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ABSTRACT 

This thesis describes the deposition of binary lead oxide and ternary lead titanate, 

lead zirconate, bismuth silicate, and bismuth titanate films by atomic layer 

deposition (ALD) and characterization of structural, compositional and surface 

properties of the films. The first part of the thesis reviews the principles of the ALD 

technique and the relevant literature on perovskite oxides and films and the 

deposition of lead and bismuth films by ALD, and the second part summarizes the 

experimental work reported in the five appended publications. 

 

On the basis of the binary lead oxide depositions, the Ph4Pb/O3 process was chosen 

for the ternary oxide studies. Careful optimization of the pulsing ratio of the binary 

oxides allowed processing of stoichiometric perovskite PbTiO3 and PbZrO3 thin 

films. Crystalline PbTiO3 on Si(100) was detected after annealing at 600 °C. In the 

case of lead zirconate, the perovskite phase (PbZrO3) was obtained on SrTiO3(100) 

after annealing at 600 °C. In both cases, a slight excess of lead enhanced the 

crystallinity. Roughness values were nevertheless higher than values obtained in 

binary processes. 

 

A new bimetallic precursor Bi(CH2SiMe3)3 was introduced for the deposition of 

bismuth silicate. With ozone as oxidizing agent, ALD-window for Bi-Si-O thin film 

growth was found at 250-350 °C. The Si to Bi atomic ratio in this region was about 

2. Addition of a second bismuth precursor, BiPh3, increased the bismuth content. 

Combination of the BiPh3/O3 process and the Ti(O-i-Pr)4/H2O process allowed 

successful deposition of bismuth titanate. Good control of the film stoichiometry 

was achieved at the deposition temperature of 250 °C. 

 

Both as-deposited ternary bismuth oxides were amorphous. After annealing at 600 

°C, the a-axis-oriented Bi2SiO5 phase was detected. Higher annealing temperatures 

were necessary for bismuth titanate. The most textured film of Bi4Ti3O12 was 

obtained in N2 atmosphere at annealing temperature of 1000 °C. Roughness values 

of the thin films were reasonable, being in the range of 0.3-1.3 nm. 
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1 Introduction 

Many ternary and more complex oxides of lead and bismuth (e.g. PbTiO3, Bi4Ti3O12) 

crystallize in the perovskite structure. Perovskite oxides are an intriguing and highly 

attractive class of materials with a large range of properties and applications.1 

Traditionally they have been studied in bulk form, but their increased use in 

microelectronics and integration to silicon-based circuits are now putting the focus on 

thin film studies. 2 Besides ferroelectricity, the perovskites of interest in this thesis have 

been studied for their piezoelectricity, pyroelectricity, and electro-optic activity.3 

Furthermore some antiferroelectric materials based on the perovskite structure have 

been studied for possible thin film applications.4 

 

Atomic layer deposition (ALD) is a vapor phase thin film deposition method. It has 

aroused great interest in the microelectronics industry, since high quality and accurately 

controlled thin films can be produced even in three-dimensional structures.5 While the 

deposition of binary oxides is straightforward, the deposition of ternary and more 

complex oxides is demanding. First of all, it is difficult to find suitable precursors for 

all the metals. Furthermore the cation stoichiometry of multication thin films has to be 

accurately controlled to produce the desired material. Atomic layer deposition of 

multication films has not, therefore, been extensively studied. 

 

Deposition of binary and ternary oxides of lead and bismuth by ALD was the task set 

for this work. The general properties of perovskite oxides and thin films are discussed 

in the first part of the literature reviews. Multicomponent precursors suitable for ALD 

are discussed, and the ALD of lead and bismuth compounds. The experimental part 

summarizes studies on lead oxideI, lead titanateII, lead zirconateIII, bismuth silicateIV,V 

and bismuth titanateV films deposited by ALD. 

 

The purpose of this work was to demonstrate the ALD of ternary oxides of both lead 

and bismuth and to characterize the deposited films. In the case of lead oxide, the 

binary oxide was produced with use of different precursors.I After that, ternary lead 

titanate and lead zirconate depositions were demonstrated using one selected precursor 

combination.II-III Finally, studies on ternary bismuth systems, viz. bismuth silicate and 

bismuth titanate were carried out.IV,V Also, new bimetallic precursor for the deposition 

of bismuth silicate was reported.IV Together with careful study of growth parameters, 
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attention was paid to the effect of annealing on crystallinity, surface morphology, and 

diffusion. Although the ternary materials have potential uses in microelectronics 

because of their ferroelectric and other electric properties, the main goal of the work 

was to study new ternary processes for lead and bismuth. Electrical properties of the 

films were not studied, therefore. 
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2 Properties of perovskite oxides and perovskite thin films 

The diverse chemical compositions and properties of the perovskite oxides provide a 

basic for wide-ranging research and applications. The electrical conductivity of 

perovskite oxides varies from insulating to semiconductive, metallic and even 

superconductive.1 Besides interesting optical properties, they exhibit magnetism and 

catalytic activity.2,6 

 

Probably the most important properties of perovskite thin films are their high dielectric 

constants and ferroelectric behavior, which are extensively exploited in 

microelectronics applications.7,8 Capability for miniaturization and high performance 

together with special materials properties play a key role in these applications. 

 

An introduction to perovskite chemistry and some special applications of thin film 

perovskite oxides are briefly presented below. 

2.1 Structural chemistry of perovskite oxides 

Properties of perovskite oxides are usually explained in terms of the perovskite 

structure ABO3 (Figure 1a), where the A-cation is twelve- and the B-cation six-

coordinated.6 O is oxygen. The cubic perovskite structure consists of an A-cation, 

which sits in the center of the cube and is surrounded by corner-sharing BO6 octahedra. 

Interesting properties arise when ternary perovskite-type oxide is more or less distorted 

from the ideal cubic structure.1,6 Distortion of the perovskite structure can be described 

in terms of three different mechanisms: (i) cation displacements within the octahedra, 

(ii) distortions of the octahedral, and (iii) tilting of the octahedron.9 An example of 

cation displacement is found in titanate-type ferroelectrics where the ferroelectricity 

originates from the two unequal Ti-O1 and Ti-O2 bond distances.1 At a certain 

temperature, called the Curie temperature, this distortion transforms back to the cubic 

symmetry and ferroelectricity is lost. Both distortion and tilting of the octahedra have 

been observed in the Bi4Ti3O12 structure where the mechanisms of ferroelectricity have 

been studied.10 Bi4Ti3O12 is one of the most interesting structures in the family of 

Aurivillius structures, where the Bi2O2 layers alternate with perovskite-like layers of 

An-1BnO3n+1 (Figure 1b).11,12 
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Figure 1. Simple perovskite structure for PbTiO3 (a) and compared with an ideal 

Aurivillius structure for Bi4Ti3O12 (b). Figures were drawn with VENUS.13 

 

Variations of the ideal perovskite ABO3 can be achieved by cation substitution. 

Changes in composition are usually accompanied by structural variations, and may 

improve the electrical and magnetic properties.2 Most commonly this substitution is 

made at the cation site. 

2.2 Perovskite materials as thin films 

Most perovskite studies have dealt with bulk materials. However, perovskite films are 

of increasing interest because of their use in integrated circuits (IC).2 Applications 

exploiting thin films offer a multitude of benefits, among them smaller size of the 

devices, better operating parameters and the facility for different shapes. Furthermore, 

materials that are difficult or even impossible to process in bulk form are in some cases 

easily processed in thin film form.14 Thin film applications of perovskite materials 

represent a vast area, and only some of the more interesting applications can be 

summarized here. These applications relate to bismuth- and lead-based oxides, which 

are the focus of this thesis. 

 

Ferroelectricity is one of the many interesting properties of perovskite oxides. The 

ferroelectric effect is an electrical phenomenon whereby some compounds exhibit a 

spontaneous polarization, which can be reversed by an electric field. When voltage is 

a) b)

Bi
Pb
Ti
O

a) b)

Bi
Pb
Ti
O

a) b)

Bi
Pb
Ti
O

Bi
Pb
Ti
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applied to a perovskite crystal, for example to PbTiO3, the relatively small titanium Ti4+ 

ion in the center of the cubic lattice is displaced relative to the oxygen octahedra.2,3,15 

This causes polarization of the crystal. Figure 2 illustrates the hysteresis behavior of 

polarization with electric field for a ferroelectric capacitor. 

 

Figure 2. A typical ferroelectric hysteresis loop showing the two polarization states �0� 

and �1�. P=polarization, V=voltage. 

 

Depending on whether the voltage is positive or negative, the Ti4+ ion will move up or 

down, and thus it has two different polarization states (in Figure 2 illustrated as �0� and 

�1�). These two different polarization states enable the operation of non-volatile 

memories since when the voltage is switched off the polarization will remain. Non-

volatile memory is one of the most intriguing features of ferroelectric materials. The 

most frequently studied materials for non-volatile memories are lead zirconium titanate 

(Pb(ZrxTi1-x)O3, PZT) and strontium bismuth tantalate (SrBi2Ta2O9, SBT).16,17 Related 

materials that have been studied for the same purpose are bismuth lanthanum titanate 

(Bi4-xLaxTi3O12, BLT), and bismuth ferrite (BiFeO3, BFO).16 

 

Other studies are needed in parallel with the development of ferroelectric materials and 

new thin film deposition methods (i.e. ferroelectric material processing). In the case of 

PZT, it has been shown that ferroelectric degradation occurs when film thickness is 

decreased.3 The recently developed novel electrode technology could prevent that.18,19 

In fact, ferroelectric memories with cell size of 0.27 µm2 have already been 

demonstrated where the PZT thickness is as low as 70 nm.18 Also, crystal orientation of 
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the ferroelectric needs to be controlled in order to provide homogeneous switching and 

increased polarization.20 In the case of Bi4Ti3O12, it has been shown that random 

orientation gives much better electrical properties than c-axis oriented film.21 

 

Along with polarization, ferroelectric materials may show piezoelectricity, 

pyroelectricity, and electro-optic activity. As with polarization, structural changes are 

observed when voltage is applied across the ferroelectric layer. In the case of 

piezoelectricity, the thin film layer is compressed under the applied voltage, or 

electricity is generated in the thin film as a result of mechanical pressure.2 When 

voltage is applied to a piezoelectric crystal, the crystal is distorted and the crystal axes 

become elongated. A polarized piezoelectric object is thus somewhat longer than it was 

before the voltage was applied. Many lead-based perovskites22,23 and lanthanide-

modified bismuth titanate24-26 thin films have high piezoelectric coefficients and have 

been studied as micro-electromechanical systems (MEMS), suitable for use in actuators 

or pressure sensors, for example.22-26 

 

As a result of change in the temperature, charges form on the surface of pyroelectric 

crystals. Thus, polarization of thin film structures changes with temperature, enabling 

the structures to be utilized as highly sensitive infrared detectors or as detector arrays in 

catalytic gas sensors. It should be noted that all pyroelectric materials are also 

piezoelectric, but not vice versa. While PZT27-30 is the most widely studied perovskite 

material for pyroelectric applications, bismuth titanate31 has aroused interest as well. 

