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Abstract—In this paper, the effect of spatial smoothing on

performance of widely used stochastic narrowband multiple-input

multiple-output (MIMO) radio channel model, namely the Kronecker

model, is investigated based on data measured in urban microcellular

environment at 5.3 GHz carrier frequency. Results from non-line of

sight (NLOS) and line of sight (LOS) traveling routes are analyzed. It

is noticed that in NLOS traveling route spatial smoothing improves

the accuracy of the large eigenvalues of the channel correlation

matrix and significantly enhances the applicability of the Kronecker

structure. Under LOS condition both the Kronecker model and

its smoothed version fail to render the eigenvalues of the measured

channel correlation matrix but spatial smoothing slightly improves the

applicability of the Kronecker structure.

1. INTRODUCTION

A number of channel models have been developed for characterizing

multiple-input multiple-output (MIMO) wireless channels, e.g., [1–3].

Based on channel models several studies have been carried out for

deep understanding of MIMO systems performance, e.g., [4]. The

Kronecker stochastic MIMO radio channel model is one of these

models that has been extensively used. However, it has been widely

noticed that this channel model has shown different performances

under different propagation scenarios. While in [2, 3] it is shown

that the Kronecker model is very suitable for matching results from

measured data with small number of transmit and receive antenna

elements, in other studies [5, 6] significant differences between the

results from the measured data and the predicted results are reported

when large number of transmit and receive antennas is used. Although,
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the simplicity of the Kronecker model makes it an attractive starting

point in the analysis of any space-time processing technique.

In this paper, the effect of spatial smoothing on the performance of

the Kronecker model is investigated based on data measured in urban

microcellular environment at 5.3 GHz carrier frequency. Results from

non line-of-sight (NLOS) and line-of-sight (LOS) traveling routes are

analyzed. The investigation is performed by comparing the measured

channel transfer matrices to the channel transfer matrices obtained

from the Kronecker model and its spatially smoothed version in terms

of the distribution of the channel coefficients and the distribution of

the eigenvalues of the channel correlation matrix. The distributions

of the measured and modeled quantities are compared by utilizing the

Kolmogorov-Smirnov (KS) goodness test. Furthermore, the channel

capacity and the symbol error rate (SER) performance achievable over

the measured and modeled channels are compared. The validity of the

Kronecker structure in modeling the full channel correlation matrix is

also assessed by analyzing the model error performance measure.

2. SYSTEM MODEL AND SIGNALING SCHEME

Consider a narrowband MIMO wireless communication system with

Nt transmit antennas and Nr receive antennas. The system employs

spatial multiplexing scheme where different signals are transmitted

from each transmit antenna simultaneously. Under this signaling

scheme and an uniform power allocation strategy the input-output

relation between the transmitted and received signals can be written

as:

y = Hx + n (1)

where y ∈ CNr,1
is the received signal vector, x ∈ CNt,1 is the

transmitted signal vector with covariance matrix Rx = E{xx
H} =

σ2
x

Nt
INt , where (.)H

denotes Hermitian transposition, σ2
x is the total

transmitted signal power and IN denotes identity matrix of size N×N ,

H ∈ CNr,Nt is a narrowband normalized channel matrix and n ∈ CNr,1

is zero mean complex Gaussian receiver noise vector with covariance

matrix E{nn
H} = NoINr .

3. KRONECKER MODEL STRUCTURE

The main idea of the Kronecker stochastic MIMO radio channel model

is to generate a correlated fading channel matrix using an independent

identical distributed (iid) complex Gaussian matrix and transmitter

and receiver spatial correlation information. The Kronecker model was
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developed to account for spatial correlation between antenna elements

in a realistic way under the assumption that the spatial correlation at

the transmitter and receiver ends are independent [2, 3].

Utilizing the Kronecker model, a channel matrix Hkron can be

generated according to:

Hkron = R
1/2
rx Hiid(R

1/2
tx )

T
(2)

where Hiid ∈ CNr,Nt is a random matrix with iid zero mean and unit

variance complex Gaussian elements, (.)T
denotes transpose operation,

A
1/2

denotes square root of matrix A, and Rtx and Rrx are the

transmitter and receiver spatial correlation matrices, respectively. The

two ends correlation matrices can be obtained either from measured

data or theoretical studies. Using measurement data, these correlation

matrices can be extracted as follows [2, 3]:

Rtx = E{(HH
measHmeas)

T } (3)

Rrx = E{HmeasH
H
meas} (4)

where Hmeas ∈ CNr,Nt is the narrowband normalized measured

channel matrix and E{.} denotes expectation operator that averages

over all measured channel matrices. It is shown in [2][3] that the

generated channel matrix, Hkron, exhibits statistical properties similar

to the measured channel matrix. Furthermore, it is also shown that

the full channel correlation matrix can be written as the Kronecker

product of the correlation matrices seen by both ends as:

Rkron = Rtx ⊗ Rrx (5)

where ⊗ denotes the Kronecker product. It should be noticed that

the full channel correlation matrix can be obtained from the measured

data as:

R = E{vec(Hmeas)vec(Hmeas)
H} (6)

where vec(A) denotes vector operator that stacks the matrix A into a

vector columnwise.

