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1 Introduction

1.1 Background

The availability of clean water and the good ecological status of surface waters have

been endangered by increasing loads of nutrients and chemicals. In 2000-2003 water

quality was satisfactory or worse in 20 – 27 per cent of the Finnish lake, coastal

and sea area and in twice that proportion of the river area (50 %). To improve and

protect water quality in watercourses, the Finnish government passed the Water

Act on 19 May 1961 and legislation for the assessment of environmental impacts on

10 June 1994. The new set of national Water Protection Policy Outlines extending

to 2015 was approved on 23 November 2006, under which diffuse nutrient loading

from agriculture should be reduced by a one third by 2015 and loading from fish

farming and waste water treatment plants must be further reduced. In particular,

nitrogen removal from municipal waste water must be improved to 70 % in densely

populated areas with more than 10,000 inhabitants.

The general goals of the Water Framework Directive, introduced by the European

Union on 22 December 2000, are to achieve a ”good status” in all water bodies by

2015 and to protect the aquatic ecology, unique valuable habitats, drinking water

resources and bathing water with reasonable costs. Planning and implementation

of water management will be organized on a river basin basis in order to ensure

that local factors and the need for water protection measures are taken into account

efficiently. Ecological and chemical protection is required everywhere, but other

forms of protection will apply only within specific zones.

An act on the organization of river basin management planning was adopted in

Finland in 2004, and the drafting of plans was started by the regional working

groups. The plans will be complete by 2009 and will be updated every six years.
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For these purposes, Finland has been divided into five river basin districts, two

international river basin districts (the Tornio River and the Teno – Näätämö –

Paatsjoki district) and to a separate river district covering the autonomous province

of the Åland Islands.

The targeting of the required pollutant load reductions and the finding of technical

solutions for their implementation are the challenging key ingredients of the river

basin planning, and all our existing science, technology, mathematics and practical

experience in this field will be needed to achieve compliance with the water quality

standards with regard to chemical substances and ecological status. Hydrological

and biogeochemical cycling, in particular, and the resource conditions for the as-

sembly of the plankton community must be considered comprehensively. Until quite

recently the theoretical foundation for ecology was empirical rather than theoret-

ical, ranging from deterministic to stochastic approaches, and hence there is no

equivalent comprehensive biological foundation analogous to Newtonian mechanics

or hydrodynamics that can be employed for the control of eutrophication and pollu-

tion in lakes and rivers. In addition, the determination, calibration and validation of

prediction models is hampered by the overwhelming number of factors affecting the

composition and activity of plankton assemblages and by the limited experimental

and observational resources available. Hence the translation of scientific theories,

specific observations on river basin and mathematical approaches into forms which

are useful for river basin planning is difficult.

Prediction models are nevertheless considered useful for river basin management

and are used to predict the behaviour of water quality with respect to changes in

pollutant loads and hydrological conditions. They are therefore used to evaluate

target pollutant loads and management actions which will achieve compliance with

water quality standards. The target pollutant loads are then used to set up reg-

ulatory rules and to plan waste water treatment plants, agricultural practices and

general land use.
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Simple empirical water quality models are based on statistical methods, which makes

quantitative learning and prediction efficient (Manly, 2001; Berthouex and Brown,

2002). Early attempts were made in the 1970’sto estimate statistical relationships in

data from a large sample of lakes (Vollenweider, 1976; Vollenweider and Kerkes, 1980;

Reckhow and Chapra, 1983), and more complex mechanistic models (Jørgensen,

1980; Chapra and Reckhow, 1983; Orlob, 1983; Chapra, 1997) were structured in

the 1970’s according to the causal understanding and mathematical descriptions

of processes prevailing at that time, sometimes accompanied by least-squares pa-

rameter estimates, approximate first order error analysis, Monte Carlo analysis or

Kalman filtering (Scavia, 1980). The error term in a model was usually neglected

in the context of prediction (NRC, 2001). The lack of proper error estimates was

compensated for by a comprehensive mathematical description of the process. Thus,

the development of mechanistic models for water quality and hydrodynamics were

seen to be interrelated (Streeter, 1958; Chow, 1959; Graf, 1971; Cunge et al., 1980;

Dyer, 1986; van Rijn, 1989). Water quality management in Finland has often been

supported by a combination of empirical and mechanistic models (Kinnunen et al.,

1982; Frisk, 1989; Sarkkula, 1991; Varis, 1991; Kettunen, 1993; Nyroos, 1994; Hut-

tula, 1994; Kokkonen, 1997; Rankinen, 2006).

1.2 Research problem

The EU Water Framework Directive urges member states to quantify numerically the

present and near-future maximum loads (i.e. target pollutant loads) to be permitted

for pollutants, from point and non-point sources and from background sources, so

that they will meet water quality standards with an adequate margin of safety

(MOS). Due to the probabilistic and random nature of water quality parameters,

a small MOS might result in non-attainment of the water quality goal, while a

large MOS can be inefficient and costly (NRC, 2001). Therefore the MOS should

account for the errors in the data and the model. Ideally, MOS represents the
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joint probability of possible errors in the estimated target load, load estimates and

transcendence of the water quality standards (NRC, 2001). The problem is how

to estimate model parameters and error variances of predictions realistically and

determine how errors in these and in the inputs propagate through the model and

result in error in the estimated target pollutant load.

Another problem is that approximate error estimation methods involving complex

mechanistic water quality models and small-sized water quality samples are likely to

result in unrealistic (Ascher and Overholt, 1983; NRC, 2001) and overly optimistic

error estimates (Omlin and Reichert, 1999). This in turn will bias the MOS of

the target pollutant loads and reduce the efficiency of river basin management.

(Figure 1.1).

Figure 1.1: Outline of the problems involved in water quality prediction and their
implications for river basin planning and management.

The coding, debugging, fitting and validation of complex mechanistic water quality
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models is difficult due to the long simulation time and the large number of unknown

parameters, making water quality prediction and river basin management less effi-

cient and more costly than is necessary for effective decision making (NRC, 2001).

Moreover, twenty per cent of the Finnish lake area is in a satisfactory or worse

condition, which means that the number of lakes requiring pollutant load control

amounts to hundreds and the updating of river basin plans every six years using

complex water quality models will not be efficient or even feasible.

1.3 Objectives

The general objective of this thesis were to make the updating of water quality pre-

dictions, the accompanying error estimates and river basin plans every six years as

efficiently and realistically as possible (Figure 1.2). It was aimed at using Bayesian

inference, Markov chain Monte Carlo methods (MCMC), hierarchical models (HM)

and model simplification. Bayesian inference and MCMC methods were to be used

for synthesizing mechanistic modelling and statistical inference and facilitating re-

alistic error estimation and the efficient updating of predictions in the light of the

continuously accumulating monitoring data. A hierarchical modelling strategy (Gel-

man and Hill, 2006) was used to improve the accuracy and precision of lake specific

the predictions.

The practical objectives were computational implementation of the methods, the

derivation of relevant water quality data, application of these methods to real-world

river basin management cases and the setting up of guidelines for applications to

river basin management.
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Figure 1.2: General objectives of river basin management and the methods devel-
oped in this study.

1.4 Scope of the research

A complex mechanistic lake and a river model was first developed to facilitate the

prediction of water quality in connection with river basin management. A full sta-

tistical error analysis of sub water quality models was then accomplished using

Bayesian inference and MCMC methods. The error analysis of some extremely

complicated models was postponed because the converge of MCMC sampling algo-

rithms is slow if a model includes a large number of correlated parameters. Instead,

the moderately simple lake respiration and phytoplankton sub models were analysed

initially. This clearly revealed the advantages and limitations of Bayesian inference

and MCMC methods and motivated the use of adaptive sampling algorithms and

simple linear models. Prior distributions, if informative, were obtained from the

scientific literature or from experimental and observational data. Expert elicitation

techniques were not used here.



29

To make the water quality prediction and management in large river basins with

small observational sample sizes more tractable, hierarchical models were also ap-

plied. These were based on causal relationships among a small number of descriptors.

The mechanistic water quality models constructed for Lake Lappajärvi and the River

Kymi linked river basin management measures directly to water quality responses,

whereas the water quality sub models which were fitted using Bayesian inference

and MCMC methods were limited in this sense. Later on, the model of a entire

water body were fitted using MCMC methods.

1.5 Research methods

The mechanistic lake models used here described vertical mixing, temperature strati-

fication, respiration, sedimentation, leaching of nutrients and phytoplankton growth.

The river model calculated the longitudinal dispersion of suspended solids and con-

taminated sediments. The models were formulated with partial and ordinary differ-

ential equations and integrated by numerical methods.

A hierarchical linear regression model (HLRM) (Gelman and Hill, 2006) was used

to predict chlorophyll a in Finnish lakes. Hierarchical linear modelling (HLM), also

known as multi-level analysis, is a more advanced form of multiple linear regression.

Multilevel analysis allows the variance in outcome variables to be analysed at multi-

ple hierarchical levels, whereas in multiple linear regression all effects are modelled

as occurring at a single level. Thus HLM is appropriate for use with nested data.

In river basin management, data from lakes can be nested within lake types and

ecoregions.

The errors in the mechanistic and hierarchical models (f in equations 1.1) are related

to errors in the measurement of the x variables (φ2), in the model (σ2) and in the
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model parameters (σ2
θ) (Box and Tiao, 1973; Clark, 2006). These were estimated

using Bayesian inference and MCMC methods, which facilitate statistical learning

and the updating of water quality predictions and river basin plans.

yj = f(xj; θ) + εj

θ ∼ p(μθ, σ
2
θ)

′error in parameters′

εj ∼ N(0, σ2) ′model error′

x
(obs)
j ∼ p(xj, φ

2) ′error in x′

(1.1)

1.6 Contribution

Bayesian inference methods and Markov chain Monte Carlo (MCMC) methods were

used here to change the paradigm of water quality prediction and river basin man-

agement decision making from deterministic to statistical. Mechanistic river and

lake models for the evaluation of target phosphorus loading and restoration dredg-

ing were developed and applied in papers I and II (Table 1.1), and the best features

of the mechanistic and statistical prediction methods, i.e. the deterministic simu-

lation and the full statistical error analysis, were synthesized in papers III and IV.

This enabled the mechanistic water quality predictions to be better accommodated

into river basin management. The slow convergence of the MCMC chains in the case

of marked parameter correlation was speeded up by means of adaptive Metropolis

Hastings methods. The accuracy and precision of the lake-specific chlorophyll a pre-

dictions based on extensive cross–sectional monitoring data of Finnish lakes were

enhanced using a hierarchical linear regression model.

The main results of the five original papers listed at the beginning of this publication

will be summarized below. The papers are referred to in the text by their Roman

numerals. First, the case data and the objectives of river basin management cases
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will be analysed, and then the selected water quality prediction methods and their

capabilities for meeting the objectives of river basin management will be evaluated.

Finally, guidelines for water quality prediction in adaptive river basin management

will be proposed.
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Table 1.1: Contribution of the papers to water quality prediction and river basin
management.

Mechanistic modeling —–> Bayesian inference

Paper I:

-Probe lake model : prediction of verti-

cal convection and diffusion of heat, dy-

namics of dissolved oxygen, total phos-

phorus and chlorophyll a

-assessment of target phosphorus load

Paper II:

-One dimensional sediment model : pre-

diction of longitudinal transport of con-

taminated sediments

-setting up of a criterion for restoration

dredging

Paper III:

-Respiration model : prediction of dis-

solved oxygen regime in a lake

-MCMC method : Unbiased error esti-

mates, pooling of cross-sectional infor-

mation

-design and real time control of oxy-

genation devices

Paper IV:

-Lake phytoplankton model : -MCMC method : same as in Paper III

prediction of algal blooms -target nutrient and zooplankton

biomass concentrations

Paper V:

-MCMC method : same as in Paper III

-Hierarchical linear chlorophyll a

model : nutrient to chlorophyll a

relationship, enhanced pooling of

cross-sectional information

-target nutrient concentrations
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2 Observational data

The observational data used here originated from three intensively studied Finnish

lakes (I, III and IV), a river (I) and 2289 sparsely monitored Finnish lakes (V).

Lake Lappajärvi (I), Lake Tuusulanjärvi (III) and Lake Pyhäjärvi in Säkylä (IV)

are locally important for fishing and recreation, but their use is hindered by eu-

trophication, which impairs also their ecological status. This led the Finnish Envi-

ronment Institute (SYKE), the regional environment centres, the universities, local

authorities, private enterprises and water protection associations to contribute to

the sampling and management of these lakes. The Southeast Finland Environment

Centre and SYKE had sampled the sediments and water of the River Kymi and

planned restoration dredging of contaminated sediments. The water and sediment

samples representing the lakes and the river had not been randomized, except for

the zooplankton sample from Lake Pyhäjärvi, which was randomized according to a

stratified design. In general, the samples were concentrated spatially in the middle

of the lake or of the river cross-section, and the water samples from the River Kymi

were from points both upstream and downstream of the area of main interest. The

sampling time was confined to the open water period, except for the sampling of

dissolved oxygen in Lake Tuusulanjärvi, which took place when the lake was covered

by ice.

