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Abstract. Many measurement studies of P2P file sharing systems sug-
gest that the request rate for a file changes over time and the system
is thus non-stationary. For this reason we study the population dynam-
ics and the availability of a file in a BitTorrent-like file sharing system,
when the arrival rate for file requests decreases exponentially. We study
the system first by a deterministic fluid model and then by a more de-
tailed Markov chain analysis that allows estimating the life time of a
single chunk exactly. Simple approximation for the life time is also de-
rived. In addition, we simulate the life time of a file consisting multiple
chunks in order to verify the analytical results to be applicable also to a
more complex system.

1 Introduction

Peer-to-peer (P2P) applications, such as file sharing, have become a significant
area of Internet communication in recent years. Older examples of these appli-
cations are Gnutella, Napster and Kazaa, whereas BitTorrent is currently the
most popular file sharing system. It has been widely reported that P2P related
traffic forms a major part of the total traffic in the Internet and the share is
even increasing [1], [2].

The idea of BitTorrent is to divide the file into parts, named chunks, so that
different parts can be downloaded from several peers simultaneously, where the
size of the chunk is typically 256 KB. The technical details of BitTorrent are
skipped in this paper but can be found in [3]. According to performance studies
[4], BitTorrent is an effective P2P protocol and scales well even when the number
of participating peers is very high. In this paper we concentrate on BitTorrent-
like P2P protocol because of its popularity but the results are applicable to other
similar protocols as well.

Measurement studies [5], [6], [7], have shown that the evolution of a single file
in the system can be divided into three phases. In the first flash crowd phase the
demand for the newly released file is high. The flash crowd phase is followed by
a steady state in which the demand for the file and the service capacity of the
system are in balance. Due to the decentralized manner of BitTorrent, there are
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not any guarantees that all chunks of the file are present in the system over time.
If some chunk of the file is missing, the file is not complete anymore. Depending
on application, this might or might not be crucial. In this paper we assume the
former. This third phase of the system life time is called as end phase.

A few papers have analyzed P2P file sharing systems by stochastic models so
far. Yang et al. divide the analysis of BitTorrent-like system into transient and
steady state regimes [8]. The service capacity of the transient regime is studied
by a branching process and the steady state by a Markov model. Paper [4] studies
the performance of the system by a deterministic fluid model, whereas in paper
[9] the network level latencies are modeled by the delay of a single class open
queueing network and peer level latencies by the delay of M/G/1/K processor
sharing queues. However, these early studies do not capture all aforementioned
phases of the sharing process. The arrival rate is assumed to be constant, and
especially, the file is assumed to be complete forever.

More detailed models for BitTorrent-like P2P systems are provided in [10] and
[11]. Tian et al. study the integrity of the file in [10]. First, using Markov chain
modelling, the steady state solution for the number of downloaders holding a
certain number of chunks is derived and then the file availability is estimated
by a simple probabilistic model. Drawback of the paper is that the steady state
solution of the system is assumed to exist and the availability model is only
indicative. Paper [11] first proposes that arrival rate decreases exponentially
and studies then the system by a deterministic fluid model. The life time of the
system, i.e., the mean time from the appearance of the file until its disappearance
is derived by a simple deduction. However, the model is very coarse, and does
not take the dowload/upload time of the file into account, for example. As a
conclusion, the correct analytical models for file availability are missing and
should be studied in more detail.

In this paper we analyze the population dynamics of the P2P file sharing
system, when the demand for the file decreases exponentially. We use three
approaches to study the scenario: deterministic fluid modelling, time-dependent
Markov chain modelling and simulations. First we construct a deterministic fluid
model for sharing a single piece of the file and study the dynamics of the average
number of downloaders and seeds over time by solving the differential equations
of the model.

The deterministic fluid model is, however, unable to capture all the details
of the chunk sharing process such as possible unstability and extinction of the
system. For this reason we construct a complete non-homogenous Markov chain
model to obtain more information of the life cycle of chunk sharing process.
From the Markov chain model we are able to calculate the mean absorbtion
time and thus evaluate the life time of the chunk sharing system more precisely
than in papers [10], [11]. We also derive approximations of the life time in some
limiting scenarios and evaluate them by simulations using different parameter
combinations.