 

Electro-optical activity means that properties such as refractive indices or absorption 

properties change along with an applied voltage. Optical properties of bismuth- and 

lead-based ferroelectrics such as lanthanum-substituted bismuth titanate,32 PZT,33 and 

PLZT34 have been extensively studied for exploitation in optical memories, 

optoelectronic devices, and waveguide applications. 

 

The thicknesses of piezoelectric, pyroelectric, and electro-optic devices are usually in 

micrometer scale, but thicknesses below 1 µm have also been reported. Pyroelectric 

properties have been reported for 250 nm thin films, and electro-optical properties for 

even thinner films. Although in practise, it is not feasible to produce micrometer-scale 
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thin films by slow deposition methods like ALD, the method could perhaps find use in 

seed layer deposition. 

3 ALD of Pb- and Bi-containing oxide thin films 

Perovskite oxides are challenging materials for ALD. Depending on the material they 

consist of two or several cations, whose stoichiometry must be accurately controlled.35 

Finding compatible precursors so that requirements such as suitable deposition 

temperatures and growth rates are met is a demanding puzzle. These challenges are 

discussed in detail below. The basic principles of ALD are first reviewed (section 3.1). 

In the context of ALD and controlling the stoichiometry in complex oxide thin films, 

different alternatives for the precursor chemistry in the form of the bimetallic 

precursors are presented. Specifically, ALD processes based on lead and bismuth are 

discussed in section 3.3. 

3.1 Principles of atomic layer deposition 

Atomic layer deposition (ALD) is a sophisticated chemical vapor deposition (CVD) 

method for preparing thin films. ALD was developed in Finland36 in the 1970s and has 

found wide acceptance and many applications.5,37-41 Compared with conventional 

chemical vapor deposition methods, ALD is a low temperature method where thin films 

are deposited from the source vapors. Precursors are pulsed to the reaction chamber one 

at a time. In the case of binary oxides, growth typically proceeds in four steps. First the 

metal precursor is pulsed to the substrate surface, where it reacts with the surface 

groups, chemisorbing on the substrate. In the second step, non-reacted precursor 

species and gaseous reaction by-products are removed with an inert gas purge. An 

oxygen source is pulsed as second precursor in the third step to produce, by chemical 

reaction, the desired oxide material and at the same time releases remaining ligands 

from the metal precursor. The final step is the same as the second step. These four 

steps, forming one ALD growth cycle, are repeated as many times as necessary to 

obtain the desired film thickness. A schematic illustration of an ALD cycle is shown in 

Figure 3. Ideally during each metal precursor pulse, the substrate surface is covered 

with a full monolayer of the precursor, and surplus of the precursor is purged away in 

the following inert gas purge. Alternate pulsing of the precursors and saturative 

reactions enables a self-limiting growth. In practice, the limited number of reactive sites 

or bulky ligands of the metal precursor lead to less than monolayer growth. This can be 
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seen also in Figure 3, where for steric hindrances the large ML3 molecules are unable to 

react with all �OH groups bound to the surface.  

 

 

Figure 3. An imaginary ALD cycle for binary oxide film of metal (M) and oxygen (O). 

Precursors ML3 (L = ligand, e.g. alkoxide) and H2O are alternately pulsed. Between 

precursor pulses the reaction chamber is purged with inert gas. 

 

In the case of ternary oxides the thin film is achieved simply by pulsing two metal 

oxides in different cycles. The metal ratio is then controlled by the ratio of the binary 

metal oxide cycles. In practice, designing the experiments and carrying out the 

depositions is not so straightforward. When ternary or more complex oxides are 

deposited by ALD, all constituent binary oxides must be deposited in a self-limiting 

manner at the same temperature. This requirement for similar deposition temperatures 

limits the number of possible precursors. Moreover, when binary oxides are combined 
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to produce multicomponent oxides, cations may behave differently because the surface 

chemistry differs from that in the binary processes. 

 

Benefits of the ALD method relate mostly to the surface-controlled and self-limiting 

growth, which enable accurate control of thickness and conformal growth. Thickness is 

simply controlled by the number of cycles deposited. The same amount of thin film 

material is deposited during each cycle. ALD also enables excellent conformality and 

uniformity even in complicated three-dimensional structures.  

3.2  ALD precursors 

Precursor chemistry is an important issue in the development of new ALD processes. 

First of all, the precursors must be volatile and thermally stable both during vapor phase 

transport and on the growth surface. At their best, precursors chemisorb rapidly on the 

surface or react rapidly with the surface groups. This provides both effective use of the 

precursor and short pulse times. Precursors should also react completely to avoid 

impurities in the films. 

 

Volatile metal precursors for ALD can be divided into five main categories: halides, β-

diketonate complexes, alkoxides, true organometallics and amides.42 For the 

preparation of oxide materials, the second precursor must be an oxide source. 

Depending on the metal precursor selected, the oxide source may be H2O, H2O2, O2, 

N2O, or O3. In the deposition of ternary and more complex oxides, the control of cation 

stoichiometry may be difficult. One way to control the stoichiometry is to use 

precursors that contain more than one of the desired film components. This kind of 

precursor contains two metal cations in the same ratio as in the desired film.39 Another 

approach is to use an alkoxide together with a second metal-containing precursor. Here 

the alkoxide provides both metal and oxygen atom to the film.43 The precursors used in 

the preparation of ternary and more complex films by ALD will now be discussed. 

 

The characteristic feature of ALD is the self-limiting growth. This restricts the choice 

of precursors, and the single-source precursors which are successfully employed in 

CVD methods are not exploitable in ALD. The self-limiting growth mechanism is 

largely based on exchange reactions on the surface between alternately applied 

precursors. Thus, at least two precursors are required in an ALD process. Precursors 

also need to be stable against self-decomposition. Despite these requirements, 
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multicomponent oxide materials have successfully been deposited from a bimetallic 

precursor together with another metallic precursor and an oxidizing agent (see Table 1, 

p. 22). Besides bimetallic precursors, another types of precursors where a separate 

oxygen source is not needed will be discussed (see Table 2, p. 24). 

 

A bimetallic precursor was recently utilized in ALD for the first time. 

SrTa2(OEt)10(dmae)2 was used with O2 plasma to deposit SrTa2O6.44,45 SrTa2O6 has 

been widely studied due to its high permittivity and good thermal stability, but also 

because it is the core constituent of the more complex SrBi2Ta2O9 (SBT) structure. SBT 

is mainly of interest for its use in ferroelectric random access memories. With the O2 

plasma process, a strontium-deficient composition was obtained with Sr to Ta ratio of 

only 0.27.44 The carbon content in the as-deposited films was nevertheless low, being 

below the detection limit of Auger electron spectroscopy. Later, a less reactive oxygen 

source, H2O, was used together with SrTa2(OEt)10(dmae)2 as metal precursor.46 With 

this combination, close to stoichiometric films were obtained with Sr to Ta ratio 

between 0.50 and 0.63 depending on the deposition temperature. Impurities were now 

clearly detectable, however. Carbon and nitrogen impurities were below 1%, but 

hydrogen impurities were typically between 1 and 3%. Growth rate was higher with the 

plasma-activated process. At 300 °C, growth rates were 0.8 and 0.23 Å/cycle for the O2 

plasma and water processes, respectively. Growth rate of the water process could be 

increased up to 0.33 Å/cycle with larger water dose. 

 

A structurally related complex SrTa2(OEt)10(ME)2, with methoxyethoxide ligand 

instead of dimethylaminoethoxide ligand, has also been studied (see Figure 4).46,47 An 

ALD reaction with water produced relatively uniform films, though when the metal 

precursor was pulsed without an oxygen source the film thickness increased on the 

leading edge of the substrate indicating decomposition of the precursor.46 Pulsing 

SrTa2(OEt)10(ME)2 and O2 plasma at 250 and 300 °C gave uniform and nearly 

stoichiometric films.47 Saturative growth was demonstrated, and the films deposited at 

250 °C were smooth with an rms roughness value of 0.23 nm as determined by atomic 

force microscopy (AFM). Carbon impurities were almost below the detection limit of 

X-ray photoelectron spectroscopy (XPS). In this case too, growth rate was higher with 

the plasma process than the water process: 0.5 Å/cycle, as against 0.3 Å/cycle at 250 

°C. 
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Figure 4. Two bimetallic precursors for strontium and tantalum: a) SrTa2(OEt)10(dmae)2 

(strontium bis(tantalum pentaethoxide dimethylamino-ethoxide)) b) SrTa2(OEt)10(ME)2 

(strontium bis(tantalum pentaethoxide methoxy-ethoxide)). 

 

SrTa2(OEt)10(dmae)2 and SrTa2(OEt)10(ME)2 have also been used to prepare quaternary 

SBT. The bismuth precursors were Bi(N(SiMe3)2)3 and Bi(C6H5)3, respectively.48,49 

Slightly bismuth-rich and strontium-deficient SBT films were obtained with a pulsing 

ratio of two Bi(N(SiMe3)2)3/H2O to one SrTa2(OEt)10(dmae)2/H2O.48 Film growth rate 

was 0.28 Å/cycle. Impurity levels of carbon were moderate at 2-3 at.%. The hydrogen 

level was high in the as-deposited films, 19 ± 3 at.%, but was reduced to just 0.5 ± 0.1 

at.% upon annealing. Time-of-flight elastic recoil detection analysis (TOF-ERDA) was 

used to determine the impurities. 

 

In the case of the SrTa2(OEt)10(ME)2 and Bi(C6H5)3 process, precursors were dissolved 

together in n-butylacetate solvent and pulsed alternately with water.49 A precursor 

mixing ratio of 1.0 was used in the solution. Films showed almost the same atomic ratio 

as with another precursor combination that was somewhat bismuth rich and strontium 

deficient. Carbon impurities were about 4 at.% as detected by Auger electron 

spectroscopy (AES). 

