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We have studied the influence of conduction band–valence band coupling on the polarization of gain
in quantum well �QW� lasers. As a reference we used the eight-band k ·p description of the gain
polarization. Our eight-band k ·p model accounts for the crystal orientation, lack of inversion
symmetry, strain induced deformation potentials, and piezoelectricity. We have studied both strained
and unstrained �001� and �111� QWs. The results are compared with the transition dipole model of
the gain polarization �M. Asada et al., IEEE J. Quantum Electron. 20, 745 �1984��, which is based
on a phenomenological generalization of Kane’s �J. Phys. Chem. Solids 1, 249 �1957�� linear k ·p
model of bulk crystals. We found a quantitative difference between our multiband model and the
transition dipole model of Asada et al. The difference is addressed to lack of orthogonality between
the transition dipole and the electron wave vectors. The orthogonality is broken outside the � point
by both the QW heterostructure geometry and the interband coupling. Results obtained by the
complete eight-band model are also compared with restricted multiband models excluding the
conduction band. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2353276�
I. INTRODUCTION

The polarization of gain is an important physical charac-
teristic of semiconductor lasers. In spite of its fundamental
significance, the polarization of gain in quantum well �QW�
lasers has so far not been analyzed within a multiband model
that would include all the strongly coupled valence and con-
duction bands of III-V compound semiconductors. Accord-
ingly the gain polarization in semiconductor lasers is as a
rule analyzed within the lowest order, parabolic-band model
of Asada and co-workers1–4 or with restricted four-
valence-band5,6 and six-valence-band k ·p models,7,8 which
do not include the important symmetry breaking effect of the
conduction band. Gershoni et al.9 have also used the eight-
band k ·p model to calculate the gain in QWs. However, they
did not include a discussion of the polarization of gain in
their work. Hader et al. have also made extensive work on
the modeling of the transverse electric mode �TE� gain in
semiconductor QW lasers �see, e.g., Refs. 10–12 and refer-
ences therein�. Their approach is based on semiconductor
Bloch equations together with the eight-band k ·p theory. It
includes interband Coulomb correlations and band-gap
renormalization in second order Born approximation, but
Hader et al. did not discuss the polarization of gain in their
work. This has prompted us to make a detailed analysis of
the gain polarization by the eight-band k ·p model, which is
known to give an accurate description of the electronic states
close to the band edges in III-V semiconductors and their
heterostructures. We also compare the results of this refer-
ence model with approximate single and multiband effective-
mass gain models, in order to explore the accuracy of these
widely used gain polarization models.
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The parabolic band Asada, Kameyama, and Suematsu
�AKS� model1 was based on Kane’s linearized eight-band
k ·p model,13 for bulk semiconductors. In this model the po-
larization of gain is governed by the breaking of the heavy-
hole �HH� band symmetry, by the coupling of the conduction
and valence bands. It explains the polarization of gain using
a geometrical relationship between the transition dipole and
the electron wave vector. This simple and transparent physi-
cal interpretation of the gain polarization has made it the
“standard model” in the modeling of semiconductor lasers.
The AKS model has also been reported to be in good agree-
ment with experiments.14 This is surprising, since its possible
validity is restricted to the near-band-edge regime of bulk
semiconductors and its use for QW lasers is based on phe-
nomenological arguments only.

In this work we show that the polarization of gain in QW
lasers can be calculated accurately with a k ·p model only by
including eight bands or more. Our eight-band k ·p model
includes strain and piezoelectric effects and allows analysis
of arbitrarily oriented QWs. We have studied four different
QW geometries, QW1: a lattice-matched Ga0.47In0.53As/
Al0.48In0.52As �001� QW, QW2: a strained Ga0.47In0.53As/
Al0.33In0.67As �001� QW, QW3: a lattice-matched
Ga0.47In0.53As/Al0.48In0.52As �111� QW and, QW4: a strained
Ga0.47In0.53As/Al0.33In0.67As �111� QW. The width of the
QWs was 10 nm. In QW2 and QW4, the QW was under 1%
tensile strain while the barrier was strain-free. These material
compositions were selected for the sake of the availability of
good and consistent eight-band k ·p material parameters as
well as high quality reference calculations15 of electronic
structure in the pertinent QWs. The k ·p parameters, used in
the calculations, are based on pseudopotential reference cal-
culations and enable eight-band k ·p calculations without any

numerical inconsistencies or artificial, rapidly oscillating
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eigenstates �see, e.g., Ref. 16�. The dimensions and materials
of the selected QWs were not optimized for technological
laser applications. However, our results are well representa-
tive for gain polarization in QW lasers made of III-V com-
pound semiconductors in general.

The paper is organized as follows: In Sec. II, we review
the AKS model, including the electronic structure and the
gain of bulk material and QWs. In Sec. III we describe our
eight-band k ·p model for the material gain and its polariza-
tion. Then in Sec. IV we compare the polarization of gain in
different models, discussing both bulk semiconductors and
QWs. Finally in Sec. V we draw conclusions and discuss the
validity of different models.

