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Abstract

A transport equation for a solution ¯ow increasing due to osmosis inside a hollow cylindrical ®bre is derived. The equation

can be applied for either direct, pressure-retarded or reverse osmosis, when the membrane is highly selective. This transport

equation is used to study theoretically the net power delivered, and the entropy generated by two different concepts of a

pressure-retarded osmosis power production system. As a result, the system can be optimized either by maximizing the net

power or maximizing the ratio (	) between the net power and entropy generation. In both cases the optimal values of the

initial hydrostatic pressure difference between the inner and the outer sides of the ®bre, the initial velocity of the solution and

the ®bre length could be speci®ed. However, in some cases these two methods of optimization result in remarkably different

optimal values. The resulting net power, when 	 was maximized, was found to drop to less than half the maximum net power.

The local entropy generation was found always to result in a minimum value at a certain longitudinal position inside the ®bre.

# 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a pressure-retarded osmosis power generating

system river water and salty sea water (brine) are

directed to different sections of an osmotic unit.

The ¯ows are separated from each other by semi-

permeable membranes. Due to osmosis, the river

water penetrates through the membranes and mixes

with the pressurized brine. The membrane can be

thought of as an energy converter between the osmotic

power (caused by the salinity gradient) and the hydro-

static pressure. In theory, the concentration difference

between the sea- and river water could be a consider-

able energy source: an osmotic pressure of 20 bar,

which refers to a salt concentration of about 830 mol/

m3 (or 24 g salt/kg water) can be thought of as a

hydrostatic pressure head corresponding to a 204 m

high waterfall. Although our system of interest deals

with sea- and river-water, a similar system could exist

in principle for any other solution±membrane system

for which the solute is highly impermeable and where

fresh water is obtainable.

Earlier studies [1±5] on the pressure retarded osmo-

sis system for power generation mostly concern
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experimental and economic subjects or consider the

transport of the permeating ¯ow through the mem-

brane wall. None of the earlier works, as far as we

know, include the transport equation for the brine ¯ow

where changes in the hydrostatic pressure, brine con-

centration and volume ¯ow are included. This is

essential when we want to predict the possible output

values of an osmotic unit. The volume ¯ow of the

brine, the concentration and the hydrostatic pressure

are all interrelated, so disregarding the changes in one

of them might cause an important cross-related phe-

nomenon to be neglected.

For energy production, the brine must be pressur-

ized to result in any net power. Furthermore, the

osmotic pressure difference (��) between the two

sides of the membrane must be higher than the hydro-

static pressure difference (�p) to induce the increas-

ing brine ¯ow, and thus to result in net power.

Therefore, we assume, there will be an optimum value

of �p somewhere between the upper (�p < ��) and

the lower (�p > 0) limits, which results in maximum

power generation. The purpose of this paper is to

locate theoretically the actual optimal point and also

to study whether there are similar optimum points in

respect of other system parameters such as initial

mean velocity, ®bre radius and ®bre length. In addi-

tion, we examine how the quality of the energy con-

version process in the form of the entropy generation

can be applied to the optimization. Readers who are

not interested in the entropy analysis may skip Sec-

tion 4 and Sections 5.6 and 5.7 and still get full

information concerning the derivation and behaviour

of the transport equation and the results of optimizing

the net power.

2. The concept of pressure-retarded osmosis for
power production

The pressure-retarded osmosis power generation

system (Fig. 1) contains

1. a pump which pumps the needed brine ¯ow at the

needed hydrostatic pressure.

2. an osmotic unit which consists of numerous thin

hollow cylindrical fibres. The walls of the fibres are

considered as semi-permeable membranes. The

brine is directed to flow inside the hollow fibres

and the freshwater outside the fibres. Due to the

lower chemical potential inside a hollow fibre than

on the outside, the fresh water permeates through

the semi-permeable surface to the brine. So, the

brine flow increases and dilutes. In pressure

retarded osmosis the brine is pressurized, retarding

the permeating flow. The hydrostatic pressure

drops in the unit. The membrane has to be highly

selective i.e. the flow of solute through the mem-

brane should be minimal. If the hydrostatic pres-

sure of the brine exceeds or the osmotic pressure

drops below a certain value, the water will flow

from the brine to the fresh water side (reverse

osmosis) and if the hydrostatic pressure is equal

on both sides, the fresh water will permeate

through the semi-permeable walls to the brine

due only to the osmotic pressure (direct osmosis).

3. the fresh water side. The fresh water is directed to

flow outside the fibres and it may also need some

pumping but in general the pressure loss will be

considerably lower than on the brine side.

4. a turbine which transforms the momentum of the

brine flow into work.

The components 1±4 form the basic concept of

osmotic power generation system (BS). Furthermore,

an improved system (IS) was studied (®rst presented in

[6]). The improvement to the BS (see the system inside

the dashed line in Fig. 1) involves the addition of two

brine tanks and another water pump to move the brine

from the ocean to the tank without pressurizing it.

While one tank is ®lled with new brine from the ocean,

the brine from the other tank is pumped to ¯ow

through the osmotic unit and an equal volume ¯ow

is directed to return to the same tank. Thus, in the IS

the ¯ow through the turbine equals the permeating

¯ow. The unused brine in the tank and the recycled,

diluted brine are separated from each other in the tank

by an impermeable membrane. Instead of using the

pump for pressurizing the brine, the returned brine

pressurizes the tank and the power demand of the

pump drops. When the tank is full of recycled brine,

the other tank which, meanwhile is ®lled with brine

from the ocean, is connected to establish ¯ow through

the osmotic unit.

The power demand of the pump is _Vpump�ppump/

�pump and the power delivered by the turbine is

�turb
_V turb�pturb, where � is the ef®ciency, _V the

volume ¯ow and �p the pressure change. The hydro-

static pressure changes are regarded as negligible
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everywhere except at the brine side of the osmotic

unit, at the pump (in IS the power of the pump that

moves the brine from the ocean to the tank is negli-

gible too) and at the turbine. Using the notations of

Fig. 1

for BS:

_V recycle � 0; _V turb � _V0 �� _V ; p1 � p0

and for IS:

_V recycle � _V0; _V turb � � _V ; p1 � p3

The net power obtained from the BS is then

PBS � �turb� _V0 �� _V��p3 ÿ p0� ÿ
_V0�p2 ÿ p0�
�pump

(1a)

and from the IS

PIS � �turb� _V�p3 ÿ p0� ÿ
_V0�p2 ÿ p3�
�pump

(1b)

If �turb � �pump � 1, we get PBS � PIS. Eqs. (1a)

and (1b) may be carried forward into a form

PBS � �turb
_Vz�L�pz�L ÿ

_Vz�0�pz�0

�pump

� �
(2a)

