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NOMENCLATURE 
 
a activity 
A transport coefficient for the membrane, m/sPa 
A surface area, m2 
A1, A2, A3.. constants 
Aw, Bw transport coefficients for solvent, mol/m2s 
As, Bs transport coefficients for solute, mol/m2s 
A,,B,,C,,D  processes 
b external force, N/kg 
c total concentration mol/m3 
ci concentration of species i, mol/m3 
D binary diffusion coefficient, m2/s 
D* diffusion coefficient, m2/s 
Deff  effective diffusion coefficient, m2/s 
f power destruction ratio 
F free energy of the interface, J 
g gravitational acceleration, m/s2 
G Gibbs energy, J 
h height, m 
h molar specific enthalpy, J/mol 

.
H  enthalpy flux, W/m2 
j diffusion flux, kg/m2s 
J molar flux, mol/m2s   
k polytropic exponent 
kb gas consant, Nm/K 
kp permeability, m2 
L  lenght, m 

filtL  filtration coefficient, m/sPa 

reflL    reflection coefficient 
m   molality, mol/kg 
M molar mass, kg/mol 
n number of molecules, mol 
n mass flow relative to stationary co-ordinates, kg/m2s 
N molar flow, mol/s 
p pressure, Pa 
P  power, W or W/m2 

rp  dimensionless pressure 
.

Q   heat flux, W or W/m2 
r ratio between solvent flux and solute flux 
r radial co-ordinate, m 
ro fibre radius, m 
R universal gas constant (Paper I), J/molK 
Rdiff  diffusion resistance of the support structure, s/m 
Rf resistance for flow Ns 
ℜ  universal gas constant, J/molK 
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Re Reynolds number  
s molar specific entropy, J/molK 
S entropy, J/K 
t time, s 
T temperature, K 
u  velocity vector, m/s 
v mass average velocity, m/s 
vw permeating flux, m/s 

.
V   volume flow, m3/s 

perm

''V
.

 permeating flux (Paper I), m/s 

W work, J 
W channel width (Paper III), m 
x co-ordinate, m 
x  molar fraction  
y co-ordinate, m 
z co-ordinate, m 
 
Greek letters and other symbols 
α  isobaric coefficient of volume expansion, 1/K 
α  coefficient in slip coefficient (Paper III)  
γ  isobaric coefficient of volume expansion (Paper V), 1/K 
Γ  driving force of flows, N/m2 
ε  Second Law efficiency for an osmotic power plant 
η  dynamic viscosity (Chapters 1-5), N/sm2

 η
 

Second Law efficiency for an osmotic membrane 

pumpη  efficiency of the pump 

turbη   efficiency of the turbine
  κ  isothermal compressibility, 1/Pa 

λ  dimensionless co-ordinate 
µ  chemical potential, J/mol  
µ  dynamic viscosity (Papers I-IV), N/sm2 
ν  kinematic viscosity, m2/s 

iν (T,p)  molar specific volume of species i, m3/mol 

iν (T,p,xi)  partial volume of species i in a solution, m3/mol 
ξ  transport coefficient 
π  osmotic pressure (osmotic potential) , Pa 
π  = 3.14159… 
Π  dimensionless term 
ρ  density, kg/m3 
σ  rate of entropy generation, W/K (W/Km2 in Paper V) 

'''σ  local rate of entropy generation, W/Km3 
τ  tortuosity 

±ϕϕ,  activity coefficients  
Φ  dimensionless transport coefficient  
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Ψ  ratio between power and entropy generation, K 
ω  solute permeability, mol/Ns 
Ω  dynamical osmotic potential, N/m2 
 
φ , ∅  porosity 
∇  gradient 
∂  partial differential 

λℑ   external force perpendicular to the membranes, N/m3 
Θ  dimensionless slip coefficient 

 
 
Subscripts and superscripts 
 
BS basic system 
c converter 
fw fresh water 
g gas 
H high concentration side 
IS improved system 
L low concentration side 
m, mean mean value 
opt optimal 
perm permeating 
ref reference 
s solute or surface 
ss solute at the surface 
turb turbine 
w wall when attached with velocity or Reynolds number, otherwise solvent 
0 initial or reference value 
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1. INTRODUCTION 
 
    Energy can be converted into a useful form by letting miscible fluids of different 
compositions mix with each other. A major natural source for such a process is the earth’s 
river and ocean water resources. For example, mixing 1m3/s of river water and 1 m3/s of 
ocean water could theoretically supply 1.6 MW of power. It has been estimated that e.g. 
the Mississippi river alone yields a 4 GW theoretical potential for power production 
(Norman 1974), if only 10% of the river flow is utilised. This process of mixing river and 
ocean water would provide renewable, permanent, and practically waste-free power 
production. An alternative source is provided by concentrated industrial brines. Despite 
the great potential, energy conversion from mixing species is not yet an economically 
viable energy conversion method. 
    In general, the production of power from mixing solutions of different compositions 
could be based on e.g. the vapour pressure differences (Olsson et al. 1979), the ionic 
differences of solutions (see e.g. the reverse electrodialysis studies of Pattle (1954) or 
Weinstein and Leitz (1976)), on density differences, on the temperature changes in mixing, 
or on the application of selective osmotic membranes. This latter alternative, and the 
osmotic phenomenon, are the main topics of this thesis. The energy conversion method 
utilising osmotic membranes is often called pressure-retarded osmosis power generation1. 
Probably the most important device in present-day osmotic energy converter concepts is 
the membrane module, which consists of a large number of membranes providing a large 
membrane surface area. The performance of the membranes and the module is crucial for 
efficient energy conversion. 
    Sections 2 and 3 present the background to Papers I-V. In Section 2, a review of one of 
the key concepts of osmosis, osmotic pressure, is presented. Furthermore, the potential of 
the mixing process for power production is discussed and the basic principles of current 
concepts of osmotic energy conversion systems are presented. In Section 3, the 
background for the transport of species controlled by osmotic membranes is presented.  
    Section 4 is devoted to the results of Papers I-V. In Paper I, a transport model for a 
solution flow inside a hollow cylindrical osmotic fibre is developed. With this model a 
thermodynamic 1st and 2nd Law optimisation of an osmotic  
energy converter was performed and, furthermore, the local production rate  
of entropy in a solution flowing inside the hollow fibre was examined.  
    The analysis of an alternative way to extract the available energy from mixing species, 
based on the cyclical pressurisation of a solution, is performed in Paper II.  
    Paper III includes supplements to the solution of laminar flow between one permeable 
and one non-permeable wall. This solution can be applied e.g. when concentration 
distribution external to the flat sheet membrane is being estimated. Careful estimation of 
this distribution is important for the study of the performance of the selective layer of the 
membrane and the performance of membrane modules. 

                                                 
1 In the engineering literature, the osmotic flow of solvent through a selective membrane from a diluted 
solution to a concentrated, pressurised solution ( 0p >∆ ) is often called pressure-retarded osmosis. Thus, 
in pressure-retarded osmosis, the solvent moves naturally from low pressure to high pressure. This is the 
same phenomenon that occurs in nature and in the natural sciences it is called osmosis. In the engineering 
literature, a distinction is often made between pressure-retarded osmosis and direct osmosis. The latter is a 
term used for experiments and applications with a trans-membrane pressure difference of practically zero 
( 0p ≈∆ ). Direct osmosis is alternatively called forward osmosis. 
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    The osmotic water flux through the selective layer of a membrane is conventionally 
estimated by linear equations. By experiments and by calculation of the external and 
internal concentration boundary layers, two alternative non-linear transport equations for 
osmotic water flow are suggested in Paper IV. Furthermore, the common view that the 
concentration accumulation inside the support structure of the membrane (so-called 
internal polarisation) is the main reason for the non-linear behaviour frequently found in 
osmotic flow experiments was found to be questionable. 
    Paper V consists of a Second Law efficiency analysis of an osmotic membrane. The 
equations derived permit the examination of how selective the membrane should be, as 
well as the role of the support structure in the destruction of available energy. 
 