2.1 Lake Lappajärvi

Lake Lappajärvi is a shallow lake in the western part of Finland (Figure 2.1) that

is agriculturally loaded, mesotrophic and has occasional algal blooms. The bottom

sediment at the two main depths (1 km2) becomes anoxic during the summer and

winter stratification periods and 5 mg m−2d−1 phosphorus is released into the water

body. The theoretical retention time is 2.8 years. Phosphorus is the main limiting
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nutrient for phytoplankton growth. Loading in the lake is 0.38 gP m−2a−1 and its

sedimentation coefficient R is about 0.8. The mean phosphorus concentration in the

lake is 23.8 μg l−1 and the mean fresh biomass concentration of planktonic algae is

2.7 mg l−1.

The lake water level, outflow, vertical temperature profile, currents, ice cover and

snow cover were observed in the years 1987 - 1989. Daily meteorological data were

collected at Kauhava Airport 30 km west of the lake.

Water quality in five inflows and the flow between the two sub-basins of the lake

were investigated intensively (2-12 times a month) in May 1. 1988 - April 30. 1989,

together with sedimentation rate experiments and flow measurements (Figure 2.1).

2.2 River Kymi

The River Kymi is the fourth largest river in Finland. It has been polluted by

effluents from pulp mills and the chemicals industry and through some tributaries

and diffuse non-point sources. Loading has been reduced considerably, but the

remains of past emissions still exist in the river sediments. The area studied here

is a 130-km stretch of the river with branches between Lake Pyhäjärvi (in Jaala)

and the Gulf of Finland (Figure 2.2). There are 11 power plants and 6 stretches of

rapids on this reach of the river. The upper part of the river strech is 50 m above

sea level and the mean slope of the river bed is small (0.0006). The drainage area

of the River Kymi is 37 200 km2 (lake percentage 18%), with only 3% (1 100 km2)

running directly into the stretch of the river. Thus 97 % of the water in the river

at this stage comes from upstream sources. The mean discharge at the downstream

end of the river is 330 m3 s−1.

The river bed in this area consists mainly of transport and erosion sites, which con-
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0 5 km

Figure 2.1: Map of Lake Lappajärvi. Observation points= Water samples, =
Current meter, = Thermistor chain.

tain non-cohesive soil or solid clay and silt. At wider points in the river there are

sedimentation pools, which are the main traps for PCDD/F compounds. Contam-

inated organic particulate materials accumulated earlier in the main sedimentation

pool at Kuusankoski, and this sediment is nowadays decomposing slowly, eroding

and migrating downstream. The transported sediment with highest settling veloc-

ity has accumulated in the downstream sedimentation pools, whereas the smaller

particles have migrated to the estuarine and the marine area. Due to hydrolog-

ical regulation at the power plants, the sediments have not been exposed to high

floods and discharges have not increased. Construction projects and changes in river

regulation imply a risk of the mobilization of PCDD/F compounds in the future.
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Figure 2.2: Map of the River Kymi.

The hydrological and hydraulic data (water level and discharge) needed to perform

the sediment transport calculations were observed at least daily or even more fre-

quently at the power plants and stretches of rapids. Suspended solids concentrations

upstream and along the relevant stretch of the river were observed frequently enough

for calibration. The observations of direct runoff and corresponding concentration

of suspended solids do not cover the whole catchment, however. Monthly values for

suspended solids from industrial effluent point loading were collected from sewage

treatment plants, and non-point loading was estimated from the continuous runoff

data and weekly water quality samples from two small representative catchments
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(30 and 178 km2) in the drainage area (1 100 km2)). The transported sediment

was sampled with sediment traps at six locations and PCDD/F concentrations in

the sediment were analysed. No direct measurements of historical PCDD/F loading

from Kuusankoski are available, but the amount of historical PCDD/F loading from

the Ky-5 plant and from eroding sediments in Kuusankoski and its variation were

estimated from a bottom sediment sample originating from the bay of Ahvenkosken-

lahti at the mouth of the river (Figures 2.2).

2.3 Lake Tuusulanjärvi

Lake Tuusulanjärvi is a shallow, hypereutrophic lake located just north of Helsinki

in southern Finland, lat. 60◦ 26’ long. 25◦ 03’ (Fig. 2.3). Having previously been

mesotrophic, it became hypereutrophic in the 1960s due to sewage discharge. The

winter dissolved oxygen regime was in a critical condition in the early 1970s, but

improved slightly in 1973, when winter aeration was introduced. The situation was

further improved by reductions in nutrient loading. Sewage discharge was diverted in

1979 and summer aeration started in 1980. The hypereutrophic condition remained,

however, and blooms of blue-green algae have occurred every summer since the

loading reduction (50% in phosphorus loading) in 1979. The phosphorus load from

agriculture (4500 kg a−1 = 0.75 g m−2 a−1) still exceeds the lake’s tolerance level,

which is why a reduction in the phosphorus content of the water body by intervening

in both external and internal phosphorus loading has been required.

The lake water was sampled at two-metre vertical intervals at the deepest point

in the lake (max. depth 10 m by the Uusimaa Regional Environment Centre and

the local water protection board (Keski-Uudenmaan vesiensuojelun kuntayhtymä)

during the period 1968–2003. Samples were collected 2–7 times each winter for the

analysis of dissolved oxygen concentration and temperature by standard methods.

Vertical averages and standard deviations were calculated. Dissolved oxygen con-
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Figure 2.3: Map of Lake Tuusulanjärvi.

centrations were also measured in situ at nine stations in March 2001 to determine

the area of aerator impact.

Winter net oxygen consumption in the lake in the early 1970s was estimated to be

200 000 kg on average. The flux of the pumped dissolved oxygen as estimated by

the aerator consultants (100 tn on average) shows a high yearly variation due to

technical problems and fluctuations in the duration of the ice-cover. This leaves

a significant uncertainty concerning the estimated dissolved oxygen fluxes, which

affects the lake respiration estimates. The value describing the prior distribution

was calculated from information available in technical reports.
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Table 2.1: Hydrology and morphology of Lake Tuusulanjärvi (Anonymous, 1984).

Surface area 6.0 km2

Volume 19 ∗ 106 m3

Maximum depth 10 m

Average depth 3.2 m

Length (max) 7.5 km

Theoretical water residence time 250 d

Area of drainage basin 92 km2

Percentage of lakes in the drainage basin 8.4 %

Table 2.2: Characteristics of the catchment of Lake Pyhäjärvi.

Total area (inclusive of lake’s surface) 615 km2

River Yläneenjoki 234 km2

River Pyhäjoki 77.5 km2

Remaining area (small sub-basins) 149.5 km2

2.4 Lake Pyhäjärvi in Säkylä

Lake Pyhäjärvi is a shallow, mesotrophic, agriculturally loaded lake (Fig. 2.4) in

which algal blooms increased in the early 1990’s. All the major cyanobacterial

blooms in 1992–1999 were dominated by Anabaena flos-aquae (Lyngb.) Breb.,

while Anabaena planctonica Brunnt., Anabaena curva Hill, Cyanodictyon reticula-

tum (Lemm.) Geitl., and Aphanothece clathrata W. & G.S. West became dominant

in 1999.

Monitoring of the water chemistry and hydrology of Lake Pyhäjärvi started in the
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Table 2.3: Characteristics of Lake Pyhäjärvi.

Surface area 155 km2

Volume 849 million m3

Mean depth 5.4 m

Maximum depth 26 m

Coastline 110 km

Water residence time 3–5 year

(Sarvala et al., 2000). Crustacean zooplankton was enumerated at the Department

of Biology, University of Turku. Eight years of observations collected between 1992

to 2000 were used for this study. Our data set contains the biomass concentra-

tions of Diatomophyceae, Chrysophyceae, nitrogen-fixing Cyanobacteria and minor

groups of phytoplankton summed together, total phosphorus concentration (TP),

total nitrogen concentration (TN), water temperature (T ), global irradiance (I), the

biomass concentrations of grazing zooplankton (Z) and outflow rates (Q).

Sarvala et al. (1998) have shown that year-to-year variations in chlorophyll a and

phosphorus concentrations in Lake Pyhäjärvi are associated with changes in the

total biomass of planktivorous fish, good fish stocks being accompanied by depressed

zooplankton biomass and high chlorophyll a levels. One-third of the total variation

in chlorophyll a is attributed to changes in zooplankton biomass and another third

to the changes in phosphorus concentrations.

2.5 Finnish lakes

National water quality monitoring in Finnish lakes started in 1965, after the passing

of the Water Act in 1962, when information was required on the status, quality and
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quantity of Finnish water resources, and how their status relates to and responds to

pressures on the environment. The sampling strategy and analytical methods have

been described by Niemi et al. (2001). A geomorphological typology of Finnish lakes

is under construction to aid in the classification of their ecological status. According

to a preliminary topology they may be divided into the nine types according to their

surface area, depth and water colour (Table 2.4).

Table 2.4: Preliminary geomorphological typology of Finnish lakes as specified by
the Finnish Environment Institute (SA=Surface Area, D=Depth).

Lake Type Name Characteristics

I Large, non-humic lakes SA > 4,000 Ha, color < 30

II Large, humic lakes SA > 4,000 Ha, color > 30

III Medium and small, non-humic lakes SA: 50 - 4,000 Ha, color < 30

IV Medium, humic deep lakes SA: 500 - 4,000 Ha, color: 30–90, D > 3 m

V Small, humic, deep lakes SA: 50 - 500 Ha, color: 30–90, D > 3 m

VI Deep, highly humic lakes Color > 90, D > 3 m

VII Shallow, non-humic lakes Color < 30, D < 3

VIII Shallow, humic lakes Color: 30-90, D < 3 m

IX Shallow, highly humic lakes Color > 90, D < 3 m

19,248 observations of total phosphorus, total nitrogen and Chlorophyll a (Chla) in

2,289 Finnish lakes in July and August from 1988 to 2004 were used in this study.

About 42% of the observations were from July and 58% from August. On the other

hand, observations were unevenly distributed between the years, lake types (Table

2.5) and individual lakes. 900 lakes out of the 2,289 lakes were represented by only

one observation, but the average number of observations was eight (s.d. 26) per

lake. One lake had 441 observations, and there were 12 lakes that had more than

150.
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Table 2.5: Number of observations (N) within the lake types.

Type N Type N Type N

1 485 4 3,949 7 391

2 6,536 5 1,080 8 2,729

3 388 6 1,326 9 2,544

2.6 Analysis of the case data

The observational data were used to establish a basis for river basin water quality

prediction and management. Ideally, a water body should be sampled according to

statistical design methods in order to minimize the error variances in the model,

but in the present case the data were collected according to intuitively selected rules

and the model for prediction and decision making was selected later.

Certain important features of the data (Table 2.6) were analysed retrospectively

(Table 2.6) to reveal the adequacy of the data set for water quality prediction and

river basin management. One of the most important features in this respect was

the sample size because a small sample size may reduce the precision of a predic-

tion, and thus the overall efficiency of river basin management (Figure 1.1). The

case studies involved extensive sample sizes. The predictions were also affected,

however, by the orientation of the sampling design. The data for the case stud-

ies were mainly longitudinal, except for the monitoring data on the Finnish lakes,

which were abundant in a cross-sectional direction, i.e. covering numerous lakes.

On the other hand, the majority of the lakes were observed only a few times, so

that the lake specific samples were small and unbalanced, reducing the precision of

the lake-specific predictions. A small sediment respiration experiment conducted in

Lake Tuusulanjärvi and the parameter ranges obtained from the scientific literature

for the River Kymi, Tuusulanjärvi and Pyhäjärvi models can be regarded as small
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extensions in a cross-sectional direction.

Table 2.6: Analysis of case study data.

Classifier Lappajärvi Kymijoki TuusulanjärviPyhäjärvi Finnish

lakes

Sample size Extensive Extensive Extensive Extensive Extensive

Orientation

of sampling

design

Longitudinal Longitudinal Longitudinal Longitudinal Cross-

sectional

Hierarchical

structure

Single level Single level Single level Single level Hierarchical

Scientific disci-

pline

Hydrology

Chemistry

Biology

Hydrology

Chemistry

Biology

Hydrology

Chemistry

Biology

Hydrology

Chemistry

Biology

Chemistry

Sampling

design

Intuitive Intuitive Intuitive Intuitive Intuitive

Treatment

method

ObservationalObservationalObservationalObservationalObservational

If data are hierarchically structured, i.e. they include multilevel or nested clusters

within which correlations occur, cross-sectional information can be pooled to make

longitudinal predictions more precise by means of hierarchical or multilevel models.

The Finnish lake data were hierarchically structured (with the levels: all lakes, type

of lake, lake), and this feature was utilized in modeling phase. The rest of the data

did not have a hierarchical structure.

The scientific discipline of data handling may involve notable variation in sample

size, in that there is a common tendency for the numbers of biological observations

to be smaller than those of chemical or hydrological observations. This was also the
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case in the present case studies.

The careful selection of sampling design and treatment method, which are of great

importance for water quality prediction, was left out of the data acquisition process

in the majority of the cases studied here. Sampling was not randomized, and exper-

imental design methods were not employed other than in the case of Lake Pyhäjärvi

where zooplankton was sampled using a stratified random design.
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3 Objectives of river basin management

3.1 General objectives

The general objectives of water quality management in river basin planning and

decision making are sustainable use and management of the waters and their good

ecological status (Figure 3.1). The first things to be decided are the water quality

standards and the acceptable probability of these being exceeded. Water quality

standards include numerical values for threshold values separating attainment from

non-attainment of the management objectives with respect to the given variables.

