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u velocity of the flow in the x-coordinate direction  [m/s] 
uτ  friction velocity      [m/s] 
u+ normalised velocity in viscous scale    [-] 
U velocity of the hull surface     [m/s] 
v speed of the ship, or      [m/s] 

velocity of the flow in the y-coordinate direction  [m/s] 
V volume       [m3] 
w velocity of the flow in the z-coordinate direction  [m/s] 
x, y, z Cartesian co-ordinates      [m] 
z+ normalised distance in viscous scale    [-] 
 
 
Greek symbols 
 
α  waterline angle of the bow, or     [deg] 

under-relaxation parameter      [-] 
ijδ  Kronecker delta symbol ( ijδ  = 1 if i = j, otherwise ijδ  = 0) [-] 

ε  dissipation rate of turbulence kinetic energy   [m2/s3] 
η  molecular viscosity      [Pa ⋅ s] 

tη  turbulent viscosity      [Pa ⋅ s] 
λ  model scale factor, or      [-] 
 wave length       [m] 
μ  friction coefficient       [-] 
ν  kinematic viscosity, or     [m2/s] 
 Poisson coefficient      [-] 
ρ  density        [kg/m3] 

iceρ  density of ice       [kg/m3] 

wρ  density of water      [kg/m3] 
ρΔ  difference between the densities of water and ice  [kg/m3] 
τ  shear stress       [N/m2] 
φ  buttock angle of the bow vertical,     [deg] 

angle between the tangent to the stem and the horizontal  
at the contact point of the ice floe and the hull surface, or [deg] 
solution value 

ψ  angle between the normal to the bow and the vertical, or [deg] 
or stream function      [m2/s] 
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Subscripts 
 
av average 
i,j cell numbering index 
i,j,k Cartesian co-ordinates in i, j, and k directions 
E east 
fsc full-scale 
m mean 
max maximum 
min minimum 
msc model-scale 
N north 
P cell centre 
rms root mean square 
S south 
W west 
w wall 
x x-coordinate direction 
y y-coordinate direction 
z z-coordinate direction 
 
 
Superscripts 
 
(n) previous time level 
(n+1) new time level 
' the fluctuating part of the Reynolds decomposition 
  mean value 
 ̂  non-dimensional value 

 vector 
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1 Introduction 
 
The purpose of this study is to investigate theoretically the pressure and viscous forces 
resulting from the flow in the gap between the hull of a ship and fully submerged ice 
floes over which the hull slides when the ship is moving at a constant speed in a level 
ice field. 
 
In practice ice-going ships, i.e. ships strengthened for navigation in ice, rarely 
encounter level ice fields, but they do exist in archipelago areas where the ice field 
does not move very much as a result of winds and currents, because the ice field is 
anchored to the islands. In open sea broken ice fields or ridged ice fields are normally 
encountered. However, the icebreaking capability of a ship is usually determined in a 
level ice field on a model scale and validated in level ice on a full scale. Thus the ice 
resistance of ships in level ice is a very important concept for the designers of ice-
going ships. 
 
In this chapter the icebreaking process in level ice is first briefly described and the 
components of ice resistance are introduced. Ice resistance in the sliding phase and 
hull-ice interaction forces in the sliding phase are discussed in more detail. 
Hypotheses for the change of pressure in the gap between the hull and an ice floe are 
presented, and finally the research objective for the thesis is presented. 

1.1 Description of the icebreaking process in level ice 
 
It is assumed that a ship moves in a level ice field at a constant speed v. Four different 
phases in the icebreaking process can be discerned in the time domain, following the 
time history of the movement of the ice floes (Valanto (1989) and Puntigliano (1995) 
and (2000)): the breaking phase; the rotative phase; the sliding phase, and the final 
phase. The first three phases, which take place at the bow area of a ship, are depicted 
in Figure 1-1. 
 

 
Figure 1-1. The first three phases of the icebreaking process (according to 
Puntigliano (2000), Figure 3). 
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The breaking phase starts when the ship makes contact with the intact ice sheet and 
ends when a crack occurs, the intact ice sheet breaks, and a new ice floe is generated. 
During the rotative phase the bent ice floes are rotated until they are roughly parallel 
to the hull surface. During the icebreaking process the broken ice floes move mainly 
in a vertical direction under the hull of the ship, while the ship glides over them. 
During the sliding phase the ice floes will then be pushed further downwards along 
the hull and to a certain depth by other floes breaking after them, until they leave the 
hull. In the sliding phase the ice floes form a kind of "ice mat" below the forebody of 
the ship, consisting of irregularly shaped ice floes, as can be observed in Figure 1-2.  
 

 
Figure 1-2. An underwater picture of a ship model advancing in thick level ice in the 
Wärtsilä Arctic Research Centre's (WARC) ice tank. The underwater hull surface is 
fully covered by ice floes (Valanto (2001a), Figure 4). 
 
 
During the final phase the ice floes move either beneath the lateral intact ice sheet by 
the sides of the ship or into the open channel in the wake of the ship, or the ice floes 
interact with the propeller(s) of the ship. 
 
 
1.2 Definition of level ice resistance of a ship  
 
The ice resistance of a ship in level ice, iceR , is usually defined as 
 
 ice tot owR R R= −  (1.1) 
 
where totR  is the total resistance of a ship in level ice and owR  is the resistance of the 
ship in open water at the same speed (see for example Kashteljan and Ryvlin (1966) 
or Enkvist (1972)). Such a definition for level ice resistance may be considered to be 
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rather artificial, since the boundary conditions for fluid flow around the ship are quite 
different in ice and in open water. When the ship is moving in level ice, large areas of 
the hull are covered by ice, and the surrounding level ice cover may have a 
considerable effect on wave formation. This has been confirmed in the model tests of 
Leiviskä et al. (2001). Model tests in an ice-free channel which had a breadth about 
equal to the beam of the ship indicated that the resistance of the model in the ice-free 
channel was about twice the resistance of the model in open water. However, since 
the open water resistance of a ship is rather small compared with the ice resistance in 
the normal speed range used when navigating in ice (see Figure 1-3), the error 
resulting from the use of Equation (1.1) may not be very large. 
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Figure 1-3. Resistance of IB Vladivostok in open water and in 0.59 m thick level ice. 
Open water data is obtained from Kashteljan et al. (1973), Figure 73, and ice 
resistance data from Enkvist (1972), Figure 2.4. 
 

1.3 Components of ice resistance in level ice 
 
The forces related to the ice-breaking and rotative phases in two dimensions have 
been studied in detail by Valanto (1989). Resistance components in level ice for three-
dimensional hull shapes were studied by Valanto (2001a). Measured and computed 
resistance values and computed resistance components in level ice for Bay-class 
icebreakers are shown in Figure 1-4. 
 
Figure 1-4 shows the different resistance contributions from the numerically modelled 
physical processes at the waterline. The lowest curve shows the resistance resulting 
from the sliding phase, which is discussed in more detail in the next section. The 
distance between the lowest curve and the second curve with circles shows the 
resistance contribution resulting from ventilation during rotation of the ice floes from 
their original position to one tangential to the hull. Ventilation means that the ship is 
advancing so fast that the top surface of the rotating ice floe is wholly or partially free 
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of water during the rotative phase, even if the lower edge of the ice floe is located 
below the still water level. This phenomenon has been observed in nature when ships 
are advancing in level ice (Enkvist (1972)). It can be seen in Figure 1-4 that the 
contribution of ventilation to ice resistance is rather large and appears to vary little 
with speed. This is obviously caused by the fact that the length of the broken ice floes 
decreases as the speed of the ship increases (see Section 2.3). Valanto (1989) has 
studied the ventilation phenomenon for a two-dimensional hull form both by model 
tests and in theory, and in Valanto (2001a) theoretical calculations are presented for 
three-dimensional hull forms. 
 

Figure 1-4. Measured and computed resistance values and computed resistance 
components in level ice for Bay-class icebreakers (Valanto (2001a), Figure 24). Fx is 
ice resistance,  v is the speed of the ship, h is level ice thickness and s_f is the bending 
strength of level ice. 
 
 
The difference between the second curve (with circles) and the third curve (with 
triangles) shows the resistance contribution resulting from the rotating floes slamming 
against the hull at the end of the rotative phase. The difference between the third and 
fourth curves shows the resistance contribution caused by the ice floes breaking off 
the level ice field and accelerating to the speed dictated by the steady advance of the 
ship. These force peaks depend heavily on speed. The resistance contribution from ice 
being crushed at the bow is represented by the difference between the two uppermost 
curves. This contribution also depends on the speed of the ship. 
 
