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Abstract

In this paper we analyze measurements from the Finnish
University Network (Funet) and study the effect of spa-
tial aggregation on the origin-destination flows. The
traffic is divided into OD pairs based on IP addresses,
using different prefix lengths to obtain data sets with
various aggregation levels. We find that typically the di-
urnal pattern of the total traffic is followed more closely
by the OD pairs as their volume increases, but there are
many exceptions. Gaussian assumption holds well for
all OD pairs when the aggregation level is high enough,
and we find an approximate threshold for OD pair traffic
volume after which they tend to be Gaussian. Also the
functional mean-variance relation holds better when the
aggregation level is higher.

1 Introduction

Origin-Destination (OD) pair traffic refers to the traf-
fic flow that traverses between two nodes in a network.
Depending on aggregation level, these can be, for exam-
ple, hosts, routers, or ISPs. The main feature of mea-
suring OD pair traffic is that traffic has to be aggregated
both in time and space. Diurnal variation of the Inter-
net traffic is usually studied at the coarse level of tem-
poral aggregation with sample interval of some minutes
whereas the packet level dynamics has to be studied at
a very fine granularity of time. Traffic flowing between
two hosts is example of very fine level of spatial aggre-
gation, whereas ISP level studies is example of coarse

aggregation in space.

In many areas of traffic engineering, nature of OD
pair traffic plays an important role. For example, in traf-
fic matrix estimation one estimates the OD traffic flows
from the measured link loads. The existing estimation
techniques make several assumptions about the OD pair
traffic, including Gaussianity, functional mean-variance
relationship and independence of the traffic samples.
Clearly, the validity of these assumptions in real traf-
fic traces depends both on level of temporal and spatial
aggregation.

Few papers have studied the characteristics of OD
pair traffic earlier. First, Feldman et al. [3] characterize
point-to-multipoint traffic and find that a few demands
account for 80% of total traffic and the traffic volumes
follow Zipf’s law. Daily profiles of the greatest demands
also vary significantly from each other. Bhattacharyya
et al. characterize Point of Presence-level (POP) and
access-link level traffic dynamics in [4]. Also they find
that there are huge differences in the traffic volumes of
the demands. In addition, the larger the traffic volume
of an egress node, the larger also the variability of traffic
during the day. Finally, Lakhina et al. [5] analyze traffic
of two backbone networks. Using Principal Component
Analysis (PCA) they demonstrate that OD flows can be
approximated by a linear combination of a small num-
ber of so-called eigenflows. In addition they observe
that these eigenflows fall into three categories: deter-
ministic, spiky and noisy. We have also previously stud-
ied the characteristics of traffic from Funet network link
measurements . In [7] we studied the characteristics of



aggregate link traffic and in [8] OD pair traffic at a fixed
spatial aggregation level. Even though these aforemen-
tioned measurement studies answer to some questions
related to OD pair traffic, full understanding how spa-
tial aggregation changes the characteristics of OD pair
traffic, is still missing.

To this end, in this paper we study the effect that ag-
gregation in space has on the OD pair traffic character-
istics. The traffic of the link in Funet network is divided
into OD pairs with different prefix lengths. Often traffic
characteristics are analyzed in short time scales. We take
the vantage point of traffic engineering and traffic matrix
estimation, in which the relevant time scale is minutes,
instead of seconds or less. We show that while the diur-
nal pattern of the OD pairs is not always the same as the
diurnal pattern of the total traffic, the correlation is bet-
ter, in general, as the OD pair’s traffic volume is larger.
The Gaussian assumption, on the other hand, is shown
to hold well for all OD pairs over a certain size. For
the relation between mean and variance we found that
the larger the aggregation level, the better the relation
holds.

The rest of the paper is organized as follows. In Sec-
tion 2 we explain the measurement methodology and in-
troduce the data set used in the study. Section 3 stud-
ies the magnitudes of OD pairs, while Sections 4 and 5
study how the aggregation affects the diurnal pattern and
gaussianity of the OD pairs. In Section 6 the existence
of a mean-variance relation is studied. Finally, section 7
concludes the paper.

2 Measurements and original data

Traces were captured by Endance DAG 4.23 cards from
2.5 Gbit/s STM-16 link connecting nodes cscO-rtr and
helsinkiO-rtr in Funet network !

