed in terms of these deter-
minants.

The unperturbed total energy is a sum of orbital energies. The energy cor-
rected to the first order is equal to the Hartree-Fock energy, and the first-order
wavefunction correction involves doubly excited determinants as the contribu-
tions from singly excited states vanish due to Brillouin’s theorem. The correc-
tion for correlation energy is not obtained until the second-order energy correc-
tion involving matrix elements of the perturbation between the ground state and
doubly excited states. Eventually these terms reduce into an expression of two-
electron integrals between occupied and virtual orbitals. The MP2 energy is the
Hartree-Fock energy added with the second-order correction term

E(2) = −
∑

i>j
a>b

|gaibj − gajbi|2
εa + εb − εi − εj

, (2.45)

where g is the two-electron MO integral and ε is the orbital energy. The two-
electron MO integral evaluation also makes MP2 to scale as N5 in terms of the
number of basis functions. The scaling arises from the transformation of atomic
orbitals into molecular orbitals. In general, there is no guarantee that the pertur-
bation is small in order to satisfy the basic assumption of the theory; nonetheless,
the second-order perturbation theory is often successful. On the other hand, it
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has been demonstrated that the MP series may diverge even for simple systems,
as the higher order terms become divergent, and in the case of a more compli-
cated electronic structure, e.g. elongated bond, the divergence occurs already at
lower orders [21].

Also higher order corrections to the energy and wavefunction can be eval-
uated. Third-order corrections (MP3) improve results only little and usually
fourth-order corrections (MP4) are used instead. As the order of the correction
increases, computational cost increases as well as higher order excitations are in-
cluded, for example, MP4 scales already as N7. It can be shown that in order to
calculate the energy correction to order 2n + 1 it is sufficient to have the wave-
function corrections to order n. This result is known as Wigner’s 2n + 1 rule [21].
The MP perturbation theory is size extensive, but another perturbation theory
known as the Brillouin-Wigner perturbation theory is not. The MP perturbation
theory is not variational, and thus the energy corrections may be too large.

The electron correlation of the core electrons is usually affected only little by
chemical changes taking place at the valence shell, and it is often justified to ne-
glect contributions from the core electrons. This approach is called frozen core
approximation. If the correlation effects from the core electrons need to be taken
into account, one must usually have additional basis functions at the core region
to account for core correlation. Local correlation methods are based on the fact
that in non-metallic systems the dynamical electron correlation is a short-range
effect and therefore it is possible to use localised molecular orbitals to represent
the HF reference wavefunction [64]. This reduces the number of required inte-
grals in large systems. Similar approximation can be applied also for CC meth-
ods.

Instead of using the HF wavefunction as a reference, it is also possible to use
a multiconfigurational wavefunction as a reference for perturbation theory. This
approach is called multiconfigurational perturbation theory. However, the choice
of an unperturbed Hamiltonian is not unambiguous as the MCSCF MOs are not
eigenfunctions of any one-electron operator (cf. the Fock operator). One imple-
mentation of this type is the CAS perturbation theory (CASPT) [65, 66], where
the reference state is taken to be a CASSCF wavefunction. With this approach
one can include dynamical correlation effects after non-dynamical correlation is
taken care of by the multiconfigurational wavefunction. It is also better suited to
study excited states, because it is not based on the Hartree-Fock reference only.

2.1.3 Density functional theory

All the methods described so far are based on solving the wavefunction from the
Schrödinger equation in some approximative fashion. Density functional theory
(DFT) is different in a sense that there the basic variable is the electron density4,
not the wavefunction. In the original formulation, the foundation of DFT relies
on the Hohenberg-Kohn (HK) theorems [67], which prove that all the ground
state properties of the system are formally determined by the ground state elec-
tron density, which can be found by minimising the total energy. The energy is
a functional of the density, and it is variational with respect to the density. The

4DFT as such is generally applicable to any interacting system, not just electrons, but it is most
often related to electronic structure calculations.
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first HK theorem states that there is a one-to-one mapping between the electron
density and the external potential. The proof assumes that there are two external
potentials, which differ by more than a constant, but result in the same electron
density. This assumption leads to a contradiction which proves that the exter-
nal potential is determined uniquely by the density. The second HK theorem
establishes the variational principle for the energy. The ground state energy is
minimised if and only if the density corresponds to that of the ground state; all
other densities give higher energies (assuming nondegenerate ground state).

In order to describe a physical system of electrons, the density has to be posi-
tive, it must be obtainable from an antisymmetric wavefunction and integrate to
a given number of electrons (a property called N -representability) and it must be
associated with some external potential. The last statement is related to the so-
called v-representably problem; only those densities which are attainable from
an antisymmetric wavefunction and related to a Hamiltonian with some exter-
nal potential come into question. It is not known in general which conditions
the density has to satisfy in order to be v-representable [68]. If the density is not
v-representably, the HK theorems are no longer valid.

The original proof of the first HK theorem had to assume nondegenerate
ground state and that the densities are v-representable. Another proof, based
on constrained search formulation given by Levy [69], extends the validity of the
HK theorems for degenerate states and requires the density to satisfy a weaker
condition, namely N -representability. The functional F [ρ] is constructed by

F [ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉, (2.46)

where the minimisation is over all antisymmetric wavefunctions whose density
is equal to ρ(r). This formal procedure gives a universal form of the functional
F [ρ]. The ground state energy is given by

E = min
Ψ→N

〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉

= min
ρ→N

{

F [ρ] +

∫

vext(r)ρ(r) dr

}

,
(2.47)

where the final minimisation is over all those densities that yield N electrons.
This theorem provides rigorous proof that the N -representable density can be
used as a basic variable instead of the wavefunction, but none of the theorems
cannot provide any practical scheme to actually perform computations. Such a
method was suggested by Kohn and Sham [70] by using a fictitious system of
noninteracting electrons.

Suppose that there are N noninteracting electrons moving in an effective po-
tential. The orbitals are solutions of the single-particle Schrödinger, or Kohn-
Sham (KS), equation

(

− 1

2
∇2 + vs[ρ](r)

)

ϕj(r) = εjϕj(r), (2.48)

where the effective single-electron potential is

vs[ρ](r) = vext(r) +

∫

ρ(r′)

|r − r′| dr
′ + vxc[ρ](r). (2.49)
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The first term is an external potential (e.g. due to the nuclei), the second term is
the Hartree term due to the static Coulomb interaction arising from the electron
density and the last term is the exchange-correlation potential. These fictitious
electrons are still fermions so that the exact wavefunction is given by the Slater
determinant constructed from the KS orbitals. The density of the system is ob-
tained as

ρ(r) =
∑

i

|ϕi(r)|2, (2.50)

where the sum is over the occupied KS orbitals. The effective potential vs is a
functional of the density and depends on the external potential, and is therefore
specific to the system itself. However, the exchange-correlation part is universal
in a sense that it depends only on the electron density, and this functional has the
same form for any system. If the exact functional form would be available, the
KS scheme would give the same energy as the exact solution of the Schrödinger
equation. The major advantage of the KS formulation is that a large part of the
kinetic energy can be calculated straightforwardly, and everything that is not
known exactly, i.e. all many-body effects, are accounted for by the exchange-
correlation potential.

The Kohn-Sham scheme assumes that for an interacting system with an ex-
ternal potential and a given density there exists a corresponding noninteracting
system with the same density, and the interactions can be described by an effec-
tive potential vs. The HK theorems prove that this potential is unique, but do
not guarantee that such a potential always exists. The problem whether one can
always find an effective potential that yields the same ground state density is
known as noninteracting v-representability problem. This can be proven to be
true by formulating the kinetic energy functional using the density matrix which
allows fractional occupations for KS orbitals [71].

For closed shell molecules the KS orbitals are usually taken to be occupied
by two electrons with opposite spins, i.e. there is no spin polarisation. Un-
paired spins and open-shell systems can be treated using unrestricted KS scheme
in which each orbital is occupied only by one electron. Within DFT the spin-
contamination has no similar meaning as in the HF method, as there is no wave-
function to calculate the expectation value of the total spin operator.

The exact form for the exchange-correlation potential in the KS equations is
not known, and in order to perform actual computations with DFT some approx-
imative form has to be used. Contrary to wavefunction methods, where accuracy
can be increased simply by adding more flexibility into the wavefunction, there is
no systematic way to construct more accurate functionals. Therefore, there exists
a large variety of different functionals. Although DFT is variational in itself, it is
no longer variational when approximate exchange-correlation functional is used.
While most exchange-correlation functionals are size consistent, it is possible to
construct functionals which are not size-consistent [72].

The simplest approximate form for the exchange-correlation potential is ob-
tained from the uniform electron gas model. There the kinetic energy and ex-
change energy can be calculated analytically [73, 74], and for the correlation en-
ergy analytical solutions are known in the high and low density limits. At the
intermediate densities the correlation energy can be computed using quantum
Monte Carlo simulations [75]. This knowledge of the total energy as a function
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of the density can be used to construct the local density approximation (LDA)
for the exchange-correlation potential [76]. The LDA is a local functional of the
density so that the energy at a given point depends only on the density at that
point.