 

Other precursors used in ALD besides compounds with strontium and tantalum are 

precursors with silicon and a metal (see Figure 5). The role of silicon is considered to 

be similar to that of a metal in the precursor and the resulting thin film material. Thus 

the term bimetallic is used for precursors that contain either two metals or metal and 

silicon. Precursors that contain silicon are typically used in the deposition of buffer 
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layers in the case of bismuth50 and of high-k gate materials in the case of hafnium and 

lutetium51-53. 

 

 

Figure 5. ALD bimetallic precursors containing metal and silicon: a) tris 

(trimethylsilylmethyl)bismuth (Bi(CH2SiMe3)3 b) dichlorobis[bis(trimethylsilyl)-

amido]hafnium HfCl2[N(SiMe3)2]2 c) tris[bis(trimethylsilyl)amido]lutetium 

Lu[N(SiMe3)2]3. 

 

Bismuth silicate was deposited using Bi(CH2SiMe3)3 and ozone as precursors.IV,V 

Silicon to bismuth atomic ratio was found to increase from 1.5 to 4.5 with increasing 

deposition temperature. A constant growth rate of 0.4 Å/cycle was obtained between 

250 and 350 °C. Increase of the bismuth content was achieved with use of an additional 

bismuth precursor, BiPh3, at deposition temperature of 250 °C.V At this temperature it 

was possible to control the silicon to bismuth ratio within a range of 0.18 to 0.43. 

Detected by TOF-ERD analysis, impurity contents in the films were less than 0.2 at.% 

carbon and less than 0.1 at.% hydrogen.IV 

 

In the case of hafnium silicate films, HfCl2[N(SiMe3)2]2 and H2O were used as 

precursors and deposition temperatures from 150 to 400 °C were tested. 51 As with the 

bismuth silicate films, the silicon to metal ratio was found to increase with the 

deposition temperature. The increase in the silicon to hafnium ratio was linear from 

0.18 to 0.43. Carbon, nitrogen, and chlorine impurities were below the detection limit, 

which was under 1 at.% for XPS. The highest growth rate, 1.3 Å/cycle, was obtained at 

deposition temperature of 250 °C. The growth rate increased up to 250 °C, but beyond 
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that it began to decrease. The hafnium silicate process with water was carefully studied 

by infrared (IR) spectroscopy.52 First, the IR studies established that the change in the 

growth rate was related to hydroxyl group saturation, which remained constant before 

decreasing above 250 °C. Secondly, they revealed that enhanced ligand dissociation 

and reaction of the functional groups (Si-(CH3)x) with water when the deposition 

temperature is increased leads to increased silicon incorporation in the film. An 

analogous precursor combination has been used for zirconium, viz. 

ZrCl2[N(SiMe3)2]2.54 However, silicon incorporation was much lower in this case. A 

maximum silicon to zirconium ratio of 0.22 was obtained at deposition temperature of 

350 °C. After annealing, the films contained crystalline ZrO2 rather than silicate phase. 

 

Lutetium silicate films have been deposited with use of Lu[N(SiMe3)2]3 as a precursor 

for Lu and Si.53 Two different oxidizing agents were tested: H2O and O3. At deposition 

temperature of 380 °C, the silicon to lutetium atomic ratio was 1.1 with H2O and 1.5 

with O3. XPS data showed that the films were lutetium silicate rather than a mixture of 

silicon oxide and lutetium oxide. 
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Table 1. ALD processes where bimetallic precursors have been employed. 

Thin film 

material 

Metal precursors Oxygen 

source 

Metal ratio Deposition 

temperature 

°C 

Ref. 

SrTa2O6 SrTa2(OEt)10(dmae)2 O2 plasma Sr/Ta 0.27 300 44 

 SrTa2(OEt)10(dmae)2 O2 plasma not given 200 45 

 SrTa2(OEt)10(dmae)2 H2O Sr/Ta  

0.50-0.63 

200-350 46 

 SrTa2(OEt)10(ME)2 O2 plasma Sr/Ta  

0.43-0.6 

250-300 47 

 SrTa2(OEt)10(ME)2 H2O not given 200-350 46 

SrBi2Ta2O9 SrTa2(OEt)10(ME)2 + 

BiPh3 

O2 plasma Sr/Ta 0.45 

Bi/Ta 1.1 

250 49 

 SrTa2(OEt)10(dmae)2 

+ Bi(N(SiMe3)2)3 

H2O Sr/Ta 0.4 

Bi/Ta 1.05 

190 48 

Bi2SiO5 Bi(CH2SiMe3)3 O3 Si/Bi  

1.5-4.8 

200-450 IV 

 Bi(CH2SiMe3)3 + 

BiPh3 

O3 Si/Bi 

0.12-1.9 

250 V 

Hf-Si-O HfCl2[N(SiMe3)2]2 H2O Si/Hf  

0.18-0.43 

150-400 51,52 

Lu-Si-O [(Me3Si)2N]3Lu H2O 

O3 

1.1 

1.5 

380 53 

 

An obvious difficulty in ALD is the deposition of metal oxide directly onto pure silicon 

substrate. Silicon is easily oxidized, with the formation of interfacial silicon dioxide. 

Thin films are deposited layer by layer in ALD. However, a single layer rarely covers 

the entire substrate surface due to precursor size or other limiting factors. Because of 

this, the oxidizing precursor pulse after the first metal precursor pulse will easily 

diffuse and oxidize the underlying silicon substrate. An interfacial silicon dioxide layer 

is likely to affect the performance of an integrated circuit based on silicon.55 Use of two 

different metal precursors without a separate oxide source has been proposed as a novel 

way to avoid oxidation of the silicon substrate.43,56-61 Such precursors also provide three 
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different constituents of the thin film material from just two precursors (see Table 2, p. 

24). A common combination has been metal chloride together with a metal alkoxide 

where the alkoxide provides oxygen to the film. This kind of approach was introduced 

by Ritala et al.,43 who studied a variety of precursors with promising results. Even 

though the metal ratio in ternary oxide films did not correspond to the ratio expected, 

the films were grown in a self-limited manner, and films were uniform with sharp 

silicon-metal oxide interfaces. Another important result was the incorporation of silicon 

into the oxide phase, which has not been easy to achieve by ALD. Silicon was 

uniformly incorporated into Zr-Si-O films, and the precursor for silicon was either 

silicon ethoxide or silicon butoxide. 

 

Overall, impurities in the studies of Ritala et al.43 were less than 1 at.% for carbon and 

hydrogen and 0.8-2.0 at.% for chlorine. An exception to this general behavior was the 

AlCl3/Ti(OiPr)4 process at 300 °C and the ZrCl4/Si(OnBu)4 at 250 °C, which left 

chlorine residues of 4.0 and 8.3 at.%, respectively. Later study was made of similar 

chloride/alkoxide processes of zirconium and hafnium silicates.57,58,61 In these 

processes both the composition ratio [M/(M+Si)] and impurity contents decreased with 

increasing deposition temperature. The same result was obtained for the ZrCl4/ 

Si(OnBu)4 process.43 

 

A further example of the alkoxide-based processes is the use of metal nitrate, such as 

Hf(NO3)4, as a source of metal and oxygen. Ternary oxides were deposited by 

introducing either AlCl3 or ZrCl4 as a second precursor.59 Another approach to the 

chloride and alkoxide precursor combination is to use metal alkyl amide instead of 

metal chloride, and t-butoxy silanol instead of metal alkoxide.60 The Hf(N(CH3)2)4 and 

(tBuO)3SiOH precursor combination resulted in hafnium silicate glass films 

corresponding to the stoichiometry of HfO2(SiO2)x. Depending on the deposition 

conditions, the metal ratio varied between x=2 and 3. While chlorine residues were 

avoided, nitrogen impurities were introduced. However, according to RBS, nitrogen 

and carbon impurities were both less than 2 at.%. TEM revealed that also with this type 

of precursor, the interfacial oxide could be reduced below 1 nm. 
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Table 2. ALD processes where ternary films have been made without a separate oxide 

source. 

Thin film 

material 

M1-M2-O 

Metal 

precursor 

Alkoxide or other 

oxygen-containing 

precursor 

Metal ratio 

M1/(M1+M2) 

Deposition 

temperature 

°C 

Ref. 

Al-Ti-O AlCl3 Ti(OiPr)4 0.8 300 43 

Zr-Al-O ZrCl4 Al(OEt)3 0.28 400 43 

Zr-Ti-O ZrCl4 Ti(OiPr)4 0.45 300 43 

Zr-Si-O ZrCl4 Si(OEt)4 0.39 500 43 

 ZrCl4 Si(OnBu)4 0.53, 0.30 250,500 43 

 ZrCl4 Si(OnBu)4 0.40-0.23 300-500 57 

 SiCl4 Zr(OtBu)4 0.75-0.53 125-225 58 

Hf-Al-O HfCl4 Al(OEt)3 0.33 400 43 

 AlCl3 Hf(NO3)4 Not given 150-190 59 

Hf-Ti-O HfCl4 Ti(OiPr)4 0.24 300 43 

Hf-Si-O Hf(N(CH3)2)4 (tBuO)3SiOH 0.25-0.33 250-350 60 

 HfCl4 Si(OnBu)4 0.46-0.19 250-500 61 

Hf-Zr-O ZrCl4 Hf(NO3)4 Not given 150-190 59 

 

3.3 Deposition of Pb and Bi compound films by ALD 

Deposition of lead and bismuth oxide films by ALD is challenging because of the 

scarcity of good precursors. A survey of the few reported studies on lead and bismuth 

based oxides is presented below. 

3.3.1 Lead-containing materials 

Although PZT is one of the most frequently studied materials for FeRAM16 devices, 

there are relatively few ALD processes for lead-containing thin films (Table 3). 