PIS � �turb
_Vz�L ÿ _Vz�0

� �
�pz�L

ÿ
_Vz�0 �pz�0 ÿ�pz�L� �

�pump

� �
(2b)

where �pz�0 and �pz�L are the hydrostatic pressure

differences over the membrane at the beginning

(z � 0) and at the end (z � L) of the osmotic unit,

respectively. For the permeating volume ¯ux per sur-

face area of a membrane, we use the equation derived

according to the linear theory of irreversible thermo-

dynamics [7]. The equation can be written in a local

form

_V
00
perm�z� � Lfilt Lrefl ���z� ÿ�p�z�� � (3)

where �p(z) (�p(z) ÿ p0) and ��(z) are, respectively,

the hydrostatic pressure difference and the osmotic

pressure difference at a longitudinal position z

between the brine at the inner surface of the ®bre

and the fresh water at the outer surface of the ®bre. The

re¯ection coef®cient Lre¯ depends on both the proper-

ties of the membrane and solute. If Lre¯ � 1,the mem-

brane is fully semi-permeable i.e. all the solute is

`re¯ected' from the membrane, otherwise Lre¯ < 1. L®lt

is the ®ltration coef®cient of the membrane. Although

for power generation we need highly impermeable

membranes where the salt ¯ux is almost zero

Fig. 1. The pressure-retarded osmotic power generation scheme. The system inside the dashed line is an improvement from the basic concept.

Different osmotic pressures (�) of flows are consequences of corresponding salt concentration of the brine.
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(Lre¯ � 1), signi®cant salt polarization inside the por-

ous side of an asymmetric ®bre may occur even under

minute solute ¯ow through the membrane. For this

kind of case Loeb and Mehta [2] presented a two-

coef®cient equation and Lee et al. [5] a three-coef®-

cient equation, the additive coef®cient being a mea-

sure of the resistance to salt transport in the porous

substrate. Both these equations (for [5] with an

assumption that on the fresh water side the solute

concentration is zero) and Eq. (3) as well, may be cast

into a form _V
00
perm � A ��ÿ B �p where A and B are

the coef®cients. However, Loeb and Mehta and Lee

et al. found that the coef®cient A may get (for asym-

metric membranes with porous substructure) remark-

ably lower values than the product of the coef®cients

L®lt and Lre¯ in Eq. (3). For this reason we shall

interpret the coef®cient Lre¯ more freely than is nor-

mally done. All the results in Section 5 are calculated

using an effective osmotic pressure difference

��eff � Lre¯ �� where for Lre¯ can thus be assigned

remarkably lower values than unity even with minimal

solute ¯ux. Loeb [8] has studied also effect of porous

support fabric of Loeb±Sourirajan type membranes.

An extremely simpli®ed model for maximum net

power and optimal hydrostatic pressure difference

�popt can be derived if the pressure loss inside

the osmotic unit, the dilution of the solution (��(z)

� constant) and the ef®ciency (�turb � �pump � 1)

is neglected. As now � _V � � _V
00
perm��Amembrane surface�

the net power is achieved by combining Eqs. (1a),

(1b) and (3). The optimal pressure difference corre-

sponding to the maximum net power is achieved from

the zero point of the derivative of the net power. The

result is

�popt � Lrefl ��

2
and

Pmaximum

Amembrane surface

� Lfilt�Lrefl ���2
4

Thus, in the case of a fully semi-permeable membrane

surface the optimum hydrostatic pressure difference

would be half of the osmotic pressure difference.

3. Transport equation for a brine flow increasing
due to osmosis inside a hollow cylindrical fibre

3.1. Derivation of the transport equation

The equation of continuity for a component i in a

¯ow of solution inside a hollow cylindrical ®bre can be

set as a convection±diffusion problem in a stationary

state:

r � ni � 0 (4)

where ni is the mass ¯ux of species i relative to

stationary coordinates

ni � �iv� ji (5)

where v is mass average velocity vector of a solution

and the diffusion ¯ux

ji � ÿ�Dr �i

�

� �
(6)

We assume that in the z direction (longitudinal direc-

tion of the ®bre) the diffusion ¯ux is meaningless

compared to the convective ¯ow (�ivz). At the surface

of the membrane (highly selective) and at the centre of

the ®bre (symmetry line) the salt-¯ux in the radial r

direction ns,r � 0. Assuming this is applicable every-

where in radial direction leads to the mass average

velocity in radial direction

vr � �D

�s

@

@r

�s

�

� �
:

Under the above assumptions, when divided by the

molar mass of salt, the continuity Eq. (4) results for

salt in

vz
@cs

@z
� cs

@vz

@z
� 0 (7)

We continue to assume that the velocity in the z

direction achieves separated solutions i.e.

vz�r; z� � F�r�G�z� (8)

where F(r) and G(z) are some yet unknown functions.

Inserting this into Eq. (7) we get

G�z� @cs�r; z�
@z

� cs�r; z� dG�z�
dz
� 0 (9)

the solution of which is

cs � f �r�
G�z� (10)

i.e. also salt concentration satis®es a separated solu-

tion of form cs�r; z� � f �r�g�z�where g�z� � �1=G�z��
and f(r) is some yet unknown function.
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At the entrance the ¯ow is assumed to satisfy the

pro®le of laminar fully developed ¯ow

vz�r; z � 0� � 2v0
mean 1ÿ r

r0

� �2
" #

(11)

where v0
mean is the initial mean velocity. For the initial

salt concentration we set a condition

cs�r � r0; z � 0� � constant � c0
s (12)

As the permeating ¯ow (Eq. (3)) must be equal to the

change of the brine ¯ow, the boundary condition at the

surface can be written (when �water,fresh � �brine) as

Lfilt Lrefl ���r � r0; z� ÿ�p�r � r0; z�� �

� 1

2�r0

@

@z

Zr0

0

vz�r; z� dA

0@ 1A (13)

where the differential cross-sectional area

dA � 2�r dr. For a dilute solution the osmotic poten-

tial may be written as

�� � RTcs (14)

Applying the boundary condition Eq. (11) to Eq. (8)

we set

G�z � 0� � 2v0
mean (15a)

F�r� � 1ÿ r

r0

� �2

(15b)

Inserting Eq. (15b) into Eq. (8) and substituting the

result into Eq. (13), results after solving the integral

and applying Eqs. (10) and (14) in the form

Lfilt
LreflRT f �r � r0�

G�z� ÿ�p�z�
� �

� r0

4

dG�z�
dz

(16)

The constant value of f(r � r0) can be obtained from

the boundary condition Eq. (12)

c0
s �

f �r � r0�
G�z � 0� �

f �r � r0�
2v0

mean

) f �r � r0� � 2v0
meanc0

s

(17)

Substituting this into Eq. (16), we get

dG�z�
dz
� A1

G�z� � A2 �p�z� (18)

where the constants A1 and A2 are

A1 � 8LfiltLreflRTv0
meanc0

s

r0

; A2 � ÿ 4Lfilt

r0

Eq. (18) may be solved analytically in two cases. First,

when the hydrostatic pressure difference �p(z,r �
r0) � 0 (direct osmosis) results in applying also

Eq. (15a) to the solution

G �
����������������������������������
2A1z� 4 v0

mean

ÿ �2
q

and the velocity in the z direction is thus

vz�r; z� � 1ÿ r

r0

� �2
 ! ����������������������������������

2A1z� 4 v0
mean

ÿ �2
q

:

Integrating over the cross-sectional area of the ®bre

we get for the mean volume ¯ow

_Vmean � �r2
0

�����������������������������
A1z

2
� v0

mean

ÿ �2

r
This equation might be usable in other cases but

here it means that the power generation of the system

vanishes (see Eqs. (2a) and (2b) when �p(z) � 0).