The water quality predictions can then be used to infer target pollutant loads which

will achieve compliance with the water quality standards (Figure 3.2) and to generate

a set of feasible management actions in the planning phase with a view to the cost

and benefit analysis in the decision phase.

Figure 3.1: General objectives of water quality management in river basin planning.
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Figure 3.2: Inference of target pollutant loading using predicted water quality
response i.e. pollutant or algal biomass concentration in a lake or a river. Water
quality standards include numerical values for threshold values separating attain-
ment from non-attainment of the management objectives with respect to pollutant
concentration.

3.2 Objectives in case studies

3.3 Lake Lappajärvi

The objective of the management of Lake Lappajärvi was to limit chlorophyll a

to below 10 μg l−1 (Figure 3.3). The target phosphorus load that complied with

this criterion was selected from a number of phosphorus load scenarios and simu-

lated chlorophyll a concentrations. The simulations were based on the hydrological,

meteorological and phosphorus loading data for the one-year period April 1 1988

- March 31 1989. Responses were calculated at four loading levels: 1. present

0.35 gP m−2 a−1 2. Fast obtainable reduction (14.8 % reduction) 0.30 gP m−2 a−1

3. Desirable level (32.7 %reduction) 0.23 gP m−2 a−1 4. Best available protection

measures (44.9 % reduction) 0.19 gP m−2 a−1.
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Figure 3.3: Management objectives, actions and water quality standard for Lake
Lappajärvi.

3.4 River Kymi

The objective of management in the case of the River Kymi was to dredge or per-

manently immobilize sediments which were contaminated by dioxin compounds at

Kuusankoski (Figure 3.4). Dredging, if implemented, would have to be performed

in such a way that the migration of dioxin was minimized. Canalization of the river,

dredging of the most seriously contaminated sediments and a number of smaller

construction projects on the river constituted notable risks of further pollutant mi-

gration, and the migration of contaminated sediments and the exposure of the river

and its adjacent marine and human populations to PCDD/F compounds were pre-

dicted in order to assess these risks.

3.5 Lake Tuusulanjärvi

The objective of the management of Lake Tuusulanjärvi was to lower the trophic

status of the lake, which is the primary reason for oxygen depletion in its water,

fish deaths and the excessive internal phosphorus loading (Figure 3.5). The means
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Figure 3.4: Management objectives, actions and water quality standards for the
River Kymi.

chosen for this have been artificial oxygenation, reduction of external nutrient loads,

dilution of the lake water with nutrient-poor water from a neighboring water body,

and control over fishing. The effect of artificial oxygenation on the dissolved oxygen

regime and the real-time control of oxygenation devices were studied here.

3.6 Lake Pyhäjärvi

The objectives of management in Lake Pyhäjärvi were to improve its ecological sta-

tus, recreational value and fish catches (Figure 3.6). This was to be done by reducing

the external nutrient load and controlling fishing. Farmers have been participating

in water protection projects initiated by the Southwest Finland Regional Environ-

ment Centre (SFREC) in 1991 and coordinated by the Pyhäjärvi Protection Fund

since 1995 (Ventelä et al., 2001). The necessary reductions in nutrients and the

optimal fishing management strategy will remain under continuous scrutiny all the

time the decrease in the occurrence of algal blooms and in nutrient concentrations

take place only slowly.
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Figure 3.5: Management objectives, actions and water quality standard for Lake
Tuusulanjärvi.

Figure 3.6: Management objectives, actions and water quality standards for Lake
Pyhäjärvi in Säkylä.
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3.7 Finnish lakes

The objective of the management of the Finnish lakes was to restore them to a good

ecological status (Figure 3.7). This involved reducing their nutrient load to a level

that meets the chlorophyll a standard, a proxy for a phytoplankton standard.

Figure 3.7: Management objectives, actions and water quality standards in the
Finnish lakes.
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4 Evaluation of prediction methods

4.1 General objectives

The main objectives of prediction in river basin planning are to acquire and anal-

yse all the information necessary and to provide accurate and precise predictions of

the expected water quality outcomes of planned management actions (Table 4.1).

Since management decisions are usually made under conditions entailing consid-

erable predictive uncertainties, realistic estimates of the possible error contained

in predictions are needed. In addition, the adjustment of river basin plans every

six years calls for continuous monitoring of water quality, analysis of management

success and correction of failures. Ideally, this should be achieved by continuous

updating of the parameters and predictive distributions. On the other hand, the

precision of lake-specific (longitudinal) predictions will be low if the sample size is

small. Higher precision can be achieved most efficiently using estimation methods

which are able to pool cross-sectional information in order to make longitudinal

inferences. The accomplishment of the above objectives are expected to promote

efficient river basin planning and management.

Table 4.1: Criteria for predictions in river basin planning.

Accuracy and precision

Realistic error estimates

Ease of updating predictions

Coverage of large geographical areas

Pooling of cross-sectional data to longitudinal inference

Efficiency



53

4.2 Classification of prediction methods

Water quality prediction methods can be classified by reference to several attributes,

the most important among which are the modelling approach, the structure of the

model and the scientific discipline concerned (Figure 4.1). According to this classi-

fication, the prediction approach can be either mechanistic, statistical or Bayesian,

where a mechanistic approach relies on comprehensive process description using nu-

merical integration of partial or ordinary differential equations (Jørgensen, 1980;

Chapra and Reckhow, 1983; Orlob, 1983; Chapra, 1997), while statistical prediction

is based on classical statistical point estimation, which is somewhat approximate if

applied to mechanistic models (Omlin and Reichert, 1999). In contrast, a Bayesian

approach can combine mechanistic process description and observational data result-

ing in a posterior predictive distribution, which is useful in river basin management

(Box and Tiao, 1973; Clark, 2006).

Models are classified here in terms of their structure and that of the data used as

either hierarchical or composed of a ”single” level (Gelman and Hill, 2006). Classical

”single” level estimates may be useless if fitted to a lake with a small sample size

and misleading, in that they ignore variation between lakes and lake types if fitted

to composite data representing different lake types. A hierarchical model allows the

estimation of lake and lake type-level effects and can achieve a compromise between

noisy and oversimplified classical estimates. A hierarchical linear regression model

was used here together with a geomorphological typology of Finnish lakes to estimate

the nutrient effect on chlorophyll a in lakes of varying sample sizes. For example, a

linear or generalized linear model in which probability models are assigned to the

regression coefficients can be considered as a hierarchical model. This second level

has parameters of its own, which are also estimated from the data.

A water quality prediction method can be classified in terms of scientific discipline

as either hydrological, chemical or biological. Hydrological predictions are often
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based on numerical integration of complicated continuity equations of mass, energy

and momentum, while chemical and biological reaction kinetics are normally ap-

proximated using ordinary differential equations or steady state linear regression

models.

Figure 4.1: Classifiers of prediction methods.

4.3 Bayesian inference using MCMC methods

Bayesian inference

A Bayesian approach facilitates continuous updating of parameters, error variances

and predictions as new information accumulates (Figure 4.2). Bayesian methods do

this formally as

posterior ∝ likelihood × prior (4.1)

The likelihood (p(y|θ)) and prior density p(θ) for a parameter enable calculation of

the posterior density p(θ|y), the distribution of which for an unknown parameter θ
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Figure 4.2: Elements of Bayesian posterior predictive inference in target pollutant
load estimation.

is formulated as:

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫ +∞
−∞ p(y|θ)p(θ)dθ

(4.2)

The posterior density consists of the product of the likelihood and the prior dis-

tribution divided by the normalization constant. The integral in the normalization

constant
∫ +∞
−∞ p(y|θ)p(θ)dθ for a complex model is hard to calculate analytically, but

fortunately integration is not needed if Monte Carlo methods are used for posterior

simulation. This involves drawing repeated random samples of the parameter or

parameter vector. Several methods exist for posterior simulation and prediction,

among which the Markov chain Monte Carlo (MCMC) method allows simulation

of multivariate distributions and is usually implemented as a random walk through

the parameter space. During the ’burn-in’ period the Monte Carlo averages con-

verge to the target distribution, after which samples of parameters are used to



56

estimate the posterior distribution. Non-standard distributions are sampled here

using Metropolis-Hastings (Hastings, 1970; Haario et al., 1999, 2001, 2003, 2004;

Clark, 2006) and Gibbs sampling (Gelman et al., 2005; Spiegelhalter et al., 1996,

2002; Clark, 2006).

Prior distributions

To fit the models to Bayesian methods, a prior distribution for the parameters needs

to be specified. Since prior independence of the parameters was assumed, only a

marginal density for each component of the parameter vector was assigned here.

The strongest form of prior assumption is that a parameter is a fixed constant, e.g.

as obtained from literature. Alternatively, a ’fixed’ constant may be treated as a

parameter with a narrow prior distribution. If no prior value is known or if we want

the posterior value to depend solely on the observed data, a flat ”non-informative”

prior assumption is preferred, perhaps with a positivity constraint, as with many of

the parameters in the present cases. Nevertheless, every new parameter increases

the dimension of the vector to be sampled and increases the computational burden.

Mainly Gaussian prior distributions with possible upper and lower limits for the

values (e.g. positivity constraints) are used in the present work.

Model error

Since the models described the system on a non-transformed scale, they had to

be transformed accordingly for the fitting procedure. The observational error was

modelled as a Gaussian random variable. The errors in the lake respiration and

chlorophyll a models were additive with respect to the modelled concentration, and

the error term εi in the phytoplankton model was additive with respect to the square
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root of the modelled concentrations:

√
yi(t) =

√
μ(xi; θ) + εi (4.3)

where εi is the error term. The error term of the model contains all the unexplained

factors, and may include several sources of errors other than pure observational

error. The error term is assumed to follow a Gaussian distribution with unknown

variance. We used a standard non-informative conjugate prior variance defined by

an inverse gamma distribution.

MCMC sampling

The Bayesian inferences regarding the respiration, phytoplankton and chlorophyll

a parameters in the model were implemented using MCMC sampling methods. In-

stead of a single fit to the data, statistical distributions were determined for the

model parameters. In practice, the process involved four steps: 1. Formulation of

prior probability distributions for unknown model parameters. 2. Statistical anal-

ysis of measurement errors. 3. Specification of likelihood function. 4. MCMC

(Markov chain Monte Carlo) sampling of the posterior probability distributions of

the parameters and predictions.

The Bayesian approach has been shown to be a powerful way of quantifying the

uncertainties in the whole modelling procedure (Adams, 1998; Annan, 2001; Borsuk,

2001; Borsuk et al., 2001; Harmon and Challenor, 1996; Omlin and Reichert, 1999;

Reckhow, 2002; Qian et al., 2002). The MCMC computations and adaptive MCMC

strategies used here are demonstrated and described in Haario et al. (2003). MCMC

is popular in computational statistics at the moment (Gelman et al., 2005) and can

be applied to a wide variety of modelling problems (Gamerman, 1997).



58

Although recent advances in MCMC computing and increasing CPU resources have

made larger problems tractable (Haario et al., 2001), computational problems still

arise on account of correlations between parameters. The limited availability of

observational data and the structure of non-linear modelling equations may cause

correlation between parameters, which can be reduced through better design of

the experiments and reparametrization of the model. In situ monitoring does not

favour orthogonal observational design for generating completely uncorrelated ob-

servations of independent variables, however, and adaptive MCMC methods have

been developed as a remedy (Haario et al., 2001). Adaptive methods make the

procedure statistically efficient and reduce the need for laborious hand tuning of

the algorithm. In fact, they adapts the proposal distributions for the generation

of new samples according to the Adaptive Metropolis algorithm (AM) instead of

using a fixed proposal distribution. In addition, a number of different scales for

the proposal distribution were used, employing the Delayed Rejection (DR) method

(Haario et al., 2001, 2003, 2004).

The number of iterations that the Monte Carlo averages need to converge to the

true posterior distribution is called the burn-in period. Samples obtained after the

burn-in were saved for statistical inference of the posterior distribution. To ensure

convergence and to estimate the lake respiration and phytoplankton dynamics, sev-

eral runs were carried out sequentially, each sequence starting from the values of the

previous chain, and convergence was diagnosed visually from 1d and 2d plots of the

chains. In contrast, the length of the burn-in period for the hierarchical regression

model, multiple MCMC chains of different length were run and R̂ statistics (Gelman

and Rubin, 1992) were calculated for each chain. If R̂ ≈ 1 the burn-in period was

deemed adequate.
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Posterior simulation

Where Bayesian inference and MCMC methods were used for model fitting, the wa-

ter quality responses to planned pollutant load reductions and management actions

were predicted using posterior simulation methods. Predictions were calculated re-

peatedly with sampled parameter values and error variances from their posterior

distribution and with relevant environmental control variables derived from their

observed distributions. The simulated predictive distributions revealed prediction

errors realistically and rationalized river basin management accordingly.

4.4 Model validation

Prediction with mechanistic models was mainly based on a theoretical understanding

of the underlying mechanism and the consequent causal relationships. Runs with

data located outside the range of variation of the calibration data were used to

confirm the model and to reveal structural errors and limitations in it.