However, the continuous scaling down of microelectronic devices will soon require 

deposition methods with better step coverage � methods such as ALD. The growth of 

PZT and other related lead-containing oxides has been widely studied by physical 

methods and by chemical methods apart from ALD. Lack of a good binary process for 

lead oxide is the major problem in ALD, but another challenge is to find a good 

combination of precursors for Zr and Ti � precursors that can be deposited at similar 
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temperatures and with similar growth rates to the lead oxide precursor. Safety issues 

must also be addressed. Lead is an environmentally hazardous element and finding 

lead-free alternatives would be desirable. For the moment, PZT has several superior 

properties that argue against its replacement. These include higher switching charge per 

area and lower deposition temperature and post-deposition annealing temperature than 

other materials that have been tested.16,62 In this context, it should be noted that, 

currently, the processes producing nanometer-scale thin films of lead-based oxides 

represent a much less severe environmental problem than soldering processes in the 

electronics industry, which are still mainly based on lead and its alloys. 

 

Lead sulfide was the first lead compound to be processed by ALD. Interest in PbS 

stems from its photoconduction properties, especially its high response in the near 

infrared, which gives it use as sensor material. In the first study, five different lead 

precursors were explored, namely PbBr2, PbI2, (CH3COO)Pb, Pb(thd)2, and 

Pb(dedtc)2.63 Since the first three yielded very slow growth rates, only the last two were 

studied in detail. Later, two lead tert-butoxide complexes, [Pb(OtBu)2]2 and 

Pb4O(OtBu)6, were investigated.64 The sulfur source in all experiments was H2S. Films 

deposited from Pb(dedtc)2 were found to be p-type semiconductors with hole mobility 

and concentration similar to those observed in previously studied chemically deposited 

films.63 PbS films deposited on glass and on polycrystalline alumina had relatively 

rough surfaces according to scanning electron microscopy (SEM).63 

 

Lead has also been used as a dopant in CaS and SrS thin films deposited by ALD.65-70 

The main goal in doping CaS and SrS matrices with Pb2+ ions was to produce blue light 

in color electroluminescence (EL) devices. The Pb2+ ion has s2 outer electron 

configuration, and its luminescence properties are thus highly dependent on the matrix 

environment. Although previous studies had identified some differences between CaS 

and SrS matrices, the doping with lead precursors was more carefully studied than the 

matrices. It appears that the blue emission originates from dimers formed by Pb2+ 

ions.69 For selective doping, therefore, it is important to employ dimers rather than 

single atoms or larger aggregates. In tests of four different precursors, namely PbCl2, 

PbBr2, Pb(thd)2, and Pb(dedtc)2, Pb(dedtc)2 gave the most homogeneous doping at the 

deposition temperature chosen, viz. 450 °C.65 The most intense blue emission was 

achieved with Pb concentration in the range of 1.0-1.5 mol.%. L25 brightness values for 
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CaS:Pb and SrS:Pb were 2.5 and 17 cd/m2, respectively, at 300 Hz. Much higher 

luminance values for CaS:Pb samples were obtained when PbEt4 rather than Pb(dedtc)2 

was used as lead precursor.66 The L25 value was higher than 80 cd/m2 at 60 Hz for 

samples containing 0.6-2.5 mol.% of lead. These much higher values were attributed to 

the low deposition rate. If the deposition rate is much lower than one monolayer per 

cycle, the formation of larger aggregates is likely to be diminished. Also, the deposition 

temperature plays a role. Even though annealing temperatures were higher than in 

previous studies (725 °C), very low luminance values were obtained with 

Pb(C5
tBu3H2)2 as precursor.70 It was assumed that the main reason for lower luminance 

values was actually the low deposition temperature. When films were deposited at 280 

°C the best emitting value was only 6 cd/m2. In another study of the effect of deposition 

temperature, increasing the deposition temperature from 350 to 400 °C improved the 

blue emission of CaS:Pb devices.69 

 

Lead oxide processes have been studied by ALD mainly to deposit the more complex 

lead titanate PbTiO3. For lead oxide depositions only four different precursors have 

been studied so far: Ph4PbI, Pb(thd)2
I, Pb(tmod)2

71, and Pb(OCMe2CH2NMe2)2
72. In 

these studies, the oxidizing agent for Ph4Pb and Pb(thd)2 was ozone, while that for 

Pb(tmod)2 and Pb(OCMe2CH2NMe2)2 was water. Even though no actual ALD window 

was observed for Ph4Pb/O3 and Pb(thd)2/O3 processes, self-limiting growth was 

confirmed at the temperatures studied, 250/300 °C and 150 °C, respectively. Growth 

rate for the Ph4Pb/O3 process was 0.13 Å/cycle at 250 °C. For the Pb(thd)2/O3 process, 

a much higher growth rate of 1.0 Å/cycle was observed at 150 °C. For Pb(tmod)2, self-

limiting growth was observed at 240 and 300 °C even though the films were not 

uniform in thickness.71 In the case of Pb(OCMe2CH2NMe2)2, an ALD window was 

observed between 190 and 280 °C when the temperature region 150-325 °C was 

explored. Growth rate inside the ALD window was 0.2 Å/cycle. However, the reported 

purge times were high, being 40 s and 15 s after the Pb precursor and H2O pulses, 

respectively.72 Maximum pulse and purge times in other reported lead oxide processes 

have not exceeded 2 s.I,71 

 

The first ALD process for lead titanate was recently publishedII as part of this thesis and 

will be discussed in more detail in Chapter 4. The precursors were Ph4Pb/O3 and Ti(O-

i-Pr)4/H2O. Careful optimization of the precursor pulsing ratio resulted in 
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stoichiometric PbTiO3 at the two temperatures studied (250 and 300 °C). The as-

deposited films were amorphous and annealing was necessary to obtain the crystalline 

perovskite phase. Impurity contents of the films were low: below 0.2% for carbon and 

below 0.5% for hydrogen. Roughness values (rms values), determined by AFM, were 

unexpectedly high compare to the rather low rms values of the binary oxides.I,73 An 

rms-value of 23.8 nm was obtained for 210-nm-thick lead titanate film. An interesting 

result was that the growth rate of the lead titanate film as compared with the growth 

rate calculated from the rates for the binary oxides was 55% higher at the deposition 

temperature of 250 °C. The highest growth rate was obtained when the lead to titanium 

atomic ratio in the films was 1.7. The rate was decreased when the relative amount of 

lead in the film was decreased. Evidently the different reactivity of the precursors with 

the already deposited Pb-O or Ti-O layer was responsible for the changes in the relative 

growth rate. 

 

Quite similar results were recently obtained by Hwang et al.72 when they used 

Pb(OCMe2CH2NMe2)2 (see Figure 6) and Ti(OtBu)4 as metal precursors and water as 

oxidant. As a substrate they used Ir/IrO2/SiO2/Si electrodes. They found the growth rate 

of lead titanate to increase whit increase in the relative amount of lead in the films. 

When stoichiometric lead titanate films were deposited, the growth rate was four times 

the rate calculated from the growth rates of the constituent oxides. Hwang et al.72 

suggested that the catalytic nature of titanium dioxide was the reason for this increase. 

They also proposed that, in this lead titanate process, there is a certain incubation 

period during the early stages of the thin film growth. When they deposited films of 

different thickness, the results for films below 10 nm were quite different from the 

results for thicker films, which were close to stoichiometric. First, the growth rate was 

higher for the thinner than the thicker films. Secondly, the thin films were lead-rich 

compared to the composition of the thicker films having close to the stoichiometric 

atomic ratio. Beyond a thickness of about 10 nm, both growth rate and atomic ratio 

were constant. Hwang et al.72 believe that, during the initial stage, Pb precursors more 

easily adsorb on to the substrate surface and, therefore, Pb excess in the films leads to 

faster growth rate. After rapid thermal annealing, the stoichiometric films crystallized 

in perovskite structure. Impurities were analyzed by AES, and carbon content of the 

films was below 1%. Also the roughness values were extremely low rms-value being 
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below 1.1 nm as analyzed by AFM. The dielectric constant was 280 and the remnant 

polarization was 11.2 µC/cm2 at an applied bias voltage of 2.8 V. 

 

 

Figure 6. Lead precursors used in depositions of lead titanate by ALD: a) bis(3-N,N-

dimethyl-2-methyl-2-propanoxide) Pb(OCMe2CH2NMe2)2 and b) bis(2,2,6,6,-

tetramethyl-3,5-octanedionato)lead Pb(tmod)2. 

 

Watanabe et al.71 used Pb(tmod)2 (see Figure 6) and Ti(O-i-Pr)2(thd)2 precursors for 

lead and titanium, respectively. Precursors were dissolved in ethylcyclohexane and 

injected separately to the reaction chamber. Water was used as oxidant. Pb-Ti-O films 

were deposited at 240 and 300 °C. Stoichiometric lead titanate was obtained by 

combining lead and titanium oxide processes in the ratio of 1:4 or 1:6. Even though 

saturative growth was observed for both binary oxide processes, the ternary Pb-Ti-O 

process was nonsaturative. Increasing the lead precursor injection linearly increased 

both the atomic ratio and the growth rate. Watanabe et al.71 suspected that this was 

caused by the Ti-O layer, which either catalyzed the decomposition of the Pb precursor 

or enhanced its oligomerization. Later, a different lead precursor, Pb(thd)2, was 

introduced together with Ti(O-i-Pr)2(thd)2.74 Also in this experiment, precursors were 

dissolved in ethylcyclohexane and injected seperately to the reaction chamber. Close to 

stoichiometric films were obtained with lead to titanium pulsing ratio of 1:8 at 

deposition temperature of 240 °C. Again the process was not ideally self-regulated. 

However, depositions on a three-dimensional substrate with deep holes gave promising 

results. Cation distribution was much better than in previous CVD studies of lead 

titanate. In both processes,71,74 as-deposited films were amorphous, and impurity 

contents of carbon were 2% as detected by XPS. 
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A lead zirconate process is the most recently introduced ALD process for lead and will 

be discussed in more detail in Chapter 4. In this process, Ph4Pb and Zr(thd)4 were used 

as precursors together with ozone.III The process was studied at 250 and 300 °C and the 

atomic ratio of the thin films was controlled by changing the pulsing ratios of the 

constituent oxides. The crystalline perovskite phase was observed after annealing of the 

thin film deposited on a single crystalline SrTiO3 substrate.  

 

It is worth noting that in all ternary lead oxides an excess of lead in the thin films was 

desirable as it either enhanced the crystallinityII,III or promoted the preferred orientation 

of the films.72 



 

 30  

 

Table 3. Lead-containing films deposited by ALD. 

Thin film 

material 

Metal precursors Non-metallic 

source 

Deposition 

temperature, 

°C 

Ref. 