The LDA is exact for a uniform electron gas, and it is a good approxima-
tion for systems where the electron density varies sufficiently slowly. However,
in systems where the electron density is inhomogeneous, like in molecules, the
LDA is not that accurate anymore. Additionally, the LDA has incorrect asymp-
totic behaviour for the exchange energy density, and to correct the asymptotic
behaviour, a gradient dependent functional was introduced [77, 78]. In order to
account for irregularities in the density, the exchange-correlation potential can
be made dependent on the gradient of the density as well. These kinds of func-
tionals are known as generalised gradient approximations (GGAs) and are also
referred as semi-local. The gradient dependent part can be added as a correc-
tion to the LDA exchange [77] and correlation parts [79, 80], or the correlation
energy can be reparametrised completely [81]. Usually these functionals contain
few parameters which are empirically fitted to produce particular set of results in
the best possible way, but it is also possible to construct functionals without any
empirical input [82].

The exchange-correlation potential can be made dependent also on the ki-
netic energy density obtained from the KS orbitals. These type of functionals are
called meta-GGAs [83, 84]. Furthermore, the exchange-correlation functional can
explicitly depend on the occupied orbitals themselves, and these functionals are
called hyper-GGAs, including exact exchange and nonlocal correlation. This is
the case, for example, with so-called hybrid functionals where the exact exchange
term (cf. the Hartree-Fock theory) is mixed with the exchange in DFT in such a
proportion that the resulting functional produces the desired quantities in the
best possible way [85, 86, 87, 88, 89]. Some hybrid functionals have turned out
to produce some molecular properties very well and gained wide popularity5.
Further extensions like dependence on the unoccupied orbitals are also possible
[72].

As all approximations, also approximate functionals have their shortcomings.
From the Hartree term in the KS potential in equation (2.49) one can see that as
the fictitious electron interacts with the electron density through the Coulomb
interaction, it also interacts with itself. If the exchange-correlation potential were
exact, it would precisely cancel this spurious effect known as self-interaction.
However, with approximate exchange-correlation functionals this is not the case.
The unphysical self-interaction causes orbitals to ‘feel’ an incorrectly large charge
from the other electrons, and this makes orbitals to be spatially too extended [90].

One approach to remove the self-interaction is the optimised effective poten-
tial (OEP) method. In the OEP method the total energy is taken as a functional
of ithe KS orbitals, e.g. with the exact exchange term. The effective potential in
KS equations is determined variationally so that the orbitals satisfy the KS equa-
tions and simultaneously minimise the energy. This scheme is computationally
very complicated leading to integral equations but approximative schemes are
also available [91].

5An example of this kind of ‘unholy alliance’ is the popular B3LYP functional.
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The exact exchange-correlation potential should decay asymptotically as r−1

to zero, but approximate functionals usually exhibit exponential decay. This can
be qualitatively understood by considering an electron taken away from an atom.
As the electron is taken sufficiently far away from the other electrons and the
nucleus, it experiences only the static Coulomb interaction with the net charge.
However, in DFT the isolated electron still experiences repulsion of its own den-
sity through the Hartree term and this should be eliminated by the exchange
term. Due to the incorrect decay, Rydberg states are usually missing in DFT [91].

Another phenomenon that can be seen when DFT is formulated using ensem-
bles allowing fractional particle numbers, is that the exchange-correlation poten-
tial has a discontinuity as the number of particles passes through an integer [72].
This phenomenon is called derivative discontinuity. Current approximate func-
tionals which are all continuous with respect to particle number cannot account
for this behaviour. Other problematic issues with LDA and GGAs include heavy
elements, negative ions, neglect of dispersion forces and strongly correlated sys-
tems [91].

Although DFT is a ground state method, it is possible to extend its applica-
bility to time-dependent systems and their properties, like excitation energies,
through time-dependent DFT (TDDFT) [92, 93]. Instead of actually solving the
time-dependent KS equation, which is also possible, one can combine TDDFT
with linear response theory. Using the property that the frequency dependent
response has discrete poles at the excitation energies, allows the problem to be
formulated as an eigenvalue equation [94], which results in the excitation ener-
gies and oscillator strengths. Usually TDDFT relies on the so-called adiabatic ap-
proximation, where the complicated time-dependent exchange-correlation ker-
nel [90, 95, 96] is approximated simply by using the same functional as with the
ground state ignoring the time-dependence. In addition to excitations, other fre-
quency dependent properties can be calculated. Furthermore, it is possible to
extend DFT to include phenomena like finite temperature, electric currents and
magnetism [97] and relativity [98].

The Hartree term is equivalent to the interaction between two continuous
charge distributions, and a direct evaluation in AO basis would require compu-
tation of four-centre two-electron integrals, similar to the HF method. However,
the electron charge distribution can be approximated using auxiliary basis func-
tions [99, 100, 101], which in turn reduce the integrals into three-centre integrals.
Additional, if the centres corresponding to the remaining AO basis functions are
sufficiently far apart, the integral can be neglected. The asymptotic scaling in
this case becomes N2. This method is called the density fitting or resolution of
the identity6 (RI). The errors introduced by this approximation are usually much
smaller than other errors, such as due to finite basis sets [102]. A similar proce-
dure can also be applied for the HF, MP2 and CC methods to speed up computa-
tions.

There are also other ways to speed up the evaluation of the Hartree term.
One can solve Poisson’s equation to find out the electrostatic potential due to
the charge distribution, and use this potential in the integration over the space

6This is not equivalent to the resolution of the identity used in the mathematics since the
Coulomb metric is used.
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to obtain the Coulomb energy. The Coulomb interaction can also be evaluated
using so-called fast multipole method (FMM) [103], where the interaction of two
charge distributions sufficiently far apart is approximated using the multipole
moments of the charge distributions. With FMM it is possible to achieve linear
scaling in the evaluation of the Coulomb interaction [104].

The local or semi-local exchange-correlation term, on the other hand, can be
evaluated by numerical integration (quadrature), as it depends only on the den-
sity (and possibly its derivatives). The points of the integration grid are usually
taken to be spherically distributed around the nuclei with varying radial den-
sity. This integration grid has similar role in the accuracy of the computation
as the basis set: The grid has to be dense enough to accurately account for the
exchange-correlation energy. The cost of this integration scales linearly for large
enough systems [105].

2.2 Basis sets

Wavefunctions are represented using MOs, which in turn are functions of the
electron coordinates. Of course, the wavefunctions and MOs could be repre-
sented using a grid of points. However, as the number of points and orbitals
increases, this kind of approach becomes soon infeasible due to memory require-
ments as there are three spatial coordinates for each electron. There are real-
space methods like finite element and finite difference methods which can take
advantage of so-called multigrid techniques, and solve, for example, the Kohn-
Sham equations, or sometimes also the Schrödinger equation for a few parti-
cles in a special geometry, as a differential equation with particular boundary
conditions [106, 107]. Advantages of real-space methods are that linear scaling
approaches are more straightforward to implement using multigrid techniques
[108] and multiple-length scales can be included. There is no need to perform
Fourier transforms between real and reciprocal spaces as in the plane wave ap-
proach described shortly. However, molecular properties depend on the grid,
and the movement of nuclei with respect to the grid introduces artificial Pulay
forces.

With MOs a more efficient way is to use basis functions, and expand the MOs
as linear combinations in terms of these functions. The essence it to choose the
basis functions in such a way that they ‘resemble’ the atomic orbitals, but on the
other hand the computation of integrals must be efficient. A set of basis functions
can be parametrised beforehand and thereafter used as such in computations. Ba-
sis functions in turn can be represented either numerically or algebraically. In nu-
merical approach basis functions are evaluated in a set of grid points. However,
this is computationally costly as every basis function has its own set of values
at every grid point. In algebraic approach basis functions are represented using
functions with a set of parameters determining their form.

The algebraic form of suitable basis functions depends on the problem at
hand. With periodic boundary conditions periodicity is required also from the
basis functions and, therefore, one can use plane waves [109]. Plane waves do not
depend on the position of the nuclei; the Pulay forces are absent, and the basis
set size is controlled by the energy cutoff only. Another advantage is that deriva-
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tives in real-space become simply multiplications in the reciprocal space, and
transformation between these spaces can be efficiently done using fast Fourier
transform (FFT). An eigenvalue equation is solved for a set of reciprocal lattice
points, which gives the energy bands as eigenvalues and wavefunction coeffi-
cients as eigenvectors. For DFT the total electron density in real-space is needed;
it can be efficiently obtained by first transforming each wavefunction into the
real-space with FFT and summing all contributions [110]. Plane wave methods
are intimately connected to pseudopotentials, as an adequate description of the
core electrons would need very high energy cutoffs.

On the other hand, in finite systems the basis functions are usually taken to
be localised and centred at the nuclei. In the first approximation the MOs can be
thought to arise from combinations of the atomic orbitals. Therefore, the Slater
type orbitals (STOs), which are derived from analytic solutions of a hydrogenic
one electron atom, would seem to be ideal candidates as basis functions. A gen-
eral STO basis function has the form

χSTO
nlm (r, θ, ϕ) = NYlm(θ, ϕ)rn−1 exp(−ζr), (2.51)

where Ylm(θ, ϕ) are spherical harmonics, n, l and m are the quantum numbers
and N is the normalisation factor. However, the evaluation of the four-centre
two-electron integrals turns out to be very difficult with STOs. The most time
consuming step is usually to evaluate the required integrals over the basis func-
tions. Therefore, the most widely used basis functions are Gaussian type orbitals
(GTOs) [111], which allow the evaluation of integrals to be done almost analyti-
cally [21]. A spherical GTO basis function can be represented as

χGTO
nlm (r, θ, ϕ) = NYlm(θ, ϕ)r2n−l−2 exp(−αr2). (2.52)

GTOs have no such physical interpretation as STOs; actually they behave differ-
ently at the nucleus (derivative is zero) and farther away decay faster than STOs.
Therefore one usually needs more GTOs than STOs to achieve the same accuracy.
In spite of these shortcomings, GTOs are nowadays used almost in all quantum
chemistry packages, and even if integrals could be calculated using STOs, they
would not necessarily be superior to GTOs [31]. GTOs can be represented with
cartesian or spherical Gaussians. The latter choice is usually preferred, due to
the fact that from d functions onwards cartesian Gaussians become linearly de-
pendent with respect to lower angular momentum functions, but spherical Gaus-
sians do not suffer from this problem [21].