II. THE AKS MODEL

The AKS model,1 for the polarization of gain in semi-
conductor lasers, is based on Kane’s linearized eight-band
k ·p Hamiltonian13 for bulk semiconductors. In Refs. 1, 17,
and 18 a simple geometrical relation was derived between
�1� the polarization of stimulated emission, �2� the electron
wave vector k, and �3� the electric dipole moment Rcv of the
electron transition �transition dipole�. It was shown that for a
conduction-HH band transition in bulk semiconductors, Rcv
has to be perpendicular to the initial �and final� electron
wave vector k. The geometrical relation was generalized for
QWs. This, however, required a phenomenological redefini-
tion of the electron wave vector. Its vector component kz,
orthogonal to the QW, was replaced by kz→�2mC

* ECn /�

=�2mHH
* EHHn /�, where mC

* �mHH
* � is the effective mass in

the conduction �HH� band and ECn �EHHn� is the confinement
energy of the nth conduction �HH� band. The defined kz is
analogous to the wave number of a sinusoidal standing wave
between infinite potential barriers.

A. AKS model for bulk semiconductors

In Kane’s linear eight-band k ·p model13 the off-diagonal
Hamiltonian terms, proportional to k2, were omitted �see Ap-
pendix for a brief introduction to the k ·p model�. In order to
diagonalize the linearized Hamiltonian for arbitrary k, Kane
applied a coordinate transformation bringing z axis parallel
to k. This transformation diagonalizes the HH part of the
eight-band Hamiltonian. The conduction band remains
weakly coupled to the light-hole �LH� band. However, these
remaining coupling terms are proportional to k and small in
the vicinity of the � point.

The coordinate transformation depends on the direction
of k and the new eigenstates are linear combinations of the
basis functions given in the crystal coordinates. The transi-
tion dipole between the rotated conduction ��C�� and HH

��HH�� states is given by
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Rcv = ��C��er��HH�� = 	R�cos � cos � − i sin �� , ûx

R�cos � sin � + i cos �� , ûy

− R sin �, ûz


�1�

where � and � are the spherical polar coordinates of k and ûi

are the unit vectors of the main crystallographic axes. The
length of Rcv is given by

R =
e�

�2m0Eg

��S�px�X�� , �2�

where Eg is the band gap energy. The momentum matrix
element �S�px�X� is related to the k ·p parameter Ep through
��S�px�X��=�m0Ep /2. From Eq. �1� we see that the transition
dipole is perpendicular to the electron wave vector, i.e.,
k ·Rcv=0, where the wave vector can be written as k
=k sin � cos �ûx+k sin � sin �ûy +k cos �ûz, in the Cartesian
coordinates. Figure 1 shows schematically the geometrical
relations between k and Rcv as well as the definitions of the
spherical coordinates � and �.

B. AKS model for quantum wells

In a QW perpendicular to the z axis, the electron wave
vector k=k� restricted to the plane of the QW because the
expectation value of its z component is zero,

�kz� = 
− i�
�

�z
� = 0. �3�

However, it contributes still to the interband coupling of the
envelope Hamiltonian via terms proportional to � /�z and
�2 /�z2. These terms are not necessarily small even for small
k� and cannot be eliminated by a coordinate transformation.
The eight-band k ·p envelope Hamiltonian of a QW can
therefore not be diagonalized in the same way as the bulk
Hamiltonian. Asada et al. assumed that one can account for
the QW confinement in the following way. Instead of using
kz, given by Eq. �3�, in the coordinate transformation they

FIG. 1. The assumed geometric relation between the electron wave vector k
and the transition dipole Rcv. For transitions between the conduction band
and the HH band, the transition dipole becomes orthogonal to the wave
vector.
defined an effective kz vector component as
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k̃z ��2mC
* ECn

�2 =�2mHH
* EHHn

�2 , �4�

where mC
* �mHH

* � is the effective mass in the conduction �HH�
band and ECn �EHHn� is the confinement energy of the nth
conduction �HH� band. This was based on the analogy to the
wave number of a standing wave in a square well potential.
The QW Hamiltonian was diagonalized by a coordinate
transformation that makes use of the phenomenological wave

vector k= �kx ,ky , k̃z� and brings ûz �k. Under this assumption
the decoupled conduction and HH eigenstates are given by

�Cn�r,k� = �
�

��
Cn�z,k��u��

� �c
Cn�z��

�

C�
Cn�k��u��

= �c
Cn�z��uc�k���, �5a�

�HHm�r,k� � �hh
HHm�z��uhh�k���, �5b�

where � is the total wave function, � are the envelope wave
functions, �ul�k��� are the bulk �-point Bloch functions, and
the primes indicate that the states are expressed using the
rotated coordinate system �see Ref. 13 for more details on
the coordinate transformation�. This implies that only the
Bloch functions are rotated according to k, whereas the en-
velope wave functions of the conduction and HH bands are
independent of the rotation. In the notation �l

m for the enve-
lope wave functions, the subindices refer to the �-point
Bloch function component and the upper indices refer to the
subbands composed from the �-point Bloch functions. The
envelope wave functions were solved using a parabolic one-
band effective-mass Hamiltonian.