PbS PbBr2 

PbI2 

Pb(CH3COO)2 

Pb(thd)2 

Pb(dedtc)2 

H2S 300-350 63 

PbS [Pb(OtBu)2]2 

Pb4O(OtBu)6 

Pb(thd)2 

Pb(dedtc)2 

H2S 130-390 

130-390 

130-390 

220-340 

64 

Dopant in SrS 

and CaS 

PbCl2 

PbBr2 

Pb(thd)2 

Pb(dedtc)2 

H2S 450 65 

Dopant in CaS PbEt4 H2S 390 

350-400 

66-68 

69 

Dopant in SrS Pb(C5
tBu3H2)2 - 280 70 

PbO2 Ph4Pb 

Pb(thd)2 

Pb(dedtc)2 

O3 

O3 

O3 

185-400 

150-300 

300-350 

I 

PbTiO3 Ph4Pb + Ti(O-i-Pr)4 O3 

H2O 

250, 300 II 

 Pb(tmod)2 +  

Ti(O-i-Pr)2(thd)2 

H2O 240, 300 71 

 Pb(OCMe2CH2NMe2)2+ 

Ti(OtBu)4 

H2O 200 72 

 Pb(thd)2 + 

Ti(O-i-Pr)2(thd)2 

H2O 240 74 

PbZrO3 Ph4Pb + Zr(thd)4 O3 250, 300 III 
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3.3.2 Bismuth-containing materials 

Bismuth-containing oxides show promise for applications in several fields of 

technology. Bi2Ti2O7 and amorphous Bi-Ti-Si-O are dielectric materials and could be 

exploited for capacitor dielectrics in dynamic random access memories (DRAMs).75,76 

Bi4Ti3O12 and SBT, in turn, are ferroelectric materials and have been actively studied as 

potential materials for FeRAMs. These materials and other bismuth oxides have been 

studied by ALD (Table 4) and are reviewed in the following. 

 

Bismuth oxide depositions by ALD have not been completely successful. With 

Bi(N(SiMe3)2)3 and H2O as precursors, BiOx films were deposited in a narrow 

temperature range of 190-200 °C.48 Film growth was not reproducible, however, 

probably because of the partial reduction of bismuth to its metallic form. Attempts to 

use BiPh3 as metal precursor, and H2O2
77 as well as O3

V as oxidant, failed to produce 

bismuth oxide. BiCl3 together with water resulted in BiOCl formation.78 

 

While the production of binary bismuth oxide by ALD has not been successful, the 

addition of the titanium dioxide process to produce bismuth titanate has given 

promising results. The bismuth precursors used in these processes have been BiPh3 

oxidized by H2O77 or O3,V Bi(N(SiMe3)2)3 oxidized with H2O,21 and Bi(mmp)3 oxidized 

with O2/O3 mixture79 or H2O75 (see also Figure 7). 

 

 

Figure 7. Bismuth precursors used in depositions of bismuth titanate by ALD: a) 

tris[bis(trimethylsilyl)amide], Bi(N(SiMe3)2)3 and b) tris(1-methoxy-2-methyl-2-

propoxy)bismuth, Bi(mmp)3. 

 

In the first Bi-Ti-O study,77 BiPh3 and H2O were used as precursors and 260 °C as the 

growth temperature. Uniform films were achieved, but the Bi/Ti metal ratio never 
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exceeded 0.61 whatever the pulsing ratio. Higher Bi/Ti metal ratios were achieved 

when ozone instead of water was used as the oxidant to react with BiPh3 at the 

deposition temperature of 250 °C.V Titanium isopropoxide and water were used in both 

processes as sources for titanium dioxide. 

 

When water was used as oxidant for BiPh3
77 and for Bi(mmp)3

75 in the deposition of 

bismuth titanate films, metallic bismuth was observed in the as-deposited films. In the 

case of the BiPh3/H2O;Ti(O-i-Pr)4/H2O process, metallic bismuth was observed by X-

ray diffraction (XRD) when the Bi/Ti atomic ratio exceeded 0.35 at the deposition 

temperature of 260 °C. In the Bi(mmp)3/H2O;Ti(mmp)3/H2O process, metallic bismuth 

was deposited above 275 °C when 1:1 metal pulsing ratio was used. Although metallic 

bismuth was present when the Bi(N(SiMe3)2)3/H2O process was used to produce the 

binary oxide, no metallic bismuth was observed when the Ti(OMe)/H2O process was 

added to produce ternary Bi-Ti-O thin films. 21,48 When a stronger oxidizing agent like 

O3 was used, no metallic form of bismuth was observed under any conditions.79,V 

 

Neither Bi2Ti2O7 
75,77,V nor Bi4Ti3O12

21,79,V was crystallized regardless of the bismuth 

content in the as-deposited films. Bismuth titanate crystallized after annealing at 700-

800 °C. Vehkamäki et al.21 found that crystallization of Bi4Ti3O12 was initiated at 500 

°C; the orientation was random below 650 °C, but c-axis orientation, together with 

some minor orientations was found at 750 °C. 

 

Electrical measurements on ALD bismuth titanate films showed films with lower 

bismuth content, viz. Bi2Ti2O7 thin films, to have relative permittivity of about 45-

60.77,75 In studies of ferroelectric properties of films richer in Bi, i.e. Bi4Ti3O12, 

Vehkamäki et al.21 found that c-axis oriented films had inferior electrical properties to 

randomly oriented films. When capacitors with a 51-nm-thick Bi4Ti3O12 ferroelectric 

film were preannealed for 10 min at 500 °C and then annealed for 60 min at 600 °C, the 

permittivity increased to 160 with a remnant polarization of 0.5 µC/cm2. Even higher 

permittivity values for Bi4Ti3O12 thin films were obtained by Cho et al.79 They used 

ALD in injection mode with mixed Bi(mmp)3 and Ti(mmp)3 precursors in ethyl 

cyclohexane solution together with O2/O3 oxidizing mixture. Stoichiometric films were 

obtained by adjusting the mixing ratio of the Bi/Ti solution. However, no proof of self-

limiting ALD growth was obtained. 
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Deposition of Bi2SiO5 by exploiting the Bi(CH2SiMe3)3/O3 process is another example 

of using bimetallic precursors to produce ternary thin films.IV The Bi(CH2SiMe3)3/O3 

process was modified by adding the BiPh3/O3 process to increase the bismuth content in 

the thin films.V These two processes will be discussed in more detail in Chapter 4. 

 

The growth of more complex bismuth oxides by ALD has also been demonstrated. 

Vehkamäki et al.48 first demonstrated Bi-Ta-O film growth using the 

Bi(N(SiMe3)2)3/H2O;Ta(OEt)5/H2O process at 190 °C. Self-limiting growth with a 0.3 

Å/cycle deposition rate was confirmed. Similarly, they deposited Sr-Bi-Ta-O (SBT) 

films with use of bimetallic SrTa2(OEt)10(dmae)2 and Bi(N(SiMe3)2)3 as precursors and 

2:1 pulsing ratio (Sr/Bi).48 A similar process but with plasma enhancement to produce 

SBT was demonstrated by Shin et al.47 Bimetallic SrTa2(OEt)10(ME)2 and BiPh3 were 

used to form the precursor solution, which was injected into the ALD chamber at 250-

300 °C. In the studies of both groups, the films were slightly strontium deficient. The 

as-deposited films were amorphous and the preferred polycrystalline ferroelectric phase 

was observed only after annealing above 750 °C. Vehkamäki et al.48 were able to 

improve the phase purity by depositing a 30-nm-thick crystalline film as seed layer 

before further depositing a 170-nm film. 

 

Another attempt to grow a complex bismuth compound by ALD involved the Bi-Ti-Si-

O phase.76,80,81 The precursor was a solution of Bi(mmp)3, Ti(mmp)4, Si(OEt)4 

dissolved in ethylcyclohexane with either O3
80,76 or H2O81 as oxidant. The observed 

growth rate was similar with the two oxidants, being about 0.21 Å/cycle. An ALD 

window was observed between 200 and 350 °C in the process oxidized by water. The 

cation Bi/Ti/Si stoichiometry was 0.38/0.37/0.25 with the ozone process and 

0.28/0.59/0.13 with the water process at 300 °C. The obtained films were amorphous 

after the deposition, and crystallization commenced at 480 °C. The dielectric constant 

was between 24 and 64 depending on the cation stoichiometry. 

 

Slight modification to Bi-Ti-Si-O thin films was made by Min et al.82 who replace 

silicon with aluminum to produce Bi-Ti-Al-O thin films. A solution of Bi(mmp)3 and 

Ti(mmp)3 dissolved in ethylcyclohexane was used as precursors together with 
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trimethylaluminum (TMA) and H2O as a oxidant. Dielectric constant decreased while 

the insulating properties were improved with the increasing aluminum content. 

 

Table 4. Bismuth-containing oxide films deposited by ALD. 

Thin film 

material 

Metal precursors Oxygen 

source 

Deposition 

temperature, 

°C 

Ref. 

BiOx Bi(N(SiMe3)2)3 H2O 190-200 48 

Bi-Ti-O BiPh3,  

Ti(O-i-Pr)4 

O3 

H2O 

250 V 

 BiPh3, Ti(O-i-Pr)4 H2O 260 77 

 Bi(mmp)3, Ti(O-i-Pr)4 H2O 225-300 75 

 Bi(N(SiMe3)2)3, Ti(OMe)4 H2O 190 21 

 Bi(mmp)3, Ti(mmp)4 O2/O3 250-500 79 

Bi2SiO5 Bi(CH2SiMe3)3 O3 200-450 IV,V 

 Bi(CH2SiMe3)3, BiPh3 O3 250 V 

Bi-Ta-O Bi(N(SiMe3)2)3, Ta(OEt)5 H2O 190 48 

Sr-Bi-Ta-O Bi(N(SiMe3)2)3, 

SrTa2(OEt)10(dmae)2 

H2O 190 48 

 BiPh3,SrTa2(OEt)10(ME)2 O2 plasma 250 49 

Bi-Ti-Si-O 

 

 

Bi-Ti-Al-O 

Bi(mmp)3,Ti(mmp)4,Si(OEt)4 

 

 

Bi(mmp)3,Ti(mmp)4, TMA 

O3 

O3 

H2O 

H2O 

300 

200-375 

200-450 

250 

80 

76 

81 

82 

 



 

 35  

 

4 Experimental 

This section summarizes the materials, instruments, and methods used in this the work. 