There are number of different schemes to evaluate Gaussian integrals such as
Obara-Saika [112] and McMurchie-Davidson [113], which employ recursive for-
mulas for integrals. Both of these method reduce the numerical integration into
evaluation of a so-called Boys function. Another way to do the integration is the
Rys quadrature [114], which is based on the idea of using the Gauss quadrature
to evaluate an integral over a polynomial and a weight function exactly. This
reduces the integral evaluations into finding the roots and weights of the Rys
polynomials. The details of the integral evaluation, especially for two-electron
integrals, are often quite involved [21].

The Gaussian basis functions are accompanied by a set of parameters (coef-
ficients and exponents), which give the functions their specific spatial distribu-
tion. Usually these parameters vary from one element and basis set to the other,
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and they are usually predetermined so that the same parameters can be used in
different computations and the results are commensurate. There exists a wide
variety of different kinds of Gaussian basis sets and there are several different
approaches to construct them. A simple method to obtain a basis set is to make
linear combinations of GTOs and fit them to STOs in the least squares sense [115].
Another way to construct a basis set is to optimise all the parameters in the linear
combination of GTOs so that they minimise the SCF energy for an atom [116]. In-
stead of complete optimisation, the exponents can be required to be proportional
(so-called even-tempered sequence) to each other and fewer parameters need to
be optimised [21]. Instead of optimising all the parameters, which is costly, one
can construct fixed linear combinations of primitive Gaussians with fixed con-
traction coefficients and use these predetermined contractions as basis functions
in actual computations.

There are two different contraction schemes. In the segmented contraction
scheme each contracted Gaussian has its own primitive Gaussians which do not
contribute to any other contraction. Further flexibility and computational effi-
ciency can be obtained with a general contraction scheme [117] where the same
primitives occur in all contractions but with different coefficients. An example
of basis sets using general contraction scheme are so-called correlation consistent
basis sets cc-pVDZ, cc-pVTZ, etc. [118]. These basis sets are optimised to be used
with correlation methods. Another example are atomic natural orbital (ANO)
basis sets [119] which are especially designed for correlation methods. The basis
functions are constructed so that they approximate the atomic natural orbitals ob-
tained with the CI method. The ANO approach allows systematic improvement
of the basis set in an optimal fashion.

When there is only one basis function for each orbital, the basis set is called
minimal basis set. To increase the flexibility of a basis set (and accuracy of the
computation), one can use more than one contraction (or primitive Gaussian)
for each orbital. These kinds of basis sets are usually called double-ζ , triple-
ζ etc. depending on the number of independent basis functions assigned for
each orbital. As the core orbitals are usually only weakly affected by chemical
bonding, they are often represented by a single contraction, and it is sufficient to
add more flexibility to the valence orbitals only. This kind of basis set is called a
split-valence basis set.

In molecules the electron distribution is often different from atoms using
which the basis sets are usually optimised. This can be compensated by polari-
sation functions which are otherwise similar to normal basis function but are of
higher angular momentum type than the valence orbitals in the element. In the
case the electron distribution differs much from the ground state, it may be neces-
sary to add diffuse functions which have small exponent allowing the electrons
to spread farther away. Diffuse functions can be needed with anions, excited
states and intermolecular complexes. A simple rule of thumb with basis sets is,
the larger the better; however, one must keep in mind that some molecular prop-
erties are more affected by the basis set than others. Simply taking one of the
standard basis sets and including all polarisation and diffuse functions is some-
times just not enough. For example, when the core electrons are included in a
correlation calculation or properties which are strongly affected by the core elec-
trons are studied, special basis sets including the core polarisation functions are
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required.
On the other hand, with heavy elements the number of core orbitals becomes

very large compared to valence orbitals, even though the core would be repre-
sented using a minimal basis only. The contribution of the core electrons and the
nucleus can be combined and represented using effective core potentials (ECPs)
[120, 121] (also known as pseudopotentials). ECPs are potentials which have
a particular radial structure, and they combine the effects of the nucleus and
the core electrons together. The valence (and possibly sub-valence) electrons see
only this effective potential without explicit core electrons. ECPs are designed to
reproduce the valence electron structure based on an all-electron calculation. Al-
though the valence electrons themselves are only little affected by relativity, the
core electrons in very heavy elements can reach velocities which are comparable
to the speed of light. Therefore the core electron orbitals get contracted, which
in turn enhances the nuclear screening and expands the orbitals of the valence
electrons. With ECPs it is possible to include part of the relativistic effects (scalar
relativistic effects) without using any relativistic correction to the Hamiltonian.
This requires that ECPs have been parametrised using methods including rel-
ativistic effects. On the other hand, spin-orbit effects cannot be accounted for
without explicit terms in the Hamiltonian.

2.3 Molecular properties

So far the only molecular property that has been discussed is the total energy
which is to be minimised in order to obtain the ground state wavefunction. How-
ever, there are many properties which can be experimentally measured and are
therefore of computational interest. As the system is perturbed, its total energy
changes and the energy can be expressed as a Taylor expansion in terms of the
perturbation. The derivatives of the energy with respect to the perturbation are
evaluated at zero perturbation strength, and the derivatives are system specific
and related to molecular properties [122]. In principle, these derivatives could
be obtained using numerical differentiation, e.g. by calculating the total energy
at different perturbation strengths. However, this is computationally costly and
often numerically inaccurate. A better way to obtain the derivatives is to de-
rive analytic expressions for them and evaluate these expressions directly [123].
For example, the analytic evaluation of nuclear or molecular gradients enables
efficient geometry optimisations for molecules. Analytic derivatives can be de-
rived also using second quantisation, which isolates all basis set effects from the
Hamiltonian, and there is no need to incorporate orthonormality of MOs into the
energy expression [124].

The energy depends on the perturbation explicitly through the Hamiltonian
(e.g. electric field, geometric perturbation) and implicitly through the wavefunc-
tion parameters (e.g. MO coefficients, cluster amplitudes). The change of the
wavefunction due to the perturbation is called the wavefunction response. For
fully variational wavefunctions the energy is stationary and its derivative with
respect to all wavefunction parameters is zero.

The Hellmann-Feynman theorem [125, 126] states that the derivative of the
energy with respect to some parameter is equal to the expectation value of the
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derivative of the Hamiltonian with respect to the same parameter. The Hellmann-
Feynman theorem is valid for exact wavefunctions and, additionally, to ap-
proximate wavefunctions which are fully variational (variational with respect to
all wavefunction parameters), like the Hartree-Fock or MCSCF wavefunction7.
Truncated CI is not fully variational even if the energy is determined by the vari-
ational principle. However, the Hellmann-Feynman theorem holds no longer
with perturbation-dependent basis sets, e.g. with basis functions depending on
the nuclear positions. In this case, there appears additional terms which are
called wavefunction response and they arise from the changes in the MO coef-
ficients with respect to the perturbation. For example, with nuclear gradients
there arises terms called Pulay forces [128] due to the derivatives of basis func-
tions with respect to nuclear coordinates; in the complete basis set limit these
forces vanish. For wavefunctions which are not fully variational, like truncated
CI, coupled cluster theory or perturbation theory, the Hellmann-Feynman theo-
rem is not valid even in the complete basis set limit, meaning that the expectation
values of the operators do not agree with the values obtained as derivatives of the
energy.

For fully variational wavefunctions the explicit evaluation of the wavefunc-
tion response is not needed in order to calculate the molecular gradient, as the
energy is stationary with respect to all wavefunction parameters. For molecular
Hessian, i.e. the second-order derivatives, the first-order wavefunction response
is needed. In general, for fully variational wavefunctions the nth order deriva-
tives of the wavefunction parameters determine the energy derivatives up to or-
der 2n + 1.

For nonvariational wavefunctions also the wavefunction response is needed
for the molecular gradient, as the energy is not variational with respect to all
wavefunction parameters and it has to be evaluated for all perturbations sepa-
rately. However, there is a way to avoid this. The problem can be formulated so
that nonvariational wavefunction parameters are constrained using Lagrange’s
method of undetermined multipliers. This is done by imposing a constraint in-
cluding a new set of parameters which are chosen so that the new energy ex-
pression, or Lagrangian, is fully variational with respect to all parameters and its
value coincides with that of the energy. As soon as the undetermined multipli-
ers are determined from a set of linear equations, the gradient of the Lagrangian
can be evaluated as any other fully variational energy expression [124]. Instead
of solving the first-order response equations for each perturbation separately, it
suffices to solve a single set of linear equations. The Lagrange multipliers can be
taken as wavefunction parameters of the Lagrangian. For Lagrange multipliers
there is actually a rule that the derivatives of the Lagrange multipliers of order n

determine the energy derivatives up to order 2n + 2 [129]. Therefore, to calculate
the molecular gradient only the Lagrange multipliers, but not their derivatives,
need to be solved.