C. AKS model for the polarization of gain in quantum
well lasers

The material gain of a QW is based on the transition
amplitudes between electron and hole states

RCn,HHm = ��Cn�r,kCn��er��HHm�r,kHHm���kCn,kHHm

� ��c
Cn�z���hh

HHm�z���uc�r,k���er�uhh�r,k���. �6�

In the parabolic band model only diagonal transitions are
allowed, because of the orthogonality between the electron
and hole envelope wave functions, i.e.,

��c
Cn�z���hh

HHm�z�� � �nm. �7�

It follows now that the transition dipole is given by Eq. �1�,
except that the spherical coordinates of the electron wave
vector are replaced by

cos � =� ECn

�2k�
2/2mC

* + ECn

, �8a�

tan � =
ky

kx
. �8b�

The material gain is obtained by summing the squares of

all diagonal transition amplitudes multiplied by the pertinent

Downloaded 19 Mar 2007 to 130.233.231.44. Redistribution subject to
Fermi functions. The integration of the squared transition
amplitudes over k� can be changed to an integration over the
transition energy Ech=ECn−EHHn. This is done by averaging
the squares of the amplitudes over � and introducing the
density of states �DOS� of parabolic bands. The averaged
transition dipoles are given by

�R2�n =
1

2�
�

0

2�

�� · RCn,HHn�2d�

= �R2 1
2 �1 + cos2 �� for ��

R2 sin2 � for ��,
� �9�

where � is the unit polarization vector of the photon field and
� is given by Eq. �8a�. The total material gain is now given
by

G�E� =
	�
/�mC

* mHH
*

��2L�mC
* + mHH

* �

��
n
� �R2�n�fe�ECn� − fh�EHHn���

�Ech − E�2 + �2 dEch, �10�

where 
 is the permeability, � is the permittivity, mhh
* is the

DOS mass of the HH band, L is the width of the QW, fe �fh�
is the Fermi function of electrons �holes�, and � is the ho-
mogeneous linewidth broadening. The material gain depends
on the polarization through the polarization vector � in Eq.
�9� although this is not shown explicitly in Eq. �10�. The LH
bands were omitted from the AKS gain model, since the
density of states is a lot smaller for the LH band than for the
HH band.

D. The effect of the light-hole band in the AKS model

The phenomenological model of Asada et al. was gener-
alized by Yamanishi and Suemune to include also the con-
duction �C� to LH band transitions in the material gain.17 The
C-LH transition dipoles were obtained by replacing the ro-
tated HH eigenstates of Eq. �1� by rotated LH states. The
small residual coupling of the Hamiltonian between the con-
duction and LH band was neglected. Following Ref. 13, we
obtain the following transition amplitudes �averaged over ��
for the C-LH transitions:

1

2�
�

0

2�

�� · RCn,LHn�2d� = �R2 1
6 �5 − 3 cos2 �� for ��

R2 1
3 �1 + 3 cos2 �� for ��.

�
�11�

In Ref. 17 the transition dipoles were given with respect to
the corresponding averaged transition dipoles for bulk; M
=2R2 /3. Yamanishi and Suemune17 did not present a com-
plete gain model or numerical results for the material. They
only “estimated” the material gain of the model, according to
experimental results.

III. POLARIZATION OF GAIN WITH THE EIGHT-BAND
k·p MODEL

In this work we used the eight-band k ·p envelope
Hamiltonian of Ref. 19, generalized to account for the lack

13
of inversion symmetry of zinc blende crystals. We ac-
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counted for the strain up to zeroth order in k. Our approach
is thereby equivalent to that of Mailhiot and Smith.20 We
solved the eight-band k ·p envelope Hamiltonian using the
finite difference technique �see, e.g., Ref. 21� with periodic
boundary conditions. The numerical methods and the used
Hamiltonian are described in the Appendix. All material pa-
rameters were taken from Refs. 22 and 23 and are listed in
Table I.

The strain of the QWs was calculated using the con-
tinuum elasticity �CE� theory.15,24 We assumed that the thick-
ness of the QW is a lot smaller than the thickness of the
barrier �=substrate�. As a result, only the QW is strained and
the infinitely large barrier is stress-free. Our previous com-
parison of the CE with the atomistic valence force-field
method showed that the CE is very accurate for these QW
structures.24

A. Band structure of quantum wells

The band structure was computed, for the four different
QW structures; QW1, QW2, QW3, and QW4 �defined in
Sec. I�. Regarding the electronic structure our results agree
well with previous works.15

1. „001… quantum wells

Figure 2�a� shows the band edges of the �001� QWs,
excluding all strain effects. Figures 3�a� and 3�c� show the
probability densities of the ground states in QW1 and QW2,
respectively. The carrier densities are wider in the strained
QW and the wave functions penetrate the barriers more than
in the lattice-matched structure, due to smaller band edge
offsets between Ga0.47In0.53As and Al0.33In0.67As �see Fig. 2�.
Figures 4�a� and 4�b� show the energy bands of QW1 and

TABLE I. Material parameters used �Refs. 22 and 23�.