4. MOTIVATIONS FOR CONSIDERING SPATIAL

SMOOTHING

The independency between the transmitter and receiver spatial

correlation matrices and the wide sense stationarity (WSS) are

two corner stone assumptions required for the applicability of the

Kronecker model. The former assumption necessities that calculating
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the spatial correlation matrix of one end is independent on the selected

antenna element in the other end. The independency assumption

is expected to be fulfilled when the angles of departure in one end

are independent on the angles of arrival in the other end. This

is the case when there is no strong component connecting the two

communication ends as the case of pure NLOS scenario. On the

other side, the WSS assumption requires that the spatial correlation

properties at both ends do not change significantly over the traveling

route. General speaking, this assumption can be considered fulfilled

in indoor environment where the mobile terminal moves relatively

short distances, e.g., (1–3 m), and the propagation environment does

not change significantly over traveling route. When the correlation

properties change significantly over the traveling route, averaging over

the whole route may result in loss in valuable spatial correlation

information and consequently in inaccurate MIMO channel modeling.

Spatial smoothing technique is used to resolve correlated sources.

It has been used to improve the performance of angle of arrival

estimation algorithms in presence of correlated sources [7]. Our study

of the effect of spatial smoothing on the performance of the Kronecker

model is motivated by the validity of the independency and WSS

assumptions above. Spatial smoothing of the transmitter and receiver

correlation matrices will have decorrelation effect on the two ends

spatial correlation matrices in one hand and will divide the whole

traveling route to small sub segments which in turn improves the

validity of the WSS assumption.

With spatial smoothing the structure of the Kronecker model

remains same as in (2) and the transmitter and receiver spatial

correlation matrices are redefined as:

R̂tx = Es

{
(H

H
measHmeas)

T
}

(7)

R̂rx = Es

{
HmeasH

H
meas

}
(8)

where Es{.} denotes spatial smoothing defined as Es{x(n)} =
1
w

∑n+w
i=n x(i) where w is the window width. Spatial smoothing will

improve the tractability of the Kronecker model to the changes in the

spatial correlation of the measured data. However, this improvement

comes as a cost of more complexity of the model since a large

number of correlation matrices should be stored compared to one

channel correlation matrix for each end in the Kronecker model. It

should be noticed that the aim of this study is not to introduce

modified Kronecker model rather than to gain deep understating of

the performance of the Kronecker model in urban microcells.
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5. MEASUREMENT CAMPAIGN AND ENVIRONMENT

DESCRIPTION

The measurement campaign was carried out at downtown of Helsinki

at 5.3 GHz carrier frequency. The measurement campaign represents

an urban microcellular environment where a transmitter equipped with

16 elements dual-polarized planner antenna was located in the main

street below the rooftops level at height of 10 m. A pseudonoise code

with 60 MHz chip frequency was transmitted with power limited to

37 dBm. A receiver equipped with 15 directive and dual-polarized

semispherical antenna at height of 1.6 m was moved in different streets

to create different routes. The receiver velocity was approximately

0.2 m/s, meaning that during the measurement of one complex channel

matrix the receiver was moved a distance of 0.014 m.

The results presented in this study are based on subset of data

taken from two measured traveling routes, NLOS and LOS. In the

NLOS route the receiver terminal was moved in a street perpendicular

to the main street with no LOS component while in the LOS route

the receiver terminal was moved in the main street where direct LOS

component between the transmitter and receiver terminal exist. The

propagation environment is shopping area with common glass structure

in the first floor. In each route an appropriate subset of channel

matrices with 7 transmit and 7 receive antennas along measurement

route of 750λ is considered, where λ is the wavelength.