More detailed descriptions of the depositions and characterizations can be found in 

publications I-V. 

4.1 Precursors and substrates 

Metal precursors. For the lead oxide experiments the metal precursors were lead 

diethyl dithiocarbamate (Pb(dedtc)2), lead 2,2,6,6-tetramethyl-3,5-heptanedione 

(Pb(thd)2), and tetraphenyl-lead (Ph4Pb). In the ternary lead oxide experiments, the lead 

precursor was Ph4Pb. Synthesis of Pb(dedtc)2 and Pb(thd)2 was done by methods 

described in the literature83,84 and purification was done by sublimation. Commercial 

Ph4Pb (97%) was purchased either from Aldrich Chemical Co., Milwauke, USA, or 

Acros Organics, New Jersey, USA. The stability and volatility of the lead precursors 

were evaluated by thermogravimetry (TG). 

 

Ternary bismuth oxides were deposited from two different metal precursors. 

Tris(trimethylsilylmethyl)bismuth (Bi(CH2SiMe3)3) was used as a bimetallic precursor 

for the Bi-Si-O thin film depositions. Triphenyl bismuth BiPh3 was used both to 

enhance the bismuth content in Bi-Si-O thin films and to deposit Bi-Ti-O thin films. 

Bi(CH2SiMe3)3 was synthesized and characterized by Timo Hatanpää at the University 

of Helsinki.II BiPh3 (99%) was purchased from Strem Chemicals, Newburyport, USA.  

 

Titanium isopropoxide Ti(O-i-Pr)4 (Aldrich Chem. Co., 97%) was used as titanium 

precursor for the lead titanate and bismuth titanate experiments. Previous ALD studies 

of TiO2 involving the Ti(O-i-Pr)4/H2O process were used to optimize the parameters for 

the ternary oxide experiments.73 The zirconium precursor for lead zirconate depositions 

was zirconium 2,2,6,6-tetramethyl-3,5-heptanedione (Zr(thd)2). This was either 

commercial (Strem Chemicals, 99%, Newburyport, USA) or synthesized.85 A 

previously reported86 ALD process for producing ZrO2 from Zr(thd)2/O3 was used as 

the starting point when lead zirconate deposition parameters were optimized.  

 

Examples of different types of precursors used in this study are schematically presented 

in Figure 6. 
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Figure 6. Examples of different types of precursors used in this study: a) lead diethyl 

dithiocarbamate (Pb(dedtc)2), b) lead 2,2,6,6-tetramethyl-3,5-heptanedione (Pb(thd)2), 

c) tetraphenyl-lead (Ph4Pb), d) tris(trimethylsilylmethyl)bismuth (Bi(CH2SiMe3)3), e) 

titanium isopropoxide Ti(O-i-Pr)4. 

 

Oxygen precursors. Either ozone or water was used as the oxygen source. Ozone was 

used with all lead- and bismuth-containing metal precursors as well with the zirconium 

precursors. Water was only used to oxidize the titanium precursors, titanium 

isopropoxide Ti(O-i-Pr)4. Ozone was generated from oxygen (>99.999%) in an ozone 

generator (Fischer model 502). Ozone concentration was confirmed by iodometric 

titration and found to be approximately 4%.87 Water was vaporized and introduced into 

the reactor space from an external cylinder kept at room temperature.  

 

Carrier and purge gases. Nitrogen served as carrier and purge gas in all experiments. 

High purity (>99.999%) nitrogen (N2) gas was produced from air in a Nitrox UHPN 

3000-1 nitrogen generator. 

 

Substrates. Most experiments were done on Si(100) silicon wafers. Wafers were used 

without cleaning and thus were covered by native oxide. Bismuth silicate films were 

also deposited on titanium foil (99.6%) in order to study the bismuth and silicon 

contents by XRF. In addition, crystallinity and diffusion behavior of bismuth silicate 

were studied on sapphire (single crystalline Al2O3) and on Si(100) buffered with 
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MgO,88 ZrO2,
86 or YSZ89 (yttrium-stabilized zirconium oxide). SrTiO3(100) substrates 

were used together with Si(100) and MgO-buffered Si(100) to study the growth of 

PbZrO3. 

4.2 Deposition of Pb and Bi oxide thin films 

New ALD processes were developed for lead oxide, lead titanate, lead zirconate, and 

bismuth silicate. A new and stronger oxidizing agent, O3, as distinct from previously 

used water77 was used for BiPh3 oxidation when bismuth titanate was deposited.  

 

Thin film depositions were carried out in a commercial hot-wall flow-type ALD reactor 

(F-120) manufactured by ASM Microchemistry Ltd. Pressure inside the reactor during 

depositions was 2-3 mbar. The metal precursors were evaporated inside the reactor 

from open glass boats. Sublimation/evaporation temperatures and pulsing times for the 

metal precursors are listed in Table 5. Purge times were between 1 and 2 s depending 

on the precursor pulsed immediately before the purge. Ozone pulse duration was 

between 1 and 2 s depending on the metal precursor pulsed before ozone. The water 

pulse was kept constant at 1 s. Deposition temperatures for binary oxide processes and 

the bismuth silicate processes are presented in Table 5. Deposition temperatures for 

other ternary oxides were 250 and 300 °C for lead titanate, 275 and 300 °C for lead 

zirconate, and for bismuth titanate 250 °C. 

 

Table 5. Precursors, sublimation/evaporation temperatures and pulse times used in the 

ALD studies of this work. 

Metal 

precursor 

Sublimation/evaporation 

temperature, °C 

Deposition 

temperature, 

°C 

Precursor 

pulsing 

time, s 

Pb(dedtc)2 190 300-350 1 

Pb(thd)2 110-115 150-300 2 

Ph4Pb 160-170 185-400 1.5 

Bi(CH2SiMe3)3 45 200-450 1 

BiPh3 115  1 

Ti(O-i-Pr)4 40 (liquid)  0.6 

Zr(thd)4 130  1 
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In the case of ternary films, post-deposition annealing was used to enhance 

crystallization. Samples were annealed in a rapid thermal annealing (RTA) oven (PEO 

601, ATV Technologie GmbH) in either N2 or O2 atmosphere. In the case of bismuth 

titanate films, tube furnace heating in air was used as well. 

4.3 Film characterization 

Profilometry was used to measure thicknesses of poorly reflecting lead oxide films 

(Surface Profile Measuring System Dektak from Veeco Instruments). Steps for the 

profilometric determinations were prepared by etching. First, photoresist was used to 

protect the selected thin film areas. Diluted hydrochloric acid was then applied to 

remove the remaining thin film. The optical fitting method developed by Ylilammi and 

Ranta-aho90 was used to determine the thicknesses of other film materials. In this 

method, optical UV-Vis spectroscopy (Hitachi U-2000 double beam 

spectrophotometer) was used to measure the spectra in the wavelength region of 190-

1100 nm. After measurement of the reflectance spectra of the deposited films on 

Si(100), the thickness was measured by fitting a theoretical spectrum to the measured 

spectrum. 

 

Crystallinity and crystallite orientation in the films were determined by powder X-ray 

diffraction (Philips MPD 1880) with Cu-Kα radiation. In the case of PbZrO3 thin films, 

possible epitaxial growth was investigated by rocking curve measurements (Bruker D8 

Advance diffractometer). 

 

Metal ratios were measured with an X-ray fluorescence (XRF) spectrometer (Philips 

PW 1480) equipped with a Rh X-ray tube. Data analysis was performed with the 

Uniquant 4.34 program, which utilizes the de Jongh Kappa model.91 A Rutherford 

back- scattering (RBS) spectrometer was used to verify the metal ratios obtained by 

XRF. The RBS measurements were done by Samuli Väyrynen and Eero Rauhala at the 

University of Helsinki. Atom depth distributions were also studied for lead zirconate, 

bismuth silicate, and bismuth titanate by RBS. Stoichiometry and possible impurities in 

some cases were investigated by time-of-flight elastic recoil detection analysis (TOF-

ERDA).92 TOF-ERDA measurements were done by Dr. Timo Sajavaara. 
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Surface morphology studies were mainly performed with a Nanoscope III atomic force 

microscope (AFM) from Digital Instruments. The AFM was operated in tapping mode. 

Roughness values were calculated as root mean square values (rms). 

5 Results and discussion 

This chapter summarizes the main results of the preparation and characterization of the 

lead and bismuth oxide thin films. Details of the processes can be found in the original 

publications.I-V 

5.1 Lead oxide processes 

The existence of a wide ALD window was not confirmed for the Ph4Pb/O3 and 

Pb(thd)2/O3 processes.I Self-limiting growth was nevertheless demonstrated for both 

processes. In the case of the Ph4Pb/O3 process, self-limiting growth was obtained at 250 

and 300 °C. The growth rate at 250 °C was 0.13 Å/cycle, but it decreased slightly to 

0.10 Å/cycle when depositions were carried out at 300 °C. It is suggested that this 

decrease was due to the available reaction sites for organometallic precursor, viz. �OH 

groups in the surfaces.I This has also been observed in the case of Cp3Sc/O3 process.93 

Possible changes in the number of �OH groups in the ozone-based ALD processes have 

rarely been studied. In water-based processes increasing the number of �OH groups in 

the substrate surface is achieved by increasing water dosage.94 Using water and 

hydrogen peroxide as additional oxidizer to increase number of �OH groups was tested 

by Putkonen et al.93 They found out that H2O2 as additional oxidizer increased growth 

rate of Cp3Sc/O3 process by 12 % but H2O as additional oxidizer had no effect. It seems 

that additional reaction mechanism studies are needed to fully understand this 

phenomenon. 

 

A significantly higher growth rate of 1.1 Å/cycle was obtained for the self-limiting 

Pb(thd)2/O3 process at 150 °C. Pb(dedtc)2/O3 experiments resulted in lead sulfate thin 

films, and attempts to thermally decompose the sulfate to oxide by annealing failed. 

 

Lead oxide films crystallized in the PbO2 stoichiometry rather than the expected PbO. 

This was believed to happen because ozone is an aggressive oxidant. However, recently 

Zhao et al.95 obtained films composed of PbO2 and Pb3O4 in a CVD study of the 

Pb(thd)2/O2 precursor system at 525 °C when Ir was used as substrate material. At 

somewhat lower deposition temperature of 420 °C Hendricks et al.96 obtained lead 
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monoxide by CVD with same precursor system, Pb(thd)2/O2. Only difference was 

substrate surface since Hendricks et al. used both polycrystalline alumina and sapphire. 