 
2. THERMODYNAMICS OF OSMOSIS  
 
    Osmosis can be considered as a natural mixing process in which two solutions of 
different compositions are separated from each other with a membrane. The osmotic 
membrane allows one or some of the components of the solution (hereafter referred to 
either as solvent or as water) to permeate spontaneously at a considerably higher rate than 
the others (hereafter referred to as solute). Therefore, the movement that performs the 
mixing of the solutions is mainly caused by the "one-way traffic" of the solvent. This 
permits the spontaneous transport of the solvent in an unusual way. It can move from a 
low-pressure solution through a membrane to a high-pressure solution, as long as the 
chemical potential of the solvent remains higher on the low-pressure side than on the high-
pressure side.  
 
 
2.1 Osmotic pressure of a liquid solution 
 
   In an osmotic system, as illustrated in Fig. 1, pure solvent is separated from a solution of 
the solvent and dissolved solute by an ideal semipermeable membrane. The ideal 
membrane completely blocks the movement of the solute but allows the transmission of 
the solvent. The solution compartment is rigid and the pure solvent is in free contact with 
the environment at a pressure p0. In equilibrium, the temperature of the pure solvent and  
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equilibri
 

 

pu
 
po 
 

 

ideal semi-permeable
membrane 
. Ideal osmotic sys
um. Js = trans-memb

 

 re water  pure water
 
po 

 
 
solution

       
        p  
Jw 
 

Js = 0 
tem
ran
rigid wall 
 

 a) before equilibrium (non-equilibrium a
e solute flux and Jw = trans-membrane solve
solution
       
        p  
Jw= 0
Js = 0 
π=− opp   
π<− opp   
s Jw ≠ 0) and b) in 
nt flux. 



 

 

15

 

 
solution will be the same, but the pressure of the solution will be higher than the pressure 
of the pure solvent. The equilibrium pressure difference is called osmotic pressure, or 
osmotic potential, which is denoted by the symbol π . 
In equilibrium, the chemical potential of the solvent wµ  is equal on both sides of the 
semipermeable membrane: 
 

solventpure
w

solution
w µ=µ . (1) 

 
The chemical potential of the solvent w in a solution can be expressed as  

( ) ∫ ν+ℜ+µ=µ
p

p

www0www

0

dp)p,T()x,p,T(alnT)p,T()x,p,T(   (2) 

or alternatively as 
 

 ( ) ∫ ν+ℜ+µ=µ
p

p

www0w0www

o

dp)x,p,T()x,p,T(alnT)p,T()x,p,T( ,  (3) 

 
where ℜ  is the universal gas constant, wν (T,p) the molar specific volume of pure solvent, 

wν (T,p,xw) the partial volume of solvent in a solution, xw the mole fraction of solvent, aw  
the activity of solvent and )p,T( 0wµ  the chemical potential of a pure solvent at pressure 
p0 and temperature T. For the pure solvent   
 

1a solvent pure
w = .  (4) 

 
Hence, the equilibrium condition for the solvent is, applying Eq. (1) and either Eq.(2) or 
Eq. (3),  
 

0dp)aln(T
solutionp

p

w
solution
w

0

=ν+ℜ ∫ . (5) 

 
In Eq. (5), the definition of solvent activity solution

wa  in solution and the definition of wν  
depends on which of Equations (2) or (3) we apply. If we apply Eq. (2), then 

)p,T(ww ν=ν  and )x,p,T(aa ww
solution
w = . If, instead, we apply Eq. (3), then 

)x,p,T( www ν=ν  and )x,p,T(aa w0w
solution
w = . Usually, wν  is considered as 

independent of pressure in the integration of Eq. (5). We then get the result of the osmotic 
pressure as  
 

solution
w

w

alnT
ν
ℜ

−=π , (6) 
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where we have denoted the equilibrium pressure difference over the membrane psolution - p0 
as the osmotic pressure π .  
    By using the osmotic coefficient from Platfor (1979), we can calculate from Eq. (6) that 
at e.g. 25 oC for a 6 mol/kg NaCl-water solution π  = 381 bar. Similarly at 25 oC for a 6 
mol/kg CaCl2-water solution we get π  = 1301 bar. The osmotic pressure of ocean water at 
25 oC is about 23 bar, corresponding to the salt molality 0.5 mol/kg.  
    Let us consider the evolution of solution pressure in the situation shown in Fig. 1. This 
evolution of pressure is illustrated in Fig. 2 for the case where both the solution pressure 
and the pure water pressure are initially at pressure po. If the solution and pure water are 
separated from each other by an ideal membrane, the pressure in the rigid compartment of 
Fig. 1 will, as described previously, increase until the pressure difference corresponds to 
the osmotic pressure. If the solute flux 0J s ≠ , i.e. the membrane is not ideal, the 
maximum obtainable solution pressure difference will be below the osmotic pressure. 
When the solution reaches the maximum pressure, equilibrium between the solutions on 
both sides of the leaking membrane does not exist: even though the water flux tends first 
to approach zero, the solute continues to penetrate from the right-hand compartment of 
Fig. 1 to the left, causing continuous dilution of the right-hand compartment. The osmotic 
pressure of the solution in the right-hand compartment decreases and the water slowly 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Time evolution of solution pressure (p) in a rigid container. One
constructed of an osmotic membrane that separates the solution from init
membrane with minor solute leakage t3>>t2, the time t1 for reaching
depends strongly on the characteristics of the membrane (water permeab
on the experimental set-up (ratio between solution volume and surface are
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Section 4.2, we analyse a system where t1 can be less than a second.  
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starts moving back from the right-hand compartment into the left-hand one. This 
movement from right to left continues until equilibrium, where both the pressure and 
concentration of the compartments are identical, is reached. 
    In the literature of the thermodynamics of solutions, alternatives to the osmotic 
potential expressed in Eq.(6) appear. In Table 1, a selection (not complete) of different 
equations is presented. Although widely accepted, Eq. (6) has also been criticised by 
Hammel (1979), who pointed out that the equation is not a thermodynamic statement 
because of the obscure concept of activity. He developed a new model (not presented in 
this thesis), according to which the osmotic potential of a solution equals the so-called 
enhanced solvent tension. 
     Lewis (1908) proposed an equation takes into account the compressibility ( κ ) of the 
solvent by assuming a linear relationship between the molar volume and pressure: 
 

w
w

2 xlnT½
ν
ℜ

−=κπ−π .                (7) 

 
Table 1.  Some proposed equations for osmotic potential. For ionic solutions concentration cs is 
calculated for the total number of dissolved ions. 
Equation for osmotic potential  

w
w

alnT
ν
ℜ

−=π       Basic equation for real, non-compressible 
solution. 

( )...Ac1Tc ss ++ℜ=π   Alternative equation for non-ideal, non-
compressible solution. A is an osmotic 
virial coefficient. 

Tcsℜ=π                         Van't Hoff equation for ideal dilute 
solution. 

w
w

2 xlnT½
ν
ℜ

−=κπ−π  Lewis's formula for ideal solution with a 
linear relationship between the molar 
volume of solvent and pressure. Constant 
compressibility ( κ ) of solvent assumed. 