6. DATA ANALYSIS

A successful channel model is expected to imitate similar statistical

properties of the measured channel transfer matrices. Statistical

properties such as the distribution of the channel coefficients and the

distribution of the eigenvalues of the channel correlation matrix are

expected to be accurately rendered by the channel mode. In addition,

the achievable channel capacity and the SER performance over the

measured channel are also expected to be accurately predicted. These

are common performance measures used to validate the performance of

a channel model based on measured data. In addition, there is another

less common performance measure specific for the Kronecker structure

that was used in [3] and [6]. The model error that measures how good

the full channel correlation matrix can be modeled as the Kronecker

product of the two ends correlation matrices. All these performance

measures are described briefly in the following subsections followed by

numerical results based on the measured data and intuitive discussions.

In the following analysis all the encountered channel matrices are
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normalized according to:

‖ H ‖2
F = Nr ×Nt (9)

where ‖ . ‖F denotes matrix Frobenius norm.

Kolmogorov-Smirnov (KS) test provides a metric to decide

whether a given sample belongs to a specific distribution or not.

The same metric can be also used to verify if two given random

variables follow the same distribution or not. The Kolmogorov-

Smirnov metric (KSM) measures the maximum difference between

the empirical cumulative distribution functions (CDF) of two random

variables x1 and x2 as [9]:

KSM(x1, x2) = max
x

(|CDF (x1) − CDF (x2)|) (10)

The hypothesis regarding the distributional similarity is accepted or

rejected according to the KSM at specific significance level. Since we

are dealing with random variables, it is very helpful to utilize this

metric in the following analysis.

6.1. Channel Coefficients Distribution Analysis

The measured envelopes and phases are compared to Rayleigh and

uniform distributions, respectively, in order to gain intuitive sense

of the propagation environment and assess the applicability of the

Kronecker model in matching the measured data. One should be aware

that studying the distribution of one element from the channel matrix

may not give enough information about the propagation environment,

therefore, the distributions of the all channel elements are considered.

6.1.1. Envelopes of Channel Coefficients Distribution Analysis

Figure 1 shows the KSM comparing the envelopes of the measured

channel coefficients to Rayleigh distribution in NLOS and LOS

traveling routes. One can observe that the different measured

envelopes show different degree of similarity to the Rayleigh

distribution. In NLOS route 32.65% of the measured envelopes pass

the KS test at 95% significance level. It is worthy to notice that at

95% significance level the decision threshold is about 0.0248. Channel

coefficients with KSM large than this threshold fail to pass the test.

However, the maximum differences between the CDFs of the measured

envelopes and the CDF of the Rayleigh distribution in NLOS route are

slightly small. They range from 0.013 in channel coefficient H(7, 5)

to 0.122 in channel coefficient H(3, 4) with average of 0.056, where
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H(i, j) denotes one element from the channel matrix with ith row and

jth column. In LOS route the percentage of the measured envelopes

pass the KS test is reduced to 8.16% at the same significance level.

Channel coefficients did not pass the KS test with Rayleigh distribution

reflect the presence of strong component which diverts the Rayleigh

distribution to more Rice one.

The ability of the Kronecker model and its smoothed version

in rendering the distribution of the measured envelopes is studied

by analyzing the KSM for the envelopes. Figure 2 shows the KSM

comparing the envelopes rendered by the Kronecker model and its

smoothed version with w = 40λ to the measured envelopes in NLOS

traveling route. While the Kronecker model can match 12.25% of the

measured envelopes at 95% significance level, its smoothed version can

render 14.28% of the measured envelopes at the same significant level.

In LOS route the effect of spatial smoothing on the capability

of the Kronecker model to render the measured channel envelopes is

significant as it can be seen from Figure 3, where the KSM comparing

the envelopes rendered by the Kronecker model and its smoothed

version with w = 40λ to the LOS measured envelopes is shown.

While the Kronecker model fails to render the measured envelopes

at 95% significance level, its smoothed version reduces the differences

between the measured and modeled envelopes significantly. With

spatial smoothing the percentage of channel envelopes pass the KS

test is about 10.2% of the envelopes at 95% significance level.
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Figure 1. KSM comparing the envelopes of the measured

channel coefficients in NLOS and LOS traveling routes to Rayleigh

distribution.
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Figure 2. KSM comparing the envelopes of channel coefficients

rendered by the Kronecker model and its smoothed version to the

measured envelopes in NLOS traveling route.
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Figure 3. KSM comparing the envelopes of channel coefficients

rendered by the Kronecker model and its smoothed version to the

measured envelopes in LOS traveling route.