Ga1−xInxAs
x=0.53

Al1−yInyAs

y=0.52 y=0.67

Eg �ev� 1.52 0.79 1.12

 �eV� 0.36 0.33 0.35
Ep �eV� 16.54 16.46 16.17
me

* �m0� 0.051 0.090 0.070
�1

L 8.39 5.02 6.20
�2

L 3.24 1.55 2.15
�3

L 3.79 2.11 2.70
B �10−40 J m2� 2.74 2.74 2.99
a0 �A� 5.87 5.87 5.93
c11 �1011 dyn cm−2� 9.97 10.00 9.48
c12 �1011 dyn cm−2� 4.90 4.91 4.79
c44 �1011 dyn cm−2� 4.88 4.90 4.61
ac �eV� −6.94 −6.97 −6.60
av �eV� 0.00 0.00 0.00
bv �eV� −1.70 −1.70 −1.70
dv �eV� 5.20 5.20 5.20
�r ��0� 12.68 12.68 12.68
e14 �C m−2� −0.10 −0.10 −0.08
me

DOS �m0� 0.090 0.090
mh

DOS �m0� 0.521 0.521
QW2, respectively.

Downloaded 19 Mar 2007 to 130.233.231.44. Redistribution subject to
2. „111… quantum wells

Figure 2�b� shows the band edges of the �111� QWs. The
band edges of QW3 �solid lines� are the same as those of
QW1. However, the strained QW4 �dashed lines� acquires an
additional piezoelectric field in comparison with the band
edges of QW2. The strength of the electric field was 
V
=16.5 meV/nm. Figures 3�b� and 3�d� show the carrier den-
sities in QW3 and QW4, respectively. Figure 5 shows the
energy bands of QW3 and QW4. The band gap of the active
material is reduced by the strain and by the piezoelectric
field. However, the field also lowers the barriers �see Fig. 2�
decreasing the effective QW confinement energy in the
strained and �111� orientated QW4.

B. Density of states

The material gain is primarily shaped by the DOS and
the availability of states that can take part in the recombina-
tion process. Even if the material gain is a combined result of
the DOS and the transition amplitudes, the fine-tuning of
semiconductor QW lasers is in practice realized only by
modifying the shape of the DOS and its energy band gap.

FIG. 2. �Color online� Conduction and valence band edges of �a� the �001�
and �b� the �111� QWs. For the lattice-matched QWs �solid lines�, the band-
edge offsets were 
EC

I =500 meV and 
EV
I =−230 meV. The offsets for the

strained QWs �dashed lines� were 
EC
II=226 meV and 
EV

II=−104 meV.

FIG. 3. �Color online� Probability densities of electrons and holes in �a� a
lattice-matched �001� QW, �b� a strained �001� QW, �c� a lattice-matched
�111� QW, and �d� a strained �111� QW. The solid and dashed lines corre-

spond to electron and hole densities, respectively.
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The density of states �DOS� per area of the QW was
calculated by integrating over k� and summing over the per-
tinent subbands25

gC
QW�E� = �

n
�

ECn�k���EC,B

dk�
2

�2��2��ECn�k�� − E� , �12�

where the sum over n contains also the summation over spin.
The total DOS of the system was obtained by adding the

FIG. 4. Energy bands of �a� a lattice-matched Ga0.47In0.53As/Al0.48In0.52As
�001� QW and �b� a strained Ga0.47In0.53As/Al0.33In0.67As �001� QW. The
thick horizontal lines show the position of the barrier band edge.

FIG. 5. Energy bands of �a� a lattice-matched Ga0.47In0.53As/Al0.48In0.52As
�111� QW and �b� a strained Ga0.47In0.53As/Al0.33In0.67As �111� QW. The

thick horizontal lines show the position of the lower barrier band edge.

Downloaded 19 Mar 2007 to 130.233.231.44. Redistribution subject to
continuum of three-dimensional barrier states to the QW
DOS

gC�E� =
�2me,B

3/2WB

�2�3
�E − EC,B

+ �
n
�

ECn�k���EC,B

dk�
2

�2��2��ECn�k�� − E� , �13�

where me,B is the effective density of states mass of electrons
in the barrier, WB is the width of the barrier, and EC,B is the
conduction band edge of the barrier material. A similar ex-
pression is obtained for the DOS of the valence bands

gV�E� =
�2mh,B

3/2WB

�2�3
�EV,B − E

+ �
n
�

EVn�k���EV,B

dk�
2

�2��2��EVn�k�� − E� , �14�

where mh,B is the effective density of states mass of holes in
the barrier, and EV,B is the valence band edge of the barrier
material. The quasi-Fermi energy of electrons �holes� was
calculated iteratively by fixing the charge density Ne �Nh�,
and integrating over the DOS multiplied by the Fermi func-
tion.

The numerically calculated DOS of QW1 is shown in
Fig. 6. The DOS was calculated from the energy bands ob-
tained with the eight-band �“8-band”�, six-band �“6-band”�,
and AKS �“HH-band”� models. The DOS of the AKS model
is smaller than those of the six- and eight-band models
mainly because the valence band mixing was omitted from
the AKS model. The band structures of the six- and eight-
band models are very similar close to the band edges; how-
ever, at higher energies and higher k values the differences

FIG. 6. �Color online� Density of states of �a� electrons and �b� holes in a
lattice-matched �001� QW in different models.
increase. As a result the DOSs of the valence bands are very
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similar down to E=−0.05 eV. At this point the six-band
model shows a large peak and exceeds the eight-band model
by a factor of 2. The large peak of the six-band DOS is a
result of very flat valence bands in this energy range.