The equilibrium geometry is probably to most important molecular property.
Within the BO approximation the total energy of the system may be described as
a function of nuclear coordinates. The surface formed by the energy and the nu-

7If the MCSCF wavefunction is based on the RHF reference, it is not variational with respect to
triplet rotations, and so-called restricted-unrestricted approach is needed [127].
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clear coordinates is usually called a potential energy surface (PES). The equilib-
rium and transition state structures correspond to stationary points on the PES.
In order to locate stationary points, one needs to evaluate molecular gradients
(first derivatives of the total energy) with respect to the nuclear coordinates and
find out when they become zero. Employing some optimisation algorithm in
combination with molecular gradients allows one to do geometry optimisation
for the molecular structure [130].

The nature of the stationary point can be characterised using the second
derivatives of the total energy with respect to normal coordinates, which is also
called molecular Hessian, to determine whether the point is a local minimum
or saddle point. This computation also yields the harmonic frequencies of the
molecule. For a SCF wavefunction, the second derivatives can be calculated effi-
ciently using analytic derivative method. However, the second derivatives of the
energy involve first derivatives of the density matrix and MO energies as well
[14]. They can be obtained by solving the so-called coupled perturbed Hartree-
Fock equations. In practice, these equations determine how much the MOs are
changed to the first order by the perturbation. If the Hessian has no negative
eigenvalues, the stationary point corresponds to an equilibrium structure; on the
other hand, at least one negative eigenvalue corresponds to a transition state.

Other important molecular properties include the response to the external
electric and magnetic fields. In general, properties of a system can be measured
by perturbing the system and measuring its response. Often the perturbations are
weak and response is linear, i.e. it is linearly proportional to the strength of the
perturbation. This proportionality constant can be defined as a property of the
system. For example, an induced dipole moment is proportional to the electric
field and the proportionality constant is called polarisability. Response theory
can be extended beyond linear regime to include non-linear responses as well.

Magnetic properties can be measured using NMR techniques [131]. An exter-
nal magnetic field may change the equilibrium electron distribution and induce
additional current density and magnetic moments in a molecule. These kinds of
induced magnetic fields give rise to quantities like nuclear magnetic shielding
tensor (related to chemical shift) and indirect nuclear spin-spin coupling tensor,
which can be theoretically computed [132]. However, including magnetic field
into the Hamiltonian is more complicated. The magnetic field couples through
the kinetic energy operator in a form of the magnetic vector potential. Although
the magnetic field is unique, the magnetic vector potential depends on the choice
of the origin. This origin is usually called the gauge origin, and with finite basis
sets and approximate wavefunctions the results are dependent on the choice of
the gauge origin. In gauge-including atomic orbitals (GIAO) method this prob-
lem is circumvented by including the gauge origin into the basis functions them-
selves so that the gauge origin dependence cancels. In individual gauge for lo-
calised orbitals (IGLO) approach the idea is to use different gauge origins for
different MOs and try to minimise the error.
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2.4 Solvation models

Chemistry in a gas phase can often be described using only isolated molecules
due to low molecular density of the system. On the other hand, chemical pro-
cesses taking place in a condensed phase (liquid or solid) may be affected by the
interactions arising from the surrounding molecules and therefore intermolec-
ular interactions may have important role in the chemistry of the system. An
obvious way to account for intermolecular interactions is to include surround-
ing molecules explicitly into the system. However, the number of molecules
in the vicinity of the chemical species in question can easily become very large
and computationally infeasible. Another way the include solvation effects is to
use implicit solvation models, also known as continuum solvation models [133].
Nevertheless, static calculations with explicit or implicit solvation models cannot
account for dynamical effects arising from the movement of molecules. They can
be accessed only by performing molecular dynamics simulations.

In the continuum solvation model the solute molecule is placed into a cavity
and its interactions with the solvent molecules are taken into account using sim-
plified approximations. Of course, in case the solvent molecules form bonds with
the solute, continuum solvation models cannot account for such effects. Also
specific interactions, like hydrogen bonding and hydrophobic interactions, latter
of which arise from the orientational rearrangements of water molecules in the
vicinity of hydrocarbon molecules in the first solvation shell, cannot be accounted
for. Continuum solvation models are able to account for the electrostatic interac-
tions, but do not take into account other interactions explicitly. For example, to
account for dispersion interactions even qualitatively, a correlated computational
model (e.g. coupled-cluster or perturbation theory) has to be used. The model
system should also include explicit solvent molecules in order to have dispersion
interactions present in the first place. Another approach is to parametrise the
dispersion energy based on experimental or theoretical data, and use them as an
empirical input for the dispersion contribution in the solvation energy.

The main contributions of the solvation free energy arise from creating the
cavity and from dispersion and electrostatic interactions between solvent and so-
lute [134]. The creation of the cavity involves rearrangement of solvent molecules
in order to make a void into the medium and it destabilises the system. On the
other hand, dispersion interactions are attractive and therefore stabilise the sys-
tem. Usually these two interactions are accounted for by using empirical param-
eters derived from experimental solvation data, which depends on the particular
atom types, and this contribution is made proportional to the surface area of the
cavity. The shape of the cavity and the dispersion interactions are usually de-
termined by the first solvation shell, and are therefore short-range effects. The
electrostatic interactions are due to the interaction of solute and solvent charge
distributions, and they are long-range effects. The charge distribution of the so-
lute creates an electric field which can be represented by a charge distribution
on the surface of the cavity. The dependence is governed by electrostatics and
depends on the dielectric constant of the medium. The charge distribution on
the surface of the cavity in turn creates an electrostatic potential which interacts
with the charge distribution of the solute. This additional interaction term can be
added to the Hamiltonian, and thereby determine both the charge distribution
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on the surface and the wavefunctions (which give arise to the charge distribu-
tion of the solute) iteratively so that the total energy is minimised. If the charge
distributions are obtained in a self-consistent manner so that one charge distribu-
tion polarises the other and vice versa, until they are in equilibrium, the model is
called a self-consistent reaction field (SCRF) solvation model [135].

In the most simple case the shape of the cavity, which the solute is placed in,
can be assumed spherical. Depending on the charge and the dipole moment of
the solute, different kinds of interaction models for the electrostatic interaction
can be derived, like the Born and Onsager models [14]. If the dipole moment is
not a constant but determined from the charge distribution of the solute, these
become SCRF models. It is also possible to generalise electrostatic interactions
into higher multipole moments. Although numerically appealing, a spherical
cavity is not necessarily a very good approximation and it is better to create the
cavity based on the structure of the solute molecule.

One implementation of the SCRF method is the polarised continuum model
(PCM) and its variations [136]. In the first approximation the cavity is formed as
an intersection of the spheres with specified radii located at the nuclei. Isoden-
sity surface of the electron charge density can also be used to define the cavity
(this model is called IPCM). The cavity surface is further partitioned, or tesselate,
into triangular elements each with a point charge at the centre. These charges
give arise to the reaction field and are determined iteratively based on how they
interact with the molecular charge distribution. Additionally, the appropriate
boundary conditions for the electric field and the potential at the solute-solvent
interface has to satisfied [137].

Instead of using dielectric boundary conditions, one can simplify equations
by using scaled conductor boundary conditions. This model is known as the
conductor-like screening model (COSMO) [138]. When the continuum is approx-
imated as a conductor, the electrostatic potential at the solute-solvent boundary
vanishes. The screening charges on the boundary are chosen so that this con-
dition is satisfied. The finite dielectric constant can be accounted for by scaling
the screening charges by an appropriate factor [139]. An extension of COSMO is
COSMO-RS [140, 141] which uses COSMO results as an input to calculate ther-
modynamic quantities.

2.5 Accuracy of methods

Computations are usually made using some model which is an approximation
of the exact theory. Therefore, computational results always include some error,
i.e. they differ from the exact result. Basically, these errors are due to the choice
of the basis set, the approximate wavefunction used and the choice of the Hamil-
tonian, i.e. at what level relativistic effects are included. Additionally, there may
arise some numerical error due to the finite precision of computers; however,
these errors are usually insignificant compared to other sources of error.

Detailed discussion and actual comparison of different computational levels
is beyond the purpose of this introduction and there exists extensive literature
on the subject; here are mentioned just a few general references: Comparison of
different wavefunction methods for properties of small molecules has been inves-
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tigated in [21]. An overview of the performance of different exchange-correlation
functionals has been discussed in [142]. Comparison of basic molecular proper-
ties, including both density functional theory and wavefunction methods, can
found in [14, 28, 143, 144].

In order to obtain accurate results, the method should be able to describe the
system sufficiently well, i.e. if the molecule has a complicated multi-reference
electronic character there is little hope that any single-reference based method
will work. Depending on the molecular property and the computational method
used, it may be possible to achieve the basis set limit, i.e. the results do not change
anymore with increasing the number of basis functions. However, in practice this
is not always possible and the basis set limit has to be estimated by extrapolating
[21].

Wavefunction based electron correlation methods are inherently more accu-
rate than the Hartree-Fock approximation. However, the convergence of the re-
sults in terms of the basis set is also slower and electron correlation methods
require significantly larger basis sets in order to describe the effects of electron
correlation properly. Using electron correlation methods with inadequate basis
sets is not expedient. Even if the computed results would appear to agree with
experimental values, this does not necessarily mean that the method is as accu-
rate as it seems to be, or that the computational level is sufficient; it may be due to
cancellation of errors. There the different errors are of opposite sign and cancel.