Two kinds of forces act at the contact points of the hull surface and ice, causing 
resistance to the motion of the ship: normal forces and tangential forces resulting from 
friction between the hull surface and the ice floes. In the ice-breaking phase the 
crushing of the ice edge and the bending and shearing of the ice edge into ice floes 
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cause these forces. In the rotative phase the acceleration of the broken ice floes and 
the water below the ice floes, the turning of the broken ice floes, and the inertia forces 
created when the turning ice floes strike against the hull surface cause normal and 
frictional forces between the hull and the ice floes. 
 
According to Figure 1-4, the increase of ice resistance with speed is mainly due to the 
increase in the resistance forces with speed in the ice-breaking phase and in the 
sliding phase. In this case the contribution of the resistance forces at the waterline 
level of the ship (the difference between the lowest and the uppermost curves in 
Figure 1-4) seems to be about half of the total resistance in level ice. The other half is 
caused by the sliding phase, i.e. the motion of the broken ice floes under the ship (the 
lowest curve in Figure 1-4). According to Puntigliano (2003, p. 2), ice resistance 
resulting from the sliding phase can be up to 65% of the total resistance of a ship 
advancing in level ice. 
 
 
1.4 Ice resistance resulting from the sliding phase 
 
Valanto (2001a) used the empirical formula of Lindqvist (1989) to calculate the 
component of level ice resistance resulting from the sliding phase, which Lindqvist 
called submersion resistance (the lowest curve in Figure 1-4). According to Lindqvist, 
the total ice resistance resulting from the sliding phase, sR , can be calculated as the 
sum of the resistance resulting from the loss of the potential energy of the submerged 
ice floes and that resulting from friction acting between ice floes and the ship’s hull: 
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 (1.2) 

 
where LWL is the waterline length, B the beam and T the draught of the ship, hice the 
level ice thickness,  and α φ  the waterline and the buttock angles of the bow, 
respectively, and ψ  the angle between the normal to the bow and the vertical. ρΔ = ρw 
- ρice is the difference between the densities of water and ice, μ  the friction 
coefficient, and g the acceleration of gravity. 
 
Formula (1.2) does not depend on the speed of the ship, v. Lindqvist recognised the 
need for more research in this area and used an empirical coefficient to describe the 
speed dependence as: 
 
 ( ) ( )1 9.4 /s s WLR v R v gL= + , (1.3) 

 
where Rs is according to (1.2). This formula indicates that the resistance of typical 
icebreakers in the sliding phase can increase to about three times the static value; see 
Valanto (2001a).  
 
It is unclear what the physical phenomena are that lie behind the increase in ice 
resistance with speed in the sliding phase given by Formula (1.3). In the following 
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section the hull-ice interaction forces in the sliding phase will be considered in more 
detail. 
 
 
1.5 Hull-ice interaction forces in the sliding phase 
 
For simplicity’s sake, the analysis is given for a two-dimensional hull form. In the 
sliding phase there may exist, in addition to the mechanical contact forces resulting 
from the static lift of the ice floes caused by the different densities of water and ice, 
two kinds of forces: forces resulting from changes in pressure in the gap between the 
hull surface and the ice floes or below the ice floe, and forces resulting from viscous 
shear stress caused by the flow of water in the gap. These forces may give rise to 
normal and frictional contact forces between the hull and the ice floes. 
 
If the hull of the ship has a positive (convex) curvature, an ice floe is in contact with 
the hull, in principle, at one location on the ice floe, as shown in Figure 1-5. At this 
location a normal force, Fn, acts perpendicular to the ice floe and the hull surface. 
Assuming the Coulomb friction law to be valid, the corresponding frictional force 
is nFμ , which causes the frictional resistance between the ice floe and the hull surface, 
μ  being the friction coefficient. Fp1 is the force resulting from the pressure between 
the hull surface and the ice floe and Fp2 is the force resulting from the pressure below 
the ice floe. Fl denotes the sum of the tangential component of the contact force with 
the adjacent ice floe and the static pressure at the end surface of the ice floe, Q the 
shear force between the ice floe and the adjacent ice floe, Fv the tangential force 
caused by viscous stresses in the gap, m the mass of the ice floe, g the acceleration of 
gravity, and φ the angle between the tangent to the hull surface and horizontal at the 
contact point of the ice floe and the hull surface. 
 
Leaving out the forces acting at the edges of the ice floe, the equation of equilibrium 
normal to the ice surface, assuming that no inertia forces are acting in this direction, 
is, according to the free body diagram of the ice floe shown in Figure 1-5: 
 
 

1 2
cos 0.n p pF F F mg f+ - + =  (1.4) 

 
The pressure field above the ice floe is 

1 11 h dp p p= + , where 
1hp  is static pressure and 

1dp  is the change in pressure or the so-called dynamic pressure (see Chapter 3). Now 

1 1 1
( )p h dF p p A= +  is the force exerted by the pressure between the hull surface and 

the ice floe, where ( )1 1
/h hA

p p dA A= ∫  denotes the average hydrostatic pressure, 

( )1 1
/d dA

p p dA A= ∫  the average pressure change, and A the area of the ice floe. 

Correspondingly, 
2 22 h dp p p= +  is the pressure field below the ice floe, where 

2hp  is 
static pressure and 

2dp  is the change in pressure. 
2 2 2

( )p h dF p p A= +  is the force 

exerted by the pressure field below the ice floe, where ( )2 2
/h hA

p p dA A= ∫  is the 

average hydrostatic pressure below the ice floe and ( )2 2
/d dA

p p dA A= ∫  is the average 

pressure change. 
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From Figure 1-5, 
2 1h hp p−  = ρwghicecosφ and m = ρiceAhice. Now, from Equation (1.4) 

the following expression for the contact force can be obtained: 
 
 ( )2 1

cos .n ice d dF gh p p Ar fD
È ˘= + -Î ˚  (1.5) 

 
The frictional force is the normal contact force multiplied by the dynamic friction 
coefficient. On the basis of Equation (1.5), the following expression for the tangential 
force resulting from friction can now be written: 
 
 ( )2 1

cos .ice d dF gh p p Am m r fD
È ˘= + -Î ˚  (1.6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-5. The forces acting on an ice floe over which the hull of a ship is sliding. 
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1.6 The effect of change in pressure below an ice floe on ice resistance in the 
sliding phase 

 
It has been known for a long time that the displacement of water before the ship 
causes a change in the pressure field on the hull. Near the bow of the ship, the 
pressure is increased above the hydrostatic pressure, along the middle of the hull the 
pressure is decreased and at the stern it is again increased compared with the 
hydrostatic pressure below the hull of a motionless ship floating in still water. The 
ship sinks deeper when the magnitude of the negative dynamic pressure under the 
ship’s hull grows with the ship’s speed; this increases the hydrostatic pressure until 
the balance in vertical forces is reached. The trim of the ship may also change due to 
change in pressure below the ship’s hull (see, for example, van Manen and van 
Oossanen (1988)). 
 
The model tests conducted by Eggert (1939), showed that by integrating the 
longitudinal components of dynamic pressure forces over the length of the hull, the 
resulting resistance agreed fairly well with that measured on the model after the 
estimated frictional resistance had been subtracted. In other words, the pressure forces 
cause the so-called wave-making resistance.  
 
Enkvist (1972, page 130) conducted model tests with a model of the MV Jelppari to 
obtain an indication of the magnitude of the change in pressure below the bow of the 
model. The model was run in open water in order to record the distribution of pressure 
on its bow area. The results of the model tests of Enkvist (1972) are presented in 
Figure 1-6. It can be observed in this figure that in front of section 7 the pressure 
increases with increasing velocity of the model; behind section 7 the pressure 
decreases. In his analysis, Enkvist (1972) came to the conclusion that the measured 
pressure increase was too small to result in any significant increase of the resistance in 
level ice, assuming that the increase of resistance would be caused by additional 
frictional resistance caused by the increase of the pressure below the ice floes even if 
it is assumed that the broken ice field below the hull is assumed to be a continuous 
“ice mat”. 
 
Liukkonen (1989a) studied the same phenomenon computationally for a two-
dimensional model using a Computational Fluid Dynamics (CFD) code. The velocity 
field and the distribution of pressure around the model were computed on the basis of 
the assumption that the ice field forms a watertight boundary around the ship model. 
He came to the same conclusion as Enkvist (1972) that the increase of level ice 
resistance with speed could not be explained by the change in pressure below the ice 
floes. However, Valanto (2001b) is of the opinion that below the layer of ice floes 
covering the hull there is a hydrodynamic pressure field which can press the ice floes 
against the hull with forces considerably higher than the buoyancy of the ice floes 
would cause. Puntigliano (2000) performed full-scale and model-scale tests in open 
water and in ice conditions with the MPV Neuwerk (see Section 2.2). He obtained 
similar type of results in his tests in open water for change in pressure in the bow area 
as Enkvist (1972) (see Figures 2-27 to 2-29). 
 