In the conduction band DOS, the k ·p coupling of the
conduction and valence bands is seen as slanted staircases,
because the conduction bands obtained from the eight-band
model are slightly flatter than those of the parabolic band
model. The DOS is not sensitive to the symmetry change
caused by the coupling of conduction and valence bands, due
to the averaging over the direction of the wave vector.

C. The polarization of material gain

The material gain was calculated by integrating the tran-
sition rates over k� for all interband transitions. All transi-
tions rates were weighted by the corresponding population
factor �fe�ECn�k���− fh�EVm�k����. The total material gain, as
a function of energy E, is then given by

G�E� =
e2�

2�2m0
2L

1

E
�


�
�
n,m

� dk�
2�WCn,Vm�2

�
�fe�ECn�k��� − fh�EVm�k�����
�ECn�k�� − EVm�k�� − E�2 + �2 , �15�

where � is the linewidth broadening. Two different forms for
the transition amplitude WCn,Vm have been used in the litera-
ture �see, e.g., Refs. 9, 19, and 26�:

WCn,Vm = 	� · 
�Cn�m0

�
��kĤ���Vm�

� · ��Cn�− i� � ��Vm� ,

 �16�

where Ĥ is the eight-band k ·p envelope Hamiltonian, �i are
the complete eight-band k ·p wave functions, and �i are the
envelope wave functions. However, the differences between
the gain profiles obtained by these two transition rates were
very small.

In the following, we use �� �equals the transverse mag-
netic mode: TM� polarization for an electric field perpen-
dicular to the QW plane and �� �TE� for an electric field in
the QW plane. Figures 7�a� and 7�b� show the material gain
of an �001� QW at T=300 K for the �� and �� polarizations,
respectively. The solid lines correspond to zero linewidth and
the dashed lines to a homogeneous linewidth of �
=6.6 meV. The gain was computed for three different carrier
concentrations Ne=Nh=3�1018,5�1018,7�1018 cm−3.
The gain of the �� polarized light is dominated by the C1
→HH1 transition �HHn refers to the nth valence band with
HH character�, while that of the �� polarized light is domi-
nated by the C1→LH1 transition �LHn refers to the nth
valence band with LH character and in general LH1�V1�.

The gain increases with increasing carrier density for all
QWs. In the lattice-matched QWs the magnitude of the peak
gain is larger for the �� �TE� polarization than for the ��

�TM�. The sharp peak at ��1.275 
m for N=7
�1018 cm−3 in the �� polarized gain is due to the diagonal
transition C2→V2. This transition was not seen in the gain
of �� polarized light and the influence of this transition on

the gain profile increases with increasing carrier densities.

Downloaded 19 Mar 2007 to 130.233.231.44. Redistribution subject to
Figures 8�a� and 8�b� show the material gain in different
QWs for �� and �� polarizations, respectively. The solid
lines correspond to �001� oriented QWs and the dashed lines
to �111� oriented QWs. The gain profiles of strained and
lattice-matched �“no strain”� are shown by labels. For �001�
QWs the tensile strain �QW2� decreases the gain of �� polar-
ized light while that of �� polarized light is enhanced, be-
cause the tensile strain shifts the LH states upwards with
respect to the HH states, enhancing the �� gain, dominated
by the C1→LH1 transition. Moreover, in the QW2 structure,
the wave function overlap between the electron and hole
ground states is larger than in QW1, increasing the gain fur-
ther. The material gain of QW3 is very similar to that of
QW1. However, the strained QW4 differs remarkably from
the other structures, due to the piezoelectric field. The field
ruins the �� polarized material gain completely. The �� gain
is still visible in the 10 nm wide QW4, but the gain profile is
very broad. We note, however, that a thorough description of
the material gain of strained and piezoelectric �111� QWs
would require self-consistent Poisson-Hamiltonian calcula-
tions of the charge distribution. This is, however, out of the
scope of the current work.

FIG. 7. �Color online� Material gain, using the eight-band k ·p model, at
T=300 K for polarizations �a� �� �TM� and �b� �� �TE� in a lattice-matched
and �001� oriented QW for different charge carrier densities N=Ne=Nh=3
�1018, 5�1018, 7�1018 cm−3. The solid lines correspond to zero linewidth
and the dashed to a linewidth of �=6.6 meV.

FIG. 8. �Color online� Material gain, using the eight-band k ·p model, in the
QW1–QW4 structures �as explained in the text� for �a� �� and �b� �� polar-
izations. The solid and dashed lines correspond to �001� and �111� oriented
QWs, respectively. The gain of the tensile QW becomes redshifted due to

the increased band gap.
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IV. COMPARISON OF THE POLARIZATION OF GAIN
IN AKS AND MULTIBAND MODELS

A. Bulk semiconductor

We first compared the AKS model for bulk semiconduc-
tors with the full eight-band k ·p model and found it very
accurate for k�0.02�kBz �i.e., 2% of the edge of the first
Brillouin zone�, which is certainly the upper limit of any
linear model. The mixing coefficients of the HH band are not
affected by the linearization in this regime, whereas the mix-
ing coefficients of the other bands are changed by a few
percent. The LH band is most sensitive to the linearization.
The linearized model yields about 7 meV greater conduction
band energy and 5 meV greater HH energy �i.e., 2 meV
larger energy separation between the conduction and HH
bands� at k=0.02�kBz of bulk GaAs.