6.1.2. Phases of Channel Coefficients Distribution Analysis

In Figure 4 the phases of the measured channel coefficients are

compared to uniformly distributed random variable varying from −π
to π using the KSM. It is noticed that the phases of the measured

channel coefficients in both NLOS and LOS routes follow the uniform

distribution very well where the percentage of the phases of the channel

coefficients pass the KS test at 95% significance level is 100%. The

phases distribution rendered by the Kronecker model and its smoothed
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Figure 4. KSM comparing the phases of the measured channel

coefficients in NLOS and LOS traveling routes to uniform distribution.

version in both NLOS and LOS traveling routes were found to follow

the uniform distribution very well. In NLOS and LOS routes 91.83%

and 87.75% of the phases of the channel coefficients obtained by the

Kronecker model match the measured phases at 95% significance level,

respectively. With spatial smoothing the percentage goes to 93.87% in

NLOS route and 91.83% in LOS route at the same significance level.

6.2. Eigenvalues Distribution Analysis

The distribution of the eigenvalues of the channel correlation matrix

reveals valuable information about the MIMO channel characteristics

and consequently predicts the MIMO system performance. The

eigenvalues are obtained by applying the eigenvalue decomposition on

the channel correlation matrix as follows:

λi = EVD(HH
H

), i = 1, 2, ..., R(HH
H

) (11)

where λi is the ith eigenvalue of the channel correlation matrix,

EVD(A) returns the eigenvalues of matrix A and R(A) denotes the

rank of matrix A.

The distribution of the eigenvalues of the measured channel

correlation matrices in addition to the eigenvalues of the iid channel

are shown in Figure 5. Useful information about the propagation

scenarios can be extracted from the eigenvalues plot. In terms of spatial

multiplexing gain, one can observe that there are six and five spatial

channels available 90% of the time in the NLOS and LOS traveling

routes, respectively, since there are six and five non zero eigenvalues

exist 90% of the time, (this is can be seen from the CDF graph at
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Figure 5. The eigenvalues distribution of the measured channel

correlation matrix in NLOS and LOS traveling routes.

−1 dB). It is worthy to notice that the iid channel maintains seven

spatial channels available 90% of the time. The distribution of each

eigenvalue represents the power gain in each spatial channel. It can

be seen that in both scenarios the first spatial channel has high power

gain while the rest of the eigenvalues have less power gain compared

to the first one. For instance, in NLOS traveling route the second

and the third eigenvalues are about 13.7 dB and 19 dB below the

first eigenvalue 90% of the time, respectively. Having one spatial

channel with large power gain and relatively lower power gain spatial

channels reflects correlated propagation scenario. In a low correlated

propagation environment, as the case of the iid channel, one expect

the eigenvalues to have comparable values. It can be concluded that

the two propagation environments described by the measurement data

exhibit relatively high correlation properties. This could be due to the

fact that the propagation takes place through street crossing corners

with low angular spread.

The eigenvalues distribution of the channel correlation matrix

obtained from the Kronecker model and its smoothed version

show useful information about their performance in modeling these

propagation scenarios. The KSM between the measured eigenvalues

distribution and the eigenvalues distribution obtained from the
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Figure 6. KSM comparing the eigenvalues rendered by the Kronecker

model and its smoothed version to the eigenvalues of the measured

channel correlation matrix in NLOS and LOS traveling routes.

Kronecker model and its smoothed version with w = 40λ are shown in

Figure 6. The kronecker model and its smoothed version show different

degree of accuracy in rendering the different measured eigenvalues. In

NLOS traveling route the spatial smoothing improves the accuracy

of rendering the first four large eigenvalues while slightly results in

less accurate estimation of the last three eigenvalues. This is due to

the fact that the small eigenvalues have very random fluctuations and

spatial smoothing will reduce this randomness. On the other hand,

in LOS traveling route spatial smoothing with the same window size

improves the accuracy of the last four eigenvalues with less accuracy

in the first eigenvalues. Generally, one can conclude that both the

Kronecker model and its smoothed version fail to render the eigenvalues

of the measured channel correlation matrices in both traveling routes

since non of the eigenvalues rendered by the Kronecker model and its

smoothed version pass the KS test at 95% significance level.

6.3. Channel Capacity Analysis

Under the high data rate signaling scheme and with the equal power

allocation strategy, the channel capacity will be the sum of the

capacities supported by each spatial channel. Therefore, the total
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channel capacity at each channel realization can be written as:

c =

R(HHH)∑
i=1

log

(
1 + λi

ρ

Nt

)
b/s/Hz (12)

where ρ =
σ2

x
N0

is the average receive signal to noise ratio (SNR).