Validation in an empirical modelling approach is clearly related to the scientific

learning process (Kettunen, 1993; NRC, 2001; Brun et al., 2001; Omlin and Reichert,

1999; Reichert and Vanrolleghem, 2001; Clark, 2006), where a tentative model sug-

gests an experiment or observational data gathering process and an appropriate

analysis of the data can lead to a new experimental or observational design (Box

and Tiao, 1973). The alternation between the model and experiment is carried out

by means of experimental design and data analysis. The efficiency of the underlying

statistical learning process depends on the appropriateness and power of the design

and analysis methods employed. In Bayesian analysis, a prior distribution is com-

bined with the data to calculate the posterior distribution, from which inferences

regarding the parameters are to be made. The postulated probability model is never
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expected to be entirely true, but is chosen in the light of the available knowledge

and constructed with the simplest possible structure. It must therefore be tested at

each step in the investigation. Residual quantities are calculated and sensitivity to

prior distributions and model structure are tested to criticize the probability model

and to suggest modifications.

Comprehensive validation of mechanistic models is a luxury that is seldom achieved

in water quality management, due to limitations caused by sparse data and the

complicated model structure. Scientific learning using statistical analysis methods

involves a continuous iterative approach in which management decisions are condi-

tional on the validity of the tentative model and the available information. River

basin management decisions thus have to be modified alongside this iterative learn-

ing process and model criticism.

The validation of the mechanistic water quality model for Lake Lappajärvi was ham-

pered by the small observational water quality sample size, which meant that the

data could not be separated out into calibration and validation sets. By contrast,

one-year data on dioxin concentrations in settling suspended solids were available

for validation of the transport model for the River Kymi. The respiration model

for Lake Tuusulanjärvi and the chlorophyll a model for the Finnish lakes were not

validated, either, but the phytoplankton model for Lake Pyhäjärvi was validated

with data from 5 additional years. The residual normality of the respiration, phy-

toplankton and chlorophyll a models was investigated through a graphical display

of the predictive distributions and observations. Sensitivities to prior distributions

and model structure were not studied.

To facilitate comparison of the hierarchical linear model with non-hierarchical dummy

variable models, we calculated the deviance information criterion (DIC), a Bayesian

measure of model complexity and fit (Spiegelhalter et al., 2002). DIC is the sum of

the posterior mean deviance D(θ), a Bayesian measure of fit or “adequacy”, and a
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complexity measure pD (effective number of parameters), which corresponds to the

trace of the product of Fisher’s information and the posterior covariance.

4.5 Analysis of case predictions

4.5.1 Lake Lappajärvi

Prediction method

A water quality model was constructed to link phosphorus loading and hydrological

conditions to phytoplankton growth and oxygen deficit in Lake Lappajärvi (Fig-

ure 4.3). The driving variables included wind, cloudiness, air temperature, humidity,

water outflow and the phosphorus loads from point and non-point sources.

Figure 4.3: Decision variables, prediction methods and predictions for water qual-
ity management in Lake Lappajärvi.

Vertical mixing and temperature distribution were simulated by means of a one-

dimensional, horizontally integrated, k-e turbulence model, PROBE (Svensson, 1986;
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Svensson et al., 2002). It was assumed that the lake was horizontally homogeneous

and that gravitational effects obeyed the Boussinesq approximation. A complete de-

scription of the model and the numerical scheme are given by Svensson (Svensson,

1977, 1978; Svensson et al., 2002).

The ice increment was calculated using a degree-day method, while the melting

formulation took the decreasing ice thickness to be a linear function of air tempera-

ture. The model distinguished between ice increment or melting on the basis of the

direction of the net surface heat flux.

The water quality model coupled with the PROBE model simulates vertical mixing

and chemical and biological transformations of total phosphorus, dissolved oxy-

gen and chlorophyll a (a proxy for phytoplankton biomass). The transformations

were biological oxygen demand, phytoplankton growth and respiration, respiration

in the bottom sediment, growth, respiration and settling of chlorophyll a, exter-

nal phosphorus load, sedimentation and internal phosphorus load under anaerobic

conditions.

Model calibration and prediction

The simulated temperatures and ice thicknesses agreed well with the values observed

in 1987 - 1988, but the modelled temperature stratification in late August was ten

days longer than observed and a mean error of 1.5 days arose in the ice duration.

Of the water quality model parameters, the BOD decay rate, sediment oxygen de-

mand, net sedimentation of phosphorus, phosphorus release from the sediment under

anaerobic conditions, algal growth, algal respiration and rate of chlorophyll a sedi-

mentation were calibrated with one year of observed data (May 15, 1988 - April 30,

1989). Parameters were fitted to predict average chlorophyll a, dissolved oxygen and

total phosphorus concentrations. Calibration was carried out graphically without
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mathematical parameter optimization or error analysis methods. The model over

predicted chlorophyll a to a moderate extent. The mean squared error (MSE) was

29.6, the sum of squares (SS) was 355 and the root mean square error (RMSE) was

5.4.

Figure 4.4: Observed and simulated chlorophyll a concentrations [μg l−1] in Lake
Lappajärvi, May 15, 1988 - April 30, 1989.

The study of the effects of the reduction in non-point source phosphorus loading on

chlorophyll a was based on the hydrological, meteorological and phosphorus load-

ing data collected from April 1, 1988 to March 31, 1989. Since chlorophyll a as

predicted with scenario number 4 (the best available protection measures, 44 %

reduction) (Fig. 4.5) was below the standard (10 μg l−1), the respective load (0.19

gPm−2 a−1) was selected as a target nutrient load for lake management. As the

model error and parameter and predictive distributions were not estimated, and the

long-term variation in control variables was not measured or used in the simulation,

the computed effects ignored natural variation and predictive uncertainty. Hence,

it is not possible to calculate an explicit margin of safety for the target phosphorus

load estimates.
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Figure 4.5: Calculated chlorophyll a concentration [μg l−1] with loading levels:
1.Present (in April1. 1988 - March 31. 1989) 0.35 gP m−2 a−1 2. Fast obtain-
able load reduction(14.8 % reduction) 0.30 gP m−2 a−1 3. Desirable loading level
(32.7 %reduction) 0.23 gP m−2a−1 4. Best available protection measures (44.9 %
reduction) 0.19 gP m−2 a−1.

4.5.2 River Kymi

Prediction method

Flow velocity, water level and the transport of contaminated sediments and PCDD/F

compounds along the 130 km stretch of the River Kymi were calculated using a one-

dimensional (1-D) river model (Figure 4.6). The model was also used to calculate

time series and longitudinal profiles for suspended solids and PCDD/F concentra-

tions in the river water and bottom sediment. The resulting model was then applied

for the evaluation of the impact of dredging on the transport of PCDD/F compounds

downstream in the river and into the Gulf of Finland.

In the 1-D unsteady river flow model, the full de Saint Venant equations were solved

numerically with a double-sweep finite difference method in which Verwey’s variant

of the Preissmann implicit discretization scheme was used (Cunge et al., 1980).

The resistance term was calculated using the Manning approach, with the Manning

number taken as an empirical constant (Cunge et al., 1980). The 1-D sediment
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Figure 4.6: Decision variables, prediction methods and predictions for water qual-
ity management in the River Kymi.

and contaminant transport model was used to calculate the convection, dispersion,

sedimentation and erosion of suspended solids and PCDD/F with unsteady flow

(Cunge et al., 1980), and the model was linked to the flow model. The sedimentation

rate of suspended solids in the river water and rate of erosion of the bottom sediments

were calculated as functions of shear stress. The bottom sediment was divided into

4 layers with differing consolidation times, and the values for these constants were

selected according to the sediment properties analysed. PCDD/F compounds were

assumed to migrate adsorbed to particulate matter.

Model calibration and prediction

A large amount of information was collected and assimilated into the 1-D hydraulic

river model. The settling velocity of suspended solids ws was calibrated with ob-

servations from 1980 to 1996, and the calculated PCDD/F concentrations in the

river and the PCDD/F concentrations analyzed in the sediment trap samples in

1997 were compared (Figure 4.7) in order to validate the model. The model approx-
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imated the main features of PCDD/F transport successfully but somewhat over

predicted PCDD/F concentrations in the sediments at the downstream end of the

river.
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Figure 4.7: Model verification. Calculated PCDD/F concentrations in suspended
solids in the river water, and concentrations observed in sediment traps in 1997.

The effects of the dredging and removal of contaminated sediments at Kuusankoski

over the period 2000-2020 were examined based on two responses: the immediate

increase in suspended solids and PCDD/F concentrations in the water caused by

dredging in 2005 and the subsequent decrease. It was assumed that the most con-

taminated sediments (140 000 m3) between Kuusankoski and Keltti (Figure 2.2)

would be removed by dredging during a half-year period. Based on earlier experi-

ence, from 1% to 10% of the sediment removed was expected to be resuspended in
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the river water. The PCDD/F concentration in the dredged and resuspended bot-

tom sediment was 40 400 ng g−1 (140 ng I-TEQ g−1). In this case PCDD/F loading

would be about 300 kg. The model predicted that the simulated restoration dredg-

ing would cause a sudden increase in PCDD/F concentrations in the river unless

implemented carefully (Figure 4.8), but that concentrations would soon decrease to

a significantly lower level than before dredging. The estimated sensitivity of the

model to sediment parameters within the specified ranges did not indicate high risk

of the spreading of PCDD/F compounds.
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Figure 4.8: Calculated PCDD/F concentrations [ng g−1] in suspended solids in
the upper (Keltti) and lower (Tammijärvi) river stretches of the River Kymi before,
during (days 534–713) and after dredging, on the assumption that 10 % (a) or 1%
(b) of the dredged sediment would be resuspended in the river water.
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4.5.3 Lake Tuusulanjärvi

Prediction method

In standard lake aeration planning techniques, the average winter respiration rate

in the lake is typically estimated with linear regression, where the y variable is

the dissolved oxygen content of the water body [mg m−2] and the x variable the

time after the beginning of the ice-cover period [d]. The slope of the regression

line represents the respiration rate [mg m−2 d−1] (Lorenzen and Fast, 1977). In

this study, a dynamic ordinary differential equation was formulated (Figure 4.9)

that consisted of respiration and the oxygen flux of the aerator. The temperature

dependence of the respiration was calculated according to the Arrhenius formulation

(Bowie et al., 1985). The dissolved oxygen concentration was the average vertical

concentration in the area of aerator impact (1 km2, Fig. 2.3). Due to the fact that the

biological oxygen demand (BOD) was below the detection limit in winter periods, it

was not included in the model. A similar formulation has been used for modelling

estuarine and coastal oxygen dynamics (Borsuk, 2001; Borsuk et al., 2001).

The respiration model for Lake Tuusulanjärvi included 31 respiration rate param-

eters, one for each winter period, and 31 initial dissolved oxygen concentrations.

The temperature dependence constant θ was assumed to be independent of time,

and thus added only one parameter. The error in the x variables approach for the

dissolved oxygen feed term introduced five more parameters. Together with the

unknown observation error σ2, the total number of parameters totalled 69.

Prior distributions

To fit the respiration models using Bayesian inference and MCMC methods, a prior

distribution was specified for the parameters.
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Figure 4.9: Decision variables, prediction methods and predictions for water qual-
ity management in Lake Tuusulanjärvi.

Non-informative prior distributions were used to explore the posterior distributions

for the total respiration rate constants (one for each winter period) without any

prior constraints (other than positivity). The proper prior distribution for the

temperature dependence parameter θ was acquired from a laboratory experiment

(Lehtoranta and Malve, 2001). The distribution suggested by the experiment was

Gaussian N(1.45, 0.4). A non-informative conjugate prior distribution was used for

the unknown variance σ2 in the observation error ε.

The term feed
vol

in the model corresponds to the amount of fresh oxygen feed dissolved

in the lake water. The feed estimated by the manufacturer and the volume of

aerator impact are also subject to some uncertainty. Gaussian prior distributions

were assigned for the oxygen feed in the five periods.
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Model fitting and posterior predictive inference

The estimation of the long-term evolution of lake winter respiration and the predic-

tion of the lake oxygen regime in future winters were used as examples of how uncer-

tainties can be taken into account and predictions can be updated using Bayesian

inference and MCMC sampling.

The benefits of Bayesian estimation were that it was possible to pool information

from different sources (laboratory experiments and lake data) and to quantify the

uncertainties with a full statistical approach using prior and posterior distributions.

The future winters can be predicted with posterior information derived from past

observations and the prior distribution. This allowed the oxygenation efficiency, for

example, to be designed and controlled in order to ensure a target dissolved oxygen

concentration with a given margin of safety.

The unidentifiability of the model parameters could prevent separation of their ef-

fects, but it will not hinder prediction. This is due to the Bayesian computations,

which take the full multidimensional distributions of the parameters into account

without resorting to linearizations or other approximations.

This simple model with a separate rate parameter k estimated for each year gave

very good agreement with the winter observations (Figure 4.10) and allowed changes

in respiration (Figure 4.11) and the effect of the external oxygen feed to be studied

over the years.

Prior distributions for the rate parameter k, the initial O2 concentration and the

feed term can be created by pooling the posterior distributions from the past years,

whereupon these prior distributions can be used to compute the predictive O2 con-

centration and its prediction interval. As soon as the first observation for a winter

was received, a new model with the information from the previous years as its prior
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Figure 4.11: The smoothed rate constant k with two levels of smoothing. The
upper plot with the lowest parameter h = 0.2 corresponds to about a 6-year trend,
and the lower one with h = 0.4 to about a 12-year trend. The grey levels give 50%,
90% and 95% limits for the posterior distribution.

data was fitted and new posterior predictions were computed. The model and pre-

dictions were updated recursively with new observations (Figure 4.12).