In the second case, if the pressure difference func-

tion is a multiplied function of the function G(z) and

some other function 
(z) (i.e. �p(z) � G(z)
(z)),

Eq. (18) returns to the non-linear ordinary differential

Bernoulli equation of ®rst order which can be in some

cases solved by changing variables. However, this

yielded complicated results for the function G even

with simple equations of the function 
(z), such as


(z) � bz or 
(z) � ebz, where b is a constant, and

there is no guarantee that such analytical results can

satisfy any real velocity pro®les or pressure difference

functions. Therefore, we choose a different approach

which results in numerical integration of the transport

equation.

The pressure drop of the brine ¯ow is solved from

the z-component of the Navier±Stokes equation of

motion for an incompressible ¯uid with constant

viscosity (�) in radial coordinates:

�
dvz

dt
� Fz ÿ @p

@z
� � @2vz

@r2
� 1

r

@vz

@r
� 1

r2

@2vz

@�2
� @

2vz

@z2

� �
(19)

For symmetry �@2vz=@�
2� � 0 and the acceleration

term (the left-hand side of Eq. (19)) and the external
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force Fz terms can be considered as meaningless. We

are interested in the pressure at the surface where, due

to the friction, also vz � 0. With the above statements

and when substituting Eqs. (8) and (15b) into

Eq. (19), this results in

@p

@z

� �
r�r0

� ÿ4�G�z�
r2

0

(20)

which yields after integration

p�z� � p�z � 0� ÿ 4�

r2
0

Zz
0

G�z� dz (21)

After this is substituted into Eq. (18) we get

dG�z�
dz
� A1

G�z� � A2 �p0 ÿ A3

Zz
0

G�z� dz

24 35 (22)

where A3 � �4�=r2
0� and �p0 � p(z � 0) ÿ p0.

Eq. (22) may be written equivalently in the form

dG�z�
dz
� A1

G�z� � A2 �p�z1� ÿ A3

Zz
z1

G�z� dz

24 35 (23)

The numerical integration of Eq. (23) is carried

through using the following procedure

Gn � Gnÿ1 � A1

Gnÿ1 � A2 �pn
� 	

�z

�pn � �pnÿ1 ÿ A3Gnÿ1 �z

�
(24)

Each time a new value of Gn is solved from Eq. (24),

the corresponding volume ¯ow is evaluated from

_V
n �

Zr0

0

GnF�r� dA � r2
0Gn

4

and the net power from Eqs. (2a) and (2b) can written

in the form

Pn
BS � �turb

_V
n

�pn ÿ
_V

0
�p0

�pump

(25a)

Pn
IS � �turb � _V

n ÿ _V
0��pn ÿ

_V
0��p0 ÿ�pn�

�pump

(25b)

Eq. (23) takes into account the concentration bound-

ary layer of the ¯ow of the solution in the radial

direction also. However, here it is necessary to solve

the solute concentration only on the surface. The

possible solute boundary layer inside the wall of an

asymmetric ®bre (internal polarization) is taken into

account with the re¯ectivity coef®cient as mentioned

in Section 2.

3.2. The mechanism controlling osmotic growth of

the brine flow

The level where the brine ¯ow inside a hollow ®bre

settles is controlled by two different mechanisms

which are coupled together. The physical connections

between velocities, pressures and concentrations are

illustrated in Fig. 2. First, if the brine ¯ow is decreased

e.g. due to the increased initial hydrostatic pressure

(increase from an arbitrary reference value of pref) or

due to the decreased (from an arbitrary reference value

v0
mean;ref) initial mean velocity, the pressure losses will

settle at a lower level. This, in turn, results in higher

p(z1) (or equivalently �p(z1)) than if we had started

with the lower values of pref or v0
mean;ref and conse-

quently lowers the level of the permeating ¯ow, thus

causing the brine ¯ow to decrease further. Corre-

spondingly, if the brine ¯ow increases, this mechanism

causes a self-exciting effect in the brine ¯ow.

The rate of change of brine ¯ow (or permeating

¯ow) also has a contradictory self-regulating mechan-

ism: when brine ¯ow decreases, the salt concentration

settles at a higher level and consequently causes the

permeating ¯ow to grow and thus the brine ¯ow to

grow as well (then the increased brine ¯ow can

in¯uence again either by diminishing or augmenting

itself). So, if the brine ¯ow increases, this effect can

prohibit the growth to a certain extent and if the brine

¯ow decreases, this mechanism can prevent the brine

¯ow from ceasing.

4. Derivation of the entropy generation function

The second law of thermodynamics for a closed

system in the general form of Clausius±Duhem

inequality is

S�B� ÿ S�A� �
ZB
A

dQ

T
(26)

where S is the entropy of the system, T the absolute

temperature, A is the initial state of the system and B
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the state of the system after the transformation pro-

cess. The equality sign indicates a reversible process.

Eq. (26) can also be written as

S�B� ÿ S�A� �
ZB
A

dQ

T
� Sgen (27)

where Sgen is the entropy generation inside the system.

Comparing Eqs. (26) and (27) we see that always

Sgen � 0 and thus for irreversible processes inside

the system (such as heat conduction, chemical reac-

tions, mixing of species and mass ¯ow) Sgen > 0 and

for reversible processes Sgen � 0.

For a stationary ¯ow system Eq. (27) can be derived

further into the formX
out

Nsÿ
X

in

Ns �
X

n

_Qn

Tn

� � (28)

where the left-hand side comprises the entropy ¯ow

due to mass ¯ows (s is the speci®c entropy and N the

molar ¯ux) and the term
P

n� _Qn=Tn� is the entropy

¯ow due to the heat ¯ow _Qn at temperature level Tn. As

the system stays in a stationary state, the entropy of the

system remains constant. The entropy produced inside

the system (at rate � � 0) ¯ows outside the system

thus increasing the entropy of the environment. The

irreversibilities of the system of Fig. 1 are assumed to

be generated in the osmotic unit. The entropy genera-

tion in the pump and turbine will be meaningful only if

the ef®ciency is extremely low. The control system

(the osmotic unit or a part of it) for the entropy

analysis is shown in Fig. 3. The system is assumed

to remain isothermal.