Figure 7 shows the CDF of the channel capacity obtained from

the measurement data and predicted by the Kronecker model and

its smoothed version with w = 40λ at 20 dB SNR. The capacity of

the iid channel is also shown for sake of comparison. Comparing

the capacities from the measured data to the capacity from the iid

channel it can be clearly seen that the measured scenarios exhibit

correlated paths which degrades the channel capacity relative to the iid

capacity significantly. The median of the measured channel capacities

are 14.24 b/s/Hz and 20.74 b/s/Hz below the iid channel, for NLOS

and LOS traveling routes, respectively.

As it can be seen from the figure that the Kronecker model

overestimates and underestimates the channel capacity of the NLOS

and LOS traveling routes, respectively. The error in the median

capacity in both routes is about 1 b/s/Hz. Relative to the median

of the measured channel capacity, 24 b/s/Hz in NLOS route and

17.5 b/s/Hz in LOS route, these errors as percentages are about 4.16%

and 5.71% in NLOS and LOS traveling routes, respectively, which are

not very significant. It should be noticed that underestimating the

channel capacity is a consequence of overestimating the propagation

environment correlation properties and vice versa. The effect of spatial

smoothing on the performance of the Kronecker model in predicting

the measured channel capacity in NLOS route is clear. Since the

accuracy of rendering the first four eigenvalues has been improved by

spatial smoothing, the performance of the channel capacity also does.

However, in LOS traveling route spatial smoothing did not help to

improve the accuracy of the predicted channel capacity. This is again

due to the error in rendering the eigenvalues of the measured channel

correlation matrix.

6.4. Symbol Error Rate Analysis

The SER performance of minimum mean square error (MMSE) receiver

with quadrature phase shift keying (QPSK) modulation over the

measured and modeled channels was simulated and the results are

shown in Figure 8. The SER performance of the iid channel is also

shown. One can observe the degradation in the SER performance

achieved over the measured channel relative to the iid channel due to
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Table 1. Percentage of model error.

NLOS LOS

Kronecker 79.67 102.44

Kronecker w = 40λ 56.70 99.03

spatial correlation. At low SNR the SER performance based on the

measured data and predicted by the Kronecker model and its smoothed

version is very similar. This is could be due to the fact that at low SNR

the SER performance is dominated by the receiver noise more than

the characteristics of the channel matrix. The errors in the modeled

channel are not significant at low SNR to affect the SER performance.

At SNR higher than 20 dB the difference between the measured SER

performance and the predicted one starts to become significant. For

instance, in LOS traveling route at 4×10
−2

SER the mismatch between

the measured and predicated SER is about 5 dB in the required SNR.

In NLOS traveling route with high SNR the Kronecker model out

performs its smoothed version in terms of accurate SER performance

predication.

While the MIMO channel capacity is dominated by the first

significant eigenvalues, the SER performance of spatial multiplexing

scheme is largely affected by the accuracy of the low eigenvalues of the

channel correlation matrix. Spatial smoothing improves the accuracy

of the first four large eigenvalues in NLOS route and therefore results in

more accurate channel capacity estimation than the Kronecker model.

On the other side, the Kronecker model predicates more accurate SER

performance in high SNR scenario. This is because the Kronecker

model has more accurate estimation of low eigenvalues. The errors in

the rendered large eigenvalues will not have noticeable effect on their

SER performance but the errors in the rendered small eigenvalues will

have significant effect on their SER performance.

6.5. Model Error Analysis

The model error ψ measures how well the full channel correlation

matrix can be modeled as the Kronecker product of the correlation

matrices seen by both ends [3]. The model error is defined as:

ψ =
‖R − Rkron‖F

‖R‖F
(13)

The model error for the Kronecker model and its smoothed version

in these propagation scenarios is given in Table 1. Spatial smoothing
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results in reduction of the model error percentage in both propagation

scenarios. This is due to the fact that spatial smoothing results in

decorrelation of the transmitter and receiver correlation matrices. In

NLOS route spatial smoothing reduces the model error percentage

about 22.97% and in LOS route the reduction is only 3.4%. However,

the model error remains high and spatial smoothing can not completely

decorrelates the two ends correlation matrices. It should be noticed

that the model error performance measure is independent on the other

performance measures considered above. High model error does not

necessary mean high error in the predicted channel capacity and SER

performance rather than it means that the Kronecker structure is

unappropriate for modeling the full channel correlation matrix. Similar

observations were reported in [6]. This could be due to the dependency

of the correlation properties at both ends.

7. CONCLUSIONS

Based on data measured in outdoor microcellular environment we have

investigated the effect of spatial smoothing on the performance of the

Kronecker MIMO radio channel model. We have considered different

performance measures. It is noticed that the different performance

measures require different accuracy of the eigenvalues of the channel

correlation matrix. We can conclude that the results predicted with

the Kronecker model should be interpreted with care.
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