As both the fluid model and the Markov chain model concentrate on the shar-
ing single chunks independently of the other chunks, we study by simulations the
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P2P file sharing system with multiple chunks. The obtained analytical results for
the life time of a single chunk are compared to simulations of the corresponding
system with multiple chunks.

We have studied the population dynamics of the P2P file sharing system
already in paper [12]. In the previous paper we assumed that peer requests
for the chunk arrive with a constant rate, whereas in this paper we let the
peer arrival rate to change over time. Due to this fundamental difference in the
assumptions concerning the arrival process, also the deterministic fluid models,
Markov models and their solutions characterizing the population dynamics of
the system are completely different in the papers.

As a summary, our main contributions in this paper are:

– We construct a deterministic fluid model for chunk sharing and analyze the
number of the dowloaders and seeds over time.

– We develop a time-dependent Markov chain model for the number of seeds
and downloaders and calculate the mean life time of the chunk sharing
process. Also approximations are given.

– We verify the applicability of a single-chunk model to estimate the mean life
of file sharing by simulating the system with multiple chunks.

The paper is organized as follows: In Section 2 we introduce a model for
sharing a chunk with exponentially decreasing arrival rate. Section 3 studies the
population dynamics of sharing of a chunk by a deterministic fluid model. In
Section 4 we present an accurate result for the mean life time and in Section
5 we approximate it. Section 6 simulates the system with multiple chunks and
finally, section 7 makes a short conclusion.

2 A Model for Sharing a Single Chunk

In the sections from 2 to 5 the dynamics of the file sharing system is analyzed
by concentrating on a single chunk of the file. We study how the number of
downloaders and seeds evolves over time from the emergence of the chunk to
the disappearance of it. The disappearance of a single chunk means the death
of the whole file sharing process since the file is not entire anymore. The work is
motivated by the models of [8], [4], [11], but has some differences. In papers [4],
[11] the problem of sharing of several chunks concurrently is solved by assum-
ing that peers can forward the chunks with a constant rate. However, we find
the assumption unrealistic and the model probably hides some details of the
population dynamics. For this reason we consider the sharing of a single chunk
at a time. In addition, papers [8] and [4] assume that at least one seed stays
in the system keeping the chunks available. However, due to lack of centralized
management of BitTorrent, we believe that this assumption is not always true.

In many studies ([8], [4]) the inter-arrival time of new peers is assumed to
be exponentially distributed with a constant arrival rate. However, some mea-
surement studies, such as [6] [11], show that the peer arrival rate decreases over
time. So in this paper we study the population dynamics of the P2P system with
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time-dependent arrival rate λ(t) for a request of the chunk. Paper [11] proposes
a traffic model for P2P networks, where the arrival rate decreases exponentially
from the release of the file:

λ(t) = λ0e
−t
τ , (1)

where parameter τ describes the attenuation of the demand over time. The
average total number of requests arriving in the system, denoted by N , is then:

N =
∫ ∞

0
λ0e

−t/τdt = λ0τ. (2)

According to [11], the exponentially decreasing arrival rate fits well to the
corresponding measured peer request rate. For this reason we assume (1) to be
a reasonable model to capture the inherent flash crowd effect.

The downloader can download the chunk with rate μd. On the other hand,
the maximum upload rate of a peer for the chunk is assumed to be μs. After
the download, the status of the downloading peer changes from a downloader
to a seed. Note that in this context, a peer is referred to as the seed if it has
the chunk in question, but not necessarily all chunks of the file. Seeds stay in
the system for downloading other chunks of the file as well as unselfishly serving
other peers. All together, the time of staying in the system after downloading
the given chunk is assumed to be exponentially distributed with mean 1/γ.

Let x(t) be the number of downloaders and y(t) be the number of seeds at
time t. In the next sections we study the evolution of the pair (x, y) both by a
deterministic fluid model and by a Markov model.