The molar speci®c entropy of species i in an ideal

solution can be written in the form

si�T ; p; xi� � s0
i �T� ÿ �i
i�pÿ p0� ÿ R ln xi (29)

where x is the mole fraction, R the universal gas

constant, s0(T) the reference entropy at a temperature

T (the temperature of the system) and reference pres-

sure p0 which equals the pressure of the fresh water, �
the partial molar volume and 
 the isobaric coef®cient

of volume expansion. We assume that the pressure on

the brine side does not vary signi®cantly in the radial

direction so that the calculated pressure at the surface

can be applied everywhere in r direction. Thus, as the

pressure on the fresh water side is set to the reference

Fig. 2. The connection mechanism between changes of hydrostatic pressure (p), permeating flow (vperm), initial mean brine flow (v0
mean), mean

brine flow (vmean), pressure losses of brine (ploss) and salt concentration of the brine on the inner surface of the fibre (Cs(r � r0)). The (�) sign

means increase (from an arbitrary reference value) of the parameter and the (ÿ) sign decrease (from an arbitrary reference value) of the

parameter. The hydrostatic pressure (p) can also be interpreted as the initial hydrostatic pressure or as the hydrostatic pressure difference

across the membrane. The equation numbers correspond to those that give rise to the cause-and-effect connection.
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pressure p0 and as the pressure loss on the fresh water

side was assumed in Section 2 to be negligible, the

pressure difference in Eq. (29) is p�z� ÿ p0 � �p�z�.
The �p(z) is calculated from Eq. (24).

The entropy ¯ow due to the mass ¯ow inside the

®bre at level z can be solved by integrating the product

of the velocity, speci®c entropy and concentration

pro®les over the cross-sectional area of the ®bre

and summing the salt and water components

�NS�brine;z �
Zr0

0

ss�r; z�cs�r; z�vz�r; z� dA

�
Zr0

0

sw�r; z�cw�r; z�vz�r; z� dA (30)

As the pressure drop on the fresh water side is

negligible, as the system remains isothermal and as

the salt ¯ux through the membrane is negligible, the

speci®c entropy on the fresh water side remains con-

stant. Thus, the change of entropy ¯owterm for the

fresh water is

�Ns�fw;z2
ÿ �Ns�fw;z1

� ÿ� _V cfw s0
fw�T� (31)

where the decrease of the volume ¯ow is equal to the

rise of the volume ¯ow on the brine side. The change

in volume ¯ow can be solved from

� _V �
Zr0

0

vz�r; z2� dAÿ
Zr0

0

vz�r; z1� dA (32)

Inserting the cross-sectional area dA � 2�r dr and

Eqs. (8) and (15b) into the above and performing

the integration results in

� _V � �r2
0

2
�G�z2� ÿ G�z1�� (33)

As the brine is considered in this study as a dilute

solution, we simplify the integration of Eq. (30)

assuming that the concentration and mole fraction

of the water in the brine are constants

cw � c0
w � cfw and xw � c0

w=�c0
w � c0

s �, respectively.

Still, an additional assumption has to be made because

the concentration distribution in the radial direction

was left unsolved: we assume that the initial pro®le at

the inlet of the osmotic unit cs�r; z � 0� � c0
s . So,

applying Eq. (10) and the relation G�z � 0� �
2v0

mean we get a constant value for the function

f �r� � f � 2v0
meanc0

s . Thus, the mole fraction of salt

yields

xs�z� � 2v0
meanc0

s=G�z�
2v0

meanc0
s=G�z� � c0

w

(34)

The integration of Eq. (30) can now be completed by

applying the relations from Eqs. (8), (10), (15b) and

(29). Summing all the entropy ¯ows, caused by mass

¯ows, results in the formX
out

Nsÿ
X

in

Ns � A5 ln
c0

wG�z2� � 2c0
s v0

mean

c0
wG�z1� � 2c0

s v0
mean

� �
ÿ A6�G�z2� ÿ G�z1��
ÿ A7��p�z2�G�z2� ÿ�p�z1�G�z1�� (35)

Fig. 3. The control system for the entropy analysis. The flows of entropy are indicated with arrows. The position z1 and z2 are arbitrary, so that

the control system could be interpreted as any macroscopic longitudinal section of the osmotic unit, or as the whole unit as well.
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where the reference entropies have disappeared. The

constants are

A5 � 2Rc0
s v0

meanAg; A6 � R ln x0
wc0

wA8;

A7 � 
w�wc0
wA8; A8 � �r2

0

2
;

We have excluded the 
s�scs �p term for salt as it is

considered small compared to the respective term for

water.

For the osmotic unit to remain isothermal, there

must be a heat ¯ow through system boundaries bal-

ancing the generating dissipation heat. The heat ¯ow

can be solved by setting an energy balance for the

osmotic unitX
out

Nhÿ
X

in

Nh � _Q (36)

where h is the molar speci®c enthalpy. The change of

the kinetic energy is ignored as it is considered small

compared to the heat ¯ow and to the change of

enthalpy. The total derivative of the speci®c enthalpy

of a single component can be written for an isothermal

process

dhi � �i�1ÿ T
i� dp (37)

Assuming � and 
 to be independent of pressure, and

assuming bulk properties for the brine, the heat ¯ow

can be solved from the energy balance

_Q � � _V�z2��p�z2� ÿ _V�z1��p�z1���1ÿ T
w� (38)

where �p(z) � p(z) ÿ p0.

Inserting Eqs. (35) and (38) into Eq. (28) results in

the ®nal equation for the rate of entropy generation

between levels z1 and z2.

� � A5 ln
c0

wG�z2� � 2c0
s v0

mean

c0
wG�z1� � 2c0

s v0
mean

� �
ÿ A6 G�z2� ÿ G�z1�� � ÿ A7 � A9� � �p�z2�G�z2��
ÿ�p�z1�G�z1�� (39)

where A9 � ��1ÿ 
wT�=T �A8. The �p(z) and G(z)

values are calculated from Eq. (24). We de®ne the

rate of local entropy generation as

�000 � �

Afibre �z
(40)

where A®bre is the cross-sectional area of the ®bre,

�z � z2 ÿ z1 is such a small difference of z that

diminishing �z would not change the result with

the needed accuracy. In practice the same value of

�z is used here as in Eq. (24). We shall use the rate of

the entropy generation, not only directly in the form of

Eqs. (39) and (40) but also as a function

	 � P

�
(41)

and

" � P

P� �T
(42)

Eq. (41) could be interpreted as the ratio of the power

produced by the system to the thermodynamical

impact on the environment. In Eq. (42) the same idea

is described in a different form. The dimensionless

energy conversion ef®ciency results in a maximum

value, unity, when the entropy generation vanishes. T

is given the system temperature value. As the system is

assumed to remain isothermal, T equals the tempera-

ture of brine at the inlet i.e. the temperature of the

ocean.