The question arising is that how good an approximation is the pressure distribution on 
the hull in open water for the pressure distribution below the ice floes, when the ship 
is advancing in level ice? Obviously the boundary conditions at the waterline level as 
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well as the submerged ice floes have a great influence on the pressure distribution 
below the ice floes. The model tests of Leiviskä et al. (2001) seem to indicate that the 
change in pressure below the hull is smaller in open water than in an ice channel. 
Thus the change in pressure below the ice floes when the ship is advancing in level 
ice would also be higher than the change in pressure below the hull in open water. On 
the other hand, the assumption that the ice field forms a watertight boundary around 
the ship when sailing in level ice, would probably overestimate the change in pressure 
below the ice floes. 
 

 
Figure 1-6. The results of pressure measurements at the bow of the model of the MV 
Jelppari (Enkvist (1972), Appendix 8). Pressure measurements were made at the 
locations shown in the middle of the figure. The results of the pressure measurements 
at waterline 2 are shown on the lower part of the figure and the results at waterline 3 
are shown on the upper part of the figure.   
 
 
Nevertheless, the data presented above indicates that the pressure below the ice floes 
changes with speed and also depends on the location of the ice floe in relation to the 
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hull. According to Valanto (2001b), it is to be expected that the layer of broken ice 
floes lets some water through the gaps between the floes, that is, the layer is not 
pressure tight. Therefore it can be assumed that the change in pressure below the ice 
floes also alters the pressure in the gaps between the ice floes and has some effect on 
the change in pressure above the ice floes. The analysis of this phenomenon would 
require a complicated study of its own. In the present study, a very simplified analysis 
of the effect of change in pressure below an ice floe on ice resistance due to the 
sliding phase is made using certain reasonable assumptions (see Section 6.1.2). This 
analysis indicates that the net effect of non-zero change in pressure below the ice floes 
has a negligible effect on ice resistance in the sliding phase. However, change in 
pressure below the ice floes should be taken into account when the total resistance of 
a ship in level ice is calculated. 
 
 
1.7 The effect of change in pressure between the hull surface and an ice floe 

on ice resistance in the sliding phase 
 
It is clear that viscous shear stress in the shear layer between the hull surface and the 
ice floes causes additional resistance in the sliding phase, but the effect of the change 
in the pressure on ice resistance is not so straightforward. A change in the pressure 
between the hull of the ship and the ice floes in the sliding phase has been mentioned 
by Enkvist (1972) and studied by Kämäräinen (1993b) and Puntigliano (1995 and 
2000). 
 
1.7.1 Change in pressure between the hull and an ice floe, according to Enkvist 
 
Enkvist ((1972), page 129) discusses a possible increase in frictional resistance caused 
by a change in pressure. His conclusions were as follows: "…a pressure difference 
between the hullward and the outward side of the ice layer may be conceived to arise 
only occasionally, as a result of high speed, abundant snow and unusual flow 
conditions between the ice and the hull, e.g. pieces of ice scraping the hull with their 
leading edge. Such a pressure difference will certainly be present in cases like that in 
Figure 3.17 (here Figure 1-7), where there are hollow lines, in which an ice floe will 
act very much as a vacuum pump." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-7. Principle of concave lines at bow (adapted from Enkvist (1972), Figure 
3.17). 
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These conclusions can be understood to mean that a decrease in pressure may exist 
between the hull of a ship and an ice floe, in areas where there is a concave hull 
surface, as a result of restricted access of water into the gap between the hull and ice 
floes.  
 
Enkvist et al. (1979) state that during the rotative phase, a ventilated space is formed 
on  top  of  the  ice floe, which results in an essential increase in resistance. Valanto 
(2001b) is of the opinion that the ventilation phenomenon has an effect on the sliding 
phase as well, because ventilation may also cause a lack of water in the gap between 
the hull and the ice floes. This would explain the low-pressure phenomenon in the 
sliding phase. 
 
1.7.2 Change in pressure between the hull and an ice floe, according to the 
            author 
 
A new theory on pressure generation resulting from the flow of water in the gap 
between the hull of the ship and the ice floes was presented by the author in 1993. In 
Kämäräinen (1993b and 1994) it was assumed that there exists a flow of water 
induced by the relative motion of the hull surface of the ship with respect to the ice 
floes in the shear layer between the hull and the ice floes. A decrease in the pressure, 
increasing with the speed of the ship, can then occur in the shear layer in accordance 
with the Bernoulli equation and equation of continuity of the flow. The decrease in 
pressure along with speed in the shear layer will increase the contact forces between 
the hull and the ice floes. Thus ice resistance also increases along with speed as a 
result of increasing frictional forces between the hull surface and the ice floes.  
 
1.7.3 Change in pressure between the hull and an ice floe, according to 

Puntigliano 
 
Puntigliano (2000) has presented a mathematical model for the low-pressure 
phenomenon. According to Puntigliano, the phenomenon is the result of two 
phenomena: ventilation and the variation of the curvature of the hull during the sliding 
phase. The ventilation phenomenon is dominant at the beginning of the sliding phase, 
after the rotative phase, and the curvature variation increases its influence along the 
sliding trajectory of an ice floe. According to Puntigliano (2000), the pressure 
difference between the top and bottom of an ice floe is given by: 
 

 
( ) ( )

2 21 1 ,

t b v w t w b

ice
w f w f
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p p c g T z g T z

hs c v
R R h D

ρ ρ

ρ ρ
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 (1.7) 

 
where tp  is the pressure on the top of an ice floe, bp  is the pressure below an ice 
floe, vc  is a correction factor related to the ventilation phenomenon, wρ  is the density 
of water, g = 9.81 m/s2, T is the draught of the ship, tz  is the vertical distance from 
the water level to the top of the ice floe, bz  is the vertical distance from the water 
level to the bottom of the ice floe, s  is the velocity of the ice floe (approximately 
equal to the speed of the ship, v), R  is the local curvature of the hull surface at the 
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contact point of the hull and the ice floe, iceh  is the ice thickness, fv  is the velocity of 
the fluid through the gaps between the ice floe and the adjacent ice floes, D is an 
equivalent diameter of the gaps, and fc  is a coefficient related to the viscous loss of 
pressure through the gaps. 
 
In Equation (1.7) the first term on the right-hand side is the hydrostatic component of 
the pressure between the ice and the hull. The second term is the hydrostatic pressure 
below the ice floe. The third term is related to the centrifugal force, which is slightly 
different on the top and bottom of the ice floe. The fourth term is related to the flux 
through the gaps between the ice floes. According to Puntigliano (2000), the first two 
terms and the last term are dominant. 
 
1.7.4 The effect of change in pressure above an ice floe on ice resistance in the 

sliding phase 
 
Three basic phenomena have been presented, which may cause a change in the 
pressure in the gap between the hull and an ice floe in the sliding phase:  
 

- the ventilation phenomenon;  
- the acceleration of water in the shear layer in the gap between the ice floe and 

the hull surface, and  
- the flow of water to and from the shear layer as a result of changes in the 

geometry of the hull along the trajectory of an ice floe sliding against the hull.  
 
These phenomena have an effect on the change in pressure between the hull surface 
and the ice floe, but not below the ice floe. Assuming that the analysis made in 
Section 1.6 is valid, the change in pressure in the gap between the hull surface and an 
ice floe is 

1 2 1

*
d d dp p p= + , where 

1

*
dp is the possible change in pressure due to the last 

two phenomena in the list given above. Equations (1.5) and (1.6) can now be written 
as follows: 
 
 

1

*cos ,n ice dF gh p Ar fDÈ ˘= -Î ˚  (1.8) 
and 
 

1

*cos ,ice dF gh p Am m r fDÈ ˘= -Î ˚  (1.9) 
 
 
where ( )1 1

* * /d dA
p p dA A= ∫  is the average change in pressure due to the last two 

phenomena given above. Thus, if the pressure between the hull surface and the ice 
floes decreases, 

1

*
dp  is negative and the normal and the frictional forces between the 

hull surface and the ice floe increase. 
 
1.7.4.1 Normal and tangential forces acting on the hull 
 
The normal forces acting on the hull, Fnhull, resulting from the normal force between 
the hull and the ice floe and the average pressure change in the gap within the area of 
the ice floe, are: Fn given in Equation (1.8) and *

11

*

d
dp

F p A= . Thus it can be written: 
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1 1

* *cos cos .nhull ice d d iceF gh p A p A gh Ar f r fD DÈ ˘= - + =Î ˚  (1.10) 
 
This means that: 
 

The decrease in pressure in the gap between the hull and the ice floe may 
increase the resistance of a ship in level ice only through frictional forces 
given by Equation (1.9) - see Kämäräinen (1993b) - if the hull and the ice 
floe are in contact. 