The probability of the dissolved oxygen concentration falling below 4 mg l−1 was

computed by predicting the concentration at the end of the ice-covered period (Fig-

ure 4.13). The empirical distribution of the length of the winter was derived from

the observed lengths of the past winters.

Predictive distributions for the fresh oxygen feed needed as a function of the length

of the winter (Figure 4.13) could be simulated with the Monte Carlo method. This

enabled the predictions to be used for optimization and real-time process control of

the aerators.
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Figure 4.12: Predicting dissolved oxygen during new winter in Lake Tuusulanjärvi.
The four plots in the upper part show how prediction limits for the concentration
decrease as more data become available. The lower plot shows how the posterior
distribution of parameter k becomes more accurate as more data become available.
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Figure 4.13: Predicting dissolved oxygen concentration in Lake Tuusulanjärvi dur-
ing a new winter. The first plot on the left shows predictive posterior distributions
for the amount of oxygen in the water at the end of winter. The four distributions
correspond to the four observations in Fig. 4.12. The middle plot shows the proba-
bility of the concentration falling below 4 mg l−1 after the second concentration has
been observed. The plot on the right shows how the estimated fresh oxygen feed
that would be needed to keep the amount of oxygen above 4 mg l−1 depends on the
length of the winter after the second observation.
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4.5.4 Lake Pyhäjärvi in Säkylä

Prediction method

The model used for the phytoplankton dynamics in Lake Pyhäjärvi was relatively

standard in specification. According to earlier trophic correlation analyses (Sarvala

et al., 1998; Helminen and Sarvala, 1997), the variation in summer phytoplank-

ton biomass in Lake Pyhäjärvi is regulated both by bottom-up (total phosphorus)

and top-down (planktivorous fish and zooplankton) forces. A strong year-class of

age-0+ vendace will depress the total zooplankton biomass, which in turn will re-

duce the grazing pressure from zooplankton, allowing an increase in phytoplankton

biomass (Helminen and Sarvala, 1997). Based on these assumptions, phytoplank-

ton was modelled with first-order reaction terms for growth, respiration, settling

and death by predation (Figure 4.14). The growth rate coefficient varied in re-

sponse to temperature, nutrients and light, and the non-predatory loss rate was also

temperature-dependent. Temperature dependence was expressed in an exponential

form, as commonly used in surface water quality modelling (Bowie et al., 1985).

The Michaelis–Menten equation was used to calculate growth limitation by total

phosphorus and total nitrogen. Grazing by crustaceans was taken to be a product of

the zooplankton filtration rate, crustacean zooplankton and phytoplankton biomass

concentrations (Bowie et al., 1985). Temperature and half-saturation effects were

omitted.

The growth and decay mechanisms were integrated into a minimal mass-balance

equation for the wet weight concentration of algae Ai. Spatial variations were aver-

aged out, and the lake was modelled as a continuously stirred tank reactor (CSTR).

The use of this kind of model was supported by the earlier analyses of trophic inter-

actions in this lake carried out by Sarvala et al. (1998). Phytoplankton was divided

into three dominant groups, Diatomophyceae, Chrysophyceae and nitrogen-fixing
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Figure 4.14: Decision variables, prediction methods and predictions for water
quality management in Lake Pyhäjärvi in Säkylä.

Cyanobacteria, and an inhomogeneous group consisting of minor species.

While mechanistic water quality models tend to be overparametrized with respect

to available data, the number of parameters in our water quality model was reduced.

Still, there were 10 parameters to be estimated for each of the groups, in addition

to which the noisy measurements of the initial spring values for each algal group in

each of the eight periods were treated as unknowns. Thus, a total of 72 unknowns

had to be estimated. Many of the parameters were clearly correlated, and both the

control variables and the response data had high noise levels. It was obviously not

possible to estimate the parameter values accurately in such a situation.
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Prior distributions

Non–informative prior distributions with positivity constraints only were used for

the maximum growth rates μi, the non-predatory loss rates σi and zooplankton

filtration rate pi. In addition, Gaussian prior distributions with additional positivity

constraints were used for the half-saturation parameters and for the temperature

coefficients θi based on the rather wide ranges presented in the literature (Bowie

et al., 1985).

The model error εi was assumed to follow a Gaussian distribution with unknown

variance, for which a standard non-informative conjugate prior distribution defined

by an inverse gamma distribution was used. Separate error variances were estimated

for each of the four algal groups.

Model fitting and posterior predictive inference

The parameters were estimated using eight years of water quality and hydrology

observations (Figure 4.15). The parameters corresponding to Cyanobacteria (group

3) differed most clearly from the prior distributions, as these were better identified

and had smaller standard deviations.

The model fits the rather noisy data relatively well, although not perfectly (Fig-

ure 4.15), and the predictive intervals for the observations cover the data reason-

ably well. The same set of parameters was used to model each of the eight years.

The cyanobacterial blooms were predicted by the model in every year in which they

were actually observed. It should be noted that the predictive intervals of the fitted

model were far narrower than those of the observations.

Validation with data from five later years (Figures 4.16 and 4.17) revealed error in
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the mechanistic model, since the predicted Cyanobacteria biomass in 2000 was very

low compared with the observed value. Interestingly, a linear regression model for

Cyanobacteria fitted to the observation for that year quite well (Figure 4.18). The

data were averaged yearly and centred.
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Figure 4.16: Validation of the phytoplankton model. Observed and calculated
Cyanobacteria biomass in 1992–2004. Validation period 2000–2004.

The effects of zooplankton (Z), total phosphorus Ptot and water temperature on the

mean nitrogen-fixing Cyanobacteria wet biomass concentration (A3) during the late

summer period (July 26 – September 15), were simulated using the phytoplankton

model, the estimated parameters and varying control variable profiles. The simula-

tions were performed on a grid of varying Ptot, Z and temp profiles and repeated

with model parameters sampled from their posterior distributions and the obser-

vations sampled from their estimated distributions. The effects of biomanipulation

and nutrient reduction were visualized on separate 3-dimensional probability sur-

faces for the different temperature profiles with averages of the Ptot and Z profiles

on the x and y axes. The probability of exceeding the predefined water quality

criteria for the mean late summer Cyanobacteria concentration (0.86 mg l−1) were

plotted as a response surface (Figure 4.19).

By combining the information contained in the surfaces of Figure 4.19, a more

compact representation was plotted (Figure 4.20) that can be used to evaluate the

limits on total phosphorus (upper limit) and zooplankton conditions (lower limit) in

different mean temperatures for the attainment of the chosen water quality criteria
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Figure 4.17: Observed control variable values in Lake Pyhäjärvi for calibration
(1992-1999) and validation (2000-2004) of the phytoplankton model.

with a 95% probability. The calculated limits indicated that more zooplankton is

needed to compensate for the effects of increasing temperature and total phosphorus

and to fulfil the Cyanobacteria criteria laid down here. Within the observed range,

total phosphorus had a marginal effect on Cyanobacteria compared with grazing

by zooplankton, although the phosphorus effect increased slightly with temperature

(Figure 4.20). These results agreed with the more qualitative results of Sarvala et al.

(1998), where increased Z (due to the removal of planktivorous fish) was also seen

to be more effective than a reduction in total phosphorus.
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Figure 4.18: Calibration (1992-1999) and validation (2000-2004) of two optional
Cyanobacteria models. Model 1 fitted best with the yearly averaged and centred
data. Model 2 was designed for lake management. Variables: Cyanob - biomass of
nitrogen-fixing Cyanobacteria [mg l−1], Plank - planktivorous fish [kg ha−1], Crust
- herbivore zooplankton [mg l−1], Pload - total phosphorus load [kg d−1], and TN -
total nitrogen concentration [μg l−1].
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Figure 4.19: Probability of the summer mean Cyanobacteria level being greater
than 0.86 mg l−1. Ptot - total phosphorus concentration [μg l−1], temp - water
temperature [Co], and Z - grazing zooplankton biomass concentration [μgC l−1].
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Figure 4.20: Control variable limits on exceeding a summer mean Cyanobacteria
concentration of 0.86 mg l−1 with 0.05 probability. Each line denotes a different
mean temperature profile. Ptot - total phosphorus concentration [μg l−1] and Z -
grazing zooplankton biomass concentration [μgC l−1].
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Integration of lake and catchment models

Later on, Bayesian inference and MCMC methods were applied to the total phos-

phorus and nitrogen models for Lake Pyhäjärvi, and the fitted model was combined

with the phytoplankton model and a non-point load model that simulated the influ-

ences of buffer strip width, wetland percentage and forestation on total phosphorus

leaching from the catchment area into the lake (Saloranta et al., 2004).

The estimated posterior parameter distributions in the nutrient models closely cor-

related and the credible intervals of the predictions were quite high (Figure 4.21).

The phosphorus model fitted to the data better than did the nitrogen model.

Monte Carlo simulation was performed on the estimated parameter distributions

and observed distributions of the control variables (wind velocity, discharge, total

phosphorus and total nitrogen loading, water temperature and global irradiance)

in order to estimate the impacts of nutrient loads and fisheries management on the

probability of a mass occurrence of Cyanobacteria, the random variability caused by

parameter uncertainty and the natural variability in the controlling variables. The

resulting model was used to predict the consequences of fisheries management and

a reduction in loading and to find an optimal combination of these measures with

respect to the given target summer maximum Cyanobacteria biomass.

To incorporate natural variability into the predictions, samples of control variables

were taken from observed 30-year time series using the bootstrap method, adding

some artificial variability to the observed fluctuation in nutrient loadings and graz-

ing zooplankton biomass in order to extrapolate their impact on the probability of

a mass occurrence of Cyanobacteria. This extra variability was obtained by mul-

tiplying the loadings and zooplankton biomass by random variables sampled from

the uniform distributions [0.5 1.5] and [0.1 2.0] respectively. In each simulation the

model was first run to cover 20 years, in order to reach an equilibrium between
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Figure 4.21: Observed and fitted nutrient concentrations [μg l−1] and loads
[kg d−1] in Lake Pyhäjärvi in 1980-2001. Total phosphorus is in the upper plot
and total nitrogen in the lower one. The nutrient models were fitted using Bayesian
inference and MCMC methods. The darker grey area corresponds to the 95 % predic-
tive limits of the fitted model, the solid line denotes the median algae concentration,
and the lighter grey area gives the 95 % prediction limits for the observations.

nutrient load and lake concentrations, and was then continued for 10 more years to

give a sample of predictive variables (nutrient concentrations and algal biomass).

The MC sample was used to calculate a density estimate for mean total phosphorus

and maximum summer Cyanobacteria biomass conditioned on a set of total phos-

phorus loading and zooplankton biomass (summer maximum) ranges. The levels of

external phosphorus loading and zooplankton biomass that could attain the target

summer maximum Cyanobacteria biomass with the given margin of safety (90 %

percentile in this example ) were then estimated on the basis of these calculations.
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It is also easy to calculate all the necessary percentiles for average total phospho-

rus concentrations and summer maximum Cyanobacteria biomasses as a function of

the MC-sampled combinations of these parameters (Figure 4.22). Such results can

be used to find the optimal combination of TotP load reduction and zooplankton

biomass with the given range of certainty.

Figure 4.22: Estimated total phosphorus and summer maximum Cyanobacteria
biomass percentiles (10% – 90%) as a function of total phosphorus load and summer
maximum grazing zooplankton biomass. (a) mean total phosphorus percentiles as
a function of total phosphorus load; (b) Max. summer Cyanobacteria biomass as a
function of total phosphorus load (zooplankton biomass summer maximum fixed to
a level of [30 50] mgC l−1; (c) Max. summer Cyanobacteria biomass as a function
of zooplankton biomass (total phosphorus load fixed to the level [30 40] kg d−1);
(d) Summer maximum Cyanobacteria biomass 80 % percentile as a function of total
phosphorus load and summer maximum grazing zooplankton biomass. This response
surface can be used to optimize nutrient load reduction and fisheries management.

In addition, Bayes network software HUGIN (www.hugin.com) was used (Saloranta

et al., 2004) to learn causal relationships and conditional probability tables based

on the Monte Carlo simulations of the lake model and a non-point load model

(Figure 4.23) and to estimate attainment of the designated water quality criterion

(Cyanobacteria summer maximum biomass < 0.86 mg l−1) with a set of designed
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Figure 4.23: Impact diagram for management decisions in Lake Pyhäjärvi. This
diagram combines the lake and catchment nutrient transport models and can be
used to estimate statistical relationships with respect to the most important deci-
sion variables (rectangles) and their expected utilities (parallelogram) in terms of
attainment or non-attainment of the water quality criterion (Cyanobacteria < 0.86
mg l−1).

management options: buffer strip width, wetland percentage, forestation percentage

and planktivorous fish management. The management options were implemented

by means of decision nodes and attainment of the water quality goal with a discrete

change node and a utility node that relates a certain value to each of the states

of the parent nodes, in this case 1 for attainment and 0 for non-attainment of the

water quality goal.