5. Results and discussion

5.1. The effect of changing �p0 only

First we examine the effect of changing the initial

hydrostatic pressure difference �p0 between the inner

and outer surfaces of the ®bre. We can interpret this

also as changing the initial hydrostatic pressure on the

brine side as the pressure on the outer side is assumed

to remain constant. At ®rst we keep other parameters

constant: the effective initial osmotic pressure differ-

ence ��0
eff � 25 bar (�0

eff � LreflRTc0
s ; Lre¯ may take

into account also the possible internal polarization, see

comments in Section 2), the ®bre radius r0 � 50 mm,

� � 0.000855 N s/m2, �turb � 0.9, �pump � 0.8, L®lt �
10ÿ11 m/s Pa and the initial mean velocity

v0
mean � 0:08 m/s were used. The results of calculation

are shown in Fig. 4. After a rapid increase, the mean

velocity settles at a lower growth rate due to the

dilution of brine i.e. due to the lowered osmotic

pressure. Due to the higher pressure drop, i.e. higher

hydrostatic pressure difference across the membrane,

the growth of velocity stays at a higher level with
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higher v0
mean. As a consequence of the results of the

pressure and velocity, the net power Eq. (25a) of the

BS always gives a maximum value at some speci®c z

position (Fig. 5). Furthermore, we see that there might

possibly also be an optimal value of �p0 as the values

8 bar and 12 bar give higher net power than the values

below 8 bar and the values over 12 bar. From Fig. 5,

we also ®nd that the positive net power can be

achieved only with a certain combination of �p0

and ®bre length (L). Similar phenomena results also

Fig. 4. The effect of the initial hydrostatic pressure difference on (a) the mean velocity of brine; (b) the hydrostatic pressure drop inside the

fibre and (c) salt concentration on the inner surface of the fibre. The following constant values were used for all figures: Lfilt � 10ÿ11 m/s Pa,

��0
eff � 25 bar, r0 � 50 mm, v0

mean � 0.08 m/s, � � 0.000855 N s/m2 .

124 A. SeppaÈlaÈ, M.J. Lampinen / Journal of Membrane Science 161 (1999) 115±138



when the net power Eq. (25b) of the improved system

is applied.

5.2. The effect of changing v0
mean only

The results (see Fig. 6) when v0
mean is changed while

the other initial values are kept constant give rather

similar behaviour for the pressure drop and velocity

pro®les to when only �p0 was changed. Constant

values ��0
eff � 25 bar, r0 � 50 mm, m � 0.000855

N s/m2, �turb � 0.9, �pump � 08, L®lt � 10ÿ11 m/s Pa,

�p0 � 12 bar were used. In this case the concentration

pro®les show a different kind of behaviour: at ®rst, the

salt concentration results in higher values the higher

the value of v0
mean is. However, after certain ®bre

length, the order is the opposite, so that the highest

v0
mean results in the lowest concentrations, and the

lowest velocities in the highest concentrations. This

can be explained by the fact that although the highest

v0
mean (i.e. the highest volume ¯ow of salt as well)

results in the highest salt concentration at the begin-

ning of the ®bre, it also causes the highest increase of

the velocity i.e. highest permeating of the fresh water

and so the dilution is highest. The net power Eq. (25a)

of BS gives, as it did also when only �p0 was changed,

a maximum value at some speci®c position in the

longitudinal direction. From Fig. 7 it can be seen that

there might again occur an optimal value as the

velocities 0.05 and 0.08 m/s give higher net power

than the velocities below 0.05 m/s and the velocities

over 0.08 m/s. The positive net power is also in this

case achieved only with a certain combination of v0
mean

and L. Similar phenomena results too when using net

power Eq. (25b) of the IS.

5.3. The maximization of the net power-the optimal

values of �p0, v0
mean and L

As was found in Sections 5.1 and 5.2 a maximum

point exists for the net power in respect of L for each

value of v0
mean and �p0 we have studied the conse-

quence of changing both v0
mean and �p0. Results with

the values ��0
eff � 25 bar and r0 � 50 mm are illu-

strated in Figs. 8 and 9. In these ®gures each point

corresponds to a maximum power delivered by the BS

in respect to the ®bre length. In Fig. 8 can be seen the

positive range (white area) of the net power sur-

rounded by the non-power generating v0
mean ÿ�p0

parameter space. In Fig. 9 the parameter space result-

ing in the positive net power generation has been

zoomed. The corresponding optimal ®bre lengths

(Lopt) are illustrated in Fig. 10. By increasing the

calculated v0
mean ÿ�p0 density, an optimal para-

meter pair v0
mean;opt-P ÿ�p0

opt-P which results in the

highest net power generation, can be found at the

needed accuracy. The optimized maximum net power

Pmaximum of the case of Figs. 8, 9 and 10 is 0.274 mW

at v0
mean;opt-P � 0.059 m/s, �p0

opt-P � 9.53 bar and

Lopt-P � 0.55 m.

5.4. The maximum power with different initial

effective osmotic pressures, fibre radii and efficiency

So far, we have shown the existence of the max-

imum power generation Pmaximum which corresponds

to the optimum parameters v0
mean;opt-P and �p0

opt-P,

Lopt-P. Here we shall study what happens to

v0
mean;opt-P; �p0

opt-P; LoptÿP and Pmaximum when

��0
eff , r0, �pump and �turb are changed while the rest

Fig. 5. The effect of the initial hydrostatic pressure difference on the resulting net power of BS corresponding to Fig. 4. The efficiencies used

were �turb � 0.9, �pump � 0.8.
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of the parameters L®lt and � are kept constant. Chan-

ging ��0
eff could be interpreted in such a way that any

of the parameters Lre¯, T or c0
s could be changed while

some or other parameters are kept constant. However,

for c0
s it should be noted that Eq. (14) holds for a

dilute, ideal solution and for the viscosity that it

depends on T and the mixture composition. According

to the results in Figs. 11 and 12 and Tables 1±3 we

conclude the following:

1. v0
mean;opt-P values grow almost linearly with

increasing ��0
eff .

2. �p0
opt-P values are independent of the fibre radius.

3. �p0
optÿPis almost linearly dependent on ��0

eff .

4. Lopt-P is independent of the ��0
eff .

Fig. 6. The effect of the initial hydrostatic pressure difference on (a) the mean velocity of brine, �� vmean�z� ÿ v0
mean�; (b) the hydrostatic

pressure drop inside the fibre and (c) salt concentration on the inner surface of the fibre. The following constant values were used for all

figures: Lfilt � 10ÿ11 m/s Pa, ��0
eff � 25 bar, r0 � 50 mm, �p0 � 12 bar, � � 0.000855 N s/m2.
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5. The ratio between Pmaximum and the surface area of

the fibre (corresponding to the Lopt-P) increases

when ��0
eff increases but remains independent of

r0.

6. The power density (Pmaximum divided by the fibre

volume corresponding to the Lopt-P) increases when

��0
eff increases but decreases when r0 increases.