 
1.7.4.2   Ice resistance resulting from the sliding phase 
 
Ice resistance resulting from the sliding phase can now be calculated by using 
Equations (1.9) and (1.10), if the viscous forces are neglected. Assuming that the bow 
has a wedge-type form, i.e. a landing craft bow form, and considering the horizontal 
components of the forces, ice resistance resulting from the sliding phase is: 
 
 ( )1

*sin cos cos ,s ice ice d fR gh gh p Ar f m r f fD D
È ˘= + -Î ˚  (1.11) 

 
where Af is the bow area of the ship. 
 
 
1.8 The research objective 
 
Three basic phenomena have been presented which may cause a change in the 
pressure in the gap between the hull and an ice floe in the sliding phase:  
 

- the ventilation phenomenon;  
- the acceleration of water in the shear layer in the gap between the ice floe and 

the hull surface, and  
- the flow of water to and from the shear layer as a result of changes in the 

geometry of the hull along the trajectory of an ice floe sliding against the hull.  
 
The research objective of this study was to study the effect of the last two phenomena 
on ice resistance in the sliding phase and to develop a calculation tool for this 
purpose. 
  
Before starting the theoretical consideration of the problem, model-scale test data on 
measured forces on the hull and pressure measurements on a model and on a full scale 
in the shear layer between the hull surface and ice floes are presented in Chapter 2. A 
definition of the calculation problem and an outline of the solution methods are 
presented in Chapter 3. In this study the Fluent and Iceflo CFD codes were used to 
calculate the flow between the hull surface and the ice floe. Fluent is a commercial 
CFD code and Iceflo is a CFD code developed for the purposes of this study. Fluent is 
presented in Chapter 4 and the theoretical basis of Iceflo in Chapter 5. The parameter 
studies of the calculation problem are introduced in Chapter 6. Discussion on the 
results of the calculations is presented in Chapter 7, a summary of the work is 
presented in Chapter 8, and conclusions are given in Chapter 9. 
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2 Model- and full-scale test data 
 
The use of segmented models in ice model tests provides an ideal way to measure ice 
resistance at different parts of the model. A number of tests of this kind have been 
carried out during the last two decades. Nawwar et al. (1984) had three horizontal 
sections near the waterline level in the bow area, Nyman (1986) had one horizontal 
section in the waterline area, Liukkonen (1989a) and Puntigliano (1995) cut the whole 
model into vertical sections in a transverse direction, and Liukkonen and Nortala-
Hoikkanen (1992) and Kayo (1993) cut the model into both vertical and horizontal 
sections. 
 
Tests have also been carried out using pressure transducers to measure pressure in the 
shear layer between the ice floes and the hull (see Puntigliano (1995)). Izumiyama et 
al. (1999) have published results on pressure measurements using pressure sensors on 
the surface of the model. On a full scale, pressure measurements have been made 
using pressure transducers (see Puntigliano (2000)). 
 
In Section 2.1 those model tests and in Section 2.2 those full-scale tests which might 
give useful information on the forces acting on the hull in the sliding phase are briefly 
presented. Data on the size of ice floes on a full scale are presented in Section 2.3, 
examples of radii of the curvature of hull surfaces of ships are presented in Section 
2.4, data on the surface roughness of the hull and ice surfaces are provided in Section 
2.5, and a summary of Chapter 2 is presented in Section 2.6. 
 
2.1 Model-scale test data 
 
2.1.1 Model tests of Liukkonen with a two-dimensional model 
 
Liukkonen (1989a) conducted model tests with a segmented two-dimensional model 
to study the distribution of ice resistance in different parts of the hull. The model was 
divided into five vertical segments cut in a transverse direction, as shown in Figure   
2-1. Vertical and longitudinal forces were measured separately from each segment. 
Between the segments there was a 3-5 mm wide gap where water could enter freely.  

 
Figure 2-1. The segmented model used in the tests of Liukkonen. The dimensions 
given in the figure are in millimetres (Liukkonen (1989a), Figure 1). 
 
Vertical side plates 5000 mm in length and 700 mm in height were installed on both 
sides of the model in order to study the icebreaking phenomenon in two dimensions 
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(see Figure 2-2). A gap about 10 mm wide was left on both sides of the model 
between the model and the side plates. The model was not fixed to the towing carriage 
but was freely floating in water.  
 
 

Figure 2-2. The arrangement of the side plates around the model (Liukkonen (1989a), 
Figure 3). The dimensions given in the figure are in millimetres. 
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Figure 2-3. Measured total resistance, resistance in open water and ice resistance for 
Segment No. 2. Model ice thickness was 50 mm (data from Liukkonen (1989a),    
Table 2). 
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Figure 2-4. Measured maximum and average normal forces on  Segment No. 2. Model 
ice thickness was 50 mm (data from Liukkonen (1989a), Table 3). 
 
 
A level ice strip with the same width as the model was sawn from a level ice field 
prior to the tests. The model was then towed along the ice strip so that the side plates 
ran in the longitudinal slots between the ice strip and the level ice field, and the model 
broke and displaced the level ice strip. In these tests a significant increase in ice 
resistance with speed was measured for Segment No. 2 (see Figure 2-3). An increase 
in ice resistance with speed was also observed for Segment No. 1, but the resistance 
measurements for the rest of the segments, Nos. 3 to 5, showed negligible dependence 
on speed. 
 
This was the first time that the increase in level ice resistance with speed in the sliding 
phase had been measured. However, the reason for this was not understood at that 
time (Liukkonen, 1989a). The maximum and average normal forces measured for 
Segment No. 2 are shown in Figure 2-4. In this figure it can be observed that the 
average normal force does not increase with speed, although the ice resistance, i.e. the 
longitudinal force, increases with speed. This observation is in line with the analysis 
of the influence of the pressure decrease phenomenon on the level ice resistance given 
in Section 1.7.4. 
 
2.1.2 Model tests of Kayo with a segmented model 
 
Kayo (1993) performed ice model tests with a segmented bow model of an icebreaker. 
The body plan of the model is shown in Figure 2-5. The main dimensions of the 
model and model test parameters are given in Table 2-1. 
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Figure 2-5. Body plan of the model (Kayo (1993), Figure 1). 
 
 
Table 2-1. The main dimensions of the model and the model test parameters. The 
model scale factor, λ , was 25. 
 
 Model Full-scale 
Lpp [m] 4.09 102.2 
Bmax [m] 0.96 24.1 
T [m] 0.42 10.5 
Friction coefficient, μ  0.1 0.1 
Ice thickness [m] 0.036 

0.048 
0.9 
1.2 

Flexular strength of the ice [kPa] 25 625 
Model speed [m/s] 0.1-0.9 0.5-4.5 

 
 
The bow of the model was divided into 21 panels (see Figure 2-6) and each panel was 
instrumented with a two-component load cell. As shown in Figure 2-6, only the fore 
part of the hull was used in the tests with the segmented model. Model tests with an 
intact model were also carried out in order to get a reference value for ice resistance. 
These tests were performed using the full model of the hull shown in Figure 2-5. 
 
 

 
 

 
 
 

Figure 2-6. Test arrangement and segmentation of the partial model (Kayo (1993), 
Figures 4 and 5). 
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Figure 2-7. Total resistance and its components (Kayo (1993), Figure 8a). Test 
results for the full model for two friction coefficients are shown in the figure for 
reference. 
 

 
Figure 2-8. Longitudinal and transverse load distribution on the uppermost two rows 
of load panels (Kayo (1993), Figures 9 and 10). 
 
 
The total resistance, pitch and roll motion of the model, and longitudinal and 
transverse components of the load on each panel were measured in the tests with the 
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segmented model. An example of the longitudinal component of the mean load of the 
load panels is shown in Figure 2-7. The loads observed on the middle panels, P2x and 
S2x, are considerably higher than those of P3x and S3x of the lower panels, as well as 
those of P1x and S1x of the upper panels. The load on the middle panels seems to 
increase considerably with speed, whereas the load on the upper panels increases only 
moderately with speed. The vertical dimensions of the panels are not given in Kayo 
(1993) nor the size of the broken ice floes, but presumably the ice-breaking and 
rotative phases take place mainly in the area of the upper panels and the ice-sliding 
phase on the second and the third rows of panels. These measurements thus also 
indicate a strong increase in ice resistance with speed in the sliding phase. 
 
A more detailed distribution of the longitudinal and transverse forces on the two 
uppermost rows of load panels is shown in Figure 2-8. In this figure high longitudinal 
forces at the stem and high transverse loads can be observed in the shoulder areas of 
the model on the first row of panels at the waterline. A much more uniform 
distribution of the longitudinal and transverse load components can be observed on 
the second row of panels. 
 
2.1.3 Model tests of Puntigliano with a simplified Waas Bow 
 
Puntigliano (1995) presented the results of a series of model tests where the physical 
phenomena contributing to resistance under the design waterline were investigated. A 
segmented model of a simplified Waas Bow type was used in the tests. The main 
dimensions of the model are shown in Table 2-2. The hull form is shown in Figure 2-9 
and the general arrangement of the instrumentation of the bow of the model is shown 
in Figure 2-10. 
 