In our study according to XRD, both successful lead oxide processes resulted in 

polycrystalline thin films on Si(100). Reflections due to tetragonal and orthorhombic 

PbO2 phase were present, and in both cases tetragonal (110) was the most intense 

reflection. According to the AFM measurements, rms values for the Ph4Pb/O3 process 

varied between 3.9 and 5.3 nm, depending on the deposition temperature and thickness 

of the films (see Figure 7). 

 

 

Figure 7. AFM images of PbO2 films deposited by the Ph4Pb/O3 process a) at 250 °C 

and b) at 300 °C. Thin film thicknesses and rms values were a) 130 nm and 3.9 nm, and 

b) 90 nm and 4.6 nm, respectively. Image size is 2x2 µm2. 

 

According to TOF-ERD analyses, the lead to oxygen atomic ratio was near 0.7 in the 

two successful processes, resulting in an uncertainty of ±3 at.% in the Pb:O ratio. 

Carbon impurities were 0.5 at.% for the Ph4Pb/O3 process but somewhat higher for the 

Pb(thd)2/O3 process (1.1 at.%). Hydrogen impurities were below 0.2 at.% in both cases. 

5.2  Lead titanate and lead zirconate processes 

Ph4Pb rather than Pb(thd)2 was chosen as lead precursor in the ternary phase 

experiments, because in the binary lead oxide studies Pb(thd)2 decomposed above 

deposition temperatures of 200 °C.I There were indications that 200 °C was too high a 

temperature for Pb(thd)2 too, since some of the deposits were black at the edges of the 

substrate. Probably this was due to carbon contamination from decomposition of the 

thd-ligand. Deposition temperature below 200 °C is too low considering that other 
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binary oxide processes have produced the more complex PZT or PLZT, with optimum 

deposition temperature typically at or above 200 °C. 

 

Lead titanate was produced with the pulsing sequence N x [A x Ph4Pb/O3 + B x Ti(O-i-

Pr)4/H2O], where N is the number of ternary deposition cycles, A is the number of 

binary lead oxide cycles and B is number of binary titanium dioxide cycles. A/B is the 

ratio of the binary processes. For stoichiometric films, A values were 10 and 28 (B=1) 

at the deposition temperatures of 250 and 300 °C, respectively. Growth rate of the 

stoichiometric lead titanate at 250 °C was 0.24 Å/cycle. This value is about 115% 

relative to the rate calculated from the binary oxide processes. In fact, the growth rate 

was always higher than the calculated value when low proportion of titanium was 

pulsed. The rate was decreased below the calculated value when the Pb to Ti pulsing 

ratio was 9:1 or lower. High growth rates as compared with the calculated values were 

also measured in three recent ALD studies of lead titanate by Watanabe et al.71,74 and 

Hwang et al.72 Reactivities in oxide processes are surface sensitive and hence the high 

growth rates are explained by the different surface chemistries in the ternary and binary 

processes. Also, available adsorption sites or bonding modes may vary, as has been 

proposed for other ternary oxide ALD processes.97,98 

 

The pulsing sequence in the lead zirconate process was N x [A x Ph4Pb/O3 + B x 

Zr(thd)4/O3].III A closely stoichiometric lead zirconate was obtained when A had a 

value of 7 and B a value of 2 at 275 °C. At the higher deposition temperature of 300 °C, 

the values for A and B were 6 and 1, respectively. Growth rate of the close to 

stoichiometric lead zirconate was 0.12 Å/cycle at 275 °C. As in the lead titanate 

process, also in this process the growth rate was found to depend on the pulsing ratio. A 

maximum rate 50 % higher than the combined rate for the binary process was obtained 

when the ratio of Pb to Zr in the films was between 0.9 and 1.25. At ratios below 0.9 

and above 1.25, the rate settled to the same value as calculated from separate binary 

oxides. 

 

Both lead titanate and lead zirconate processes showed a linear dependency of film 

thickness on the number of cycles, as seen in Figure 8.II,III In the case of lead titanate, 

however, it seems that the data points do not converge at zero. A possible explanation 

for this behavior could be the incubation period during the initial ALD cycles where the 
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surface chemistry has a different effect on the growth rate, as seen in the study by 

Hwang et al.72 However, it should be noted that Hwang et al. used Ir electrode as a 

substrate and this different type of surface compared to Si substrates certainly has an 

influence on the growth, too.  

 

 

Figure 8. Dependence of film thickness on the number of deposited cycles. The open 

symbols refer to lead titanate deposited at 250 °C and the solid symbols to lead 

zirconate deposited at 275 °C. 

 

Both ternary lead oxide processes yielded smooth and uniform thin films, which, 

however, according to surface morphologies analyzed by AFM appeared to have 

rougher surfaces than those obtained in the binary processes.II,III In previous studies, 

rms values of 4-5.5 nm were obtained for 100-130-nm-thick binary oxide thin 

films.I,73,86 Values of about 24 nm were obtained for the as-deposited stoichiometric 

lead titanate films, and after annealing the values were even higher.II In the case of lead 

zirconate, roughness was highly dependent on the metal ratio of the films.III The rms 

value of zirconium-deficient films (Pb:Zr ratio 1.1) was as high as 23 nm for as-

deposited film. However, it was just 7 nm in the as-deposited lead-deficient films 

(Pb:Zr ratio 0.9). As with the lead titanate films, annealing reduced the rms values of 

the lead zirconate films. In previous studies on the mobility and diffusion of lead, it was 

concluded that the mobility of lead is high.99,100 Thus, high mobility of lead in the thin 

films could be the reason for agglomeration and one explanation of the high roughness 

values, especially in the films with high lead concentrations. 
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Lead titanate films contained less than 0.2 at.% carbon and less than 0.1-0.5 at.% 

hydrogen impurities as detected by TOF-ERDA.II A small tin impurity was detected in 

lead zirconate films by RBS.III Probable the tin originates from the impurities in the 

lead precursor (97% purity). Element distribution in depth was studied for lead 

zirconate by RBS. The zirconium concentration was more or less constant throughout 

the film, but the Pb concentration increased slightly with depth in the as-deposited 

films. The composition of the films remained relatively stable during the annealing at 

600 °C. 

 

The effect of annealing. According to XRD as-deposited stoichiometric lead titanate 

films were amorphous, while the lead zirconate films crystallized into various 

crystalline lead and zirconium phases.II,III Annealing was necessary to obtain crystalline 

perovskite phases. 

 

Annealing of lead titanate films was studied in nitrogen and oxygen atmospheres with 

annealing temperatures between 600 and 900 °C.II The annealing time was kept 

constant at 10 min. Since oxygen was found to promote the crystallization of the 

PbTiO3 phase, the crystallization and preferred orientations of PbTiO3 were studied 

more carefully in this atmosphere (Figure 9). Crystallization of perovskite phase in the 

nearly stoichiometric films was initiated above 550 °C when films were deposited at 

250 °C. Slightly lead-rich films (Ti:Pb atomic ratios of 0.6-0.8) contained only 

polycrystalline PbTiO3 with preferred orientation (101). Otherwise additional low 

intensity peaks together with peaks of PbTiO3 were detected. Probably these other 

peaks belonged to lead oxide and PbTi3O7 phases. Films deposited at 300 °C required 

higher annealing temperatures than the films deposited at lower temperatures. 
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Figure 9. Summary of the influence of composition and annealing temperature on 

crystalline phases detected in Pb-Ti-O films by XRD. Depositions were done at 250 °C 

and annealing in an O2 atmosphere.II 

 

The perovskite PbZrO3 phase was not observed in the films deposited on Si(100) or 

MgO-buffered Si(100) even after annealing.III The same negative result was obtained in 

a CVD study.101 High crystallization was confirmed after deposition on single crystal 

SrTiO3 substrates and annealing at 600 °C in O2 atmosphere.III The most intense 

reflection was (400). Rocking curve measurements were performed to obtain 

information about possible epitaxial growth. Rocking curve maxima were, in fact, 

obtained but the peaks were broad and hence indicated strong texture rather than 

epitaxiality. 

 

A slight excess of lead, which enhanced the crystallinity, was observed in both ternary 

lead oxide studies.II,III The same has been observed in other ALD and CVD studies, 

where an excess of Pb has been reported to have a favorable affect on the crystallization 

of ternary lead oxides.72,102 

5.3 Bismuth silicate and bismuth titanate processes 

Bismuth silicate process. A new bimetallic precursor Bi(CH2SiMe3)3 was introduced 

for the deposition of bismuth silicate films.IV With O3 as oxygen source, a constant 

growth rate of 0.40 Å/cycle was obtained between deposition temperatures of 250 and 

350 °C. In addition, water and molecular oxygen were tested as oxygen sources, but no 

film growth was observed. With ozone, a self-limiting growth, as well as the existence 
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of a linear relationship between the film thickness and the number of deposition cycles, 

were confirmed at deposition temperature of 250 °C. 

 

The silicon to bismuth atomic ratio was observed to increase with deposition 

temperature.VI Within the ALD window of 250-350 °C, a ratio of about 2 was observed 

by XRF and RBS. A second bismuth precursor, BiPh3, was added to the ALD process 

in an attempt to increase the bismuth content in the bismuth silicate films.V Through 

change in the pulsing ratios of these two BiPh3/O3 and Bi(CH2SiMe3)3/O3 processes, it 

was possible to achieve almost linear control of the bismuth content in the bismuth 

silicate process. 

 

Even though the Bi(CH2SiMe3)3/O3 process resulted in silicon-rich films, 

crystallization of this process was studied in detail.IV The as-deposited films were 

amorphous and annealing was performed in the range of 400-1000 °C. For films 

deposited at 250 °C, crystallization started at 600 °C in N2 and O2 atmospheres. Films 

crystallized in the orthorhombic Bi2SiO5 form with preferred a-axis orientation. Minor 

peaks of the Bi12SiO20 phase were observed as well, but intensities were below 1% as 

compared with those of the Bi2SiO5 phase. After annealing at 1000 °C, polycrystalline 

cubic Bi4Si3O12 was observed. Annealing temperature has previously been observed to 

affect the preferred crystalline orientations. Kim et al.103 obtained the oriented Bi2SiO5 

phase at annealing temperatures of 800 °C and below, whereas only the reflections of 

polycrystalline Bi4Si3O12 were present above 800 °C. This is a slightly lower 

temperature than the 1000 °C used in our study to crystallize the Bi4Si3O12 phase. The 

annealing temperature of 1000 °C was also found to be too high to maintain good film 

quality. 