3 Deterministic Fluid Model

As described in the previous section, we consider a system where a peer starts
to spread a single chunk to other peers that are willing to download it. In the
system, if the total download capacity of the downloaders, μdx(t), is smaller than
the total upload capacity of the seeds, μsy(t), the downloaders can not use all
service capacity provided by the peers. On the other hand, when μdx(t) > μsy(t)
the upload capacity of seeds limits the download process. Thus the total service
rate of the system is min{μdx(t), μsy(t)}. In Figure 1 we have illustrated the
model by a flow diagram. The evolution of the number of downloaders and
seeds, pair (x, y), can be described by a deterministic fluid model. The differential
equations of the model are:

dx(t)
dt

= λ0e
−t
τ − min{μdx(t), μsy(t)},

dy(t)
dt

= min{μdx(t), μsy(t)} − γy(t),
(3)

where y(0) = 1 and x(0) = 0 meaning that at the beginning, t = 0, there is one
seed and none downloaders. Let x̄ and ȳ be possible equilibrium values of x(t)
and y(t). The differential equations (3) have different solutions depending on the
parameters μs, μd and γ. Assuming that the mean download and upload times
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Fig. 1. A model for sharing a chunk
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Fig. 2. The number of downloaders and seeds as a function of time, when λ0 = 10,
τ = 10, μ = 1 and γ = 5 (top), γ = 1 (middle) and γ = 1/5 (bottom). Black lines:
downloaders, gray lines: seeds.
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Fig. 3. The number of downloaders and seeds as a function of time, when λ0 = 10,
τ = 50, μ = 1 and γ = 1/5. Solid line: fluid model, Gray lines: simulation.

are same, μs = μd := μ, there are three characteristic solutions for the system,
which are depicted by a numerical example of Figure 2:

1. μ < γ. The existing seeds leave the system faster than new seeds arise. For
that reason the number of seeds goes to zero and the number of downloaders
increases until all N requests have arrived (see the top side of Figure 2).
The steady-state solution is thus x̄ ≈ N and ȳ = 0. Note that these N
downloaders do not receive the chunk at all.

2. μ = γ. After a very short initial period, the number of seeds stays constant,
while the number of downloaders increases beyond that (see the middle of
Figure 2). Finally, due to the attenuation of the arrival rate, the number of
downloaders returns back to the level of the number of seeds, after which
they both go to zero. The steady-state solution is thus x̄ = 0 and ȳ = 0.

3. μ > γ. Both number of the downloaders and seeds increase until all down-
loaders are served (see the bottom side of Figure 2). Also in this case x̄ = 0
and ȳ = 0.
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Next we compare the deterministic fluid model to simulations of the system.
The number of downloaders and seeds as a function of time is shown in the
top and bottom side of Figure 3, respectively. We have fixed λ0 to a moderately
small value in order to better demonstrate the dynamics of the system. The black
lines correspond to the solutions of equations (3) and gray lines to 10 different
simulations of the model described by Figure 1. Simulations have been done by
a simple event-based simulator. In the figures we can see that the number of
downloaders increases suddenly and the number of seeds increases also a little
bit later. As t ≈ 200, both x(t) and y(t) are decreased practically to zero. Also
all simulation processes have ended due to all seeds had left the system and the
chunk is not available anymore.

4 Time-Dependent Markov Chain Model for Chunk
Sharing

The deterministic fluid model of the previous subsection describes the average
behavior of the sharing of a chunk. However, from the simulation results we
saw two effects in the population dynamics that were not captured by the fluid
model. First, when the chunk became available the earliest seeds could not serve
all the downloaders. This capacity shortage was seen as a peak of downloaders
during the first 20 time units. Second, if the original seed can leave the system,
sooner or later the number of seeds goes to zero. Thus the end of the whole file
sharing process is irrevocable. In the simulations all processes were died before
t = 200. The limited life span of the file sharing process has an influence on
the performance of the total P2P system and has to be analyzed by some other
models than the deterministic fluid model. To this end, in the next subsections
we study the evolution of the process (x, y) in more detail by a non-homogeneous
Markov chain model with absorbtion.