The link is two-directional and we denote the direc-
tion from helsinkiO-rtr to cscO-rtr by dy and the oppo-
site direction by d;. Further details of the measurement
process are available in earlier work based on the same
measurements [7].

We divide the traffic of the link into origin-destination
pairs by identifying the origin and destination networks

Ifor details about Finnish university network (Funet), see
www.csc.fi/suomi/funet/verkko.html.en

of packets by the left-most bits in the IP address. Let
[ denote the number of bits in this network prefix, also
called network mask. Different levels of aggregation are
obtained by changing the prefix length . The maximum
length of the network prefix is 24 bits. With this resolu-
tion, there are 224, or over sixteen million, possible ori-
gin networks. On the other hand, with the prefix length
[ = 1 there are only two networks and thus four possible
OD pairs.

Our procedure for selecting OD-pairs for further
analysis from the original link traffic is the following.
Combining both directions, the N most active networks
in terms of traffic sent are selected and a N x N traffic
matrix is formed, where N < 100. From the obtained
traffic matrix at most M greatest OD pairs in terms of
sent traffic are selected for further analysis. We select
M = 100, except in section 6, where we use M = 1000.
Note that for very coarse level of aggregation the num-
ber of all OD pairs remains under 100.

The measurements capture the traffic of two days:
November 30th 2004 and June 31st 2006, with the main
focus being on the first day. The traffic is divided into
origin-destination pairs using different prefix lengths
and aggregated in time to one minute resolution. For
each prefix length [ and direction dy/d; separately, we
denote the original measurement data by

x=(rep;t=1,2,...,T,k=1,2,...,K),

where x; ;, refers to the measured bit count of OD pair
k over one minute period at time ¢ minutes.

Let us consider traffic of individual OD pairs. As in
[1], we split the OD pair bit counts x;j into compo-
nents,

Ttk = My ke + St k2t k,

where my i, refers to the moving sample average, s; j, to
the moving sample standard deviation, and z; ;, to the
sample standardized residual of OD pair k. The averag-
ing period was chosen to be one hour. Thus,
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Figure 1: One day traffic trace of the studied link. Left
side: direction dy, right side: direction d; .

The traces of total traffic on the first measured day
in the studied link for directions d and d; are shown
in the left and right side of Figure 1, respectively. The
figure depicts also the moving sample averages of the
traces. The diurnal variation of the traffic at this level
of aggregation is clearly visible. The busiest hour of the
day is in the middle of the day from 11 a.m. to 12 a.m.
in both directions.

3 Magnitudes of OD pairs

In this section we study the size of the OD pairs at dif-
ferent aggregation levels. We are interested in how the
traffic is distributed in address space, and whether there
is a power law behavior observable in the sizes of the
OD pairs, which would mean that the decrease in OD
pair size as a function of rank should be linear in the
log-log scale.

For OD pair k we define the volume X, as the average
of bits transferred per second over one day,

T
Xk = Zzt’k’/T'
t=1

When the level of aggregation is very coarse (I < 4), the
number of non-zero OD pairs is smaller than 100 and
we are able to study the volumes of the complete traffic
matrix. In Figure 2 we have depicted traffic matrices for
cases from [ = 1tol = 4. In the density graphs the

F

Figure 2: Traffic volume sent between the origin and
destination network for different prefix lengths /. Black:
a lot of traffic, white: no traffic. Direction d.

darker the color is the more traffic is sent, while white
indicates that there is no traffic between the networks.
When | = 1, the classification into OD-pairs is done
based on the first bit of the network prefix. The density
plot shows that most of the traffic in the link originates
and terminates in the network whose first bit of prefix is
1. On the other hand, there is no traffic at all between
networks with first bit 0. As we increase [, the density
plots become sparser since the non-zero OD pairs form
only a minor part of all possible OD pair combinations
in the traffic matrix. One reason for sparseness is that
the measurements are not network wide, but just from
one link.

Next we consider the volumes of the OD pairs with
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Figure 4: Left side: The volumes of the greatest OD
pairs as a function of prefix length [. Right side: The
percentage of traffic of 15 greatest OD pairs as a func-
tion of [. Direction d.
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Figure 3: Traffic volume of OD pairs for different prefix lengths /. Direction dj.

different values of /. In Figure 3 the OD pairs are sorted
from greatest to smallest and their volumes are plotted
on the log-log scale, when the prefix length varies from
l = 4tol = 22. For every level of aggregation there
are approximately 15 very significant OD pairs and after
that the volumes decrease. We note that for [ > 10 the
decrease is quite linear.