 
Table 2-2. Principal dimensions of the model (Puntigliano (1995), Table 1). Lpp is the 
length of the model, B is the beam of the model, T is the draught of the model, D is the 
side height of the model, and φ  is the bow angle with horizontal at the construction 
water line of the model. 
 
 Model 

(scale 1:20) 
Full-scale 

Lpp [m] 5.0 100.0 
B [m] 1.0 20.0 
T [m] 0.35 7.0 
D [m] 0.6 12.0 
φ  [deg] 16.5 16.5 

 
 
The model was provided with three segments on the port side, two windows on the 
bottom at the starboard side, which permitted direct observation of the flow between 
the ice and the hull, and built-in pressure transducers under the bottom on the 
starboard side. Gaps of 4 mm in width were left between the segments. Differential 
pressure transducers and water column manometers were used to measure the pressure 
between the ice floes and the hull surface of the model. 
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Figure 2-9. Line drawing of the simplified Waas bow (Puntigliano (2003), Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-10. General arrangement of the simplified Waas Bow. The segments with 
their load cells (e.g. F11X) can be seen on the port side and the pressure transducers 
(pt) on the starboard side (Puntigliano (1995), Figure 31). 
 
 
Model tests were carried out using three ice thicknesses (40 mm, 50 mm, and 70 mm, 
corresponding to 0.8 m, 1.0 m, and 1.4 m on a full scale) and five speeds (0.2 m/s, 0.4 
m/s, 0.6 m/s, 0.8 m/s, and 1.0 m/s, corresponding to 1.74 kn, 3.48 kn, 5.22 kn, 6.96 
kn, and 8.7 kn on a full scale), using level ice and different types of pre-sawn ice. In 
the model tests all degrees of freedom of the model except the translational movement 
were restrained. 
 
The model tests revealed an important low pressure area in the forebody (see Figure 
2-11). The difference between the pressure on the top and under the bottom of the 
floes was estimated by approximating the pressure under the submerged ice cover 
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using the measured open water pressure. This difference showed that the submerged 
ice cover is strongly pressed against the hull in the bow region, thus increasing the 
normal contact force and consequently the tangential friction force. The level of 
pressure in the low-pressure area was found to be strongly influenced by velocity.  
 
 
                             open water     hice = 50 mm 

 
Figure 2-11. The set of plots on the right shows the pressure measured (Pa) during 
model tests performed with 50 mm model ice thickness. The set of plots on the left 
shows the pressure measured in open water. The results are presented for three 
different velocities: v = 0.2 m/s (bottom), v = 0.6 m/s (middle), and v = 1.0 m/s (top) 
(Puntigliano (2003), Figure 11). The pressure clearly decreases with increasing 
velocity in the model tests in ice. 
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Figure 2-12. Measured resistance at Segment No. 2 of the Simplified Waas Bow for 
two ice thicknesses and five different velocities and in open water (data from 
Puntigliano (1995), Appendix). 
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The total normal force on the hull was found to be independent of the pressure on the 
top of the ice floes and consequently not to contribute more to resistance than the 
open water and the hydrostatic buoyancy of ice do (Puntigliano (1997)). The 
tangential force was found to be the main contributor to resistance under the design 
waterline and it increased very considerably with increasing velocity (see Figure 2-
12). These observations are in line with the analysis of the influence of the pressure 
decrease phenomenon on level ice resistance given in Section 1.7.4. Measured vertical 
force at Segment No. 2 is depicted in Figure 2-13 for two ice thicknesses. With 
increasing velocity the total vertical force at Segment No. 2 clearly decreases. 
According to Puntigliano (1997) one possible reason for this phenomenon is that the 
hydrodynamic pressure field below the submerged ice floes decreases with increasing 
velocity. 
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Figure 2-13. Measured vertical force at Segment No. 2 of the Simplified Waas Bow 
for two ice thicknesses and five different velocities (data from Puntigliano (1995), 
Appendix). 
 
 
The results of the pressure measurements in open water and in ice are compared in 
Figures 2-14 to 2-16. The results of the pressure measurements on the centreline 
(Transducers Nos. 1, 4, 7, 10, and 13) are given in Figure 2-14. The results of the 
pressure measurements for the transducers located at B/4 are shown in Figure 2-15 
(Transducers Nos. 2, 5, 8, 11, and 14) and those at the side of the model (Transducers 
Nos. 3, 6, 9, 12, 15, and 18) in Figure 2-16. The bow of the ship is located at the right-
hand side of the figures. In these figures it can be seen that in open water there is high 
pressure in the bow area because of the bow wave. In contrast, in ice conditions low 
pressure in the same area as a result of ventilation can be observed. 
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Figure 2-14. Results of the pressure measurements for the transducers at the CL. 
Data from Puntigliano (2003), Appendix A.2, Table 19. 
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Figure 2-15. Results of the pressure measurements for the transducers at B/4. Data 
from Puntigliano (2003), Appendix A.2, Table 19. 
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Figure 2-16. Results of the pressure measurements for the transducers at the side. 
Data from Puntigliano (2003), Appendix A.2, Table 19. 
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2.1.4 Model tests of Puntigliano with a cylindrical bow 
 
Puntigliano (1995) also presented the results of a series of ice model tests where a 
segmented model with a bow in the form of an inclined cylinder was used. The main 
dimensions of the model are shown in Table 2-3.  
 
Table 2-3. Principal dimensions of the model with the cylindrical bow. 
 
 Model 

(scale 1:20) 
Full-scale 

Lpp [m] 5.0 100.0 
B [m] 1.0 20.0 
T [m] 0.35 7.0 
D [m] 0.6 12.0 
φ  [deg] 16.5 16.5 

 

Figure 2-17. A line plan of the cylindrical bow model (Puntigliano (1995), Figure 
114). 
 
 

Figure 2-18. The general arrangement of the model showing the segments, load cells 
(e.g. F11X), and pressure transducers (pt) (Puntigliano (1995), Figure 122). 



  

 25   

The hull form of the model is shown in Figure 2-17 and the general arrangement of 
the bow of the model is shown in Figure 2-18. Three segments were installed in the 
bow: Segments Nos. 1 and 2 were positioned all over the beam and Segment No. 3 on 
the port side of the model, as shown in Figure 2-18. Segment No. 1 was designed to 
be longer than the longest broken ice floe, thus being able to measure the ice 
resistance during the breaking, the rotative, and part of the sliding phase. Segments 2 
and 3 were able to measure part of the resistance in the sliding phase. 
 
Two large windows were installed in Segments Nos. 1 and 2 in order to observe 
visually the decrease in the water level in the bow region, the flow in the gap between 
the hull and the ice floes, and the ice-breaking pattern (see Figure 2-21). 
 
Model tests were carried out using two ice thicknesses (50 mm and 70 mm, 
corresponding to 1.0 m and 1.4 m on a full scale) and five speeds (0.2 m/s, 0.4 m/s, 
0.6 m/s, 0.8 m/s, and 1.0 m/s, corresponding to 1.74 kn, 3.48 kn, 5.22 kn, 6.96 kn, and 
8.7 kn on a full scale), using both level ice and different types of pre-sawn ice. In the 
model tests all other degrees of freedom of the model, except the translational 
movement, were restrained, in order to avoid the influence of trim, roll, and other 
motions of the model on the forces measured at the segments and the pressure 
measured on the hull. 
 
Figures 2-19 and 2-20 show the measured resistance and the vertical force on 
Segment No. 2. The regression line shown in Figure 2-19 shows a clear increase in the 
resistance with speed in 50-mm model ice thickness. As a result of a problem 
encountered with the HSVA model ice, the results for the ice thickness of 70 mm 
were considered to be unreliable (Puntigliano (1995), p. 193), and therefore they are 
not presented here. The vertical force on Segment No. 2 seems to be almost constant 
with speed for a model ice thickness of 50 mm (see Figure 2-20). 
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Figure 2-19. Resistance measured at Segment No. 2 (data from Puntigliano (1995), 
Appendix). 
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Figure 2-20. Vertical force measured at Segment No. 2 (data from Puntigliano 
(1995), Appendix). 
 
 

Figure 2-21. Inside view through the window at Segment No. 2, v = 0.4 m/s, hice = 50 
mm (Puntigliano (1995), Figure 169). 
 
 
Ten pressure transducers were installed in three rows on Segments Nos. 1 and 2, as 
shown in Figure 2-18. The first row of pressure transducers was installed on the 
centreline of the model, the second row at a distance of 0.2 m from the centreline, and 
the third row at a distance of 0.4 m from the centreline. According to Puntigliano 
(2003) the results of the model tests concerning the pressure measurements were 
found to be inaccurate and the scatter of the measurements was high. However, the 
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experiments with the cylindrical bow model were good enough to demonstrate the 
existence of a low pressure field at the bow area. 
 