In the context of this thesis some molecular properties are of special inter-
est and they are discussed next. In determining the equilibrium geometry and
the interaction energy of a molecular complex, the intermolecular interactions
and their accurate description are essential. There are two different types of
approaches to calculate interaction energies in a molecular complex: perturba-
tional and supermolecular [145]. In the perturbational approach the unperturbed
ground state wavefunction is taken to be a product of the ground state wavefunc-
tions of the individual fragments while the perturbation operator contains all the
intermolecular electrostatic operators. Contributions to the Coulomb, induction
and dispersion energies are obtained as first- and second-order corrections. In
symmetry-adapted perturbation theory (SAPT) [146] there are additional terms
which account for the Pauli exclusion principle and introduce the exchange en-
ergy contribution to the total interaction energy. The interaction energy is a sum
of all these contributions. In the supermolecular approach the interaction energy
is obtained as a difference between the total energies of the complex and the in-
dividual fragments. In order to work, the computational method must be size
consistent and the basis set superposition error has to be accounted for [147].

A hydrogen bonded system is a special kind of molecular complex. A hy-
drogen bond is formed when a proton acceptor with lone pair electrons or po-
larisable π electrons interacts with a proton donor, in which the hydrogen is co-
valently bonded to an electronegative atom and the hydrogen proton is partly
deshielded as the electron density is moved towards the electronegative atom
[148]. There exists a large variety of different kinds of hydrogen bonds with dif-
ferent bond energies varying from about 10 kJ/mol to over 100 kJ/mol. Although
hydrogen bonds are much weaker than covalent bonds, they are usually stronger
than van der Waals interactions [149].

At a conceptual level it is possible to partition the different energy contribu-
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tions in a hydrogen bond into different parts [150]. The electrostatic interaction
between the molecules is due to their static charge distributions. Next contribu-
tions is due to the antisymmetry of the wavefunction and it leads usually to a
repulsive force between the molecules and due to this it is called the exchange re-
pulsion energy. In reality, the charge distributions in the molecules are not static
but they are able to deform one another leading to a redistribution of the electron
density. This contribution is called the induction energy. All of these contribu-
tions can be already accounted for at the Hartree-Fock level. However, including
the correlation affects also these energy contributions as well. The energy contri-
bution which is not present at a non-correlated level, or in approximate density
functionals, is dispersion energy. It is due to charge fluctuations in molecules and
it is an attractive interaction present between all molecules [149]. Although dis-
persion is not a dominating part of the interaction in a hydrogen bond, it may be
significant, especially if the other contributions are not very strong. These com-
ponents of the interaction energy can give some insight into the interaction itself
but it is only the total interaction energy which is physically observable.

There has been a number of studies of computational modelling of hydro-
gen bonds [151, 152, 153, 150, 154]. The lowest computational level is often said
to be MP2 with sufficiently large valence double zeta basis set including polar-
ization and diffuse functions at the non-hydrogen atoms in order to obtain re-
liable geometries; nevertheless, for accurate prediction of energies even larger
basis sets are usually required [155]. In general, density functional theory with
gradient corrected or hybrid functionals yields qualitative agreement with MP2
calculations. Although energetic and structural properties are rather good, in-
tramolecular frequency splittings involving the hydrogen are rather poorly de-
scribed as compared to MP2 [156]. Coupled cluster calculations, e.g. at the CCSD
and CCSD(T) levels, give also reliable results for hydrogen bonds but they are
not applicable for very large systems [154]. Although standard density func-
tional theory often works for some properties of hydrogen bonds, there are en-
ergy contributions which are completely missing; dispersion interactions are not
accounted for by standard exchange-correlation functionals [157, 158]. Disper-
sion interaction originates from the correlations between dynamic electron den-
sity fluctuations at well separated positions and cannot be accounted for by local
or semi-local functionals [90]. However, dispersion interaction can be estimated
by calculating the second-order dispersion energy contributions through electric
polarisabilities using time-dependent density functional theory. This approach
yields results in a reasonable agreement with MP2 as far as appropriate hybrid
functionals are used [159].
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Chapter 3

Results

Various chemical systems have been investigated, and several computational
methods have been applied in the course of this work. These studies offer dif-
ferent perspectives on what can be done using computational modelling. In
this chapter the articles included in the thesis are discussed. The computational
studies include number of topics. Hydrogen bonding and solvent effects in a
pyridine-methanesulphonic acid acid-base complex have been studied, torsion
potentials of bipyridines were parametrised for a force field, metal coordina-
tion in a supramolecular complex was modelled, hydrogen bonding between
polyamide and phenolic resins and the effect of water was studied and optical
properties of silicon nanoclusters were investigated.

In most of the molecular systems studied here the computational methods
were used to investigate phenomena more closely, and from another point of
view as compared to experiments. Often it was also necessary to restrict the sys-
tem size considerably to be able to use quantum chemical methods in the first
place. Many of the obtained results were either inaccessible with experimental
techniques, or the experiments would have been very difficult to perform. Dif-
ferent computational methods have been applied in this work. Density functional
theory was used in all studies, but wavefunction based methods such as pertur-
bation theory and coupled cluster theory were also applied when appropriate.
Most of the computations were performed using GAUSSIAN program packages
[160, 161] except in Paper V where TURBOMOLE 5.7 program package [162] was
used.

3.1 Pyridine-methanesulphonic acid

Pyridine based molecules, e.g. bipyridines and other derivatives, are very ver-
satile building blocks for supramolecular structures due to their ability to form
coordination compounds with metal atoms and hydrogen bonds with acids (see
e.g. [163, 164]). The pyridine-methanesulphonic acid complex is a common sub-
unit in many supramolecular materials and thus an interesting model system to
study. To model the interactions between pyridine and methanesulphonic acid,
and to account for solvation effects, appropriate computational methods have to
be chosen. The main interaction in the complex is hydrogen bonding, different
aspects of which have been studied computationally [151, 152, 155, 165, 166, 153].
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Comparisons of different properties, such as vibrational frequencies and NMR
chemical shifts obtained both computationally and experimentally have been car-
ried out [167, 168]. Predictions of the energy of the hydrogen bond can be done
by calculating the energies of the isolated monomers and their complex, which
in principle is straightforward but involves basis set superposition error (BSSE)
leading usually to overestimation of complexation energies. BSSE can be esti-
mated using counterpoise correction (CP) scheme [145], in which two separate
single point computations for both fragments are performed first using their own
basis functions only and then also basis functions from the other fragment. The
difference yields an estimate for the energy correction due to BSSE.

Polarised continuum models (PCMs) and explicit cluster models for hydro-
gen bonds have been investigated using ammonia-hydrogen halide complexes
as a model system [169]. In aqueous environment, i.e. in solvents with high di-
electric constants, both the cluster model and PCM can predict proton transfer.
The results obtained using both approaches are in good agreement for strongly
interacting complexes. However, for less acidic proton donors, PCM does not
predict proton transfer although the explicit cluster model does, whereas in non-
polar solvents, the explicit cluster model and PCM agree reasonably well for all
cases.

The presence of water molecules has been found to assist the intramolecu-
lar proton transfer by lowering the energy barrier in tautomers of adenine [170].
Intramolecular hydrogen bonding and proton transfer due to electronic excita-
tions has been modelled with a variety of different methods [171]. Conventional
quantum chemical calculations can be combined with transition state theories to
obtain dynamical information about hydrogen bonds and their reactions [172].
Intramolecular proton transfer rate was enhanced by adding water to bridge the
proton donor and acceptor sites, and it was also observed that proton transfer
takes place via a concerted mechanism.

Pyridine-water complexes have been studied computationally and compar-
isons with experimental FT-IR data have been made [173]. Both DFT with the
B3LYP functional and MP2 methods with double zeta valence basis including
polarisation and diffuse functions on all atoms are found to give sufficiently re-
liable results for intermolecular distances, interaction energies and vibrational
properties. However, when the water molecule is bonded to the π electrons of
the methyl-substituted pyridine, DFT cannot adequately account for dispersion
interactions present in such a bond [174]. Pyridine-HCl complexes have been
studied using computational methods and NMR and FT-IR spectroscopy in ar-
gon and nitrogen matrices [175]. It was found that the complex has a traditional
hydrogen bond in argon matrix, but an ionic hydrogen bond in nitrogen matrix
suggesting that the nitrogen environment influences the complex.

Pyridine and related nitrogen containing six-member ring molecules and the
effect of hydrogen bonding in different solvents has been studied by Takahashi
et al. using vibrational spectroscopy [176]. They found that several pyridine vi-
brations shifted significantly to higher frequencies (as much as +10 cm−1) for sol-
vents which were able to make hydrogen bonds with pyridine. In non-hydrogen
bonding solvent the shifts were only ±2 cm−1. They concluded that the shifts
were due to hydrogen bonding and not due to plain solvent effects. The influence
of chemical substitutions on the protonation of pyridine was studied at different
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computational levels and compared with experimental results [177]. The best
agreement with experiment was obtained at the MP2 level using the isodensity
PCM method to consider the environmental effects.

Methods based on density functional theory have been shown to be capa-
ble to describe hydrogen bonds and their properties reasonably well [156]. The
second-order Møller-Plesset perturbation theory (MP2) has also been established
to perform well in hydrogen bonded systems [145]. The MP2 method is able to
account for dispersion interactions, which are often of importance for an accurate
description of hydrogen bonds [153]. Both computational methods require that
errors arising from BSSE are taken into account, either by employing the CP cor-
rection or by using large enough basis sets. In order to describe intermolecular
interactions, such as hydrogen bonding, basis sets are required to have at least
polarisation functions included, and often diffuse functions are also necessary.