We estimated also the error of the transition amplitude
for bulk GaAs. A comparison of the AKS model with the
complete eight-band k ·p model shows that the error in the
length of the transition dipole �Eq. �2�� is less than 1% for
k�0.02�kBz. The linearized model yields in general larger
transition amplitudes than the full eight-band k ·p model,
because the additional band coupling reduces the transition
dipole. We conclude that Kane’s linear approximation, as
used in the AKS model, is certainly reasonable for small and
moderate carrier densities in bulk semiconductors.

B. Quantum wells

Figure 9 shows the material gain obtained with different
models for the QW1 structure. Figures 9�a� and 9�b� corre-
spond to the gain for �� and �� polarized light correspond-
ingly. All curves include a homogeneous linewidth of
6.6 meV, with carrier densities of Ne=Nh=5�1018 cm−3 and
a temperature of 300 K. The magnitude of the gain of the

FIG. 9. �Color online� Material gain, using different models for �a� �� and
�b� �� polarizations in a lattice-matched and �001� oriented QW. The highest
gain was obtained using the AKS gain model �dash-dotted lines� whereas the
six-band �dashed� and eight-band �solid� models yielded very similar gain
profiles. The difference in the gain, between the AKS model and the AKS
model including both HH and LH �not coupled� valence band gain of the
AKS model was of the same order as the line thickness. All results corre-
spond to a linewidth of �=6.6 meV and a charge carrier density of N=5
�1018 cm−3.
AKS model is very different compared with the six- and
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eight-band k ·p models due to larger transition amplitudes
and slightly different quasi-Fermi energies. The quasi-Fermi
energies were calculated from fixed carrier concentrations
and since the DOS is smaller in the AKS model than in the
eight- and six-band models, the quasi-Fermi energies are
shifted deeper in the conduction/valence bands.

There is also a striking difference between the shape of
the gains obtained with different models. The AKS gain
model accounts only for the diagonal transitions and assumes
that only valence bands with HH character take part in the
recombination. However, the total gain is a sum of many
transitions and also the nondiagonal transitions affect the ex-
act gain profile. This is seen particularly in the gain of ��

polarized light. Note that, for larger transition linewidths, it
becomes impossible to distinguish the different transitions
from each other.

C. Geometrical relation between the transition dipole
and the electron wave vector

An attractive feature in the analysis of Asada et al. is the
use of the orthogonality between the transition dipole and the
electron wave vector, in explaining the polarization of gain.
Their procedure is based on the diagonalization of the linear
eight-band bulk Hamiltonian. However, it is applicable only
for bulk semiconductors. In the case of a QW the electron
wave vector is, strictly speaking, defined only within the QW
plane. The third component orthogonal to the QW plane is
zero. However, Asada et al. assigned to this component an
artificial value, calculated from the quantization energy.

In this work we restrict our calculations within exactly
defined quantum mechanical quantities. Therefore, we have
calculated the deviation � of the transition dipole Rif

= ��C1�z ,k�� �r ��V1�z ,k���, from the normal of the QW
plane, for the C1→V1 transition �see Fig. 10�. The deviation
angle was defined as �=arccos��Rif · ûz � / �Rif � �. We have cal-
culated angle � as a function of k� = �kx ,0�, in order to study

FIG. 10. �Color online� The deviation angle �=arccos ��Rif ·uz� / �Rif��uz�� of
the transition dipole Rif = ��C1�z ,k���p��V1�z ,k��� from the normal �z axis�
of the QW plane as a function of k� = �kx ,0�. The solid, dashed, and dash-
dotted lines correspond to the eight-band, six-band, and AKS models. Al-
though � is 90° at k� =0 and approaches 45° with increasing k�, there is a
large difference between the models for small but nonzero k values.
the rotation of Rif in the different gain models. From Fig. 10
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we observe that the transition dipole is in the QW plane ��
=90°� for k� =0 and approaches �=45° for large k� values, in
all gain models.

At the lower wave vector limit �k�→0�, �=90°, the va-
lence band ground state is a pure HH state with mainly �X�
and �Y� components. The transition dipole has therefore no z
component. This agrees with the bulk case where the HH
eigenstate of the Hamiltonian is decoupled when z �k. It is
straightforward to see that with the generalized wave vector
definition of the AKS model k�Rif for k� =0.

The upper asymptotic limit k�→0.05�kBz corresponds
to a complex transition dipole of type Rif ��z�+ i�y�. This
corresponds in the AKS model to a 90° rotation of the tran-
sition dipole around the y axis. For large k� values the effect
of the kz operator on the eight-band Hamiltonian decreases
and the results are dominated by the k�-dependent terms.
Therefore, the results of the eight-band and AKS models
agree at the upper asymptotic limit as well.