 
Figure 2-22. Water level, ZWL, observed in the cylindrical bow model (hice = 50 mm). 
The draught of the model was at z = 0.35 m (top of the diagram) (Puntigliano (1995), 
Figure 167).  
 
 
An example of the breaking pattern is shown in Figure 2-21. During the model tests, 
the water level between the hull and ice was observed visually through the built-in 
windows. The water level was found to oscillate as a result of the icebreaking cycle in 
the ice-breaking phase. In Figure 2-22 data on the observed average water level are 
given. 
 
This figure clearly shows the ventilation phenomenon, which was almost exclusively 
limited to the area of Segment No. 1, never reaching the waterline z = 0.24 m. Below 
this level a mixture of small air bubbles and small ice pieces was observed flowing 
between the hull and the ice. The velocity of the small ice pieces was at the highest 
model velocity (1.0 m/s), approximately half of the model velocity. This indicates that 
there is probably a shear driven Couette-type flow in the gap (see e.g. Figure 4-1 in 
Chapter 4). However, at lower velocities the air bubbles and small ice pieces mainly 
accompanied the model (Puntigliano (1995), p. 228). 
 
2.1.5 Model tests on hull-ice contact 
 
In resistance tests at the ice tank of the Ship Research Institute of Japan for a model of 
the PM Teshio1, a new type of pressure sensor was used to measure local ice loads on 
the model hull (Izumiyama et al. (1999)). Local ice loads were measured along the 
waterline of the model from the stem to Section No. 6.5 (see Figure 2-23). The main 
dimensions of the model were: LOA = 5.051 m, B = 0.973 m, and T = 0.303 m. 

                                                           
1  An ice-breaking patrol ship of the Maritime Safety Agency of Japan 
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With the tactile sensor system it was possible to make pressure measurements with a 
very high spatial resolution. The sensors were thin flexible films of a size 240 mm by 
240 mm, with a thickness of about 0.3 mm. On the film there were sensing spots in a 
grid-like arrangement of 44 rows by 44 columns. The spacing between the sensing 
spots was about 5.4 mm. The sensors could only measure positive pressure, i.e. over-
pressure. 
 

Figure 2-23. Locations of the sensor films (Izumiyama et al. (1999), Figure 2). 
 
 
Figure 2-24 shows an example of the data obtained by the tactile sensor system. The 
figure shows a typical pattern of model-ice contact in level ice at a model speed of 
0.779 m/s. Model ice thickness was 41 mm. Figures 2-24 (a)-(g) are frames which 
show pressure distribution on a sensor film at Location No. 3 (see Figure 2-23). The 
waterline of the model is at the top of the frames and the left-hand side of the frames 
is the bow side. Figure 2-24(h) shows the time history of the sum of the data over the 
film for a time period of 0.7 s. 
 
According to Izumiyama et al. (1999), the process shown in Figure 2-24 consists of 
two different phases in terms of the contact of the model with the ice and ice load. 
The first phase lasts from the point in time 0.05 s to 0.5 s in Figure 2.24(h). Four 
frames of this phase are shown in Figures 2-24(a)-(d). The second phase takes place 
after the point in time 0.5 s, and three frames for this phase are shown in Figures       
2-24(e)-(g). In the first phase it can be seen that relatively high pressure is acting over 
a narrow area, as shown in Figures 2-24(a)-(d). The pressured areas are distributed so 
that they form a line. The line moves downwards and disappears at the time point    
0.5 s. In the second phase relatively low pressure acts over a wider area. The pressure 
area moves upwards in this phase as time passes. The total load shows another peak at 
the time point 0.6 s. 
 
It seems that Figures 2-24(a)-(d) show a typical line-like contact of the broken ice 
edge and the model hull during the rotative phase. However, the contact shown in 
Figures 2-24(e)-(g) seems to be different from that in the first phase. According to 
Izumiyama the type of loading shown in these figures was caused by impact of the ice 
floe against the hull surface in the end of the rotative phase. This would also explain 
the fact that the loaded area moves upwards on the surface of the model when the time 
passes. It can also be observed that the contact of the ice floe or floes with the model 
surface takes place at a finite number of spots. This indicates that the ice surface may 
be uneven. However, it may well be that these figures show the loading of an ice floe 
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which slides against the model surface and at the same time slightly rotates, because 
the ice floe having caused the loading shown in Figures 2-24(a)-(d), may have passed 
Sensor No. 3, when the load measurements shown in Figures 2-24(e)-(g) were made. 
It is difficult to draw final conclusions on the reason of the type of loading shown in 
these figures, because information of the size of the broken ice floes is not available 
and the icebreaking process at the waterline level was not video taped (personal 
correspondence with Izumiyama, 2006). 
 

Figure 2-24. Example of measured ice load (Izumiyama et al. (1999), Figure 4). 
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2.2 Full-scale and model-scale test data with MPV Neuwerk 
 
2.2.1 Full-scale test data 
 
In 1999 full-scale tests were carried out with the MPV Neuwerk in the northern Baltic 
Sea. Seven pressure transducers were installed on the ship, as shown in Figure 2-25, 
to measure the low-pressure phenomenon (Puntigliano (2000)). Measurements were 
made in open water and in level ice. The low-pressure phenomenon was measured on 
a full scale for the first time on March 5th, 1999 at 21:15 hours. 
 

 
Figure 2-25. Positions of the pressure transducers installed on the MPV Neuwerk 
(Puntigliano (2003), Figure 18). 
 

Figure 2-26. At t = 4270 s Neuwerk enters level ice. The measured pressure drops 
continuously from 7.5 to -7.5 kPa at t =4440 s and the velocity of the ship drops to 
about 1 kn. At t = 4530 s the ship stopped (Puntigliano (2000), Figure 16). 
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The ship was advancing in an open ice channel through Storfjärden in Ångmansälven 
when she entered level ice with a thick snow cover. Figure 2-26 shows the time 
history of the measured pressure. As shown in the figure, the measured pressure drops 
by about 11 kPa after the ship had entered level ice. Meanwhile the velocity decayed 
to approximately 1.7 kn. 
    

Figure 2-27. Pressure measured at Pressure Transducer No. 3. The influence of the 
snow thickness (hs) and equivalent ice thickness (he) are presented on the left- and 
right-hand sides respectively (Puntigliano (2000), Figure 19). 
 

Figure 2-28. Pressure measured at Pressure Transducer No. 5. The influence of the 
snow thickness (hs) and equivalent ice thickness (he) are presented on the left- and 
right-hand sides respectively (Puntigliano (2003), Figure 28). 
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The pressure measured at Pressure Transducer No. 3 is shown in Figure 2-27. Similar 
data were obtained for Pressure Transducers Nos. 1 to 4. These transducers were 
located quite near the waterline and thus the decrease in the water head with speed 
may be explained by the ventilation phenomenon. 
 
The pressure measurements at Pressure Transducer No. 5 are shown in Figure 2-28. 
This pressure transducer was located deep below the waterline and thus the decrease 
in pressure with speed cannot be explained by ventilation. It is interesting to observe 
that the open water tests showed no change in pressure at this location irrespective of 
the velocity of the model. This phenomenon may be understood when comparing 
these results with the pressure measurements performed by Enkvist (1972), see Figure 
1-6. The location of Pressure Transducer No. 5 in the longitudinal direction shown in 
Figure 2-25 is quite similar to the location of the two pressure transducers at section 7 
in Figure 1-6. 
 
Pressure Transducer No. 7 showed no decrease in pressure with speed. Because of the 
location of that transducer, it was estimated by HSVA that this transducer may not 
have encountered ice at all. 
 
2.2.2 Model-scale test data 
 
A set of model tests was performed to measure the pressure field between ice and the 
hull of the MPV Neuwerk (Puntigliano (2003)). The aim of the tests was to compare 
the measured values with the results obtained in the full-scale trials performed in the 
Gulf of Bothnia. The model scale used was λ  = 14.286.  

 
Figure 2-29. Pressure measured during the model tests at the same positions where 
the pressure transducers were installed for the full-scale tests (Puntigliano (2003), 
Figure 16). 
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Figure 2-29 shows the results obtained in the model tests at the same measuring points 
as in the full-scale tests. The measurements show high scatter, but the low-pressure 
phenomenon can be recognised. 
 
 
2.3 Data on the size of ice floes on a full scale 
 
As already pointed out by Enkvist (1972), the size of the broken ice floes is an 
important parameter affecting the resistance of ships in level ice. In Figure 2-30 the 
depth of broken lens-type ice floes is depicted according to full-scale tests carried out 
with a small tug, the Jelppari. The ship has a traditional icebreaking bow form. The 
level ice thickness ranged from 0.14 m to 0.25 m. In this figure it can be seen that the 
scatter of cusp depth is high, but it also clearly shows that the cusp depth, i.e. the size 
of the broken ice floes, decreases as the speed of the ship increases. 
 