7. IS results in higher Pmaximum values than the BS (in

real systems where the efficiency is lower than

unity). The more the efficiency of the pump and the

turbine deviate from the unity, the bigger becomes

the difference between the IS and the BS Pmaximum

values. The simplified model for maximum power

given in the end of Section 2, where the pressure

loss, dilution of solution and the pump and turbine

efficiency are neglected, results in remarkably

overestimated values.

8. The ratio between initial volume flow and total

permeating flow � _V0=� _V� is independent on r0 and

on ��0
eff . For the BS the ratio depends strongly on

Fig. 7. The effect of the initial mean velocity on the resulting net power of BS corresponding to Fig. 6. The efficiencies used were �turb � 0.9,

�pump � 0.8.

Fig. 8. The maximum power (BS) as a function of the initial pressure difference and the initial mean velocity of brine. Constant values

��0
eff � 25 bar, Lfilt � 10-11 m/s Pa, r0 � 50 mm, � � 0.000855 N s/m2, �turb � 0.9, �pump � 0.8 were used. Each point on the map

corresponds to the maximum power delivered by the system in respect of the fibre length.
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the efficiency but for the IS the dependency is

weak. For the IS this ratio can also be interpreted

as a ratio between the recycled flow and the flow

passing through the turbine.

Here it should be noted that although �p0
opt-P is

independent of the ®bre radius, it is valid only when

the correct values of Lopt-P and v0
mean;opt-P (which

depend on the radius) are used. If, for instance, the

®bre length is ®xed as some arbitrary value, the

�p0
opt-P does not result in Pmaximum (see e.g.

Fig. 5). All above conclusions hold for both BS and

IS.

In reference [5] the permeating water ¯ux was

evaluated by the three coef®cient equation mentioned

in Section 2 of this article. The coef®cients were

reached by direct and reverse osmosis measurements

Fig. 9. The positive maximum power (mW) range of Fig. 8. Each

point on the map corresponds to the maximum power delivered by

the system in respect of the fibre length. The corresponding fibre

lengths are shown at Fig. 10.

Fig. 10. The optimum fibre length corresponding to Figs. 8 and 9.

Fig. 11. The maximum power divided by the surface area of the fibre. The ratio becomes independent of the radius of the fibre. The dashed

curve corresponds to power (�Lfilt��
2
eff=4� when pressure loss, dilution of the solution and the efficiencies are neglected (the simplified

model is presented in Section 2). The following constant parameter values were used: Lfilt � 10ÿ11 m/s Pa, � � 0.000855 N s/m2.
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Fig. 12. The optimal (a) initial mean velocity of brine for the IS; (b) initial hydrostatic pressure difference (same for all fibre radii) for IS and

BS; (c) fibre length (same for all osmotic pressures) of IS and BS. Constant values Lfilt � 10ÿ11 m/s Pa, � � 0.000855 N s/m2, �turb � 0.9,

�pump � 0.8 were used.
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with asymmetric and composite ¯at sheet membranes.

The resulting net power of a system corresponding to

the BS of this article was then calculated neglecting

the pressure losses, dilution of the solution and the

pump and turbine ef®ciency. The best results corre-

sponded the net power calculated by the simpli®ed

model of this article (see e.g. Fig. 11).

According to the results, the smaller the inner radius

of the ®bre is, the higher power density the system

delivers. However, the usefulness of thin ®bres is

restricted by the need for short optimum length, which

causes the other system dimensions to expand; as the

®bre radius decreases, e.g. the demand of the number

of ®bres increases causing a possible increase in losses

at inlet and outlet of ®bres.

The transport equation was derived for one ®bre

neglecting the effect of neighbourhood ®bres and the

pressure drop of the fresh water ¯owing outside of the

®bre. A real system consists of numerous ®bres more

or less densely packed together. When the free ¯owing

area of fresh water between the ®bres diminishes, i.e.

the packing density increases, the pressure loss at the

fresh water side increases. Therefore, for densely

packed systems the pressure drop could be meaningful

even outside the ®bre (even though the fresh water

¯ow is diminishing in a pressure-retarded system

where the concentrated ¯uid is inside the lumen). If

the pressure losses outside the ®bre were signi®cant,

the initial hydrostatic pressure at this side should be

increased remarkably above the level of the environ-

ment. This would affect the permeating ¯ow to

increase, but the needed pumping power would

increase as well. If one wants to study the effect of

different packing densities, the fresh water side should

be taken more closely into account in both the trans-

port equation and the net power equation. At this stage

the ¯ow arrangement (parallel-¯ow, counter¯ow or

cross ¯ow) would become meaningful too. So, in

practice, the ®bres need empty space between each

other so that the fresh water could ¯ow between them

and thus the power densities of a real system are

Table 1

The maximum power density (kW=m3
fibre) of BS with the different effective osmotic pressures and fibre radii

��0
eff (bar) r0 � 10 mm r0 � 25 mm r0 � 50 mm r0 � 10 0 mm r0 � 17 5 mm r0 � 2 50 mm

5 13 4.8 2.5 1.3 0.7 0.5

10 51 21 10 5.1 2.9 2.0

20 197 83 41 20 12 8.1

40 802 333 162 81 46 33

70 2461 1018 497 250 142 100

The constants: Lfilt � 10ÿ11 m/s Pa, �� 0.000855 N s/m2, �turb � 0.9, �pump � 0.8.

Table 2

The maximum power density (kW=m3
fibre) of S with the different effective osmotic pressures and fibre radii

��0
eff (bar) r0 � 10mm r0 � 25 mm r0 � 50 mm r0 � 100mm r0 � 175 mm r0 � 250 mm

5 24 11 5.6 2.8 1.6 1.1

10 108 45 22 11 6.4 4.5

20 430 180 90 45 26 18

40 1735 720 360 179 103 72

70 5308 2206 1103 550 315 220

The constants: Lfilt � 10ÿ11 m/s Pa, � � 0.000855 N s/m2,�turb � 0.9, �pump � 0.8.

Table 3

The ratio between initial volume flow and total permeating flow

( _V0=� _V) for BS and IS with different efficiencies. The ratio is

independent of the fibre radius and on the initial osmotic pressure

�turb�0.7 �turb � 0.8 �turb � 0.9 �turb � 1

�pump � 0.6 �pump � 0.7 �pump � 0.8 �pump � 1

BS 0.29 0.43 0.64 1.27

IS 1.18 1.20 1.23 1.27

Constants: Lfilt � 10ÿ11 m/s Pa, � � 0.000855 N s/m2.
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somewhat lower than in Table 1, Table 2 and Fig. 11.

If, e.g. the ¯ow area of the fresh water between the

®bres is equal to the cross-sectional area of the ®bres,

the power densities will drop to half of the values in

Tables 1 and 2 (actually to less than half because the

®bre thickness is not accounted).

We studied the system optimizing also the ratio

between the net power versus the ®bre volume. This is

different from the results in Tables 1 and 2, where we

®rst optimized the net power and then divided it by the

corresponding volume. This optimizing gave the result

that the values of v0
mean;opt-P; r0;opt; Lopt-P should be as

small as possible. The same statements about the

system dimensions, the losses at inlet and outlet of

®bres as mentioned earlier also apply here, so that

these kinds of conclusions had to be ruled out within

the scope of this work.