ν

ℜκ
+

κ
−

=π
0w

walnT
1ln1  

Equation for real solution that allows non-
linear relationship with the molar volume 
of solvent and pressure. Constant 
compressibility ( κ ) of solvent assumed 
and 0wν  is defined at pressure po. 

 
 
This equation appears only seldom in the literature. Eq. (8) offers yet another alternative, 
where the solution is real and the compressibility effect is taken into account: 
 

  










ν

ℜκ
+

κ
−

=π
0w

solution
walnT

1ln1 .                 (8) 

 
This equation is developed in this work and it is briefly derived and discussed below.  
    The isothermal compressibility is defined as 
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 TT p
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p
1










∂

∂
−=









∂

∂
−=κ ww

w

vv

v
 .       (9) 

 
  If we consider κ as constant and integrate Eq. (9) at a fixed temperature, we get 
 

[ ])pp(exp o−κ−= w0w vv ,              (10) 
 
where w0v  is defined at pressure p0. Substituting this in the equilibrium condition Eq. (5) 
and performing the integration yields to Eq. (8). 
   Applying L'Hospital's rule, the following limit holds: 
 

b)b1ln(
0

lim
=

κ
κ+

→κ
.              (11) 

 
By realising that vw in Eq. (6) is considered independent of pressure (i.e. we can set in Eq. 
(6): w0w vv = ), it can easily be verified from the above limit that Eq. (6) is a special case 

0→κ  of Eq. (8). The relative difference of Eq.(6) compared to Eq.(8) is  
 

)(
11

)(
)()(

diff
8.Eq8.Eq

6.Eq8.Eq )( 8.Eqe
κπ
−

−=
π

π−π
=

κπ−

.           (12) 

 
This difference is plotted in Fig. 3. Average compressibility values of pure water were 
applied (ranging at 20 oC from 10104.4 −⋅  1/Pa to 10106.3 −⋅  1/Pa, depending on the 
pressure applied in the integration of Eq. (5)). The difference between Eq. (8) and Eq. (6) 
remains meaningless for dilute solutions but with high compressibility and high-
concentration solutions the deviation can be more than 10%. The constancy of the 
compressibility of the solution is not always well presumed. More accurate equations can 
be achieved by the integration of Eq. (5) with the actual pressure dependency of the molar 
specific volume (or alternatively the partial volume of solvent in a solution; see comment 
below Eq. (5)). 
 
 
2.2  Absorption of heat during osmotic process 
 
    For solutions for which enthalpy of mixing is meaningless2, such as a NaCl-water 
solution, the energy balance for the isothermal steady-state osmosis process with total flux 
J (in Fig. 1 J=Jw+Js) yields 
 

,)pp(J )pp)(T1(JHQ 00

..
−υ≈−γ−υ=∆=     (13) 

 

                                                 
2 The total differential of specific enthalpy of species i is therefore dp)T1(dTcdh iipii α−υ+= . 
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Figure 3. Difference in osmotic pressure between equation for zero compressibility of solvent (Eq. 
(6)) and equation for constant compressibility (Eq.(8)). The osmotic pressure on the x-axis 
corresponds to the value estimated from Eq.(8).  
 
 

where 
.

H is the enthalpy flux of the mixture, 
.

Q  the net heat flux to the membrane, p the 
solution pressure, po  the pressure of pure solvent, and γ  the isobaric coefficient of 
volume expansion. Thus, in the sense of energy conversion, the spontaneous movement of 
water or solvent from low pressure po into high pressure p is fulfilled by absorbing heat 
from the environment.  
 
 
2.3 Technical applications based on osmosis 
 
    'No physical phenomenon has any greater import in biology than does osmosis'. This is 
how F. Eugene Yates (1979), the editor of the American Journal of Physiology, praises the 
significance of osmosis in living systems in opening a forum on osmosis. The role of 
osmosis in the present-day technical sciences is very different to the one it has in the 
biological sciences: there are only a few applications based on this phenomenon and so far 
their importance has been very limited. The most useful application at the present time is 
probably osmometry, which is widely used for the determination of molar masses of 
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macromolecules (Atkins (1998)). Other suggested applications are, for example, in power 
production, the controlled release of drugs by an implantable osmotic pump, food 
processing, the concentration of landfill leachate, reclaiming wastewater for potable reuse 
in life support systems (e.g. for long-term human missions in space) and wastewater pre-
treatment. A recent literature review on suggested osmotic applications is presented by 
Cath et al. (2006). 
 
 
 
2.4 Energy conversion by osmosis 
 
2.4.1 Maximum obtainable power from mixing of species 
 
    Energy can be converted into a usable form by mixing miscible fluids of different 
composition. The most commonly studied method is based on osmosis. Energy conversion 
can be alternatively based, e.g., on the vapour pressure difference between the solution 
and pure solvent (Olsson et al. (1979)), on the heat of mixing, density changes during 
mixing, or on ionic differences (see e.g. the reverse electrodialysis studies of Pattle (1954) 
or Weinstein and Leitz (1976)). When seawater and river water are mixed, the enthalpy of 
mixing is almost zero. Thus, the heat resulting from mixing is not an appropriate source in 
this case. Density changes are also relatively small. 
     According to the laws of thermodynamics, if the mixing occurs at a constant pressure 
and at a constant temperature, the maximum work supplied by an energy converter is the 
change in the Gibbs energy (G) between the initial unmixed state (A) and final mixed state 
(B)  
 

)B(G)A(GWmax −= .             (14) 
 
The Gibbs energy of a mixture can be expressed as a sum of its components (i) 
 

i
i

inG µ= ∑ .               (15) 

 
Let us consider npw moles of pure water and a water-NaCl solution containing nw moles of 
water and ns moles of NaCl, all at pressure po and at temperature T. The chemical 
potential of species i can then be expressed according to Eq. (2) 
 

ioii alnT)p,T( ℜ+µ=µ ,       (16) 
 
where for pure water apw = 1. The maximum obtainable work can be found by combining 
Eqs. (14)-(16). The result is  
 

)B(,wpw
)B(,s

)A(,s
s

)B(,w

)A(,w
wmax alnTn

a

a
lnTn

a

a
lnTnW ℜ−ℜ+ℜ= .  (17) 
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If the NaCl-water solution is considered as a real solution, then the activity of NaCl is 
given as 
 

2

osa 







ϕ= ± m

ms              (18) 

 
and the activity of water as 
 

www xa ϕ= ,               (19) 
 

where sm  is the molality, om =1 mol/kg , ϕ  is the activity coefficient, and x the molar 
fraction.   
    The maximum work calculated from Eq. (17), when 1 m3 of pure water is mixed into a 
NaCl solution (varying solution volume and molality), is presented in Fig. 4. The activity 
coefficient ±ϕ  is estimated according to Ensor and Anderson (1973) and wϕ  from 
osmotic coefficient data provided by Platfor (1979). The density of the NaCl-water 
solution is estimated from Krumgalz and Progerelsky (1996).  
   As an example we see in Fig. 4 that when 1 m3 of pure water is mixed with the same 
amount of NaCl solution of molality 0.5 mol/kg (close to the salinity of ocean water), as 
much as 1.6 MJ of work is theoretically obtainable (i.e. 1.6 MW theoretical power is 
obtainable when 1 m3/s of pure water is mixed with 1 m3/s of ocean water). Equally, when 
1 m3 of pure water is poured to and mixed with the ocean, the maximum obtainable work 
is 2.3 MJ. The ocean is then considered as an infinite NaCl-water solution storage. 
 