Valanto (1993) presents data on the length of the broken ice floes for the icebreaker 
Kapitan Sorokin with a Thyssen/Waas bow form. The measurements were made 
during the full-scale trials of the ship carried out on the Yenisei river estuary in May 
1991. An example of the results is given in Figure 2-31, which shows the length of the 
broken ice floes versus the speed of the ship. The ice thickness was about 1.8 m, 
covered with 0.25 m to 0.4 m of snow. In Figure 2-31 the same tendency as in the 
tests with the Jelppari can be recognised: at low speed the scatter of the measured 
length of the broken ice floes is high, but at higher speeds the scatter decreases. The 
length of the broken ice floes also decreases with speed. 
 

Figure 2-30. Depth of broken cusps, l, with respect to the speed of the ship, vs, 
according to full scale-tests with the Jelppari (Enkvist (1972), Figure 2.10). 
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Figure 2-31. Length of the broken ice floes versus the speed of the ship on May 12-13, 
1991 (according to Valanto (1993), Table 3). 
 
 
2.4  Radii of curvature of real hull surfaces 
 
A number of hull forms of ice-going ships are available to study the curvature of the 
real hull surfaces of ice-going ships (see e.g. Kämäräinen (1993a)). The results of the 
analysis of two ships, the IB Kapitan Evdokimov and IB Taimyr, are presented here. It 
was assumed that the diagonals of the fore parts of the hulls shown in Figures 2-32 
and 2-33 roughly represent the path of an ice floe below the fore part of the ship 
during the sliding phase. A diagonal is a curve drawn along the section points of the 
frames and the diagonal plane. The curvature of a diagonal was calculated in the x1-
coordinate direction as follows: 
 

 

2
1
2
1

3/ 22
1

1

1

1

i

i

i
i

x

i

d y
dx

R dy
dx

= −
⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, (2.1) 

 
where 

ixR  is the radius of the curvature of the diagonal in Section i and 1i
y  is the 

breadth of the diagonal in Section i. The radius of the curvature was calculated 
numerically from Equation (2.1) using the finite difference method. For the sake of 
simplicity it was assumed that the radius of the diagonal represents the radius of the 
curvature of the hull surface in the longitudinal direction and the radius of the 
curvature of the construction frames represents the radius of the curvature of the hull 
surface in the transverse direction of the path of the ice floe. The radius of the 
curvature of the frames, Ry, was calculated at the planes of the frames in the same way 
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as the radius of the curvature of the diagonal. The radius of the curvature of the 
diagonals, Rx, and the frames, Ry, of the above-mentioned ships are presented in 
Figures 2-34 and 2-35. 
 
 
 
                             z1 
 
                          
 
 
                             x1 

 

 
 
 
 
 
 

y1 

 
Figure 2-32. The bow construction frames of the Kapitan Evdokimov (Zuev (1986)). 
 

                                  
Figure 2-33. The bow and stern construction frames of the IB Taimyr (Tsoy and 
Sinjajev (1989)). 
 
 

0

20

40

60

80

100

120

140

160

180
36.5 46.5 56.5 66.5 76.5

x [m] from AP

R
x
or

 R
y
 [m

]

Rx of Evdokimov
Ry of Evdokimov

 
Figure 2-34. The approximated radii of the curvature, Rx and Ry, of the hull surface of 
the IB Kapitan Evdokimov. 
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Figure 2-35. The approximated radii of the curvature, Rx and Ry, of the hull surface of 
the IB Taimyr. 
 
 
In Figure 2-34 it can be seen that both radii of curvature of the hull surface of the IB 
Kapitan Evdokimov decrease from mid ship to stem. The same applies for the IB 
Taimyr, but forward from about 100 m from the aft perpendicular, the radii of 
curvature start to increase slightly in magnitude (see Figure 2-35).  
 
 
2.5 Surface roughness of the hull and ice surfaces 
 
The surface roughness of a surface is defined in the standard SFS-EN ISO 4287 
(1999) as follows: 
 

 
0

1 ( )
l

aR Z x dx
l

= ∫ , (2.2) 

 
where Ra is the centreline average of the surface roughness, l is the measuring length, 
and Z(x) is the height of the surface from the centreline. The centreline average can 
also be calculated as a mean of the distances between the centreline and the surface; 
see Figure 2-36. 
 

 
1

1 n

a i
i

R Z
n =

≈ ∑  (2.3) 

 
 
In Table 2-4 some values of the centreline average of surface roughness, Ra, are given 
for hull and ice surfaces. Liukkonen (1992) gives values of the surface roughness for 
hull and ship model coatings. 
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Figure 2-36. The profile of the surface. 
 
 
Table 2-4. Centreline average, Ra, values of the surface roughness for different 
coatings and natural ice without snow cover. 
 
Coating Ra [ mμ ] Source 
Inerta 160 (ship coating) 20 Liukkonen (1992), Table 1 
Interlux 709 + Intermix 
(model coating) 

1.5 Liukkonen (1992), Table 1 

Natural ice 690 Johansson (1988), p. 24 
 
 

 
Figure 2-37. Surface height profile, histogram, and corrected histogram for natural 
sea ice (Johansson (1988), Figure 5.11). 
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Johansson (1988) used an 850-nm laser to collect one-dimensional surface profiles of 
both snow and ice during the BEPERS-88 experiment. The measurements were made 
in the Gulf of Bothnia in March 1988. Natural ice without snow cover was found in a 
ship channel where the ice had developed in calm water. Figure 2-37 shows one of the 
measured profiles. Johansson (1988) showed that the surface roughness of the ice 
surface can be assumed to be Gaussian-distributed. The transparency of the natural ice 
caused some measurement errors, which can be seen in the numerous spikes of the 
profile and in the histogram, which is tailed in the negative direction. A corrected 
histogram is also presented in Figure 2-37. The mean value of the surface height 
standard deviation, σ , after the spikes outside the 99.9% confidence interval had been 
eliminated, was less than a millimetre. This value shows how extremely smooth the 
ice surface can be (Johansson (1988), page 23). 
 
 
2.6 Summary of Chapter 2 
 
All the model-scale data presented above indicate that there exists an increase in ice 
resistance with speed in the sliding phase. The model tests of Liukkonen (1989a) for a 
two-dimensional model indicate that the normal forces do not increase with speed in 
the sliding phase, although the ice resistance does increase with speed in the sliding 
phase. The model tests of Puntigliano (1995 and 2003), both for a two-dimensional 
model and a cylindrical bow model, even indicate that the normal forces decrease 
with speed in the sliding phase, although the ice resistance does increase with speed in 
the sliding phase. 
 
These observations, together with the measurements of low pressure in the boundary 
layer between the hull surface and the ice floes, both on a model scale (Puntigliano 
(1995 and 2003)) and on a full scale (Puntigliano (2000 and 2003)), strongly support 
the idea that the increase in ice resistance in the sliding phase is due to either the 
increase in the mechanical friction forces or viscous forces between the hull surface 
and the ice floes, or both. 
 
The model test data of Izumiyama et al. (1999) indicate that the contact between the 
hull surface and the ice floes takes place at a finite number of spots. Thus there may 
be some room for water to flow in the shear layer between the hull surface and the ice 
floes. A flow in the gap between the hull and the ice floes was observed in the model 
tests of the cylindrical bow form (Puntigliano (1995)). 
 
The measurements made by Enkvist (1972) and Valanto (1993) indicate that the 
length of the broken ice floes decreases when the speed of the ship increases. The 
broken ice floes are also larger in thick level ice than in thin level ice. 
 
In the next chapter the numerical tools needed to calculate the pressure and viscous 
forces in the gap between the hull surface and the ice floes are considered. 
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3 Definition of the calculation problem and outline of the solution 
methods 

 
In this chapter the governing equations, i.e. the Navier-Stokes equations, are given in 
Section 3.1 and the calculation problem is presented in Section 3.2. In Section 3.2 the 
reduced Navier-Stokes equations based on the hydrodynamic lubrication theory are 
also presented. An outline of the solution methods for the shear-driven motion of a 
fluid between the hull surface and an ice floe in relative motion is presented in Section 
3.3. 