5.5. The effect of the filtration coefficient and the

dynamic viscosity

The optimal initial hydrostatic pressure difference

�p0
opt-P was found to be independent of L®lt and m but

v0
mean;opt-P and Lopt-P resulted in strong dependency on

the L®lt and � (Figs. 13 and 14). The ratio (Pmaximum/

A®bre surface) remained constant for all values of � but

increased with increasing value of L®lt. The volume

¯ow ratio _V0=� _V remained independent of both L®It

and m.

5.6. Minimum entropy generation

The minimization of the entropy production rate

(Eq. (39)) of the total osmotic unit results in the initial

hydrostatic pressure (�p0) being equal to the initial

effective osmotic pressure (��0
eff), and both the initial

mean velocity (v0
mean) and the ®bre length (L)

approaching zero. This is a natural result, as in this

case all ¯ows will damp i.e. the irreversibilities cease.

The unwanted consequence of the ceasing of ¯ows is

that the power generation (P) vanishes. Thus, the

entropy generation cannot be used in this formula

to optimize the system.

Instead, the local rate of entropy generation (�000),
Eq. (40), results always in a minimum value at some

longitudinal non-zero position. An example of this

phenomenon is shown in Fig. 15. When started with

arbitrary values of v0
mean and �p0, this optimal position

(Lopt-�000 ) was not found to have any dependency on the

respective position where power generation results in

the maximum value. However, if we calculate the �000

with initial values of v0
mean;opt-P and �p0

opt-P, which

resulted in optimizing P, the local minimum was

always found to settle at a further position than the

corresponding value of Lopt-P. If both ef®ciencies �turb

and �pump are set as unity, the value of Lopt-�000 will

settle about 9% further than Lopt-P for both BS and IS.

As the ef®ciency decrease, the corresponding differ-

ence increases, for instance, if �turb � 0.9 and

�pump � 0.8, the difference is about 12% for BS and

about 30% for IS. The parameters were varied in these

calculations between: ��0
eff 5±70 bar, r0 � 10±

250 mm, L®lt � 10ÿ13±10ÿ10 m/s Pa.

5.7. Maximizing the ratio between net power and

entropy generation

The maximizing of the function 	, the ratio

between the net power (P) and the entropy generation

rate (�), does not result in an unequivocal optimal

point (v0
mean;opt;�P0

opt; Lopt) as did the optimization of

P. Instead, when the v0
mean diminishes, the resulting 	-

value (see Fig. 16(a)) for BS approaches asymptoti-

cally the same maximum value for each ®bre radius

(r0). The corresponding optimal initial pressure dif-

ference (�p0
opt-	) also approaches a consistent value

for all ®bre radii but the optimal ®bre length (Lopt-	)

remains dependent on the v0
mean and r0 (Fig. 16b and

c). To obtain net power from the system, the v0
mean

cannot be zero �v0
mean ! 0) 	! 	max but P! 0)

Therefore, it is necessary to rede®ne the optimum of

v0
mean so that 	�v0

mean;opt-	� � 	max and P�v0
mean;opt-	�

do not vanish. The new de®nition we give to the

optimal initial mean velocity v0
mean;opt-	 is

	�v0
mean;opt-	�

	�v0
mean ! 0� � 0:99

For instance, in the case of Fig. 16, the value of

	�v0
mean ! 0� � 67:73 K. So, we search the initial

mean velocity value for which the function 	 results

in 99% of the value of 	�v0
mean ! 0� i.e. for this case

	�v0
mean;opt-	� � 67:05 K. Some values of v0

mean;opt-	

are presented in Table 4. In fact, the condition

v0
mean ! 0 is outside of the validity of this study, as

in Section 3.1 we assumed that the diffusion ¯ows in

A. SeppaÈlaÈ, M.J. Lampinen / Journal of Membrane Science 161 (1999) 115±138 131



longitudinal direction are negligible compared to the

convective ¯ows. The optimization of IS fails because

no maximum value for 	 in respect to ®bre length was

found. Instead, 	 increases rather linearly when the

®bre length decreases to even unrealistically small

values. The losses at inlet and outlet of the ®bre should

be added to the model if the optimizing of 	 is applied

to IS.

When the power densities resulting from the opti-

mization of P and 	 (Tables 1 and 5) are compared,

we ®nd that the optimization of P results in about

twice as high values as optimizing 	. This was found

Fig. 13. The effect of the filtration coefficient with different fibre radii on (a) optimal fibre length for the IS; (b) initial mean velocity of brine

for the IS; (c) maximum power of the IS. Constant values ��eff � 20 bar, � � 8.55 � 10ÿ4 N s/m2, �pump � 0.8 and �turb � 0.9 were used.
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Fig. 14. The effect of dynamic viscosity with different fibre radii on (a) optimum fibre length for the IS and (b) optimum initial mean velocity

of brine for the IS. Constant values ��eff � 20 bar, Lfilt � 10ÿ11 m/s Pa, �pump � 0.8 and �turb � 0.9 were used.

Table 4

Optimal initial mean velocity v0
mean;opt-	(m/s) for BS

��eff(bar) r0 � 10 mm r0 � 25 mm r0 � 100 mm r0 � 250 mm

5 0.0005 0.0008 0.0016 0.0025

20 0.0020 0.0030 0.0063 0.010

40 0.0039 0.0062 0.0125 0.020

70 0.0070 0.011 0.022 0.035

Parameters: Lfilt � 10ÿ11 m/s Pa, � � 0.000855 N s/m2, c0
w � 55.55 kmol/m3, 
 � 0.0003/K, �turb � 0.9, �pump � 0.8.

Table 5

Power density (kW/m3) of BS which results in optimizing 	

��eff (bar) r0 � 10 mm r0�25 mm r0�100 mm r0�250 mm

5 6.0 2.4 0.6 0.2

20 98 37 10 3.9

40 391 156 39 16

70 1192 474 119 48

Parameters as in Table 4.
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to be true for all realistic (achievable today) ef®ciency

of the pump and turbine (Fig. 17). As both the

ef®ciencies approach simultaneously unity, this ratio

increases towards in®nity and Lopt-	 approaches

zero. The parameters were varied between ��0
eff �

5±70 bar, r0 � 10±250 mm, L®lt � 10ÿ12 to 10ÿ10

m/sPa, always resulting, with reasonable ef®ciency,

in about 2.1±2.4 times higher values when P is opti-

mized.