On the left side of Figure 4 the volume of the greatest
OD pair for each aggregation level [ is plotted. Decrease
in the volume as a function of [ is first very steep even in
the logarithmic scale, but then it saturates until [ changes
from 16 to 17 where the volume drops again. In general,
as compared to the hypothetical situation where all link
traffic is divided evenly among all possible OD-pairs,
the decrease is moderate. On the right side of Figure 4
we show the percentage that the 15 greatest OD pairs
comprise of the total link traffic as a function of . Even
for finer resolutions, such as [ = 16, these 15 pairs form
a significant part of the traffic.

As a result of this section we can say that the clas-
sification of the link traffic based on origin and desti-
nation pairs produces "mice" and "elephants", which is
a well known phenomenon from earlier Internet mea-
surement studies. However, the power-law assumption
is valid only for finer granularity of aggregation, such as
I > 10, where the traffic volumes are smaller.

4 Diurnal variation of the OD pair
traffic

In [8] we observed that at a fine aggregation level of
I = 22 none of the OD pairs seemed to follow the diur-
nal variation of the total link traffic, in which the traffic
peaks in the midday. We concluded that the strong di-

urnal variation in the link traffic is more explained by
the variation in the number of active on-off OD pairs
than diurnal pattern within these OD pairs. However,
we would expect that when increasing the aggregation
level, at some point the diurnal pattern should become
visible in the OD pairs.

In this section we study in more detail the diurnal
variation of the OD pairs at different levels of OD pair
aggregation. This is done by comparing the daily pro-
files of the OD pairs and the corresponding profile of the
total link traffic, shown in the lower row of Figure 1. As
an example, we plot the moving sample averages of the
four largest OD pairs with aggregation levels [ = 4 and
[ = 8 for direction dj in Figure 5. At the coarse level
of aggregation we can see different types of diurnal pat-
terns. Pairs 3 and 4 have a diurnal variation close to the
variation of the total link traffic, while pairs 1 and 2 are
not so close. At the resolution [ = 8 only the fourth OD
pair follows the diurnal pattern of the link traffic.

To better understand how the diurnal variation
changes as the aggregation level [/ increases, we study
the correlation between two time series; the moving
sample average of the total link traffic, and moving sam-
ple average of the OD pair k. The correlation coefficient
between any two time series = (z;,¢ = 1,...,n) and
y = (yi,7 = 1,...,n) is defined as

r(z,y) = Z;L:l(xi —T)(yi —7) -
Vi (@ =12 (i — 9)?

On the left side of Figure 6 we plot the correlation co-
efficients for all OD pairs with all aggregation levels [
and directions dy and d; as a function of the volume of
the OD pair. For small OD pairs there exists both posi-
tive and negative correlations but for large OD pairs the
correlations are positive, as we would expect. However,
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Figure 5: The moving sample average for the 4 greatest OD pairs. Prefix length [ = 4 (upper) and [ = 8 (lower).

Direction dg.

dependence between the correlation and the volume of
the OD pair is not strong. In the right hand side of the
same figure the mean of the correlation coefficients for
the OD pairs with given prefix length [ are plotted. We
can see that the mean correlation decreases as a function
of [, as the earlier figures indicated.

As a conclusion of this section we can state that as the
aggregation level of the traffic coarse, also the diurnal
traffic pattern of the OD pairs is closer to the variation
of the total link traffic. However, there is not any clear
bound in OD pair volume or in the prefix length, after
which we can say that the daily behavior is similar to
the familiar profile found in the link traces.
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Figure 6: Testing diurnal variation. Right side: OD pairs
correlation to the total link traffic as a function of the
traffic volume. Left side: Average correlation of OD
pairs with different prefix lengths [.

5 Gaussianity

In [7] the aggregated link traffic was found to follow
very closely the Gaussian distribution. However, when
we studied the origin-destination flows in [8], only a
small portion of them were anywhere close to Gaussian,
typically only the larger flows. Due to the Central Limit
Theorem we might assume that when the aggregation of
individual non-gaussian flows is large enough, the ag-
gregate will indeed follow the Gaussian distribution. In
[9] the authors studied the number of users required for
aggregate to be Gaussian and found that "a few tens of
users" is typically sufficient. We study the different ag-
gregation levels in terms of traffic volume in order to
determine how much traffic is needed to yield Gaussian
behavior.