(a) (b) (c)

Figure 3.1. Equilibrium structures of (a) pyridine-methanesulphonic acid complex with
a hydrogen bond, (b) pyridine-methanesulphonic acid with one water molecule show-
ing proton transfer and (c) with two water molecules while proton transfer is further
enhanced. All structures are optimised at B3LYP/6-31++G(d,p) level.

In Paper I the hydrogen bonding between pyridine and methanesulphonic
acid and the effect of solvation on it was studied. Methanesulphonic acid is a
strong acid, though it is not usually considered as a superacid [178]. Similar
hydrogen bond formation occurs in many polymer based supramolecular mate-
rials where an amphiphilic molecule is hydrogen bonded to the polymer back-
bone [179, 180, 181]. The resulting structure resembles comb copolymers but the
difference is that the amphiphilic side chains are not covalently bonded to the
backbone. Non-polar tails of the amphiphiles have a tendency to phase separate,
but if the polymer-amphiphile interaction is strong enough only microphase sep-
aration can occur. This microphase separation leads to an ordered structure at
the nanoscale level, even though at the macroscopic level the material is homo-
geneous, i.e. there is no phase separation [179]. Because the strength of the hy-
drogen bond determines whether microphase separation can occur or whether
the material macrophase separates, it is interesting to study this interaction at a
more accurate quantum chemistry level. Especially interesting is the possibility
of proton transfer occurring in the system, which may have influence on the pro-
ton conductivity in such materials, and the effect of which other molecules, like
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water, have on the interaction.
Experimentally it has been observed that atactic poly(4-vinyl pyridine) can

be protonated by p-dodecylbenzene sulphonic acid, and the resulting interac-
tion between the polymer and the amphiphile is strong ionic hydrogen bond
[182]. These conclusions have been based on the results obtained with FT-
IR spectroscopy. A similar system, but with a reduced interaction strength, is
poly(4-vinyl pyridine) with an amphiphilic 3-pentadecyl phenol molecule. In this
case the interaction is hydrogen bonding without proton transfer [183]. Poly(4-
vinyl pyridine) can be made protonically conducting by mixing it with methane-
sulphonic acid or toluenesulphonic acid [184] and one can obtain self-organised
lamellar structures by adding 3-pentadecyl phenol amphiphiles [179].

In Paper I it was shown that in the absence of solvent, the pyridine in the
pyridine-methanesulphonic acid complex is not protonated but there is a hydro-
gen bond between the molecules, as can be seen from figure 3.1(a). The hydrogen
bond potential energy surface (PES) was also investigated and it turned out to be
a single minimum potential in the gas phase, as presented in figure 3.2. How-
ever, when the complex was surrounded by a dielectric medium using a PCM
the form of the PES changed. In a dielectric medium corresponding to acetone
(εr=21), the PES exhibited double minimum character, and when dielectric con-
stant was increased still to that corresponding to water (εr=78), the PES changed
to a single minimum potential again, but now the minimum was located close to
the pyridine, i.e. the pyridine was protonated. Energetically the global minima
in acetone and water are 35 and 63 kJ/mol below the global minimum in the gas
phase.

The pyridine-methanesulphonic acid complex was also studied using explicit
water molecules to mimic the solvation. Already one water molecule was enough
to change the proton transfer state to the equilibrium one, which is shown in fig-
ure 3.1(b). With two water molecules the proton transfer was further enhanced
with shorter N–H bond distance as shown in figure 3.1(c). The presence of water
molecules affects the equilibrium structure of the complex. To investigate this
effect more closely, the PES of the proton was calculated with and without the
water molecule at the pyridine-methanesulphonic acid-H2O complex geometry.
Without the water molecule the PES was very flat exhibiting a slight minimum
closer to methanesulphonic acid, suggesting hydrogen bonding but with the wa-
ter molecule the PES had a distinct minimum closer to pyridine.

The structural effect was further investigated by calculating the PES at the ex-
perimental crystal structure determined by X-ray diffraction and using PCM to
model the environment. Without any solvation, the PES had almost symmetri-
cal double minimum structure. With acetone as a solvent, the minimum close to
methanesulphonic acid vanished and only the other minimum remained. In the
presence of water this effect was further intensified. Based on these results, al-
ready a small change in the geometrical structure of pyridine-methanesulphonic
acid complex affects the PES of the proton so that proton transfer becomes pos-
sible. Solvation effects, either by explicit hydrogen bonds and/or from the di-
electric environment, further enhance this effect. Therefore it is likely that in real
materials a spectrum of different kinds of states varying from hydrogen bonded
state to proton transfer states occur between pyridine-methanesulphonic acid
fragments, and that this distribution is affected both by dielectric effects and by
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Figure 3.2. Potential energy surfaces of the proton in gas phase, in acetone and in wa-
ter solvents at the optimised pyridine-methanesulphonic acid geometry obtained in gas
phase using the PCM and B3LYP/6-31++G(d,p) method.

explicit interactions from neighbouring molecules.
The models used here do not take into account the quantum behaviour of

the proton, i.e. that the proton is able to tunnel through the potential barrier in
a double minimum potential. Experimentally the solvent effect on the hydrogen
bond could be studied, for example, using NMR techniques [185].

The present study showed that the PES experienced by the proton in the
pyridine-methanesulphonic acid complex is strongly dependent on the dielectric
environment and water molecules present in the vicinity of the complex. This
can explain why the complex is sometimes referred as hydrogen bonded and
sometimes described as a proton transfer system.

3.2 Bipyridines

Polypyridine is a π-conjugated rod-like polymer much like poly(p-phenylene).
However, due to the nitrogen, it is able to form hydrogen bonds with acids or co-
ordinate with a metal, forming supramolecular structures. Polypyridine is also
more easily soluble than poly(p-phenylene) due to the heteroatom. Polypyri-
dine has been found to be a luminescent and very stable material with respect to
oxidation [186], making it an interesting material for practical applications. Al-
though difficult to oxidise, polypyridine can be reduced to yield an electrically
conductive form. Due to these optical and electrical properties pyridine-based
conjugated polymers are promising materials for light emitting diode (LED) ap-
plications with a reasonable quantum yield [187, 188]. Hydrogen bonding or
protonation can be used also to achieve supramolecular structures with polypyri-
dine. Polypyridine protonated with methanesulphonic acid and complexed with
octyl gallate has been demonstrated to form lamellar nanostructures [189].
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As a consequence of these interesting properties there has been a lot of effort
to study polypyridine and related materials both experimentally and theoreti-
cally. The solid state structure of polypyridine has been determined by using
X-ray diffraction [190]. It shows that the polypyridine rods are stacked parallel
on top of each other and the pyridine rings are in a planar conformation. The
interchain packing distance was measured to be about 3.6 Å.

Electronic properties of periodic structures of conjugated polymers, including
polypyridine, have been investigated computationally [191], and photophysical
properties of polypyridine and the effect of protonation by different acids have
been studied experimentally [192]. Sulphonic acids, which protonate polypyri-
dine, were observed to have the largest effect on the optical properties. At the
highest acid concentrations, both green and blue emission is observed. The green
emission is characteristic for the solid state while blue emission is observed in so-
lution. This can be explained by the changes in the band gap due to variations
in the conformation. In the solid state the pyridine rings are more planar, but
on protonation interchain interactions change and the torsion angle is allowed to
relax back to slightly distorted equilibrium structure, similar to solution.

Similar kinds of studies of optical properties have been performed for bipyri-
dine containing poly(p-phenylene-vinylene) polymers [193]. The colour ob-
served from photoluminescent devices manufactured from these materials was
adjustable by changing the concentrations of acids and bases used in preparation
of samples.

Torsional potentials for a number of conjugated polymers and the effect of
torsion angle on their electrical properties were investigated already some time
ago [194, 195]. In a more recent study torsional properties of pyridine dimers,
tetramers and polypyridine have been investigated computationally using DFT
methods [196]. The torsional potential was found to be dependent on the con-
figuration of the molecules, i.e. the position of nitrogen atoms on rings. In most
of the configurations the adjacent rings are not planar but the deviation is only
few tens of degrees, and related barrier energies are relatively small so that it
was concluded that in a solid state the system is planar. The torsion angle was
also observed to approach planarity as the number of monomers in an oligomer
increased. Torsional properties of some substituted conjugated biphenyl deriva-
tives have been studied including HF, MP2 and DFT methods [197]. All of these
methods gave similar results, although in some conformations DFT predicted
lower or higher torsional barriers than MP2 and HF.

The polypyridine inspired us to investigate the torsion behaviour of its sub-
units, and how the conformation of the two adjacent pyridine units is affected
by protonation since it has significant effect on the photophysical properties and
probably also on the solubility behaviour. This subject was studied in Paper II.
Different torsion potentials were also parametrised for a force field, and the effect
of atomic partial charges obtained with different methods was analysed.

Conjugated systems containing heteroatoms, such as nitrogen, and their con-
formational properties have been studied using DFT methods before [198]. Com-
parison with the MP2 method showed that DFT performs well for most systems,
and the properties studied, including energy differences, vibrational frequencies
and electrostatic potential derived charges, are in good agreement with those
obtained with different density functionals. However, some of the torsional bar-
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riers were overestimated and some minima predicted too shallow with DFT. The
overestimation of torsional barriers is due to DFT to bias towards too delocalised
π-electron structure. In some of the molecules it was also observed that par-
tial charges were dependent on the conformation. Comparison with the semi-
empirical AM1 method revealed that the semi-empirical method was not able to
produce the correct torsional behaviour and, therefore, it could not be used for
parametrisation of torsional potentials.