The Bayes network, decision nodes and utility nodes together formed an impact
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diagram which could be used to study management decisions and their expected

utilities in terms of Cyanobacteria summer maximum biomass and attainment of the

water quality criterion (Cyanobacteria < 0.86 mg l−1, Figure 4.23). The postulated

fisheries management scenario (catch of fish 6-12 kg ha−1) combined with moderate

catchment measures yielded a high probability (0.779) of attaining the water quality

criterion.
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4.5.5 Finnish lakes

Prediction method

The predictive model for lake chlorophyll a (chla) concentrations was constructed

on the assumption that the parameters for all lakes of the same type are likely to

be similar. Therefore the estimates for these parameters can be expressed in terms

of a common prior distribution. In other words, it was assumed that lake-specific

model parameters are random variables representing a common distribution for the

lake type. Computationally, it is natural to model the data hierarchically. That

is, individual observations of chlorophyll a concentration are made conditional on

lake-specific parameter values, which are in turn conditional on lake-type-specific

parameters, which again are conditional on a parameter distribution for all lakes in

Finland (Figure 4.24). Details of the Bayesian hierarchical modelling approach can

be found in Gelman and Hill (2006). Qian et al. (2004) indicated that the use of a

hierarchical modelling approach to pool data from different sources often results in

reduced model uncertainty and improved accuracy in the parameters estimated.

The hierarchical linear model for chlorophyll a may be summarized as follows:

log(yijk) ∼ N(Xβij, τ
2)

Xβij = β0,ij + β1,ij × log(TPijk) + β2,ij × log(TNijk) +

+ β3,ij × log(TPijk) × log(TNijk)

βij ∼ N(βi, σ
2
i )

βi ∼ N(β, σ2) (4.4)

where log(yijk) is the kth observed log(Chla) value from lake j of type i, X is the

matrix containing the observed total phosphorus (TP) and total nitrogen (TN)
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Figure 4.24: Decision variables, prediction methods and predictions for water
quality management in Finnish lakes.

values from lake j of type i, βij = [β0,ij, β1,ij, β2,ij, β3,ij] is the lake-specific model

parameter vector which consists of the intercept (β0,ij) and slopes for log(TP) (β1,ij),

log(TN) (β2,ij) and for the combined effect of log(TP) and log(TN) (β3,ij), τ 2 is

the model error variance, βi = [β0,i, β1,i, β2,i, β3,i] is a vector of the model parameter

means for lake type i, σ2
i =

[
σ2

0,i, σ
2
1,i, σ

2
2,i, σ

2
3,i

]
is a vector of variances in model

parameters between lakes of type i, and β = [β0, β1, β2, β3] and σ2 = [σ2
0, σ

2
1, σ

2
2, σ

2
3]

are the means and variance for lake types. Note that the hierarchical notation in

equations 1-4 indicates conditional distributions, i.e. yijk is normally distributed

conditionally on Xβij and τ 2, βij is normally distributed conditionally on βi, σ
2
i , and

βi is normally distributed conditionally on β, σ2. The interaction term was added

to the model to account for the non-additive effects of total phosphorus and total

nitrogen.

The Markov chain Monte Carlo simulation (MCMC) method Gilks et al. (2001) was
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used for estimating the distribution parameters simultaneously by sampling them

from their joint posterior distribution.

Prior distributions

The non-informative prior distributions of β, τ, σi and σ were:

β ∼ N(0, 10000)

σi, σ, τ ∼ U(0, 100) (4.5)

where N(0, 10000) is the normal distribution of β with mean 0 and variance 10,000

and U(0, 100) is the uniform distribution of σi, σ and τ with lower (0) and upper (100)

limits. The prior distributions for σi, σ, τi and β are considered non-informative

or vague. The width of the 95% credible interval for the prior distribution of β is

approximately ±200, i.e. it is practically flat in the region of interest. The stan-

dard non-informative prior distribution for a variance parameter is p(σ2) ∝ 1/σ2,

which arises from assuming that the log of the variance parameter has a uniform

distribution on (−∞, +∞). This prior distribution is improper, which could lead to

an improper posterior distribution. Instead, we used a uniform distribution for the

standard deviation, as suggested by Gelman et al. (2005).

Model fitting and posterior predictive inference

The hierarchical chlorophyll a model was compared with the non-hierarchical type

of specific dummy variable model and with the linear lake-specific model. Fits for

four selected lakes were computed to illustrate the differences between the models
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and to show the effect of the sample size on fit and on the credible interval of the

prediction. The selected lakes were Lake Onkilampi - (shallow humic lake, type 8),

Lake Nurmijärvi (large non-humic lake, type 1), Lake Kuhajärvi - (shallow non-

humic lake, type 7) and Lake Päijänne - (large humic lake, type 2). The numbers of

observations for each lake were three, seven, 22 and 265 respectively. The compar-

ison was in general overwhelmingly in favour of the hierarchical model rather than

the non-hierarchical, type-specific model. The median Chlorophyll a concentrations

predicted using the hierarchical model were usually closer to the observed Chloro-

phyll a values than were the means predicted using the non-hierarchical dummy

variable model (Figure 4.25), suggesting that the hierarchical model fits the data

far better. This was also indicated by the R2 which was greater for the hierarchical

model, while the deviance and DIC of the hierarchical model were smaller than that

for the non-hierarchical dummy variable model, indicating that the increased num-

ber of parameters in the former was more than compensated for by the improved

fit.

When using the non hierarchical lake type–specific dummy variable model, all the

lakes within one type were treated as the same and their individual observations were

pooled. This model represented a weighted average with the weights proportional

to the sample size for each lake, i.e. it was weighted heavily in favor of lakes with

larger sample sizes. Consequently, the resulting model may be grossly biased as far

as lakes with small sample sizes are concerned. This feature was clearly illustrated

in the four selected lakes (Figure 4.25), where the hierarchical model treated those

of the same type as exchangeable and fitted lake-specific parameters for them, but

these parameters were assumed to come from the same prior distributions, thereby

pooling the information from similar lakes. This pooling of information reduced the

bias at the lake level and reduced the error variance as well.

The lake-specific non–hierarchical linear models were fitted using only data for a

specific lake. Despite the better fit of the non-hierarchical lake-specific model relative



92

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

0 1 2 3 4 5

0
1

2
3

4
5

P
re

d
lo

g
(C

h
la

)

Obs log(Chla)

Figure 4.25: Fit plot. 10 %, 50 % (circle) and 90 % percentiles of predicted
Chlorophyll a concentration [μg l−1] as a function of the observed value for four
selected lakes: a. Lake Onkilampi – (shallow humic lake, type 8), b. Lake Nurmijärvi
(large non-humic lake, type 1), c. Lake Kuhajärvi – (shallow non-humic lake, type
7) and d. Lake Päijänne -(large humic lake, type 2). The line at a 45◦ angle is the
1–1 line (perfect fit). Percentiles were calculated with the lake type-specific non-
hierarchical model(type), the hierarchical linear model (hier) and the lake-specific
non-hierarchical model (lake). 10 % and 90 % percentiles are connected with vertical
lines (linear – grey, solid line).
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to its counterparts, its error variance tended to be large when the sample size was

small but decreased as the sample size increased (Figure 4.25).

Lake-specific 80% percentile contour lines for Lake Päijänne (large humic lake, type

2) simulated with the hierarchical model (Figure 4.26) revealed the usefulness of

posterior simulations for water quality management. The simulations were confined

to the observational ranges of total phosphorus and total nitrogen in large humic

lakes (type 2, TP: 2–160, TN: 31–4400), which are below the lake-specific maximum

values (TP: 150, TN: 2000). The simulation in Figure 4.26 included total nitrogen

values outside the lake-specific observational ranges (TP: 6–150, TN: 300–2000),

but extrapolation was reasonable in this hierarchical setting due to the pooling

of information within and among the lake types. This was a distinct advantage

compared with the non-hierarchical lake model, which can predict only within lake-

specific observational ranges. This range can be limited for lakes with only a few

observations. The contour lines for Lake Päijänne were parallel to the y-axis in the

observational range, showing clear total phosphorus limitation of Chlorophyll a with

this range. On the other hand, total nitrogen limitation seemed to prevail near the

low total nitrogen boundary and in the high total phosphorus range. A lake manager

would be able to read off from figures similar to Figure 4.26 nutrient concentrations

that comply with Chlorophyll a standards with a given credible interval.

The effects of total phosphorus and total nitrogen were also illustrated in the pre-

dictive plots (Figure 4.27)). The simulated Chlorophyll a increased with total phos-

phorus, but not very much with total nitrogen. The 10%–90% percentile predictive

intervals seemed rather wide at first glance, but they were designated as credible

for individual observations, since the credible interval is always wider than the com-

monly presented fitted confidence interval for the mean. The predictive distribution

is directly related to the process of lake eutrophication assessment, while the fitted

mean is not.
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As the co-linearity of total phosphorus and total nitrogen makes it difficult to de-

termine their effects on Chlorophyll a from the estimated slopes alone, posterior

simulations for the Lake Päijänne (large humic lake, type 2)(Figure 4.26 & 4.27)

were calculated. These showed very clear total phosphorus limitation within the

observational range, indicating accurate separation of the effects despite the high

correlation (0.7) between the coefficients β1 and β2. The co-linearity was not trans-

ferred to the predictions.
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Figure 4.26: 80 % percentile contour lines for predicted Chlorophyll a concen-
trations in Lake Päijänne (large humic lake, type 2) at 15, 30, 60, 120 μg l−1 as
a function of observed total phosphorus and total nitrogen concentrations [μg l−1].
The predictions were simulated with the hierarchical linear model. Numbers are
observed Chlorophyll a concentrations [μg l−1].
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Figure 4.27: Predicted chlorophyll a concentration [μg l−1] as a function of total
phosphorus and total nitrogen concentration [μg l−1] for Lake Päijänne (large humic
lake, type 2), predicted with the hierarchical linear model. (50 % percentile - dotted
line and 10 % – 90 % percentile credible interval – solid lines.) Total nitrogen is
kept constant (50% percentile) while total phosphorus is varied within the observed
range, and vice versa.
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5 Attainment of prediction objectives

5.1 Case–specific objectives

The objectives of prediction differed greatly between the cases studied here (Ta-

ble 5.1). The aim at first was to predict water quality responses to reductions in

pollutant loading and to plan management actions as efficiently and realistically as

possible. Later on, Bayesian inference and MCMC methods were adopted for esti-

mating prediction errors without linearization (Figure 1.2) typical of classical least-

square methods. The small size of the water quality samples in the lake monitoring

data available suggested that complex mechanistic models would prove inefficient

for practical river basin management purpose despite the ease of applying MCMC

methods, and therefore Bayesian inference and MCMC methods were applied only

to the water quality submodels at first. Later on, the nutrient model was fitted to

data from Lake Pyhäjärvi by Bayesian methods, and was combined with the phy-

toplankton model to predict Cyanobacteria biomass as a function of nutrient load.

A hierarchical chlorophyll a model for the Finnish lakes was developed in order to

meet the need for a simple and efficient prediction method for use in river basin

management.

5.2 Efficiency in river basin management

The applications of the prediction methods developed here will be evaluated in the

following paragraphs on the basis of the case studies and the criteria for predictive

scientific theories as summed up by Peters (1991). The selected criteria highlight

the efficiency and predictive power of a scientific theory and reject exhaustive causal

explanation of the natural processes involved as an objective for useful scientific
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Table 5.1: Attainment of case-specific prediction objectives

Case Objective

Lappajärvi – Calculation of target phosphorus load

given a chlorophyll a standard

– Setting up a criteria for restoration

dredging

Kymijoki – Prediction of dioxin migration during

and after the planned restoration dredg-

ing

Tuusulanjärvi – Adaptive, real time control of artificial

oxygenation efficiency given a dissolved

oxygen standard and a acceptable prob-

ability of exceeding it

– Pooling of cross-sectional information

– Realistic error estimation

Pyhäjärvi – Posterior predictive inference of target

nutrient concentration and zooplankton

biomass given a algae biomass standard

and a acceptable probability of exceeding

it

– Pooling of cross-sectional information

– Realistic error estimation

Finnish lakes – Posterior predictive inference of target

phosphorus loading given a chlorophyll a

standard and a acceptable probability of

exceeding it

– Pooling of cross-sectional information

– Realistic error estimation
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theories. It was assumed that water quality prediction is ideally based on such

theories. The criteria of Peters (1991) were:

• Relevance - focus on the management question in hand.

• Practicability - direct applicability to decision making.

• Generality - a small number of loose preconditions and applicability across a

greater range of predictor variables.

• Efficiency of effort - amount of information obtained with the least effort.

Effort is the cost required to perform the measurements and make and apply

the predictions.

• Heuristic power - capability for inspiring debate on management options.

• Quantification - ease of deciding the accuracy and precision of the predictions.

• Accuracy - similarity between predicted and measured mean values.

• Precision - narrowness of the confidence interval (credible interval in Bayesian

terms).

• Immediacy - a small number of intermediates necessary for relevant predic-

tion.

• Simplicity - minimization of mathematical treatment and structure.

The successes and failures of the predictions in the five management cases studied

here were evaluated according to the preceding criteria (Table 5.2). The majority

of the predictions did indeed focus on management questions (relevance), but the

chlorophyll a prediction failed in this respect because the link between nutrient

concentrations and nutrient loads that would have been needed for targeting nutrient

load reduction in Finnish lakes was lacking.
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The direct applicability of the mechanistic prediction models for Lake Lappajärvi

and the River Kymi to decision making (practicability) was limited by the lack of

proper error estimates. Sensitivity analysis was used as a surrogate to rule out the

risk of the migration of dioxin in the case of restoration dredging. The other predic-

tions entailed comprehensive and realistic error estimates, but the applicability of

the predictions for Finnish lakes was limited for the same reasons as their relevance.