We evaluate the Gaussianity of each OD pair by the
Normal-quantile (N-Q) plot of the standardized residual
z,1.- The original sample (denoted by x in the equation)
is ordered from the smallest to the largest and plotted
against a, which is defined as

i

ai:qfl(
n+1

) i=1,...,n,

where @ is the cumulative distribution function of the
Gaussian distribution. The vector a contains the quan-
tiles of the standard Gaussian distribution, thus ranging
approximately from —3 to 3. If the considered data fol-
lows the Gaussian distribution, the N-Q plot should be
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Figure 8: Testing Gaussianity: Distribution of 72 values for OD pairs of different traffic volumes.

linear. Goodness of fit with respect to this can be cal-
culated by the linear correlation coefficient (z, a), de-
fined in (1), and the value 72 is used as a measure of the
goodness of fit, an approach used in [10] and in our ear-
lier works [7, 8]. In [9] the authors studied this method
and found that although simple, it is sufficiently accu-
rate to determine the validity of the Gaussian assump-
tion. They note that when 72 > 0.9 then also the more
complex Kolmogorov-Smirnov test usually supports the
assumption that the traffic is Gaussian.

In Figure 7 the size of the OD pair traffic volume (bits
per second) is plotted against the goodness of fit value
r2 of the Gaussian assumption. We can see from the fig-
ure that the larger flows are always close to Gaussian,
with 72 values easily over 0.90. The largest OD pair
with 72 < 0.90 has traffic volume of 17.5 Mbps. The
vertical line in the figure is located at 10 Mbps, which

"2

Figure 7: Testing Gaussianity: Goodness of fit values 72
as a function of OD pair traffic volume.

seems to be an approximate threshold after which an
overwhelming majority of the OD pairs have 7% > 0.90,
with 72 > 0.98 for the many of the OD pairs, as seen
in the histogram of Figure 8. For OD pairs of size 1
Mbps to 10 Mbps there is still a lot of Gaussian traffic,
while for OD pairs smaller than 1 Mbps there is not any
Gaussian behavior observable. For smallest OD pairs
the fit is almost always near zero, as these are typically
flows that have one or few bursts of traffic and are idle
the rest of the time.
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Figure 9: Testing Gaussianity: Average OD pair traffic
volumes and goodness of fit values r2 as a function of
prefix length {. Direction dy.

In Figure 9 the average OD pair traffic volumes and
the average r? values are shown as a function of prefix
length. The average is taken over those largest OD pairs
that comprise 80 percent of total traffic. For the link di-
rection dy, depicted in the figure, the first six cases, with
prefix lengths from 1 to 6, have an aggregation level high
enough so that their average traffic volume is over 10
Mbps, and the r2 values for the first seven cases exceed



0.9. For the d; direction, the first six are over 10 Mbps
and the same six are over 0.9 while the the seventh is
almost exactly 0.9. In general, the ten megabit thresh-
old seems to approximately apply also for averages. An
average of 10 Mbps implies that the goodness of fit is
better than 0.90. However, in both directions the values
decline rather slowly from good to reasonable to ade-
quate until a steep drop occurs from the adequate values
to the bad values between network prefixes of 15 and 20
bits. While Figure 9 is in linear scale and fails to depict
any observable change in the mean flow size in this re-
gion, Figure 4, in logarithmic scale, shows a steep drop
in the maximum size of the OD pair.

To summarize, while it is impossible to set a concrete
threshold, it seems that in our data majority of the OD
pairs with at least 10 Mbps of traffic are fairly Gaussian.

6 Mean-variance relation

In traffic matrix estimation the spatial mean-variance
relation is used to obtain necessary extra information
about an otherwise underdetermined problem. A func-
tional relation is assumed between the mean A and the
variance X of an OD pair’s traffic volume.