The transferability of the force field parameters of a conjugated bond has been
investigated using simple model molecules [199]. It has been shown that the
conformation of the molecule can significantly influence the molecular charge
distribution and the intermolecular hydrogen bond energies [200]. Therefore,
the approximation that partial charges are conformation independent may not
always be valid, and in some cases it may lead to wrong results.

In Paper II three different bipyridines were investigated. The bipyridines
were 2,3’-, 2,2’- and 3,3’-bipyridine of which 2,3’-bipyridine was also studied

Table 3.1. Selected structural parameters and relative energies of the optimised min-
imum energy structures of neutral and protonated bipyridines (BPy) computed at
B3LYP/6-31G(d,p) level.

Torsion
angle (◦)

C–C bond
length (Å)

Relative
energy (kJ/mol)

TS 0.0 1.499 33.2
cis 35.1 1.494 29.22,2’-BPy
TS 84.4 1.503 37.5

trans 180.0 1.490 0.0
TS 0.0 1.488 3.6
cis 21.0 1.485 2.9

2,3’-BPy TS 88.8 1.496 20.5
trans 161.0 1.486 0.0
TS 180.0 1.488 0.5
TS 0.0 1.488 9.1
cis 39.3 1.480 0.6

3,3’-BPy TS 89.5 1.491 10.1
trans 140.9 1.480 0.0
TS 180.0 1.488 8.3
cis 0.0 1.480 0.0
TS 92.8 1.497 53.02-Py-2’-PyH+

trans 165.7 1.479 31.0
TS 180.0 1.480 31.2
TS 0.0 1.488 27.6
cis 58.2 1.489 7.6

2,2’-BPyH+ TS 77.3 1.496 8.0
trans 136.2 1.484 0.0
TS 180.0 1.486 12.4
TS 0.0 1.469 6.8
cis 35.1 1.468 0.0

3-Py-2’-PyH+ TS 88.8 1.496 14.6
trans 144.6 1.465 1.6
TS 180.0 1.469 8.3
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Figure 3.3. Relative torsion energies of 2,2’-, 2,3’- and 3,3’-bipyridine calculated at
B3LYP/6-31G(d,p) level.

as singly protonated, and 2,2-bipyridine both as singly and doubly protonated.
The torsion potential is rather symmetric for 3,3’- and 2,3’-bipyridine and slightly
twisted cis and trans conformations are close in energy, but for 2,2’-bipyridine the
planar trans conformation is energetically more favourable than the cis confor-
mation, as can be seen from figure 3.3.

The protonation has different kinds of effects on the torsion potential in the
different bipyridines, as shown in table 3.1. The singly protonated 2,2’-bipyridine
has the minimum energy at the planar cis conformation. However, there is a po-
tential barrier between the singly protonated planar trans conformation and the
new global minimum, indicating that if 2,2’-bipyridine is protonated in the pla-
nar trans conformation, it can stay in this metastable state. If 2,2’-bipyridine is
doubly protonated, the global minimum is the slightly twisted trans conforma-
tion and the cis conformation has only a very weak minimum. 2,3’-bipyridine
is not affected as much as 2,2’-bipyridine by protonation. The global minimum
is shifted from twisted trans conformation to twisted cis conformation, and the
torsion potential barrier is lowered by 5 kJ/mol.

Atomic partial charges were obtained from density functional computations
by fitting to the electrostatic potential (ESP) with CHelpG scheme [201]. These
results were compared with less accurate schemes to obtain partial charges, like
the bond increment method [202], the charge equilibration method [203] and the
charge equalisation method [204]. However, these methods were not able to re-
produce the partial charges based on ESP. The best agreement with computed
torsion potentials was obtained by using the partial charges derived from the
ESP, and including also the fourth order terms into the cosine expansion of the
force field.

The degree of protonation turned out to be an important factor affecting the
torsional potential of bipyridines. Therefore, the protonation is likely to affect
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also the conformation of polypyridine and its properties.

3.3 Metal coordination

Supramolecular structures can also be obtained by forming a coordination com-
pound of chemical species using a metal cation as glue between the ligands.
This type of approach was illustrated in Paper III where the supramolecular self-
organisation is achieved as a combination of coordination and ionic bonding re-
sulting in multicomb polymeric structures. The metal cation acts as a bridge be-
tween the pyridine unit of poly(4-vinyl pyridine) and the side-chain ligand 2,6-
bis(octylaminomethyl)pyridine, which is a chelating ligand as it has three lone
pairs which can coordinate with Zn. The most common coordination numbers
for zinc are 4, 5 and 6 [205]. The dodecylbenzenesulphonate counterions con-
tribute also as side-chains and therefore cylindrical organisation was observed
experimentally. Based on FT-IR spectroscopy the formation of supramolecular
entities can be observed. Since the material is not crystalline, determination of
atomic positions by diffraction techniques is not possible, and a natural way to
study the coordination was by quantum chemical calculations.

Due to the size of the system, density functional theory was considered as an
appropriate method to perform the modelling. DFT has proven to be a very suc-
cessful alternative for Hartree-Fock based ab initio methods to model transition
metal containing complexes [206]. Especially the introduction of gradient cor-
rected and hybrid functionals has given it almost the same accuracy as correlated
ab initio methods have with a fraction of the cost [207]. There has been studies
of zinc complexes performed with density functional theory previously. Stabil-
ity of hydrated zinc complexes has been studied with density functional theory
[208, 209] and compared also with other doubly charged metal ions [210]. The hy-
brid functional B3LYP has been found to perform well for these systems and also
for other organometallic compounds [211]. Zinc is a first row transition metal
and therefore only little influenced by relativistic effects [212]. Nevertheless, in
the calculations the core electrons were replaced by an effective core potential
based on numerical, relativistic Hartree-Fock calculations [213] and thereby in-
cluding part of the relativistic effects.

The computational methods used were DFT with the B3LYP functional and
the LanL2DZ basis set, which consists of D95V valence double-zeta basis set [214]
with an effective core potential for zinc. The frequency calculations performed
at the same level confirmed the minimum character of the optimised structure.
The optimised structure is shown in figure 3.4. The dodecylbenzenesulphonate
counterions were not included in the model system in order to keep the size
computationally feasible. The coordination is tetrahedral-like. The Zn–N dis-
tances to the nitrogens on both sides of the ligand are significantly longer that
the Zn–N distances to the nitrogens in the pyridine rings. In an isolated ligand,
the aminomethyl groups may have different conformations, but the coordination
with Zn constrains significantly their movement. The role of dodecylbenzene-
sulphonate counterions was not investigated computationally. It is likely that
they are located in the vicinity of Zn and interact through an ionic interaction
due to opposite charges. In principle it could be possible for zinc to form a six co-

44



Figure 3.4. The optimised structure of pyridine, Zn2+ and 2,6-bis(methylamino-
methyl)pyridine calculated at B3LYP/LanLDZ level.

ordinated compound with two ligands, as there are known amine ligands which
form such a structure with zinc [205]. However, this is not observed, and the
reason maybe that such a structure is not entropically favourable, or that ionic
interactions with dodecylbenzenesulphonate become energetically unfavourable
due to the steric hindrance caused the octyl-chains of the ligands.

The computations showed that coordination of Zn2+ with pyridine and the
chelating ligand was possible and supported the suggested experimental struc-
ture.

3.4 Polyamide and phenolic resin

Polyamide based polymers have excellent mechanical properties with good re-
sistance to different chemicals [215]. The properties of polyamides can be fur-
ther improved by mixing them with phenolic containing resins. Phenolic group
is able to form a hydrogen bond with the polyamide chain and bind different
polyamide chains together. In Paper IV the interaction between polyamide and
phenol formaldehyde resins were investigated using small model systems, en-
abling the use of quantum chemical methods. Polyamide was represented as
N-methylacetamide molecule and its complexation with itself, phenol and wa-
ter was studied. The aim was to investigate energetics of the complexation and
compare different systems with each other.

Geometries of the complexes were optimised using DFT, and both DFT and
MP2 levels were used to calculate interaction energies including corrections for
BSSE, which can lead to significant errors if they are not accounted for. Standard
basis sets were augmented with polarisation and diffuse functions in order to
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describe molecular complexes adequately. The BSSE was estimated using the CP
correction [145].

Although the agreement between the DFT and MP2 results was found to
be rather good, it must be remembered that the basis sets used for MP2 cal-
culations are not large enough to give quantitative values for complexation
energies. To demonstrate this, the CP corrected complexation energy of the
N-methylacetamide-phenol complex at the RI-MP2/aug-cc-pVTZ level is -45.8
kJ/mol while BSSE is still -5.8 kJ/mol. On the other hand, DFT results do not
change much with larger basis set; at B3LYP/aug-cc-pVTZ level energies are -38.7
and -1.7 kJ/mol, respectively. Of course, instead of the absolute values of the
complexation energies, one is more interested in the relative differences between
different complexes.

N-methylacetamide complex with itself was observed to be somewhat
weaker than N-methylacetamide-water complex, implying that water should be
able to disrupt the hydrogen bonds between polyamide chains. On the other
hand, the N-methylacetamide-phenol complex was observed to have largest
complexation energy. This result suggests that phenolic groups bind strongly
with polyamide, and phenolic resins may act as glue between polyamide chains
inhibiting water to disrupt the network structure.