 
2.4.2 Different concepts of osmotic energy converters 
 
    A simplified osmotic energy converter operating in a steady state is illustrated in Fig.5.  
     The key components are the membrane module, pressurising system, pumps and 
turbine (+generator, not illustrated). The fresh water and pressurised solution are 
conducted into different compartments separated by the membranes of the osmotic 
membrane module. 
     The membrane module provides a large membrane surface area compared to the 
volume of the module. Inside the module, the fresh water at low pressure can naturally 
move, because of osmosis, through the membrane into the pressurised solution - the 
membranes work as energy converters that transform the concentration difference between 
the two solutions into pressure (by absorbing heat from the environment, as described in 
Section 2.2). The module may consist of tubular fibre membranes, flat sheet membranes, 
or spiral wound membranes. 
 
 



 

 

22

 

 
Figure 4.  Available work in mixing 1m3 pure water with varying molality and volume of NaCl-
water solution at T =  298.15 K. 
 
 
    In the simplified system presented in Fig. 5 (named basic systems in Paper I), the 
pressurising of the solution is performed by a pump, but it can be done much more 
efficiently by a pressure exchanger (illustrated as a two-tank system and named an 
improved system in Paper I), as was found by Loab et al. (1990) and in Paper I of this 
thesis.  
    The solute leakage penetrating the membrane and the dilution of the solution cause a 
diminution of the driving force for osmosis, i.e. they reduce the osmotic pressure 
difference over the membrane as the solution passes the membrane module. As the 
membrane module is open for flow, as a result of frictional pressure losses, the solution 
pressure is lower at the outlet of the module than at the inlet. Finally, the solution flow is 
conducted to the turbine. Because of the increased solution flow, it is possible under 
certain circumstances to achieve more power from the turbine than is needed for pumping 
the solution. The search for optimal operating parameters and the optimal membrane 
module configuration is based on an optimal balance between the reduction of the osmotic 
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Figure 5. A simplified concept for an osmotic energy converter operating in a steady state. fw = 

fresh water,
.

V = volume flow (m3/s), P= power , p =pressure. 
 
 
pressure difference and the reduction of the hydrostatic pressure. For instance, if the 
velocity of the solution entering the module is increased, the reduction of the osmotic 
pressure difference will decrease as a result of the enhanced mass transfer at the 
membrane surface. This will increase the permeating osmotic flux and affect the net 
power positively. However, the negative impact of increasing the velocity of the solution 
is that there are increased pressure losses, which diminish the net power. 
    An interesting alternative system is a submarine hydro-electro-osmotic power plant 
proposed by Reali (1981). In this system the river water is conducted to a hydroelectric 
power plant submerged in the sea, the theoretical optimum depth of the plant being 110 m 
below sea level. The post-turbine river water is removed to the seawater, which is under 
hydrostatic pressure, by osmotic membranes.  
    Another alternative could be an osmotic energy converter working cyclically, as 
presented in Paper II of this thesis. Such a system would use osmosis to increase the 
pressure of a solution placed in a closed vessel. After a suitable loading time, part of the 
pressurised solution is released into a turbine and the pressurising of the vessel starts 
again. The solution must be replaced by a new one after a certain number of loadings 
because it is diluted during each loading process. We shall discuss this alternative method 
in more detail in Section 4.2. 
 
 
3. OSMOTIC TRANSPORT OF SPECIES 
 
     For the analysis of the transport properties of a membrane, at least three or four main 
regions appear where transport must be separately considered. The first two regions are 
the fluids both sides of the membrane (fluids external to the membrane). The other regions 
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arise from the membrane. Most commercial membranes are asymmetric, and are 
composed of two main regions, the selective layer and the support structure.    
   The selective layer, the skin, allows the solvent to permeate through the membrane 
much more easily than the solute. In technically prepared membranes the thickness of the 
skin can be e.g. of order 100 nm but in membranes in nature the skin is basically only a 
two-molecule-thick bilayer (Robertson (1983)). 
     The support structure of an asymmetric membrane is considerably thicker than the skin 
and gives support for the skin to enable it to sustain pressure differences. In theoretical 
models, the support layer is usually assumed to be composed of non-selective porous 
material. The support layer may be composed of different kinds of sub-layers.  
   To obtain knowledge on the performance of the skin one must obtain information about 
the conditions at the skin surface, i.e. at Positions 2 and 3 at Fig. 6. However, 
measurements are usually made from the external bulk fluids rather than from values at 
the skin surface. It would be particularly difficult to perform measurements at the 
boundary of the skin and the support structure. Therefore, e.g. the estimation of the 
concentration at the skin surfaces must be theoretically estimated from the measured bulk 
values of the external fluids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Membrane with a selective layer (skin) and support structure. τ ,∅  and z∆  are the 
tortuosity, porosity, and the thickness of the support structure, respectively. 
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3.1. Boundary layers 
 
3.1.1 Concentration and velocity profiles external to the membrane 
 
To solve the concentration distribution external to the membrane the following equations 
for the continuity of the solution, for momentum in laminar flow, and for continuity of 
solute (s) are solved: 
 

0=⋅∇ u            (20) 
 

ubu 2p
dt
d

∇η+∇−ρ=ρ         (21) 

 

s
2*

s cDc ∇=∇•u .        (22) 
 
In addition, suitable boundary conditions that relate the measurements to Eqs. (20)-(22) 
are needed. In Eqs. (20)-(22) we have denoted u as the velocity vector and b as the 
external force field. We have assumed that the dynamic viscosity η , density ρ , and 
diffusion coefficient5 D* are constant and that chemical reactions do not occur.  
    Alternatively, we could try to estimate concentrations at Positions 1 and 3 in Fig. 6, 
based on suitable mass transfer correlation equations. However, during the research of 
Paper IV reliable correlations for osmosis were searched for but not found in the literature. 
Some correlations that are suggested in the earlier literature for the estimation of external 
concentration boundary layers existing as a result of reverse osmosis were compared with 
the solutions of Eqs. (20)-(22). As a result (details are not reported), considerable 
differences between the solutions of these two methods were observed. As Eqs. (20)-(22) 
are based on more fundamental physics than the correlative equations, all the boundary 
layer or polarisation estimations in this thesis are based on Eqs. (20)-(22) or on simplified 
forms of Eqs. (20)-(22). 
    Solute cannot permeate through an ideal semi-permeable membrane. If, furthermore, 
the solution with the lower solute concentration is pure water or pure solvent, no 
concentration boundary layers develop inside the pure water. In this case, concentration 
boundary layers do not exist inside the support structure, if the brine or the solution is 
placed on the skin side of the membrane as in Fig. 6. 
 
 
 
 
 
 
                                                 
5 The diffusion coefficient can be written in the form D

M

M
D w* = , where D = binary diffusion 

coefficient and M = molar mass of solution and Mw = molar mass of solvent. If the solution is dilute in 

solute s, then DD* ≈ . The deviation between D* and binary diffusion coefficient D arises from the 

differences in definitions of velocity applied in fluid mechanics (mass average velocity) and in diffusive 
phenomenon (molar average velocity). 
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3.1.2 Transport inside the support structure 
 
    The thickness of the support structure of the membrane is usually much less than the 
membranes' length and width. Because of this fact and because the main gradients are in 
the direction of the normal of the membrane surface, the transport of species inside the 
support structure, as well as inside the skin, can usually be approximated as one-
dimensional - the only important direction being to the normal of the surface. Another 
customary assumption is that the pressure changes only slightly inside the support 
structure. This change is assumed to be so small that it can be disregarded in analyses. The 
pressure difference between the solutions is thus assumed to equal the pressure difference 
between the skin surfaces. 
    With the above assumptions and with minor modifications Eqs. (20)-(22) are also valid 
for the porous support structure. For instance, the one-dimensional velocity component v 
normal to the surface is replaced by the velocity  
 

vv w ∅=              (23) 
 
and the diffusion coefficient is replaced with the effective diffusion coefficient  
 