The spatial mean-variance relation is a key assump-
tion in many traffic matrix estimation techniques [1, 11,
12, 13], but evidence of its validity is contradictory. Cao
et al. found it to be sufficiently valid to justify using it,
but their study is of a local area network, which is not
representative of backbone traffic. Gunnar et al. [6] find
the relation valid in study of a Global Crossing back-
bone, while Soule et al. consider the validity not suffi-
cient in their study [14]. We found the relation to hold
moderately in the Funet network, with average goodness
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Figure 10: Mean variance relation in log-log scale. Left:
r? = 0.95, right: 72 = 0.80.

of fit value around 72> = 0.80 [8]. That study, how-
ever, was done with extremely high resolution, leading
to very small traffic volumes. Now we have the mea-
surement data available to extend the results for larger
aggregation levels, which are more relevant as typical
traffic matrix estimation environment is a backbone net-
work with large traffic volumes.

The commonly used power law relation can be written
as

Y = ¢ - diag{A°}.

The power law relation for the OD pair i is 07 = ¢ - AS,
and its logarithm is log 07 = clog \;+log ¢. Thus, if the
relation held, the points would fall on a line with slope ¢
and intercept log ¢ in the log-log scale. This is a simple
linear regression model and we can measure the validity
of the mean-variance relation with the linear correlation
goodness of fit value 72 used in the previous section.

For each prefix length mean and variance are calcu-
lated for each one hour period in the 24 hour trace.
In Figure 10 the values are depicted for one selected
hour and two selected prefix lengths, with one point in
the plot representing the mean and the variance of one
OD pair for that hour. For a longer prefix (I = 18)
r2 = (.80, which is in line with previous results. It
can be seen that the the values defer significantly more
from the regression line making the fit worse. However,
for shorter prefix (I = 7), depicted in the same Figure,
the fit is much better, about 2 = 0.95.

In Figure 11 the average goodness of fits values are
shown as a function of the network prefix length . As
the prefix length gets longer, there are more OD pairs,
with the average size of an OD pair obviously getting
smaller. Recall that the average OD pair sizes for dif-
ferent prefixes are shown in Figure 9. For the longer
prefixes the fit of the mean-variance relation is around
0.75 to 0.80. As the resolution gets coarser, the good-
ness of fit values improve to over 0.90, in some cases as
high as 0.95. The OD pair traffic volumes at these ag-
gregation levels are still less than 100 Mbps, and as the
growth is approximately linear as a function of the ag-
gregation level, we may conclude that for larger traffic
flows the fit is at least as good, probably better.

Table 1 shows the values of the exponent parameter ¢
with different aggregation levels. It can be said that the
parameter stays relatively constant and that the values



Table 1: Estimates for the mean-variance relations exponent parameter ¢ for different prefix lengths [.
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Figure 11: Testing mean-variance relation: Goodness of
fit values 72 as a function of prefix length I. Directions
dy on the left side, d; on the right side.

fall between the results reported for parameter values in
other networks [1, 6, 14].

We can conclude that there is a clear dependency of
the mean-variance relation fit and the aggregation. Most
importantly, there is a strong functional mean-variance
relation for the cases where aggregation level is high.

7 Conclusion

In this paper we have analyzed the origin-destination
pair traffic in the Funet network, and in particular the
effects that spatial aggregation has on these characteris-
tics.

Gaussian assumption holds better when the aggrega-
tion level is higher. An approximate threshold, after
which all OD pairs are at least fairly Gaussian, would
appear to be around traffic volumes of 10 to 20 Mbps.
This means that for many traffic engineering and traffic
modeling tasks where we consider much larger traffic
flows the Gaussian assumption is justified, but it proba-
bly cannot be used for cases with smaller traffic volumes
due to low aggregation level.

The diurnal variation of the OD pairs follow the diur-
nal pattern of total traffic more closely when the aggre-
gation level is higher. However, there is not a clear cut
boundary as in the Gaussianity assumption, so it is diffi-
cult to say anything concrete. We can point out, though,
that it would be ill-advised to assume in any scenario

that diurnal patterns are similar for all OD pairs, or that
busy hours of different flows would coincide.

We validated the spatial power law assumption be-
tween mean and variance of the OD pairs. Particularly
with large aggregation levels it holds well. This is an es-
sential result concerning traffic matrix estimation tech-
niques which rely on this very assumption. Our results
also show that the exponent parameter remained about
constant regardless of the aggregation, and was within
the range of values obtained for it in literature.

To conclude, we can state that the more aggregated
the traffic becomes, the more well behaved it is in gen-
eral, in the sense that the assumptions studied hold bet-
ter.
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