A small number of loose preconditions and their applicability over greater ranges of

the predictor variables (generality) were distinctive in the case of oxygen prediction

in Lake Tuuslanjärvi and chlorophyll a prediction in the Finnish lakes. The other

predictions were derived from a number of initial and boundary conditions and

parameter values.

The highest amount of information for the least observational and computational

cost (efficiency) was obtained using the simple prediction models for Lake Tuusu-

lanjärvi, Lake Pyhäjärvi and the Finnish lakes, whereas the complex mechanistic

models yielded information but at a substantial computational cost.

The capability for inspiring debate on management options (heuristic) was accept-

able in the case of all the predictions, though the complexity of the mechanistic

models for Lake Lappajärvi and the River Kymi made it hard for non-specialists to

track the entire causal chain.

The accuracy (similarity between predicted and observed values) of all the predic-

tions was reasonable, but precision (narrowness of the credible interval) was not

estimated for the mechanistic models for Lake Lappajärvi and the River Kymi, so

that the quantification of predictions could be said to have been insufficient. In

contrast, the precision of the phytoplankton predictions for Lake Pyhäjärvi and the

chlorophyll a predictions for the Finnish lakes was low, but the most important

thing was that it was estimated realistically.
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The criteria of immediacy (a small number of intermediates necessary for relevant

prediction) and simplicity (minimization of mathematical treatment and causal de-

duction) were well implemented in the simple predictions for Lake Tuusulanjärvi,

Lake Pyhäjärvi and the Finnish lakes, whereas the complex causal models for Lake

Lappajärvi and the River Kymi included many intermediary variables and processes.

The predictions for Lake Lappajärvi and the River Kymi had the lowest sum of scores

(Table 5.2), but the simulation ofthe mass and energy balances and the large amount

of information included in them were of relevance for river basin management. By

contrast, the simple models for Lake Tuusulanjärvi, Lake Pyhäjärvi and the Finnish

lakes together with the Bayesian inference and MCMC sampling methods resulted in

better scores. In the end, the criteria for predictive scientific theories proved to be a

useful guide for the development of prediction methods for river basin management.
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Table 5.2: General efficiency of predictions. Scores (1 = success, 0 = fail) are
assigned for the selected criteria of predictive scientific theories (Peters, 1991).

Characteristic Value

Lappajärvi River Kymi Tuusulanjärvi Pyhäjärvi Finnish lakes

Pred. variable Chla Dioxin O2 Algae Chla

Stat. inference - - MCMC MCMC MCMC

Number of 53 33 4/year 11/species 4/lake

pararam. (69) (72) (9206)

Number of 11 4 1 4 1

variables

Number of 8 7 2 6 2

factors

Criterion

Relevance 1 1 1 1 0

Practicability 0 0 1 1 0

Generality 0 0 1 0 1

Efficiency 0 0 1 1 1

Heuristic 1 1 1 1 1

Quantification 0 0 1 1 1

Accuracy 1 1 1 1 1

Precision - - 1 0 0

Immediacy 0 0 1 1 1

Simplicity 0 0 1 1 1

Sum 3 3 10 8 7
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6 Discussion

6.1 Significance of the developed prediction methods

Implementation of the EU Water Framework Directive has initiated unparalleled

administrative preparations for restoring surface waters to a good ecological status.

Legislative demands for the sustainable use of surface waters have increased, river

basin planning as adopted in Finland according to the EU Water Framework Direc-

tive has altered the objectives and implementation of water quality management,

and new pollutant load controls that achieve the enhanced standards have had to

be planned, approved, executed and updated every six years in the catchment areas

of hundreds of lakes and rivers.

On the other hand, the efficiency of water quality predictions representing different

levels of mechanistic and statistical sophistication has not been examined system-

atically before, and water quality predictions using Bayesian posterior predictive

inference and MCMC methods have rarely been implemented in river basin plan-

ning or decision making (Adams, 1998). From now on, these prediction methods can

be applied to river basin planning with a better knowledge of their capacity and lim-

its. The MCMC methods that were used for the posterior simulation of predictive

distributions will be particularly useful in the adaptive management suggested for

the implementation of the EU Water Framework Directive (Saloranta et al., 2003),

providing updated predictions that are directly applicable to the adaptation of river

basin management plans and decisions.
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6.2 Benefits and limitations

Large predictive errors make river basin planning and decision making difficult for

without efficient prediction methods the risks remain beyond control and wrong

decisions may be made (NRC, 2001). The Bayesian posterior predictive inference

methods tested here enabled the prediction errors to be estimated more realistically

than with classical least-square methods and first-order error analysis.

Longitudinal (lake-specific) water quality predictions and river basin management

decisions are often based on either cross-sectional (observations from many lakes)

or longitudinal (observations from one lake) monitoring data, with the result that

they tend to be inaccurate or imprecise (wide credible intervals) (Qian et al., 2004).

Bayesian posterior predictive inference and hierarchical linear regression models were

used here as a remedy, to facilitate the pooling of cross-sectional information and

to make the lake-specific predictions more accurate and precise.

Simple statistical prediction is often fast, easy, inexpensive and the most effective

way of determining a predictive relationship (NRC, 2001; Brun et al., 2001; Reichert

and Vanrolleghem, 2001). Predictions made using overparametrized mechanistic

models without realistic error estimates did not score well in the present assessment

of efficiency (Table 5.2), showing their inability to ensure success in management.

The simple statistical predictions scored much better, indicating that complicated

mechanistic prediction methods are unreasonably difficult and expensive to apply.

Model confirmation is a very complicated issue and requires a considerable number

of observations, as it is believed that check runs with data not used in fitting the

model will offer the best means of revealing structural errors and limitations in a

mechanistic model. Besides the huge data requirements, the difficulty of coding,

fitting and validation of mechanistic models reduces the efficiency of mechanistic

modeling approach in a river basin management context. Moreover, measuring
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campaigns need to be comprehensively and well designed in order to provide water

quality predictions that are relevant in river basin management (Kettunen, 1993;

Reichert and Vanrolleghem, 2001; Brun et al., 2001). Unfortunately, a comprehen-

sive validation of mechanistic models is a luxury that is seldom achieved, due to the

overparametrization of models with respect to given data and sample size (NRC,

2001; Reichert and Vanrolleghem, 2001; Brun et al., 2001). In contrast, the compu-

tational cost and data need per lake of analyzing the two thousands Finnish lakes

with a hierarchical regression model was very low. Thus, simple models that are

easily substantiated are preferable as demonstrated here.

The implementation of MCMC runs may be more difficult, as there is always the

question of convergence of the MCMC chain to consider. This question is particu-

larly important when dealing with a model having a large number of parameters.

Parameter correlation and overparametrization increase these problems still further

(Haario et al., 2001, 2004, 2003). Nevertheless, adaptive MCMC methods speeded

up handling of the convergence considerably.
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7 Conclusions

This study provided a new, complete statistical error analysis method for water

quality prediction which facilitates realistic error estimation, the pooling of cross-

sectional information for the purposes of lake or river-specific prediction and the

updating of predictions. As a result, river basin planning can be based on efficient,

flexible and realistic prediction methods.

7.1 Main findings

The main findings were:

• The realistic estimation of error in predictions is a prerequisite for effective

river basin management.

• Realistic error estimates for mechanistic water quality predictions can be

obtained using Bayesian posterior predictive inference and MCMC sampling

methods.

• The accuracy and precision of water quality prediction can be improved us-

ing Bayesian inference and a hierarchical model which pools cross-sectional

information for lake-specific predictions.

• Bayesian inference and MCMC methods are no more difficult to implement

than classical statistical methods. Even models with large numbers of corre-

lated parameters can be fitted using modern computational methods.

• Simple empirical models are efficient for river basin management, indicating

that complex mechanistic models are unreasonably difficult and expensive to

apply.
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7.2 Water quality prediction, monitoring and river basin man-

agement

Guidelines were set up for water quality monitoring, prediction and river basin

management in order to cope with a large number of lakes and rivers using relatively

small sample sizes.

River basin monitoring should be designed statistically using the prediction error

of the water quality model as an objective function. This will maximize the in-

formation value of water quality observations and minimize the prediction error.

In addition, national networks for monitoring diffuse pollutant loads should be es-

tablished instantly in order to meet the pressing needs of river basin management.

Without determined monitoring efforts, water quality predictions will be biased and

river basin management may fail to maintain the sustainable use of water resources.

Prediction is ideally implemented using Bayesian inference, MCMC methods and

a simple hierarchical model. The complexity of existing mechanistic water quality

models should be simplified in order to reduce their computational costs and large

data requirements.

A river basin management decision should be based on a method of statistical in-

ference that takes account of all the prediction errors realistically. This will allow

progress towards the sustainable use and management of river basins to be efficiently

maintained.
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7.3 Continuation of research

The potential of prediction has not yet been fully realized in river basin management.

For example, a prediction model can be used for the statistical design of observations

in order to maximize their information value (Kettunen, 1993). Disregard of this

possibility has resulted in inefficient observations and imprecise predictions. This

feature will be even more important for the updating of river basin plans every six

years. The continuous updating of predictions and river basin plans along with con-

tinuous monitoring constitutes an adaptive management procedure that facilitates

continuous learning and correction of the courses of action adopted on the way to

achieving agreed water quality goals. The statistical design of measurement proto-

cols should be integrated into water quality prediction and management in order to

galvanize the development of adaptive management strategies. The Bayesian poste-

rior predictive inference methods introduced in this study provide new possibilities

for this kind of development – not least for the statistical updating procedure, which

is an intrinsic part of Bayesian inference. The use of simulated response surfaces

should be developed further to allow response surface methods to be applied to river

basin planning and to make good use of past and future monitoring data. The use

of MCMC methods in the present instance was limited to water quality models of a

single water body, but in order to enhance the utility of predictions for river basin

management, their application should now be extended to cover entire river basins

and a wider range of restoration techniques.

The inferential statistics developed in this study help in drawing conclusions and

making predictions on the basis of limited information, but statistical decision mak-

ing can go further. In addition to prediction, it can helps in revising management

actions and monitoring programmes and in choosing among a number of alterna-

tive forms of river basin management. Its full potential (Raiffa and Schlaifer, 2000;

Winkler, 2003) for river basin management remains to be explored.
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Glossary

Bayesian (posterior predictive) inference is a branch of statistical inference

that permits the use of prior knowledge for assessing the probability of model

parameters in the presence of new data. Bayesian inference has been termed

’subjective’ inference, because it allows a certain subjectivity in the selection

of the prior distribution and the prior distribution can greatly affect the

posterior distribution (the results). Bayesian inference is also regarded as a

useful tool for the exploratory analysis of data and as a way of rigorously

comparing sets of assumptions. The use of prior distributions nevertheless

necessarily implies a greater responsibility on the part of the researcher for

ensure that no unintentional biases are introduced into the results through

such prior distributions.

Burn-in is needed in Markov chain Monte Carlo sampling, where the sampled

values are not independent. During a ’burn-in’ period, the Monte Carlo

averages converge towards the target distribution. Samples of parameters

taken after the ’burn-in’ period are used to estimate the posterior distribution.

Ecological status Good ecological status is defined in Annex V of the Water

Framework Directive in terms of the quality of the biological community

and the hydrological and chemical characteristics. As no absolute standards

for biological quality can be set which apply across the Community, due to

ecological variability, only a slight departure from the biological community

which would be expected under conditions of minimal anthropogenic impact

is allowed.

Hierarchical model linear modeling (HLM) also known as multi-level anal-

ysis, is a more advanced form of multiple linear regression. ANOVA with

random effects is a simple example of hierachical linear model. Multilevel

analysis allows variance in outcome variables to be analysed at multiple hier-
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archical levels, whereas in multiple linear regression all effects are modelled

as occurring at a single level. Thus, HLM is appropriate for use with lake

water quality data which are nested within lake types or ecoregions.

MCMC sampling Markov chain Monte Carlo sampling is a stochastic algorithm

for drawing samples from a posterior distribution so as to obtain an estimate

of the distribution. MCMC generetes samples from an unknown probability

distribution that is known up to a normalizing constant. Typical example is

the posterior distributions of model parameters. As the value of the unknown

constant can be given as multidimensional integral, MCMC algorithm can

also be seen as a way to evaluate high dimensional integrals, a task which is

computationally very demanding by any other means.

Mechanistic model is a tool for water quality prediction. Mechanistic models

were first constructed in the 1970’s according to a causal understanding of the

phenomenon concerned and a mathematical process description. They were

sometimes accompanied by least-squares parameter estimates, approximate

first-order error analysis, Monte Carlo analysis or Kalman filtering. The

error term attached to the model was usually neglected in prediction, and

the lack of proper error estimates was compensated for by a comprehensive

mathematical process description.

Model calibration or fitting includes the selection of the model (its functional

form), the estimation of the model parameters as well as the errors, and their

validation. It is a part of the inferential statistics used to model patterns in

data, account for randomness and draw inferences regarding larger popula-

tions. In classical inferential statistics, point estimation involves the use of

sample data to calculate a single value which is to serve as a best guess for

an unknown population parameter. Point estimation should be contrasted

with Bayesian methods of estimation, where the goal is usually to compute

posterior distributions for the parameters and other quantities of interest.

The contrast here is between estimating a single point (point estimation),
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versus estimating a probability density function.