In paper [12] we have derived an analytical model for the life time of the file
sharing assuming that the arrival rate of new requests is constant. The result
of the paper was that the mean life time of the system increases exponentially
as the expected number of the seeds in the system increases. In addition, when
the mean downloading time of the chunk was very short, the system can be
modelled as an M/M/∞-queue with arrival rate λ and departure rate γ. The
mean life time equals then to the average length of the busy period E[B] of
M/M/∞-queue:

E[B] =
1
λ

(eλ/γ − 1). (4)

Contrary to [12], in this paper we assume that peers arrive according to Pois-
son process with time-dependent rate λ(t). The mean departure time of a seed,
1/γ, the mean download time 1/μd and the mean upload time 1/μs remain con-
stant. Let π(x,y)(t) denote the probability of state (x, y) at time t. Next we form
the time-dependent Kolmogorov’s forward equations for transition rates between
the states:
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d
dtπ(x,y)(t) = λ(t)π(x−1,y)(t) + min{μdx + 1, μsy − 1}π(x+1,y−1)(t)

+(y + 1)γπ(x,y+1)(t) − (λ(t) + min{μdx, μsy} + γy)π(x,y)(t),

for all x ≥ 1, y ≥ 1,

d
dtπ(x,0)(t) = λ(t)π(x−1,0)(t) + γπ(x,1)(t) − λ(t)π(x,0), for all x ≥ 1, y = 0,

d
dtπ(0,y)(t) = π(μd1,μsy−1)(t) + (y + 1)γπ(0,y+1)(t)

−(λ(t) + γy)π(0,y)(t), for all x = 0, y ≥ 1,

d
dtπ(0,0)(t) = γπ(0,1)(t) − λ(t)π(0,0)(t), when x = 0, y = 0,

(5)

with initial condition π(x,y)(0) = 1, when x = 0 and y = 1 and π(x,y)(0) = 0
otherwise. The explicit solution of the state probabilities is very complicated but
the problem can be solved numerically using a differential equation solver.

In this system all states (x, y) with y = 0 are absorbing. Let z(x,y) denote the
mean time spent in state (x, y) from the beginning (t = 0) to the absorbtion of
the system:

z(x,y) =
∫ ∞

0
π(x,y)(t)dt. (6)

The mean time to absorbtion, i.e. the life time of the system, is thus the sum
of the time spent in the non-absorbing states:

Tlife =
∑

(x,y):y>0

z(x,y). (7)

By the proposed model above we first study how the life time of the file sharing
process depends on the attenuation of the demand. As we increase parameter τ ,
the arrival rate of the requests decreases slower and we have more downloaders in
the system. That indicates also more seeds, and a longer life time of the system.
This can be seen in Figure 4, which depicts the almost linear growth of the
mean life time as a function of τ for different download times. For simplicity we
assume that the mean upload and download times are the same, denoted by 1/μ.
Also the shorter mean download time increases the life time of the system. The
results are obtained from the numerical solution of the mean absorbtion time
(7) when the state space of the Markov process is truncated to 20 × 20 states.

By the model we can also study how the patience of the seeds to stay in the
system as servers after own download affects on the availability of the file. In
the top of Figure 5 the mean life time of the chunk sharing process is shown as a
function of 1/γ first for the relatively small values of 1/γ. In the figure λ0 = 10
and μd = μs = 1 and τ varies from 10 to ∞. We can see that the mean life
time of the system increases exponentially as a function of 1/γ. For example,
when τ = 1000, the mean life time of the system is close to the system with
constant arrival rate (case τ = ∞). For smaller τ , such as τ = 10, the increase is
more moderate. The bottom of Figure 5 presents the results for same parameter
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Fig. 4. The mean life time of the process a function of τ . Parameters λ0 = 10, 1/γ = 5,
μs = μd = μ varies from 0.1 to 1.
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Fig. 5. The mean life time of the chunk sharing process when 1/γ varies from 0 to
3 (top) and from 0 to 30 (bottom). Attenuation parameter τ varies from τ = 10 to
τ → ∞. Parameters λ0 = 10 and μs = μd = 1.
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Fig. 6. The mean life time of the process as a function of μ. Parameters λ0 = 10,
1/γ = 5 and τ varies from 10 to 1000.

combination of λ0, μd, μs and τ , but the mean departure time 1/γ is longer.
From the results we can see that the ultimate increase of the mean life time as
a function of 1/γ is only linear when τ < ∞.