*
eff DD

τ
∅

= ,            (24)  

 
where ∅  and τ are the porosity and tortuosity of the porous material, which are often 
taken as constants. Note that vw is in units m3/(sm2

surface) and that the subscript w means 
‘wall’ when attached with velocity vw or with Reynolds number Rew, but ‘solvent’ or 
‘water’ with all other symbols. 
    In one-dimensional cartesian co-ordinates we get from Eq. (20) the fact that the velocity 
v and thus also the vw is constant. Eq. (22) then yields  
 

0
dz

dc
Dvc

dz
d s

effws =







− .            (25) 

 
By noticing that the term in parentheses equals the molar flux of solute, i.e.  
 

dz

dc
DvcJ s

effwss −= ,             (26) 

 
and by integrating this from )zz(cc 0s1s ==  to )zzz(cc 0s2s ∆+==  we get 
  

diffRwv
e
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s
1s

w

s
2s
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Jc

v
Jc 








−+= ,             (27) 

 
where 

effD
z

diffR ∆=  is the diffusion resistance. We can use these equations for estimation 

of the concentration and thus for the osmotic pressure at Position 2 of Figure 6 when the 
concentration at Position 1 is estimated, e.g. from the solution of Eqs. (20)-(22). 
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3.2 Transport of species through the skin 
 
    The typical behaviour of osmotic water flow through a large variety of biological 
membranes (see e.g. Diamond (1966), Brodsky and Schilb (1965), Bentley (1961), Rich et 
al. (1966), Dainty and Hope (1964), Lau et al. (1979), Tedgui and Lever (1984)) and 
synthetic membranes (e.g. Lee et al. (1981), Mehta (1982), Ludwig et al. (2002)) has been 
found to be non-linear in respect of the change in apparent osmotic pressure difference 
over the membrane (see Fig. 7). The apparent osmotic pressure difference is estimated 
from the bulk concentrations of the external solutions instead of the true difference 
between skin surfaces (between Points 2 and 3 in Fig. 6). 
 

 
 
Figure 7. Example of a typical apparent behaviour of osmotic water flow (vw) through an 
asymmetric cellulose acetate membrane (Ludwig et. al (2002)). Osmotic pressure difference is 
evaluated from the bulk solutions.   
 
    The analysis of membranes and, especially, membrane modules which consist of a large 
number of membranes is rather often based on apparent values, disregarding all 
concentration boundary layers. Membrane characteristics based on such analysis depend 
strongly on the hydrodynamic conditions applied in the test and therefore they do not 
quantitatively describe the membrane properties but instead they may give qualitative  
information that enables us to compare different membranes with each other. 
    Despite the fact that the apparent behaviour of osmotic water flow is frequently found 
to be non-linear in respect of the concentration difference, it has been suggested that its 
true behaviour is still linear. The apparent non-linear performance is usually explained by 
the concentration boundary layers in fluids adjacent to the membrane, by solute 
accumulation (polarisation) inside the porous substructure of the membrane (Mehta and 
Loeb (1978), Lee et al. (1981)), or by the mutual effect of several serial membranes 
(Kedem and Katchalsky (1963)). 
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It has frequently been assumed that when all boundary layers have been correctly 
accounted for, the true response of the actual selective layer (skin) to increasing solute 
concentration and pressure would cause a linear relationship according to the following 
type of relation: 
 

[ ]pLLv reflfiltw ∆−π∆= ,                      (28) 

 
where 23 π−π=π∆  and 23 ppp −=∆ . The subscripts 2 and 3 refer everywhere in this 
section to the positions given in Fig. 6.  
   This linear equation for osmotic flow and reverse osmosis flow can be derived e.g. by 
the linear theory of non-equilibrium thermodynamics (Kedem and Katchalsky (1958) or 
Katchalsky and Curran (1965)). According to this theory, wv  is the total volume flow per 
membrane surface area. The reflection coefficient reflL  depends on both the properties of 
the membrane and solute and for membranes with zero solute leakage reflL =1. filtL  is the 
filtration coefficient of the membrane, or it can also be called the water permeability if the 
total volume flow is approximately the same as the volume flow of water. The 
corresponding equation for the molar flux of the solute is written according to linear non-
equilibrium thermodynamics as 
 

wss vc)1(J ξ−+π∆ω−= ,        (29) 
 

where 23 π−π=π∆ , ω  is the solute permeability, 
2

cc
c 3s2s

s
+

= is the average solute 

concentration, and ξ  is an additional coefficient. According to the Onsager reciprocal 
equations ξ = reflL  (e.g. Katchalsky and Curran (1965)). However, if experimental 
evidence shows that ξ ≠ reflL , this does not prove that the Onsager relations fail. More 
likely, it shows that the assumptions used in derivation of model Eqs. (28)-(29) have been 
inappropriate. 
    Instead of Eq. (29), in osmosis and reverse osmosis studies the solute flux is often 
written as a simplified formula 

 
ss cBJ ∆−=           (30) 

 
where 2s3ss ccc −=∆  and B is an alternative solute permeation coefficient. According to 
Eq. (29), the solute flux depends on the pressure difference via Eq. (28). Eq. (30), 
however, states the independence of the solute flux from the pressure difference. 
    Some previous transport models for membranes consider the skin to be composed of 
very narrow open paths where the combination of the driving force (usually proportional 
to the gradient of osmotic pressure) and the flow friction controls the osmotic flow (see 
e.g. Katchalsky and Curran (1965)). Some other models require that no open paths exist; the 
species dissolve into the skin material and diffuse through it (see e.g. Cussler (1997)). 
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    Previously, some non-linear models have been suggested too. Massaldi and Borzi 
(1982) proposed that cavitation and partial clogging could explain the non-linearities. Fuls 
et al. (1992), on the other hand, suggested that the membrane could compact not only as a 
result of the pressure applied, but also because of the osmotic potential (i.e. resulting from 
the dissolved substances) causing a reduction in the permeability of the membrane. 
Diamond (1966) has proposed the following equation for the apparent behaviour of 
osmotic flow: 
 

( )LH

LH
w

cc
2

A

cc
J

+
Φ

+

−
=              (31) 

 
where cH and cL are bulk solute concentrations on both sides of the membrane and A and 
Φ  are transport coefficients. Diamond found this equation to fit well to the experiments 
performed with a rabbit’s gall-bladder when the hydrostatic pressure difference was 
absent. 
    In Paper IV alternative transport models for skin are presented. We shall discuss these 
models in more detail in Section 4.4. 
 
 
 
4. THERMODYNAMIC ANALYSES OF OSMOTIC FLOWS AND THEIR 
APPLICATION TO POWER GENERATION 
 
4.1 Model for a solution flow inside a hollow cylindrical osmotic fibre and optimising 
pressure-retarded osmosis power generation systems (Paper I) 
 
4.1.1. Flow of a solution inside hollow cylindrical fibres whose walls behave like osmotic 
membranes 
 
    A formula for estimating the velocity and pressure of solution flow inside a hollow 
cylindrical fibre membrane increasing as a result of osmosis is derived in Paper I. The 
flow situation is illustrated in Fig. 8. The membrane is assumed to be highly selective, and 
thus the solute flux through the membrane is disregarded. However, the concentration 
distribution inside the hollow section caused by the osmotic water movement still needs to 
be solved and the model takes this phenomenon into account. The flow is considered to be 
laminar. As one of the boundary conditions, the linear form of osmotic flux, Eq. (28), is 
applied. In the appendix of Paper II this fibre model is derived for the non-linear osmotic 
equation proposed in Paper IV.  
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Figure 8. The hollow cylindrical fibre membrane system. 
 