Posterior distribution The posterior probability distribution (or posterior prob-

ability density) is the entity for which an MCMC analysis attempts to obtain

an estimate. The posterior distribution is the probability distribution over

the parameter state space, given the data in the chosen model.

Posterior predictive distribution is a posterior distribution on model predic-

tions given previous observations. It reveals all sources of uncertainty in

water quality prediction and can be simulated using Monte Carlo methods

and based on the MCMC chain of model parameters and on the statistical

distribution of observed control variables.

Posterior simulation entails performing repeated predictions with sampled pa-

rameter values from the posterior distribution and the distributions of mea-

sured environmental conditions. Posterior simulations of the effects of vari-

ous environmental conditions, i.e. the control variables of the lake model, are

valuable in river basin management.

Prediction Predicting a dependent variable using other explanatory descriptors

which can be manipulated experimentally, or which naturally exhibit envi-

ronmental variation. A predictive model is structured according to causal

relationships and process descriptions based on ecological theory and exper-

imental or observational data. In contrast, forecasting a dependent variable

using other explanatory descriptors is solely based on the extrapolation of

ecological structures in space and time and does not have to be based on

any law of nature and may be ecologically meaningless. Forecasting may still

be useful, although prediction is ideally based on causal relationships among

small number of descriptors.

Prior distribution The prior probability distribution is the probability distribu-

tion over the parameter space prior to seeing the data. This represents the

prior assumptions made about the probabilities of different parameter values
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before the data have been analysed. The prior distribution is combined with

the likelihood to yield the posterior distribution.

River basin management A river basin is managed as a natural geographi-

cal and hydrological unit instead of according to administrative or political

boundaries. Under the EU Water Framework Directive a management plan

needs to be established for every river basin and updated every six years.

River basin management plan This is a detailed account of how the objec-

tives set for a river basin (ecological status, quantitative status, chemical

status and protected area objectives) are to be reached within the time scale

required. The plan should include the characteristics of the river basin, a

review of the impact of human activity on the status of the water in the

basin, estimates of the effects of existing legislation, the remaining ”gap” to

be closed in order to meet these objectives; and a set of measures designed

to fill that gap. Public participation is essential, i.e. all interested parties

should be fully involved in the discussion of the cost-effectiveness of the vari-

ous possible measures and in the preparation of the river basin management

plan as a whole.

Sampling is the main function of an MCMC run. An MCMC analysis generates

a series of samples from the posterior distribution. Selection of a suitable

sample for study or the act of measuring are also called sampling.

Statistical model is a parametrized set of probability distributions which can be

used for statistical inference in river basin management.

Target pollutant load is the flux of a polluting substance into a lake or a river

that has a given probability of protecting a selected water quality standard.

It should ideally be estimated using statistically designed observational data,

a water quality model and inferential statistics.

Validation Runs with data that located outside the range of variation of the

calibration data are used to confirm a model and to reveal structural errors
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and limitations in it. In Bayesian analysis, the prior distribution is combined

with data to calculate the posterior distribution, from which inferences about

the parameters are made. The postulated probability model is never expected

to be entirely true but is chosen in the light of the available knowledge and

constructed with the simplest possible structure. It must therefore be tested

at each step in the investigation. Residual quantities are calculated and

sensitivity to prior distributions is tested in order to evaluate the probability

model critically and to suggest modifications.

Water frame work directive ”Directive 2000/60/EC of the European Parlia-

ment and of the Council establishing a framework for Community action in

the field of water policy” or in short, the EU Water Framework Directive

(WFD) was adopted on 23 October 2000, with the following key aims:

• to expand the scope of water protection to all waters, surface waters

and groundwater

• to achieve ”a good status” for all waters by a set deadline

• to implement water management based on river basins

• to introduce a ”combined approach” laying down emission limit values

and quality standards

• to involve citizens more closely

• to streamline the legislation

• to implement river basin management with reasonable costs.

Water quality criteria can be used to define a water quality standard, e.g. for

protection against pollutants with potential ecological effects. Biological cri-

teria, for example, describe the desired aquatic community for a water body

based on the numbers and kinds of organisms expected to be present. Nutri-

ent criteria are used to protect against nutrient over-enrichment and cultural

eutrophication. Sediment criteria describe the conditions necessary in order

to avoid the adverse effects of contaminated sediments.
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Water quality standard form the foundation of water quality-based pollution

control. They define the goals for a water body by designating its uses, setting

criteria for protecting those uses and establishing provisions for protecting it

from pollutants.
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Summary

River basin plans in the member states of the European Union are to be updated

every six years. To complete this enormous task efficiently, accurate and precise

water quality predictions and realistic error estimates have to be employed. These

will provide a better insight into the fate and influence of the pollutants for the

designing, operation and optimization of river basin management.

Water quality prediction has traditionally been based either on mechanistic or statis-

tical prediction models. Mechanistic models stand in for hydraulics, while statistics

are mainly used for biological and chemical processes. The statistical error analysis

applied to the mechanistic models using least-square parameter estimation and first-

order error analysis was only approximative, however, and unrealistic. This meant

that reconciliation of the methodologies was inefficient.

This thesis attempts to estimate the error in water quality predictions realistically

and to unify the mechanistic and statistical prediction methods using Bayesian pos-

terior predictive inference and MCMC sampling methods. By the same token, it

alters the paradigm of prediction and decision making from deterministic to sta-

tistical. These methods proved to be useful in the real time control of artificial

oxygenation devices and thus anticipated the efficiency of such an approach for the

adaptation of river basin plans every six years.

Water quality predictions are usually based either on a longitudinal lake-specific

sample or a cross-sectional sample from many lakes. Existing Finnish lake mon-

itoring data are a mixture of longitudinal and cross-sectional data. Lake-specific

predictions based on such data tend to be imprecise or inaccurate. This deficiency

was compensated for by using Bayesian inference methods and hierarchical models,

which enabled cross-sectional water quality data to be pooled efficiently in order to
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ensure more accurate and precise lake-specific chlorophyll a prediction.

The evaluation of mechanistic, statistical and Bayesian prediction methods was

based on extensive data from 5 water quality management cases. First, the chem-

ical and biological responses to pollutant loads and hydrological conditions were

modelled and predicted with a mechanistic lake and river model. Second, predictive

uncertainties in lake respiration and phytoplankton submodels were estimated using

Bayesian inference and MCMC sampling methods. This enabled deterministic wa-

ter quality predictions to be transformed into predictive distributions, which were

more useful for statistical decision making in the context of river basin management.

Third, targets were set for pollutant load reductions for the lakes studied here and a

criterion for the restoration dredging of contaminated river sediments based on the

predictions.

The main findings were:

• Realistic error estimation is a prerequisite for realistic decision making and

effective river basin management.

• Realistic estimates of the error entailed in mechanistic water quality pre-

dictions can be obtained using Bayesian posterior predictive inference and

MCMC sampling methods.

• The accuracy and precision of lake-specific chlorophyll a predictions based

on data from the Finnish lake monitoring network can be improved using a

hierarchical model structure.

• Bayesian inference and MCMC methods are no more difficult to implement

than classical statistical methods. Even models with a large number of cor-

related parameters can be fitted using modern computational methods.

• Simple empirical models are efficient for river basin management, indicating
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that complex mechanistic models are unreasonably difficult and expensive to

apply.

Guidelines for water quality monitoring, prediction and river basin management

were set up to cope with a large number of lakes and rivers using relatively small

sample sizes. River basin monitoring should be designed statistically using the pre-

diction error of the water quality model as an objective function. This will maximize

the information value of water quality observations and minimize the prediction er-

ror. In addition, national networks for monitoring diffuse pollutant loads should be

established instantly in order to meet the pressing needs of river basin management.

Without determined monitoring efforts, water quality predictions will be biased and

river basin management may fail to maintain the sustainable use of water resources.

Prediction should ideally be implemented using Bayesian inference, MCMC meth-

ods and a simple hierarchical model. The complexity of existing mechanistic water

quality models should be simplified to reduce their computational costs and large

data requirements. River basin management decisions should be based on a method

of statistical inference that takes account of all the prediction errors. This will en-

able the progress being made towards the sustainable use of water resources to be

efficiently maintained.
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Yhteenveto

Huonokuntoisten vesistöalueiden hoitosuunnitelmat tullaan Euroopan unionin jäsen-

valtioissa tarkistamaan kuuden vuoden välein. Tähän niitä velvoittaa vesipuitedi-

rektiivi, joka hyväksyttiin europarlamentissa 22. joulukuuta vuonna 2000. Sen seu-

rauksena Suomessakin vahvistettiin vuonna 2004 laki vesistöalueiden hoidon organ-

isoimisesta. Hoidettavia, huonokuntoisia vesistökohteita on satoja, ja niiden hoito-

suunnitelmat pitää olla valmiina vuonna 2009. Hyvä vedenlaatu näissä kohteissa

saavutetaan nopeimmin ja pienimmin kustannuksin, jos suunnittelussa käytetään

vedenlaadun ennusteita, joidenka ennustevirheet on arviointu realistisesti.

Perinteisesti vedenlaatuennusteet ovat perustuneet joko mekanistiseen tai tilastol-

liseen mallintamiseen. Laskentaintensiivisiä mekanistisia malleja on käytetty pääasi-

assa vesistöjen virtaus- ja kulkeutmisongelmien ratkaisemiseen, kun tilastollisia menetelmien

käyttö on painottunut kemiallisten ja biologisten ilmiöiden analysoimiseen. Mekanis-

tisten ja tilastollisten menetelmien yhdistäminen on ennusteiden realistisen vir-

hearvioinnin ja vesistöjen hoidon tehokkuuden kannalta ensiarvoisen tärkeää.

Tässä työssä mekanistinen ja tilastollinen lähestymistapa yhdistettiin käyttäen Bayeslaista

posterior päättelyä ja MCMC menetelmiä. Saman aikaisesti ennustamisen ja vesistö-

jen hoitoon liittyvän päätöksenteon periaateet muuttuivat deterministisestä tilastol-

liseksi.

Vedenlaatuennusteet perustuvat yleensä joko pitkittäiseen tai poikittaiseen havainto-

otokseen ts. havaintoihin yhdestä tai monesta vesistöstä. Sen sijaan järvien seuranta-

aineistolle on tyypillistä pieni järvikohtainen havaintomäärä suuresta joukosta järviä.

Tällöin järvikohtaiset ennusteet ovat epätarkoja tai virheellisiä. Ennusteiden laatua

saatiin parannettua hierarkisen mallirakenteen ja Bayeslaisin päättelymenetelmien

avulla.
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Kehitetyt mekanistiset, tilastolliset ja Bayeslaiset vedenlaadun ennustemenetelmät

testattiin aineistolla viidestä vedenlaadun hoitotapauksesta. Ensiksi mekanistisilla

järvi- ja jokimalleilla ennustettiin ravinnekuormitusten, kunnostusruoppauksen ja

hydrologisten osoluhteiden vaikutus vedenlaatuun. Seuraavassa vaiheessa järven

happi- ja kasviplankton mallien ennustevirheet estimoitiin Bayes-päättelyn ja MCMC-

menetelmän avulla. Näin mekanististen mallien pistemäiset ennusteet muutettiin

tilastollisiksi jakaumiksi, jotka ovat hyödyllisiä vesistönhoidon tilastollisessa päätök-

senteossa. Lopuksi ennusteiden perusteella laskettiin kuormitusten ja pitoisuuksien

vähennystavoitteita ja asetettiin rajoitus kunnostusruoppauksen yhteydessä liikkelle

lähtevän ja dioksiinin likaaman sedimentin määrälle.

Tärkeimmät löydöt olivat:

• Vedenlaatuennuste realistinen virhe-estimaatti on tehokkaan vesistönhoidon

edellytys.

• Mekanistisen mallin realistinen virhe-estimaatti voidaan laskea Bayes-päättelyn

ja MCMC-menetelmän avulla.

• Suomalaiseen järviseuranta aineistoon perustuvan järvikohtaisen klorofylli a

ennusteen virhettä ja epätarkkuutta voidaan edelleen pienentää hierarkisen

mallirakenteen avulla.

• Bayes-päättelyn ja MCMC-menetelmän laskennallinen toteuttaminen ei ollut

vaikeampaa kuin klassisten tilastomatemaattisten menetelmien toteuttami-

nen. Jopa suuren määrän korreloituneita parametrejä sisältävä vedenlaatu-

malli saatiin sovitettua havaintoaineistoon.

• Yksinkertaisen empiirisen mallin tehokkuus vedenlaadun ennustamisessa ja

vesistönhoidon suunnittelussa osoittaa, että monimutkaiset mekanistiset mallit

voivat joskus olla kalliimpia ja työläämpi kuin tarpeellista.
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Työssä annettiin yleisluonteisia, vedenlaadun seurantaa ja ennustamista sekä vesistöaluei-

den hoitoa koskevia ohjeita, joissa kiinnitetään erityistä huomiota suurten vesistöaluei-

den hoidon suunnitteluun suhteellisen pienten havaintoaineistojen ja tässä työssä

kehitettyjen menetelmien perusteella. Lisäksi ehdotetaan hajakuormituksen kansal-

lisen havaintoverkoston perustamista ja liittämistä toiminnallisesti yhteen em. kokon-

aisuuden kanssa havaintoaineistojen riittävän informaatiosisällön varmistamiseksi

vesistöjen hoitotoimien suunnittelun ja päätöksenteon kannalta.
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