 

The silicon to bismuth atomic ratio in the crystalline phases, viz. Bi2SiO5, Bi12SiO20, 

and Bi4Si3O12, was lower than the values obtained by XRF and RBS.IV,V Discrepancies 

in the Si/Bi ratios may be explained in terms of the presence of amorphous material. 

Thus, after annealing, the films may consist of a crystalline bismuth silicate phase 

together with an amorphous silicon oxide or other silicon-rich phase. 

 

Crystallization of Bi-Si-O films was studied on different substrate surfaces.V Films 

were deposited on sapphire and on MgO-, ZrO2- and YSZ-buffered Si(100) and then 
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annealed to enhance crystallinity. The best crystallinity was obtained when films were 

annealed at 800 °C. Films were a-axis oriented orthorhombic Bi2SiO5, and no 

additional reflections were observed. As can be seen in Figure 10, the most intense 

reflection, viz. (200) was 10 times as strong on MgO-buffered Si(100) as on Si(100) 

without the buffer layer. It was also considerably stronger on sapphire and the other 

buffered substrates than on pure Si(100) (1.3-2.6 times stronger). 

Figure 10. XRD pattern of Bi2SiO5 thin film deposited on MgO-buffered Si(100) and 

annealed at 800 °C. For comparison the inset shows patterns for films deposited on 

sapphire, ZrO2-buffered Si(100), YSZ-buffered Si(100), and Si(100). Asterisk (*) 

denotes reflections from the Si-substrate, open square (□) reflections from sapphire 

substrate, solid square (■) reflections from ZrO2 buffer layer, and solid circles (●) 

reflections from the YSZ buffer layer. 

 

Impurity contents in bismuth silicate films were low according to TOF-ERDA.IV 

Carbon and hydrogen contents were less than 0.2 at.% and 0.1 at.%, respectively. 

Distribution of bismuth in as-deposited as well as in annealed samples was studied by 

RBS.IV The as-deposited film shows an almost even distribution of bismuth and silicon. 

After annealing at 800 °C the distribution changed dramatically. The silicon to bismuth 

ratio was high on the surface, decreased towards the middle of the film, and increased 

again towards the interfacial region of the film and the substrate. Bismuth diffusion into 
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the SiO2 and silicon substrate has been demonstrated to take place above 600 °C.104-106 

It is suggested therefore, that also in this study the differences in elemental distributions 

after the annealing are due to the diffusion of bismuth towards the silicon substrate 

rather than evaporation.III 

 

Bismuth titanate process. Usually binary oxide ALD processes are established before 

the deposition of ternary oxides. However, attempts to deposit bismuth oxide by ALD 

using BiPh3 as Bi precursor failed.V,77 In further studies, it was demonstrated that, even 

though this precursor did not work for binary processes it was still possible to grow the 

ternary bismuth titanate phase.V,77 Possible reason for that is the catalytic nature of 

titanium dioxide that enhances the reactivity of the BiPh3 precursor.77 In our study, the 

BiPh3/O3 process was used together with the Ti(O-i-Pr)4/H2O process to produce 

ternary bismuth titanate thin films at deposition temperature of 250 °C. Films were 

deposited using the pulsing sequence N x [A x BiPh3/O3 + Ti(O-i-Pr)4/H2O]. The 

bismuth to titanium atomic ratio was changed when the value of A was altered. With 

A=10, the Ti to Bi atomic ratio was 0.28,V which is much lower than the minimum 

value of 1.6 obtained by Schuisky et al.77 with H2O as the oxygen source for the Bi 

precursor. The different oxygen source, ozoneV vs. water77, probably explains the lower 

value.  

 

Crystallinity was studied after annealing in three different atmospheres: N2, O2, and air. 

Annealing in air was done in a tube furnace with much slower annealing rate than in the 

rapid thermal annealing (RTA) oven. Also, the annealing time in the tube furnace was 

30 min, compared with only 10 min in the RTA oven. Probably because of the slow 

annealing rate and longer annealing time, 00k oriented Bi4Ti3O12 phase was formed at 

900 °C when annealing was done in air. A temperature of 1000 °C was required when 

annealing was done in N2 and O2 in the RTA oven. 00k oriented Bi4Ti3O12 was also 

observed at 900 °C, but intensities were much lower than in air. Figure 11 shows the 

XRD pattern of a thin film annealed in N2 atmosphere at 1000 °C, where the most 

textured film was achieved. 
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Figure 11. XRD patterns for a 95-nm bismuth titanate film on Si(100) substrate 

annealed at 1000 °C in N2 atmosphere. 

 

Oriented crystalline Bi4Ti3O12 was observed with an excess of bismuth in the films. 

Nearly stoichiometric films crystallized in Bi4Ti3O12 phase, but also other minor peaks, 

belonging to Bi2Ti2O7, Bi2Ti4O11, and Bi2O2.33, were detected. If the bismuth content in 

the films decreased (Ti/Bi atomic ratios above 1.0), the Bi2Ti2O7 phase was 

crystallized. 

 

As in the Bi-Si-O thin films, RBS analyses of the Bi-Ti-O thin films revealed an almost 

even distribution of metals in the as-deposited films.V After annealing at 800 °C the 

nearly stoichiometric sample showed only slight changes in the depth distributions. 

However, strong redistribution of bismuth and titanium was observed in bismuth-rich 

films as well as in films annealed at 1000 °C. Redistribution was away from the 

interface and towards the surface. 

 

Visual inspection suggested that annealing in nitrogen atmosphere is preferable for 

bismuth titanate films, as deterioration of the films occurs in oxidizing atmosphere. The 

crystallinity was continuously improved in N2 up to the annealing temperature of 1000 
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°C. Films were visually shiny, and adhesion of the films was good even after annealing 

at 1000 °C. Considering that annealing temperature of 1000 °C is too high for most 

applications and that the RBS data showed a severely uneven elemental distribution at 

this temperature, a lower annealing temperature or a buffer layer must be 

recommended. It should also be noted that random nucleation improves the electrical 

properties of the films.21 

 

The surface roughness of as-deposited films increased along with the bismuth content 

(see Figure 12). A probable reason for these higher rms values is the surface diffusion 

of bismuth.21 With titanium to bismuth ratios of 0.28 and 1.28, the rms values were 4.6 

and 1.8 nm, respectively. Interestingly, after annealing at 800 °C in N2 atmosphere, the 

rms values were nearly the same - 6 nm - independent of the atomic ratio. 

 

Figure 12. AFM images of the as-deposited Bi-Ti-O thin films. The Ti/Bi atomic ratio 

and rms values are a) 0.28 and 4.6 nm, b) 0.71 and 2.5 nm, and c) 1.28 and 1.8 nm, 

respectively. Image size is 2x2 µm2. Thicknesses of the films were 95 (a) and 100 nm 

(b,c).V 

 

According to the RBS data, mobility of metals was higher in samples where bismuth 

content was higher. Measured by AFM, higher bismuth content also resulted in a 

b)

c)

a) b)

c)

a)
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rougher surface. It can tentatively be concluded that an excess of bismuth enhances the 

mobility of metals both within the films and on their surface so increasing the surface 

roughness, but additional studies are needed to fully understand this phenomenon.
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6 Conclusions 

Oxides containing two or more cations and whose stoichiometry has to be accurately 

controlled are among the most challenging materials for ALD. The lack of a good 

binary ALD process for even one of the cations in a multication oxide means that much 

work must be done to achieve workable overall multication process. In the present 

work, new ternary oxide processes were described for lead and bismuth. The following 

conclusions are drawn in regard to the different processes. 

 

Ph4Pb and Pb(thd)2, together with ozone, were demonstrated to be useful precursors for 

lead processes. Thus, both of these binary processes can be further exploited in ternary 

processes. The growth rate of Ph4Pb was fairly low and it decreased with increasing 

deposition temperature, but the process was self-limiting. In the case of Pb(thd)2, the 

growth was self-limiting at the rather low temperature of 150 °C and decomposition 

started at 200 °C. Both processes produced polycrystalline PbO2 thin films. 

 

It was demonstrated that stoichiometric ternary lead oxides can be obtained with a 

careful optimization of the binary oxide pulsing ratios. Probably because of the low 

growth rate of the Ph4Pb/O3 process, a high pulsing ratio was required to obtain 

stoichiometric PbTiO3 and PbZrO3 thin films. In both ternary processes the surface 

chemistry was different from that in the binary processes, and this probably explains 

why the growth rate in the ternary processes was higher than the theoretical values 

calculated from the binary processes. The perovskite phase was obtained after 

annealing on silicon substrate in the case of PbTiO3 and on SrTiO3 substrate in the case 

of PbZrO3. In both cases an excess of lead improved the crystallinity, but unfortunately, 

in the case of PbZrO3 the roughness was increased along with increase in the lead 

content. 

 

A new bimetallic precursor was introduced for the bismuth silicate ALD growth. With 

use of an additional bismuth precursor, it was possible to control the metal ratio of the 

Bi-Si-O thin films. The Bi2SiO5 phase was crystallized, after annealing, on Si(100). 

Crystallization was improved on some other surfaces, with the best results obtained on 

MgO-buffered Si(100). 
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Even though the development of a binary bismuth process was not successful, the 

ternary bismuth titanate Bi4Ti3O12 could be grown by ALD. Bismuth titanate thin films 

with different metal ratios could be processed by changing the ratio of the bismuth 

oxide cycles to the titanium oxide cycles. Different crystalline compounds were 

crystallized depending on the metal ratio in the films. As-deposited films were 

amorphous and the annealing was necessary to crystalline these phases. A higher 

content of bismuth than titanium in the bismuth titanate films resulted in rougher 

surfaces. 

 

The depth distribution of bismuth was studied for both ternary bismuth oxide processes. 

Both as-deposited ternary thin films showed an even distribution of metals. While 

annealing changed the distribution of the metals, the degree of change was independent 

of the annealing temperature as well as of the metal ratio of the films.  

 

For the future, it would be worthwhile to expand the range of available precursors for 

both lead and bismuth and thus improve and widen the possibilities to grow ternary and 

more complex oxides by ALD. The present results are promising, however, and give 

valuable information on complex oxide growth and properties of the films for further 

studies and eventual applications. 
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