 
    The velocity inside the hollow cylindrical fibre was found to follow the equation 
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where r and z are the radial and axial co-ordinates, respectively, and r0 is the inner radius 
of the fibre. With given boundary conditions at the inlet of the fibre, the function G(z) and 
the pressure at the fibre surface (ps) are solved numerically from the following scheme: 
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where p0 is the constant pressure outside the fibre and the constants A1 and A2 are  
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where 0
meanv  is the mean velocity at the inlet of the fibre and 0

ssc  the solute concentration 
at the surface of the fibre at the inlet. If the concentration and pressure at the inlet of the 
fibre are considered as independent of the radial co-ordinate, then 0

ssc  and 0
sp  represent 

inlet bulk values. Eq. (33) takes into account the solute concentration change at the 
surface of the fibre. This concentration can be found from 
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    In forward or direct osmosis the hydrostatic pressure difference between the solution 
and fresh water can be considered negligible ( 0)z(p)z(p 0s ≈− ). The following 
analytical solution for the axial velocity was found: 
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Integrating the velocity profile over the cross-sectional area of the fibre, we get the mean 
volume flow meanV& . For direct or forward osmosis we get from Eq. (35) 
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4.1.2. First Law optimisation of the net power of osmosis energy converters 
 
    Eqs. (32)-(34) were applied for the study of the performance of an osmotic energy 
converter without a pressure exchanger (named the basic system (BS) in Paper I) and for a 
study of the performance of a converter with a pressure exchanger (named the improved 
system (IS) in Paper I). These osmosis power generation systems operate at a steady-state, 
as described in Section 2.4.2. As a result, it was shown that optimal values, which 
correspond to maximum power output, of initial pressure difference across the membrane 
( 0

0
s

o ppp −=∆ ), initial volume flow of brine ( 0
meanv ), and fibre length (L) can be 

determined.  
    If pressure losses, dilution of solution, solute leakage through the membrane and the 
efficiencies of the energy conversion machines are neglected, an exact result for the 
optimal pressure difference over the membrane is half of the osmotic pressure difference  

           2/p π∆=∆ .                         (37) 
 

In Paper I, it was shown that the optimisation of net power can be a more complicated 
process than setting 2/p π∆=∆ : for BS, the optimal p∆  is, for example, sensitive to the 
efficiency of the pump. For IS, the optimal p∆  was found to be close to that of the simple 
approximation 2/p π∆=∆ . However, for that system the approximation is strictly 
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speaking valid only if the initial mean volume flow of the solution and fibre length are 
also simultaneously optimised. If we set an arbitrary value, for instance, to initial volume 
flow, the optimal initial pressure difference will deviate to a greater or lesser extent from 

2/π∆ .  
    It was also found that the pressure exchanger will considerably improve the 
performance of the converters (Fig. 9). 
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Figure 9. The maximum power divided by the surface area of the fibre. The ratio becomes 
independent of the radius of the fibre. The dashed curve corresponds to ideal power 
(= π∆=π∆π∆ relfeff

2
efffilt L  where,4/L ) when pressure loss, solute leakage, dilution of the 

solution, and the efficiencies η  are neglected. The following constant parameter values were 
used: Lfilt = 10-11 m/sPa, η  = 0.000855 Ns/m2. BS = basic system without pressure exchanger, IS 
= system with pressure exchanger.  
 
 
4.1.3 Second Law optimisation 
 
    In Paper I, BS was also optimised in such a way that the ratio  
 

σ
=Ψ

P                (38) 

 
between the net power production P and entropy generation σ  reached a maximum value. 
Some results were calculated for a Second Law efficiency  
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as well. 
    The maximizing of the function Ψ  did not result in an unequivocal optimal point in 
respect to initial mean velocity, pressure, and fibre length, as did the optimisation of net 
power. With some additional definitions, the optimisation of BS in respect toΨ  became 
achievable. From a comparison between the optimisation of P and Ψ  it was found that the 
optimisation of P results in net power values about twice as high as with optimising Ψ . 
This was found to be true for all realistic (achievable today) efficiencies of the pump and 
turbine.  

The optimisation of IS failed because no maximum value forΨ  in respect to fibre 
length was found. Instead, Ψ  increases in a rather linear way when the fibre length 
decreases to even unrealistically small values. If IS is to be optimised in respect to Ψ , 
additional losses appearing outside the fibre module should be included in the study. Such 
losses could be e.g. the power demand of pumping the brine from the ocean to the 
pressure exchanger. 
 
 
 
4.1.4 The minimum of local entropy generation in an osmotically increasing solution flow 
process 
 
  On the basis of the transport model presented in Section 4.1.1, it was found that the local 
entropy generation rate '''σ  always results in a minimum value at a certain fibre length 

'''minL σ− .  

When started with arbitrary values of 0
meanv  and ∆p0 , this optimal position ( '''minL σ− ) was 

not found to have any dependency on the respective position ( PmaxL − ) where power 
generation results in the maximum value. However, if we calculate the σ ' ' ' with initial 
values of 0

Popt,meanv −  and∆popt P−
0 , which resulted in optimising P, the local minimum was 

always found to settle at a position further than the corresponding value of PmaxL −  (see 
Fig. 10). If both efficiencies ηturb and ηpump  are set as unity, the value of '''minL σ−  will 
settle about 9% further than PmaxL −  for both BS and IS. As the efficiencies decrease, the 
corresponding difference increases; for instance, if ηturb = 0.9 and ηpump = 0.8, the 
difference is about 12% for BS and about 30% for IS. The parameters were varied in these 
calculations between: ∆πeff

0  5 -70 bar, r0= 10 - 250 µm, Lfilt  = 10-13 - 10-10 m/sPa. 
    It remained uncertain how this local minimum can be exploited in the optimising 

processes or what physical significance it offers to the osmotic process. A literature search 
did not reveal that similar phenomenon had been reported for other kinds of processes 
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Figure 10. The optimum length PmaxL −  of the fibre when power P is maximised is shorter than 
the optimum length '''minL σ−  resulting in a minimum of local entropy generation if values of 

vmean opt P
o

, −  and∆popt P−
0 , which resulted in optimising P, are used. For instance, with the 

parameters  Lfilt = 10-11 m/sPa, η  = 0.000855 Ns/m2, ηturb = 0.9, ηpump =0.8, ro = 50 mµ , and 

π∆relfL  = 20 bar, we get for IS: vmean opt P
o

, −  =0.08 m/s and ∆popt P−
0 =10 bar, which corresponds 

to  PmaxL − = 0.54 m and '''minL σ− = 0.70 m. 
 
 
 
4.2 A cyclically operating osmotic energy converter (Paper II) 
  
    An alternative possibility for an osmotic energy conversion system was presented in 
Paper II. This concept is illustrated in Fig.11 and it is based on the osmotic pressurising of 
a solution placed into a rigid closed space. After the solution has been sufficiently 
pressurised by osmosis, part of it is released to the turbine. The rest of the solution will be 
either re-pressurised or changed to "intact" solution and then pressurised again. This kind 
of system would work in a large number of short cycles instead of the continuous 
performance of the conventional concepts of osmosis energy converters, such as those 
studied in Paper I. Placing gas in contact with the solution will prolong the cycle time 
considerably and probably reduce losses occurring as a result of releases. However, the 
power gained from idealised processes was found to be higher if no gas is present.  
    An example of the calculated performance of the pressurising process without the 
presence of gas is illustrated in Figure 12. In Fig. 12b the average power during one cycle 
as a function of pressurising time is plotted. For each chosen initial parameter (solute 
concentration, membrane surface area, solution volume etc.), there is a corresponding 
point of time for the release to result in a maximum average power (maximum positions of 
each curve in Fig. 12b). The corresponding optimum pressure deviates from the 
equilibrium pressure, i.e. from the maximum value that the pressure approaches in time. 
The maximum values of pressure and power depicted in Figures 12a and 12b become 
independent of the chosen membrane surface area and solution volume values. Volume 
and surface area only influence the time taken to reach maximum values.  
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Figure 11. The pressurising concept for an osmotic energy converter. 
.