The partial atomic charges of atoms were also calculated using the CHelpG
scheme [201]. The partial charge of the CO carbon in N-methylacetamide was
noted to decrease due to the complexation with phenol as compare to the dimer
complex. The carbon atom in polyamide is known to be prone to react with wa-
ter and such a reaction will cleave the polymer backbone. One could argue that
the complexation with phenol decreases the reactivity and in some degree sup-
presses the hydrolysis reaction. Usually hydrolysis of amides requires acidic or
basic catalyst combined with heating, and water alone is not sufficient to hy-
drolyze most amides [216]. Therefore, it is difficult to make any conclusions
based on this.

These computational results gave some new insights into the behaviour of
polyamides and phenolic resins with water, and suggested why phenolic resins
have favourable effects on the properties of polyamides.

3.5 Silicon nanoclusters

Crystalline silicon is known to have poor optical properties due to its indirect
band gap, and in the past most of the research in semiconductor optoelectronics
has been focussed on compound semiconductors, like GaAs, having direct band
gap which enables efficient light emission. However, the recent discovery of the
photoluminescence of nano sized silicon clusters have shown that even silicon
can be an interesting optical material.

Porous silicon was observed to be photoluminescent already in 1984 [217] at
cryogenic temperatures and later at room temperature [218]. Visible photolumi-
nescence from porous silicon occurs from red to yellow, while the blue emission
is weak. The luminescence has been contributed to various different phenomena
such as quantum confinement, nanocrystal surface states, defects, molecules or
structural disorder [219]. However, the quantum confinement model is found
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to be in the best agreement with experimental results. Nonetheless, it has even
been proposed that the observed light would not be photoluminescence at all,
but due to thermal radiation emitted by silicon nanoparticles [220], showing that
the origin of luminescence has by no means been simple to understand.

According to the quantum confinement model the generated electron-hole
pair, or exciton, is confined inside a nanocrystal, and in the radiative recombi-
nation of the electron-hole pair light is emitted. Whereas in indirect band gap
semiconductors the optical transitions are forbidden, unless phonons (i.e. lat-
tice vibrations) are involved in order to the conserve crystal momentum [221],
in nanocrystals the spatial confinement of electrons and holes increases the un-
certainty of the crystal momentum and optical transitions become allowed [222].
Luminescence efficiency is attributed to the hydrogen terminated surface with
only few dangling bonds, suppressing undesired non-radiative pathways. As the
size of the nanocrystal decreases, the photoluminescence energy increases due to
spatial confinement [222]. In the quantum confinement model the nanocrystal
acts as a potential energy well for the generated electron-hole pair. As the size
of the nanocrystal decreases, the wavefunction becomes spatially more confined,
and the energy levels recede form each other. This trend is clearly visible in figure
3.5, where the optical gap of different sized nanoclusters is shown. In bulk sili-
con, which is an indirect band gap semiconductor, the electron-hole pair cannot
recombine radiatively unless assisted by a phonon and recombination is more
likely to occur nonradiatively at a defect site or at the surface. Therefore, in bulk
silicon non-radiative recombination channels are dominant.

More recently silicon nanoparticles of about 1 nm in diameter were observed
to be strongly photoluminescent with blue emission [223]. Excitation with UV
radiation results in blue emission visible with plain eye while nanoparticles are
suspended in a colloid. The brightness of these silicon nanoparticles is measured
to be four times larger that that of the fluorescein standard. In general, the lu-
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Figure 3.5. Optical gap (•) and oscillator strength (×) for silicon clusters of different size
as a function of the number of silicon atoms calculated using TDDFT at MARIJ-BP/def2-
SV(P) level.

minescence from different sized nanoparticles is observed at the visible region of
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the spectrum [224], and this is explained using the same quantum confinement
model as in the porous silicon. The wavelength of the emitted radiation depends
on the size of the nanocluster.

There has been different suggestions to explain the intense luminescence,
such as self-trapped surface states [225] and oxygen defects at the surface of the
cluster [226]. Silane groups attached to the surface have also been suggested
as a possible explanation for the bright luminescence, as the observed and cal-
culated oscillator strengths are in good agreement with each other [227]. The
nanocluster surface can be hydrogen or oxygen terminated; however, the surface
passivation does not directly influence the luminescence [228]. There are also sili-
con nanocrystals with non-crystalline structure with spherical and prolate shapes
[229].

In Paper V the properties of three different silicon clusters, about 1 nm in
diameter, Si29H24, Si29H36, and Si35H36 were investigated using computational
methods. In some studies it has been suggested that Si29H24 is the most proba-
ble candidate for the luminous cluster [230]. Other studies have suggested that
Si29H36 is also a possible candidate [231], and showed that it is unlikely that there
is a double well potential, a model which has been used to explain luminescence,
in the excited state, as required by the self-trapped surface state model [232].
Various computational methods has been used in previous computational stud-
ies making comparison difficult; therefore, it was important to obtain properties
of these clusters at the same computational level making comparison easier.

All the three clusters are about 1 nm in size, and possible candidates for lu-
minescent nanoparticles observed experimentally. Number of silicon atoms in
these clusters are structural magic numbers [233], i.e. all structures have the sym-
metry of Td point group. The structures were optimised both for the ground state
and for the lowest excited state using DFT and time-dependent DFT, respectively.
TDDFT was used to calculate excitation energies and oscillator strengths of the
clusters. In order to model the emission process, it was assumed, according to
the Franck-Condon principle, that after a vertical absorption process the struc-
ture may relax leading to the Stokes shift, i.e. the emission energy becomes red
shifted relative to the absorption energy [234]. This was accounted for by relaxing
the structure at the first excited state and calculating the optical excitations at the
relaxed geometry. Comparing the lowest excitation energies at the ground state
and at the excited state structures, it was possible to derive the corresponding
Stokes shifts for the clusters.

In Si29H36 the calculated Stokes shift was 0.70 eV which is in rather good
agreement1 with experimentally observed values 0.5–0.6 eV [235]. For the
two other clusters, the shifts were significantly larger. However, the oscillator
strengths of all clusters in the spectral region of interest were found to be much
less than would be expected from the intense luminescence observed experimen-
tally. For comparison, a fluorescein molecule has oscillator strengths of about 0.2
calculated at the same level at the visible region. Based on experimental measure-
ments, is has been estimated that in silicon nanoclusters the oscillator strength of
the transition involved is 0.92 [236] which is almost two orders of magnitude

1Later it was found that Si29H36 has still a lower energy excited state structure where the Stokes
shift becomes 2.19 eV
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Figure 3.6. The structure of Si29H36 optimised at BP/TZVP level.

higher than obtained computationally. The lifetime of the transition was mea-
sured to be few nanoseconds, confirming that the radiation is fluorescence.

Additionally, the optimisation of the triplet state was performed using unre-
stricted KS scheme. It was observed that one of the Si–Si bonds became elon-
gated. The elongation was observed to be dependent on the functional used; the
local density approximation predicted shorter bond lengths that gradient cor-
rected functionals. Similar bond elongations were also obtained for the triplet
state, optimised using plane waves and local density approximation [237]. These
results are probably due to the LDA’s tendency to overbind, i.e. to yield too short
bond lengths.

The computed energies for Si29H36 cluster are in accordance with experimen-
tal data, but for the other two clusters the energies are too low to explain blue
luminescence. However, in all clusters the computed oscillator strengths are sig-
nificantly lower than experimental values, suggesting that the structure of the
actual luminous nanocluster is different of those studied here, or that the radia-
tive transition cannot be modelled as a single photon transition in the dipole
approximation.
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Chapter 4

Conclusions

The work presented in this thesis contains a number of different areas of com-
putational chemistry: solvation effects, torsion potentials for force fields, bond-
ing of a metal cation with ligands, complexation energies and electronic excited
states. Most of the computations have been done using density functional theory
although wavefunction methods have also been applied when possible. Some
of the molecular systems modelled here have also been studied experimentally
and computations have been done in order to better understand experimental
observations.

Chemical moieties similar to pyridine-methanesulphonic acid complex are
present in many supramolecular structures. Modelling the complex provided
new information on the effects of the molecular environment on the hydrogen
bond in the complex. Solvation studies revealed that both dielectric environment,
with high enough dielectric constant, and explicit hydrogen bonds enhance pro-
tonation in the complex. Another structural unit used in supramolecular chem-
istry are oligopyridines. The modelling of bipyridines and their torsion poten-
tials helped to understand the effects due to the protonation and the differences
between the bipyridine structures. It was also observed that partial charges are
strongly dependent on the conformation, and simple methods to obtain partial
charges for force fields do not always work.

A supramolecular polymer system was studied by using only a small part of
the actual system to investigate molecular interactions between the polymer and
the sidechains. The study of coordination of ligands with a metal showed that
this approach can yield useful information which helps to understand the system
better. The idea of using small model molecules was also applied to investigate
interaction in polyamide and phenolic resin system with water. The complexa-
tion energies supported the notion that phenolic resins stabilise polyamide and
inhibit water to break intermolecular hydrogen bonds.

With silicon clusters the experimental methods to determine the actual molec-
ular structure of luminescent clusters are not available, and the only way is to
computationally study different types of clusters and their properties. The study
revealed that the oscillator strengths of all the cluster were significantly smaller
than those observed experimentally.

These computational studies have given new insight into the systems and
have provided information which is unaccessible experimentally. Of course,
the static molecular structure obtained by geometry optimisation gives only a
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glimpse of what is actually going on in the system with all dynamical effects
present.

Computational chemistry has also evolved during this work; not only due
to faster computers but also due to the development of methods and program
packages. Although programs become more and more accessible and computing
power continues to increase, in the end it is up to user how to interpret the results
and to estimate their accuracy. In this sense, the computational and experimental
research methodologies do not differ much from each other after all.
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