6. Conclusions

The transport equation derived in this study takes

into account the effects of dilution and hydrostatic

Fig. 15. (a) The local entropy generation (�000) inside the osmotic unit with v0
mean � 0:08 m/s; (b) the longitudinal position of fibre (Lopt-�000 ), in

metres, where the local entropy generation is minimum. For both figures: Lfilt � 10ÿ11 m/s Pa, ��0
eff � 25 bar (T � 300 K, c0

s � 1002.3 mol/

m3, � � 1), r0 � 50 mm, � � 0.000855 N s/m2, c0
w � 55.55 kmol/m3,
 � 0.0003/K.
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pressure drop of the solution inside the hollow ®bre

affecting the permeating fresh water ¯ow. The mem-

brane is considered as highly selective i.e. the solute

¯ux through the membrane is assumed to be minimal.

Because the equation is derived applying the effective

osmotic pressure difference (correction from the

osmotic pressure difference between both sides of

an ideal membrane, including the possible internal

polarization), small solute ¯uxes can be accepted as

long as the effect of the solute diffusion inside the

lumen in radial direction to the concentration bound-

ary layer remains less important than the correspond-

Fig. 16. (a) the ratio between net power and entropy generation; (b) corresponding optimal initial hydrostatic pressure difference; (c)

corresponding optimal fibre length. The following constants were used for all figures: Lfilt � 10ÿ11 m/s Pa, ��0
eff � 20 bar (T � 300 K,

c0
s � 801.86 mol/m3, � � 1), � � 0.000855 N s/m2, c0

w � 55.55 kmol/m3, 
 � 0.0003/K, �turb � 0.9, �pump � 0.8.
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ing ¯ow of water. During the derivation of the trans-

port equation, no assumptions of the direction of the

permeating ¯ow were made. Thus, the transport equa-

tion is applicable to solution ¯ow increasing due to

pressure-retarded osmosis or decreasing due to the

reverse osmosis as well. Furthermore, direct osmosis

can be estimated from the analytical solution which

was given in Section 3.1. The pressure drop of the

diminishing fresh water ¯ow outside the ®bre is

neglected. So, the equation should be on its best with

loosely packed osmosis permeating systems. Based on

the transport equation, the net power function (P) and

the entropy generation function (�) are formed for two

different concepts of the pressure-retarded osmosis

power generation system. The functions P and 	 (�P/

�) are used to optimize the systems.

For a real system to be able to deliver any net

power, the initial hydrostatic pressure, the initial

velocity and the ®bre length should be considered

with care. According to this theoretically based

study, it is possible not only to localize the positive

range of the net power, but also to specify the optimum

values for the initial hydrostatic pressure difference

between the solution inside the ®bre and the fresh

water outside the ®bre (�p0
opt), for the initial mean

velocity of the solution (v0
mean;opt) and for the ®bre

length (Lopt).

The results show that, when P is maximized, �p0
opt

can be de®ned with a good accuracy when the effec-

tive osmotic pressure and the pump and turbine ef®-

ciencies are given. To de®ne Lopt we need to know the

inner radius of the ®bre, the ef®ciencies, the mem-

brane and the solution properties, except the osmotic

pressure. To determine v0
mean;opt the inner radius of the

®bre and all the membrane and solution properties

should be known. The improved system (IS), where

the brine is pressurized by recycling it into a tank, was

found to result in higher power generation than the

basic system (BS). If the physical model of osmotic

¯ow is simpli®ed in such a way that pressure losses

and dilution of the solution are neglected, the opti-

mization results remarkably overestimated values for

power generation.

The determination of optimum values based on 	 is

more complex. In general, we need all the system and

solution parameters. Furthermore, as 	 was found to

approach asymptotically the maximum value when the

initial mean velocity decreases �v0
mean ! 0) 	!

	max but P! 0) , we had to rede®ne the de®nition of

v0
mean;opt. The optimal values resulting from these two

methods differ, sometimes considerably, from each

other. When 	 was maximized, the net power density

(net power per ®bre volume) of BS always dropped to

less than half of the maximum power density. On the

Fig. 17. (a) The ratio between the net powers resulting in optimization of P and 	 in function of the efficiency of the pump; (b) corresponding

behaviour of 	; (c) corresponding behaviour of " (see Eq. (42)). Parameters Lfilt � 10ÿ11 m/s Pa, ��0
eff � 20 bar (T � 300 K,

c0
s � 1002.3 mol/m3, � � 1), r0 � 25 mm � � 0.000855 N s/m2, c0

w � 55.55 kmol/m3, 
 � 0.0003/K, �turb � 0.9.

136 A. SeppaÈlaÈ, M.J. Lampinen / Journal of Membrane Science 161 (1999) 115±138



other hand, the optimization of P drops remarkably the

values of 	 from its maximum values.

The local entropy generation always resulted in a

minimum value at a certain longitudinal position

inside the ®bre. This minimum position settles further

than the corresponding optimal position resulting from

the optimization of P.

7. Nomenclature

A surface area, m2

A1,A2,A3,. . . constants

C concentration, mol/m3

d total differential

D diffusion coefficient, m2/s

f(r) function that describes the depen-

dence of salt concentration on radial

direction

F(r) function that describes the depen-

dence of z-component of mass aver-

age velocity flow on radial direction

g(z) function that describes the depen-

dence of salt concentration on long-

itudinal direction

G(z) function that describes the depen-

dence of z-component of mass aver-

age velocity flow on longitudinal

direction

h molar specific enthalpy, J/mol

j diffusion flux, kg/m2 s

L length of a fibre, m

Lfilt filtration coefficient, m/s Pa

Lrefl reflection coefficient (interpreted so

that it takes into account also the

internal polarization), non dimen-

sional

n mass flow relative to stationary co-

ordinates, kg/m2 s

N molar flow, mol/s

p hydrostatic pressure, bar or Pa in

equations

ploss hydrostatic pressure losses of the

brine, bar

P power, W
_Q heat flux, W

r0 fibre radius, mm, or m in equations

s molar specific entropy, J/mol K

S entropy, J/K

R universal gas constant, J/mol K

T temperature, K

v mass average velocity vector, m/s

� partial molar volume, m3/mol
_V volume flow, m3/s

� Mass average velocity, m/s

x mole fraction

" energy conversion efficiency (defined

in Eq. (42))

� difference

@ partial differential

� efficiency

� rate of entropy generation, W/K

�000 local rate of entropy generation, W/

m3K

� dynamic viscosity, N s/m2

� total density of a solution, kg/m3

�s partial density of salt, kg/m3

r gradient

	 ratio between net power and entropy

generation, K (defined in Eq. (41))

� osmotic pressure. bar or Pa in equa-

tions or 3.14159...


 isobaric coefficient of volume expan-

sion, 1/K

Indexes

BS basic system

fw fresh water

i species

IS improved system

mean mean value over the cross-sectional

area of the fibre

n iteration number

opt optimal value

opt-P optimal value when net power (P) is

optimized

opt-	 optimal value when the ratio (	)

between net power and entropy gen-

eration is optimized

perm permeating

r radial direction

ref reference

s salt

turb turbine

w water in a solution
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z longitudinal direction

0 initial value i.e. value at the entrance

of the osmotic unit
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