V = volume flow, P= power 
, p =pressure.  
 
 
    The pressurising osmotic power generation system (POS) was compared with 
continuous flow systems such as those presented in Fig. 5 and in Paper I. It was suggested 
that the pressurising system would yield more power than the continuously operating 
system. On the other hand, comparison between the systems is difficult as different kinds 
of losses are disregarded. For instance, disregarding solute flux may have a different effect 
for different concepts. Furthermore, the power needed for replacing the solution is 
excluded from the study of POS, as are the pressure losses in unloading caused by the 
movement of solution from the tank to the turbine. Thus, the study presented in Paper II 
more likely serves as a sketch or guideline of how the pressurising system would operate 
rather than as a source of accurate performance values or as a final comparison between 
the different systems. 
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Figure 12. a) The evolution of pressure in time for varying initial solute concentrations (cs0). No 
gas appears in the module b) Corresponding average power per unit of surface area of the 
membrane as a function of pressurising time (instant of time when pressurised solution is released 
into turbine). 
 
 
4.3. Solution for the velocity and pressure distribution for laminar flow inside a two-
dimensional channel where one wall is permeable (Paper III) 
 
    In Paper III, starting from the Navier-Stokes equations, a perturbation solution for 
laminar steady state incompressible flow between permeable and impermeable walls is 
given (see Fig. 13). A slip condition at the permeable wall is applied. The viscosity and 
the permeate flux (vw) through the porous wall are assumed to be constant.  
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Figure 13. Two-dimensional flow in a channel of rectangular cross-section with one permeable 
wall. 
 
 
    The solution supplements the earlier studies of Berman (1953) and Chellam et al. 
(1992). In Paper II, an alternative approach to the derivation of the forms of velocity 
profiles is given. Second, a solution for the pressure change equation perpendicular to the 
channel walls in the case of one permeable wall with the slip condition is solved. 
Furthermore, in addition to the studies of Berman and Chellam et al., an external force 
( λℑ ) term perpendicular to the permeable walls is included in the study. This force need 
not be constant in a direction perpendicular to the walls. The second-order perturbation 
solution for the velocity profiles is given as well, and a sufficient order of perturbation 
approximation (previously studied up to the 2nd order) is studied up to the 20th order. 
    The profiles for the velocity component u parallel to the walls (x-co-ordinate direction) 
and velocity component v perpendicular to the wall (direction of dimensionless h/y=λ -
co-ordinate) were found to be 
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and 0

mu  is the mean velocity parallel to the walls at the inlet, vw is the constant velocity 
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permeating through a porous wall, and h is the distance between the walls. The wall 
Reynolds number is defined as 
 

ν
=

hv
Re w

w ,         (44) 

 
where ν  is the kinematic viscosity of the fluid. The superscripts i and j in Eqs. (42)-(43) 
denote power, while the subscript i is an index denoting the order of perturbation and the 
subscript j is another index. The coefficients ai,j are presented in Paper III.  
    The pressure change in the x-direction resulted in 
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and in the λ -direction 
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where λℑ is an external force perpendicular to the membranes and µ  is dynamic viscosity. 

λℑ  is independent of the x-co-ordinate but it can vary in the λ -direction. The values of 
the constants k and di are given in Paper III. If the external force is gravitation, it was 
shown in Paper III that the pressure difference between the permeate wall and solid wall is 
usually governed by gravity. The effect caused by the permeate flux is usually minute.  
    The study is limited to small absolute values of Reynolds wall numbers, defined in Eq. 
(44). This means that, for a given fluid, the product between the permeating velocity wv  
through the porous wall and the distance between the walls h must be sufficiently small. 
However, the perturbation treatment of Paper III does not limit the magnitude of the flow 
parallel to the walls. Thus, the theory can describe considerable changes in flow velocities 
in the x-direction if the flow is initially diminutive or the walls are long enough.  
    It was found that for wall Reynolds numbers Rew <<1, the first-order perturbation 
approximation is sufficient. For values Rew<<0.01 even the zero-order approximation can 
be applied. If Rew values close to unity are being studied, the second-order perturbation 
solution may be needed.  
    The results can be utilised, for example, in mass transfer problems such as estimating 
the concentration profiles of solution flow inside a channel with a rectangular cross-
section affected by the flux through a membrane. Such a case appeared e.g. in the study of 
Paper IV. 
 
 
 
 



 

 

39

 

4.4 Osmotic flow through a membrane (Paper IV) 
 
    The osmotic transport of species through asymmetric cellulose acetate membranes was 
evaluated in Paper IV by experiments, together with the calculation of concentration 
distribution in adjacent fluids and inside the support structure of the membrane. In a pre-
study several other types of synthetic membranes were tested but their performance under 
osmotic conditions was so poor that only the reported membranes were chosen for further 
examination.  
    Contrary to the suggestions in previous literature, it was found that the concentration 
accumulation inside the support structures (internal polarisation) cannot completely 
explain the apparent non-linear behaviour frequently found in experiments. The traditional 
one-, two-, and even three-coefficient linear transport models were found to be 
unsatisfactory for the estimation of osmotic water transport through the selective layer of 
the studied membranes. Two new transport models were suggested.  
    The new transport equations are a result of a dimensional analysis applying more or less 
intuitively chosen test functions. The measured osmotic water fluxes and the measured 
solute fluxes were fitted to several models by the least squares method. The estimation of 
the concentration boundary layers in fluids external to the membrane was solved from the 
solute continuity Eq. (22) applying velocity profiles Eqs. (40)-(43). Concentration 
distribution inside the support structure was estimated from Eq. (27). 
 
 
4.4.1 Non-linear transport models for osmotic water flux 
 
    According to the analysis, the following two equations were proposed for water 
transport Jw (mol/m2s) through the selective layer: 
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where xs is the molar fraction of the solute, sx  the average molar fraction of the solute 
between the skin surfaces, Aw, Bw, Φ are transport coefficients, ∆  is the difference 
between the skin positions 3 and 2 (see Fig. 6), and the dimensionless pressure is 
 

Tc
p

p r ℜ
=                    (49) 

 
where ℜ  is the universal gas constant, c the total concentration of the solution, and T the 
absolute temperature. The term Tcℜ  appearing in Eq. (49) should not be confused with 
the Van't Hoff equation for osmotic pressure Tcsℜ=π , where cs denotes the 
concentration of dissolved solute. 
    Both Equations (47) and (48) fitted to the results (based on measurements and the 
theoretical estimation of the external and internal concentration distribution) considerably 
better than traditional linear one-, two-, and three-coefficient equations.  
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    If the temperature and total concentration are kept as constants, the variables pr and xs 
in Eqs. (47)-(48) can be transformed into osmotic pressure ( Tcsℜ=π ) and hydrostatic 
pressure (p), respectively. Eqs. (47)-(48) then yield 
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and 
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However, one should note that Eq. (51) is dimensionally incorrect as the square root is 
taken from dimensional variables. Eq. (50) can be transformed into the form 
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In the experiments of Paper IV, strictly speaking, the measured values correspond to the 
values of vw rather than to Jw. Thus, by multiplying both sides of the above equation by 
the specific volume of the solution (ν ) we get 
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Eq. (53) is similar to the linear flux equation (28). The difference between these equations 
arises from the coefficient Lfilt, which is independent of concentration in Eq. (28), but 
depends on the average solute concentration between the skin surfaces in Eq. (53).  
   Equation (48) is actually a more general expression of Eq. (31), proposed for rabbits’ 
gall bladders by Diamond (1966). It also brings to mind the equation derived by Jonsson 
and Boesen (1975) under subject of reverse osmosis. 
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4.4.2 Transport of solute through membranes 
 