Last we study the mean life time as a function of the download time of a
chunk. Figure 6 depicts the mean life time of the chunk sharing as a function μ.
When μ ≈ 0, the mean download time is very long and none of the downloaders
has got the file before the original seed has left the system. Thus the mean life
time of the system is 1/γ. For bigger μ the mean life remains almost constant
since the system is characterized more by attenuation parameter τ and departure
rate γ.

5 Approximation of the Life Time

In the previous section we presented an analytical result for the mean life time of
sharing a single chunk in the P2P file sharing system. Next we will approximate
the life time in a limiting case.

Also paper [11] approximates the mean time to extinction. The simple as-
sumption is that the system dies when λ(t) < γ. The mean life time of the
system Tlife can be then approximated by solving t from equation λ(t) = γ:

Tlife = τ log (
λ0

γ
). (8)

However, we will see that this is a very rough approximation for the life span of
the bitTorrent-like P2P system and much better bounds for the mean time to
absorption can be given.

We consider a case where the mean time that seeds spend in the system is
long as compared to the length of the burst of arrivals (meaning the time period



44 R. Susitaival and S. Aalto

0 100 200 300 400 500
1�Γ

0

500

1000

1500

2000

2500

3000

3500

M
e
a
n

l
i
f
e

t
i
m
e

Λ0�10, Τ�10

Λ0�20, Τ�10

Λ0�10, Τ�50

Λ0�20, Τ�50

Approx. of Guo

Fig. 7. The mean life time of the process as a function of 1/γ. First four lines (from
bottom): Approximation of paper [11]. Next four lines: our approximation (line) to-
gether with corresponding simulations (dots), when a) λ0 = 10 and τ = 10, b) λ0 = 20
and τ = 10, c) λ0 = 10 and τ = 50, d) and λ0 = 20 and τ = 50. Parameter μd = μc = 1.

from the beginning to the moment when λ(t) ≈ 0). If we assume that any seed
has not left the system before the end of arrival burst, the life time of the chunk
sharing system can be approximated by the two consecutive time periods, T1
and T2, where T1 is the length of the arrival burst and T2 is the length of the
period from the first to last departure of the seeds:

Tlife ≈ T1 + T2. (9)

First, the length of period T1 depends on the attenuation of the demand,
which is described by parameter τ . If we wait fraction p of total N arrivals, the
length of the burst period is:

T1 = τ log(
1

1 − p
). (10)

After the arrival burst all downloaders gradually change their status from the
downloader to the seed. We have N seeds in the system and the mean departure
time of all N seeds is

T2 =
1

Nγ
+

1
(N − 1)γ

+
1

(N − 2)γ
... +

1
γ

=
�N�∑
i=0

1
iγ

. (11)

Next we assume that the mean departure time is long as compared to the
attenuation of the demand, 1/γ � τ . In this case also T2 � T1 and we can
approximate Tlife ≈ T2. In Figure 7 we compare the proposed approximation
to the simulation of the corresponding system with different combinations of
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λ0 and τ . If 1/γ is long, there are lot of seeds in the system and we use sim-
ulation instead of analytical model due to limited state space of the Markov
model (simulation results are averaged over 100 simulation replications). Also
the approximation of paper [11] is presented in Figure 7. For small values of 1/γ
neither of the approximations are good. However, as 1/γ > τ we can see that our
approximation is very accurate for many parameter combinations as compared
to the life time proposed by paper [11].

6 Sharing of Multiple Chunks

In the previous sections we considered sharing of a single chunk as an indepen-
dent process of other chunks and estimated the life time of the file sharing system
by the disappearance of a single chunk. However, in reality the dynamics of a
single chunk depends on the other chunks as well. So in this section we consider
population dynamics of a more complex system with multiple chunks.