The results based on the AKS model differ significantly
from the multiband models although the asymptotic limits
are the same. This applies mainly to the gain of �� polarized
light. In the six- and eight-band k ·p models the main peak of
the gain is due to the C1→V2 �V2=LH1� transition at k�

�0, since the transition dipole of the C1→V1 transition is
practically perpendicular to the �� electric field for all occu-
pied states. However, in the AKS model the peak gain of the
�� polarized light is due to the C1→V1 �V1=HH1� at k�

�0, because there are no other allowed radiative transitions
close to the band edge. Figure 10 shows also that the rotation
of the transition dipole in the six- and eight-band k ·p models
is very similar. We conclude that the perturbative treatment
of the conduction-valence band coupling, which is included
in the six-band model �see Appendix�, is fairly accurate.

V. CONCLUSIONS

In conclusion we have found that while the rotating di-
pole model of Asada et al. �AKS� works well for the elec-
tronic structure of bulk semiconductors, there are several rea-
sons why it fails in quantitative predicting the polarization of
gain of QW lasers: �1� Although, the idea of eigenstates that
rotate with the direction of k is qualitatively correct also for
QWs, the exact dependence on k� is not very accurate. �2�
The AKS model can only account for the diagonal transitions
Ci→Vi. Furthermore, the AKS model �3� excludes the LH
bands and �4� simplifies the interband coupling. Finally, �5�
the transition amplitudes are overestimated. We found that
points �2�–�4� together severely simplify the transition spec-
trum of the studied polarizations and redshift the peak gain
of the �� �TM� polarization. Note also that the origin of the
TM mode in our eight-band model is in the nondiagonal
transitions whereas it, in the AKS model, originates from the
C1→V1 transition at k��0. The LH band must be included
as well as the valence band mixing, in order to obtain a
correct polarization-dependent gain profile. We also found it
very difficult to improve the AKS model without losing its
simple analytical form.

We have found that the differences, in the calculated

polarization of the gain, between the six- and eight-band k ·p
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models are small and come from the contributions of higher
excited bands. The differences between the six- and eight-
band models increase with increasing energy and electron
wave vector k. This, however, does not affect the polariza-
tion of the gain very much, because it depends mainly on the
band structure close to the band edge.

The present calculations of gain polarization do not in-
clude carrier-carrier interactions. On the microscopic scale,
the polarization of photon emission is governed by the direc-
tional properties of electronic orbitals of the pertinent elec-
tric dipole amplitudes. The correlation �carrier-carrier� ef-
fects influence the anisotropy of the transition amplitude if
the two-particle correlation is strong enough �exciton re-
gime� to change the pertinent single-particle orbitals. How-
ever, all our calculations correspond to carrier densities at
which the exciton resonance disappears.27 The correlation
affects therefore the transition dipole mainly via a screened
carrier-carrier interaction. As shown by Hader et al., the most
prominent influence of the Coulomb interaction, in this limit,
is a blue-shift of the gain maximum with increasing carrier
density.10 However, the screened Coulomb effect is nearly
isotropic and we expect that its influence on the gain polar-
ization is less important. Ellmers et al. have made a detailed
comparison of experimental and theoretical gain spectra for
an InGaN single QW laser diode.12 In their work they ob-
tained a complete quantitative agreement between theory and
experiments only by including many-body Coulomb effects
as well as using a microscopic treatment of carrier scattering
and polarization dephasing. However, the complete agree-
ment between theory and experiments was obtained using
the four-band Luttinger-Kohn Hamiltonian which is known
to be rather inaccurate for the description of the electronic
structure. Nevertheless, the influence of the Coulomb effect
on the polarization of gain is an important topic of further
studies. On the basis of our work we suggest that in calcu-
lations of the gain polarization, based on semiconductor
Bloch equations, the quality of the k ·p parameters should be
verified by pseudopotential calculations. Furthermore, we
emphasize the role of the nondiagonal transitions, especially
in the calculation of the TM mode.

APPENDIX: EIGHT-BAND k·p MODEL OF ZINC
BLENDE CRYSTALS

The eight-band k ·p model �see, e.g., Ref. 28 and refer-
ences therein� has been developed for electronic structure
calculations of direct-band semiconductors in the vicinity of
� point, i.e., k=0. The bulk and quantum confined electron
states are described as linear combinations of atomic Bloch
functions. The Bloch functions are in turn expanded in terms
of the perturbatively projected �-point atomic Bloch func-
tions �u��r�� by

�u��k,r�� = �
�=1

8

C�
��k��u��r�� , �A1�

where C�
��k� are the mixing coefficients. The projected
Bloch functions are given by
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�u��r�� = �u�
0�r�� + �

m�A

�

m0
�um

0 �r��
�um

0 �r��k · p�u�
0�r��

E�
0 − Em

0 ,

�A2�

where �ui
0�r�� are the �-point atomic Bloch functions and Ei

0

are their energies evaluated at k=0.
The eight strongly coupled Bloch functions �states A in

Eq. �A2�� are treated by direct diagonalization and assumed
independent on the heterostructure material.29 The remaining
states m�A are accounted for by perturbation theory.30,31 In
this work we have used the following eight Bloch functions
of group A:

�u1� = i�S↑�, �6,

�u2� = i�S↓�, �6,

�u3� =
1
�2

��X↑� + i�Y↑��, �8,

�u4� =
i

�6
��X↓� + i�Y↓�� − i�2

3
�Z↑�, �8,

�u5� =
1
�6

��X↑� − i�Y↑�� +�2

3
�Z↓�, �8,

�u6� =
i

�2
��X↓� − i�Y↓��, �8,

�u7� =
1
�3

��X↓� + i�Y↓� + �Z↑��, �7,

�u8� = −
i

�3
��X↑� − i�Y↑� − �Z↓��, �7,

�A3�

which span the eight-dimensional subspace of the irreducible
representations �6, �8, and �7 of the Td symmetry group,
associated with the zinc blende crystal. In this basis the
eight-band k ·p Hamiltonian of bulk semiconductors is given
by

H =�
A 0 − i�3P+ − �2Pz − iP− 0 − iPz − �2P−

A 0 P+ − i�2Pz
�3P− − i�2P+ Pz

− Q − P iS R 0 − S/�2 − i�2R
Q − P 0 R i�2Q − �3

2S
Q − P − iS − �3

2S
* i�2Q

− Q − P − i�2R* − S*/�2

Z 0

Z

� ,

�A4�

where we have defined the following parameters:

A = Ec + �c
�2k2

2m0
+ ac��xx + �yy + �zz� , �A5a�

P = − Ev + �1
�2k2

2m0
− av��xx + �yy + �zz� , �A5b�

Q = �2
�2

�kx
2 + ky

2 − 2kz
2� −

bv ��xx + �yy − 2�zz� , �A5c�

2m0 2
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Z = Ev − 
 − �1
�2k2

2m0
+ av��xx + �yy + �zz� , �A5d�

Pz =
1
�3
�i�� Ep

2m0
kz + Bkxky� , �A5e�

P± =
1
�6
�i�� Ep

2m0
�kx ± iky� + Bkz�ky ± ikx�� , �A5f�

S = �3�3
�2

m0
kz�kx − iky� + dv�i�yz − �xz� , �A5g�

R = − �3
�2

2m0
��2�kx

2 − ky
2� − 2i�3kxky� −

�3bv

2
��xx − �yy�

− idv�xy . �A5h�

In Eqs �A4� and �A5�, Ec �Ev� is the position of the conduc-
tion �valence� band edge, 
 is the spin-orbit splitting energy,
and B is Kane’s band parameter related to inversion asym-
metry in a zinc blende crystal. Furthermore, �ij are the com-
ponents of the strain tensor, and ac, av, bv, and dv are the
related deformation potentials. The modified Luttinger pa-
rameters are related to the original Luttinger parameters �de-
noted as �i

L� by

�1 = �1
L −

Ep

3Eg
, �A6a�

�2 = �2
L −

Ep

6Eg
, �A6b�

�3 = �3
L −

Ep

6Eg
. �A6c�

The six-band k ·p model is obtained from the eight-band
model by substituting P0=0 and B=0. This decouples the six
valence bands from the conduction band. Moreover, in the
eight-band model the C band belongs to group A, whereas it
is treated as a distant band in the six-band model. The �
parameters of the k ·p Hamiltonian account for the effect of
distant band and, as a result, the � parameters are different in
the six- and eight-band models.

1. k·p model for quantum wells

The eight-band k ·p model can be used to calculate the
electronic structure of low-dimensional semiconductor struc-
tures using the envelope wave function approximation.32

However, the parameters of the model are always fitted to
experimental or theoretical band gaps and effective masses,
at the � point of the pertinent bulk semiconductors. In the
case of a QW �grown along the z axis� we first write all
matrix elements of the Hamiltonian symmetrically and re-
place the z component of k by the operator kz=k�→−i� /�z.
Then we denote the in-plane wave vector by k� = �kx ,ky�. Fi-
nally, all derivatives were replaced by symmetrized finite

differences
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�

�z
gj� j →

1

4
z
��gj+1 + gj�� j+1 − �gj + gj−1�� j−1� , �A7a�

�

�z
gj

�

�z
� j →

1

2
z2 ��gj+1 + gj�� j+1 − �gj+1 + 2gj + gj−1�� j

+ �gj + gj−1�� j−1� , �A7b�

where g is any position dependent material parameter, � is
the differentiated wave function, 
z is the spacing of two
neighboring grid points, and the subindices represent the z
coordinate. This ensured that the differentiated Hamiltonian
was Hermitian. In the case of an �111� QW, a coordinate
transformation of k and r had to be done before the
differentiation.33

The wave functions in a QW geometry are given by

���r,k��� = Neik��·r���
�=1

8

��
��z,k����u��r�� , �A8�

where we have replaced the mixing coefficients by the enve-
lope wave functions ��

��z ,k���. The envelope wave functions
were obtained as the eigenstates of the envelope Hamiltonian
�depends now on z� given in Eq. �A4�. For a thorough de-
scription of the eight-band k ·p model, see Refs. 13, 19, 20,
22, and 28.
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