    The solute flux Js was instead found to depend almost linearly on the pressure 
difference and on molar fraction differences over the selective layer of the membrane 
when the following two-coefficient transport equation was applied: 
 

[ ]rssss pBxAJ ∆+∆−= ,                  (56) 
 
where As and Bs are the transport coefficients and 2s3ss xxx −=∆ , 2r3rr ppp −=∆ . 
However, the common assumption that the solute flux depends only on the concentration 
difference and not on the pressure difference (Bs = 0) was found to be inappropriate for 
the membranes studied.  
 
 
4.5 Second Law efficiency of osmotic membrane (Paper V) 
 
    The following equation for the Second Law efficiency of an osmotic membrane was 
derived in Paper V: 
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where the osmotic potential π  follows  the expression given in Eq. (6). This efficiency 
can be interpreted either as the efficiency of the selective layer or as the efficiency of the 
complete membrane (see Fig. 14b for the asymmetric membrane structure). In the first 
case, ∆  is taken over the selective layer (Positions 3 and 2) and in the latter case, over 
total membrane thickness (Positions 3 and 1). This efficiency does not depend on any 
transport models or on the actual magnitudes of the fluxes, but instead on the ratio  
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between the molar flux of the solvent and solute. The ratio r gets negative values in 
osmosis. The maximum Second Law efficiency is achieved when r approaches (minus) 
infinity. The result is  
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∆
=η         (59) 

 
    Equation (57) can be used to find the magnitude of solute leakage that can be accepted 
for optimally performing osmotic membranes. An example calculation of Eq. (57) is 
illustrated in Fig. 14a. From this figure we can realise that, in order to obtain high 
performance, the membrane should be highly selective. On the other hand, the membrane 
does not need to be completely semi-permeable: the efficiency does not increase in 
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practice when the ratio of solvent to solute flux r  is more than 10 000:1. 
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Figure 14 a) Efficiency of the skin as a function of the water flux - solute flux ratio (r=Jw/Js)). The 
following parameter values were used: bar 24ocean3 =π=π , 1323 pppp −≈− =10 bar, T= 
298 K. The symbol )2(1π means that the osmotic pressure can be estimated either from Position 1 

or 2. In the former case the results correspond to the efficiency of the total membrane and in the 
latter case to the efficiency of the skin. b) The membrane structure. 
 
 
    The ratio f between the power destruction inside the support structure of an asymmetric 
membrane and the power destruction inside the complete membrane was also examined in 
Paper V. This ratio was given as a formula 
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As the purpose of the support structure is to give mechanical support to the selective layer 
and as it is not involved in the actual osmotic process, we want to avoid entropy 
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generation inside the support as far as possible and thus to reach low values for f. The 
example calculation presented in Paper V showed that the amount of power lost inside the 
support structure is sensitive to the product vwRdiff (vw is the flow velocity inside the 
support structure and Rdiff the diffusion resistance of the support structure), so that when 
vwRdiff increases above unity the fraction f results in high values. Only with extremely high 
values of the flux ratio r can the entropy production ratio f reach reasonably low values in 
such a case. However, in order to achieve high power from the osmotic energy converters 
presented in the literature so far, the velocity vw must be high. Thus, this Second Law 
study also underlines the need for a low value for Rdiff. 
 
 
5. DISCUSSION AND CONCLUSIONS 
 
    Several aspects of the thermodynamics of the osmotic phenomenon and its application 
to energy conversion have been studied in this thesis. The studies include a solution flow 
model for hollow fibres, thermodynamic optimisations of osmotic power generation 
systems, analysis of the concentration boundary layers (polarisation) external and internal 
to the membrane, and evaluations of the thermodynamic and mass transport performance 
of the osmotic membranes. 
   The transport model for hollow cylindrical osmotic fibres was applied for estimating 
theoretically the performance of osmotic energy converters. The study illustrates the 
possibilities of the optimisation of membrane modules for flows in narrow channels. As a 
result, it was shown that many important parameters of osmotic power generation systems 
based on fibres can be optimised. Qualitatively similar results (number of optimised 
parameters) should also be available for other membrane geometries than cylindrical 
fibres.  
    The fibre model is simplified. A more detailed model of the fibre flow would include 
e.g. the solute flux through a membrane. Then, the modelling of the support structure, as 
well as the hydrodynamics and mass transport of the fresh water, also becomes necessary, 
as does the spacing of the membranes. It is very possible that in such a case other 
parameters such as the fibre radius, packing density of the fibres, inlet velocity of fresh 
water, and inlet pressure of fresh water will also become reachable for optimisation. It was 
also found that the local entropy generation inside the hollow osmotic fibre reaches its 
minimum value in respect to the axial co-ordinate. 
    One question that is left open is the placing of the skin. Should it be placed at the inner 
(may be difficult to manufacture) or at the outer (as in current reverse osmosis fibres) 
surface of the fibre and should the brine flow across the inner or outer part of the fibre? 
The spacing of the brine and skin at the outer surface sounds promising as the skin surface 
area is then higher and from experiments it is apparent that the osmotic flux through the 
membranes is, in most cases, higher when the brine is towards the skin than when the 
brine is towards the support structure. 
    Contrary to the common belief, with the careful estimation of concentration boundary 
layers external and internal to the membranes, it was found that the concentration 
polarisation assumption cannot completely explain the non-linear behaviour in osmotic 
flow through asymmetric cellulose acetate osmosis membranes. Instead, the water flow 
through the selective layer of the membrane was found to behave non-linearly, at least in 
respect to the concentration difference for the membranes under study. Two transport 
equations for water flux Jw are suggested: ( ) ( )½

rw
½
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= , where xs is the molar fraction solute, pr the dimensionless 

pressure, and Aw, Bw and Φ  are the transport coefficients. The apparent osmotic 
behaviour of several different types of biological and synthetic membranes has previously 
been found to be similar to that of the membranes studied here. It is therefore suggested 
that the non-linear phenomenon in osmotic water flux through different types of skin 
materials could be much more general than hitherto presumed. However, one should keep 
in mind that the nature of non-linear findings of this thesis is global. Thus, the results do 
not prove that the local linear force-flux relationship fail. 
    A method for the estimation of acceptable solute leakage of the membrane was created 
by deriving a Second Law efficiency. It was also found that for the thermodynamic 
performance of the membrane to be efficient, the product of the osmotic flux and diffusion 
resistance of the support structure should be small, usually below unity. Otherwise, the 
support structure of the membrane will cause significant destruction of the available 
power. 
    Despite the high theoretical potential arising from the mixing of species of different 
compositions, the performance of present-day real osmosis energy converters will be too 
inefficient for economical utilisation. The key problem is the too-minute water flux 
permeating through the present-day membranes, compared to the high costs of the 
membranes. Emphasis should be placed on the question of how to improve the 
performance of the membranes and research into alternative ways to extract the available 
energy of the mixing process. 
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