In the system we have three types of peers, downloaders, leechers, and seeds.
Downloaders do not have any chunk yet and try to only download a first one.
Leechers have already downloaded a part of the chunks and can upload those
chunks to other peers in the system. While uploading the chunks, they try to find
the rest of the chunks. Finally, peers that have all chunks are called seeds. These
seeds stay for a while in the system uploading the chunks to the downloaders.

Let L be the size of the file under consideration in bytes. The file is divided into
blocks, named chunks, which are assumed to be downloaded one after another
separately. If we fix the size of chunk to l bytes, the total number of chunks is
naturally L/l, denoted by K. New peers requesting the given file are assumed
to arrive at the system with time-dependent rate λ(t). Also in this section we
assume that request rate decreases exponentially according to formula (1).

When new downloader i has arrived, it seeks random peer j among all available
peers including leechers and seeds in the system and compare the own set of
chunks and peer j’s set of chunks. If downloader i finds a chunk that is not in
its own collection, it starts to download it. We fix the mean download time of
a chunk to be proportional to the chunk size, that is, 1

Kμd
. Also the maximum

upload rate of a peer is proportional to the chunk size, Kμc. If there are many
downloaders per one leecher or seed, the capacity of the peer is divided among
downloaders. We assume that time required to find the peer for exchanging
chunks is negligible as compared to the download time.

After the peer has downloaded the first chunk, it seeks a next random peer
and a next random chunk. Also if selected peer j has not any new chunk that
the downloader i does not already have, downloader seeks a new peer. When a
peer has some, it can as a leecher upload the chunk to other peers, if required.
When the leecher has collected all K chunks, the status of the peer changes from
a leecher to a seed. We assume that the seeds stay in the system for a random
period. Let γ denote the departure rate of a seed.

However, we do not assume that there is always a seed keeping the file entire in
the system. If some of the chunks is missing, i.e. there are no seeds in the system
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Fig. 8. The mean life time of the process as a function of 1/γ, when the file is divided
into multiple chunks. Number of chunks varies from K = 1 to K = 10 and τ varies
from τ = 10 to τ = 100. Parameters λ0 = 10, μd = μc = 1.

and the chunk is not included in any chunk collections held by the leechers, the file
is not complete anymore. In this case the sharing process of the given file dies.

First in the top of Figure 8 we have simulated the file sharing process for
small values of 1/γ, when the number of chunks varies from K = 1 to K = 10
and τ = 10. The number of the simulation replications for a given value of 1/γ is
500. From the figure we can see that our analytical model for sharing of a single
chunk corresponds well to the system with multiple chunks.

In the bottom of Figure 8 we have simulated the same file sharing process
for big values of 1/γ. Lower three lines correspond to τ = 10, and upper three
lines to τ = 100. Also the approximations for one chunk of the previous section
are presented. The result is that also in these cases the mean life time of the
system increases linearly as a function of 1/γ and fits well to approximation
of the chunk model presented in Section 5. For these parameter combinations,
the selected coarseness of the division of the file into chunks does not influence
substantially the mean life time of the file sharing process.
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As a result of this section we can say that the mean life time calculated
from the one chunk model correspond well to the life time of the more realistic
system with multiple chunks. This information helps in performance evaluation
and optimization of the file sharing systems with varying system parameters.

7 Conclusion

In this paper we have studied the population dynamics and the file availability
of the BitTorrent-like P2P system. Our approach was to calculate the mean life
time of a single chunk independently of the other chunks. We considered both
a deterministic fluid model and a non-homogenous Markov chain model. By the
latter model we were able to study how the different parameters, such as the
attenuation of the demand, the mean download time and the mean departure
time affected the mean life time of the sharing process. We provided also a simple
approximation for the life time, which gave better results than an earlier pro-
posal. The applicability of the one chunk model was verified by the simulations
of sharing of the file in multiple chunks. Our approach in this paper was rather
in modelling the existing systems than in optimization of the P2P file sharing
algorithms.

In future we will study more the analytical models and especially approxi-
mations of the life time also in other scenarios than we have done so far. For
example, the behavior of the system, when seeds can return back to the system,
is interesting. In addition, we will deepen the study of the scenario with multiple
chunks by both analytical model and more complex simulations.
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