3.1 The governing equations 
 
It is a generally accepted fact that the motion of a Newtonian fluid is governed by the 
Navier-Stokes equations, irrespective of whether the flow is laminar, transitional, or 
turbulent. The full Navier-Stokes equations, or conservation of momentum equations, 
in an inertial (non-accelerating) reference frame under gravity body forces can be 
written in Cartesian tensor form by (see e.g. Paterson (1997), p. 132): 
 

( ) ( ) 2   
3

ji k
i j i i

j i j j i i k

uu upu u u g K
t x x x x x x x
r r r h h

È ˘Ê ˆ∂ È ˘∂ ∂∂ ∂ ∂ ∂ ∂ Ê ˆ+ = - + + + -Í ˙ Í ˙Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯Í ˙ Î ˚Î ˚
 (3.1) 

 
where t is the time, r  the density of the fluid, iu  the velocity component in the ix -
coordinate direction, ig  the acceleration of gravity in the ix -coordinate direction, p  
the pressure, h  the molecular viscosity, and K the second coefficient of viscosity. The 
equation of conservation of mass, or the continuity equation, can be written in 
Cartesian tensor form by: 
 

 ( ) 0i
i

u
t x
r r∂ ∂+ =
∂ ∂

. (3.2) 

 
In the following analysis it is assumed that the density and viscosity of the fluid are 
constants. If the pressure in the gap between the hull surface and a fully submerged 
ice floe is considered, the pressure p in Equation (3.1) may be defined as consisting of 
hydrostatic pressure, ph, measured from the water level and dynamic pressure, pd

 : 
 
 h dp p p= + . (3.3) 
 
In Section 1.5 p1 denoted the pressure in the gap between the hull surface and an ice 
floe, 

1hp static pressure and 
1dp dynamic pressure, but from now on, for the sake of 

simplicity, these quantities are written without subscript “1”. If the zero level of the 
static pressure is set as a vacuum, atmospheric pressure should be added to the right-
hand side of Equation (3.3). This is relevant if flow film cavitation is considered (see 
Section 5.2.5). When there is no fluid motion in the gap, the dynamic pressure is zero 
and Equation (3.1) reduces to: 
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Inserting Equations (3.3) and (3.4) into Equation (3.1) and taking the constancy of ρ  
into account in (3.1) and (3.2), the following simplified equations for the conservation 
of momentum and mass are obtained (see e.g. Paterson (1997), pp. 134-135): 
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In Cartesian coordinates Equations (3.5) and (3.6) can be written as follows: 
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 (3.7) 

 

 0u v w
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

, (3.8) 

 
where u, v, and w are the velocity components of the flow in the x-, y-, and  z-
coordinate directions. There are now four equations, (3.7) and (3.8), for the four 
unknowns u, v, w, and pd. The solution of the above equations becomes fully 
determined physically when the boundary and initial conditions are specified. 
 
If needed, the total pressure, p, can be obtained by just adding the hydrostatic 
pressure, ph, to the dynamic pressure, pd ; see Equation (3.3). However, in this thesis 
the effect of fluid motion on the pressure in the gap between the hull surface and the 
ice floes is the main subject of the study and, therefore, when reference is made to 
"pressure" in the following chapters, this means the "dynamic pressure", dp , unless 
otherwise stated. 
 
3.1.1 Turbulence modelling 
 
The most advanced method for solving Equations (3.5) and (3.6) would be to use a 
Direct Numerical Simulation (DNS) method. This means that the whole turbulent 
flow field is solved numerically using the Navier-Stokes equations. No semi-empirical 
turbulence models are used and the result is a three-dimensional, time-dependent flow 
field which includes all scales of motion down to the Kolmogorov length scale. 
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However, a complete time-dependent solution of the exact Navier-Stokes equations 
for high-Reynolds-number turbulent flows in complex geometries is unlikely to be 
attainable for some time to come because of the huge amount of computer resources 
required. 
 
Two alternative methods can be employed to transform the Navier-Stokes equations 
in such a way that the small-scale turbulent fluctuations do not have to be directly 
simulated: "Reynolds averaging" and "filtering". Both methods introduce additional 
terms in the governing equations that need to be modelled in order to achieve 
"closure", i.e. to have a sufficient number of equations for all the unknowns. 
 
The Reynolds-averaged approach is generally adopted for practical engineering 
calculations, and uses semi-empirical models such as one-equation models, like the 
Spalart-Allmaras model, two-equation models, such as the k e-  model and its 
variants, and the Reynolds Stress Model (RSM). Large Eddy Simulation (LES) 
provides an alternative approach in which the large eddies in a turbulent flow are 
computed in a time-dependent simulation that uses a set of "filtered" equations. 
Filtering is essentially a manipulation of the exact Navier-Stokes equations to remove 
only those eddies that are smaller than the size of the filter, which is usually taken as 
the mesh size. However, the application of LES to industrial fluid simulation is still in 
its infancy (Fluent (1998), p. 9-4). Therefore the author decided to concentrate the 
computational efforts on the Reynolds-averaged approach, which is described in more 
detail in the following section. 
 
3.1.2 Reynolds averaging 
 
In Reynolds averaging, the solution variables in the instantaneous (exact) momentum 
and continuity equations (3.5) and (3.6) are decomposed into mean (ensemble-
averaged or time-averaged) and fluctuating components. For the velocity components: 
 
 '

i i iu u u= +  (3.9) 
 
where ' and i iu u  are the mean and fluctuating velocity components. Likewise, for the 
pressure it can be written: 
 
 '

d d dp p p= +  (3.10) 
 
where ' and d dp p  are the mean and fluctuating components of the pressure. 
 
Substituting expressions of this form for the flow variables into the instantaneous 
momentum and continuity equations (3.5) and (3.6) and taking a time (or ensemble) 
average yields the time-averaged continuity and momentum equations: 
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Equations (3.11) and (3.12) are called the "Reynolds-averaged" Navier-Stokes 
(RANS) equations. They have the same general form as the instantaneous Navier-
Stokes equations, but the velocities and other solution variables now represent time-
averaged values. Additional terms now appear that represent the effects of turbulence. 
These "Reynolds stresses", ' '

i ju ur- , must be modelled in order to close Equation 
(3.11). A common method employs the Boussinesq hypothesis to relate the Reynolds 
stresses to the mean velocity gradients (see e.g. Ferziger and Peric (2002), p. 294): 
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where th  is turbulent viscosity, k turbulent kinetic energy, and ijδ  the Kronecker delta 
symbol. Turbulence kinetic energy k can be calculated using the following equation, 
which can be obtained from Equation (3.13) by making j equal to i: 
 

 ' '1
2 i ik u u= , (3.14) 

 
The advantage of the Boussinesq approach is the relatively low computational effort 
associated with the computation of the turbulent viscosity, th . The disadvantage of 
this hypothesis is that it assumes turbulent viscosity, th , to be an isotropic scalar 
quantity, which is not strictly true. 
 
3.2 Analysis of the calculation problem 
 
As was discussed in Section 1.1, during the icebreaking process the broken ice floes 
move mainly in a vertical direction under the hull of the ship when the ship is gliding 
over them (see Figure 3-1). In Figure 3-1 it can be seen that when the ship advances a 
distance l at a velocity v, the relative motion between the hull and an ice floe is also 
approximately the speed of the ship, v. It is assumed that the hull has a convex, “egg-
shaped” hull form and consequently there is one point or a small area where an 
individual ice floe is in contact with the hull surface. 
 
The aim is to develop a numerical calculation method to determine the steady or 
unsteady shear-driven flow velocity and pressure fields in a converging-diverging gap 
between the hull surface and a rectangular ice floe, as shown in Figure 3-2. The upper 
drawing in Figure 3-2 depicts the gap between a rectangular ice floe and a convex hull 
form. The origin is placed in the middle of the contact area of the hull surface and the 
ice floe. The gap has a height, h, which is a function of x and y. The length and 
breadth of the ice floe are l and b. The hull surface has a radius of curvature, Rx, in the 
x-coordinate direction and Ry in the y-coordinate direction. The hull surface moves at 
a speed, U, in the positive x-axis direction and the speed of the ice floe is assumed to 
be zero. The hull surface is thus the driving surface for the shear-driven flow in the 
gap between the two surfaces. The hull surface and the surface of the ice floe are 
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assumed to be perfectly smooth. The fluid in the gap is assumed to be water at a 
constant temperature with constant density and viscosity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-1. Kinematics of the ice-submerging process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2. The geometry considered in the thesis. 
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The lower drawing in Figure 3-2 depicts a section, A-A, of the gap between the ice 
floe and the hull surface. A flow is generated in the gap as a result of the motion of 
the hull surface. On the surface of the ice floe the flow has a speed of zero and on the 
hull surface the flow speed equals the speed of the hull surface as a result of the no-
slip boundary conditions on the solid surfaces. The flow field and the pressure in the 
gap depend on the boundary conditions at the edges of the ice floe. 
 
The problem is further simplified by assuming that the tangential velocity of the hull 
surface equals U, since the radius of the hull surface, Rx, is much larger than the length 
of the ice floe, l.    
 
The length scale of the film in the (x,y) plane of Figure 3-2 is l and h is the length 
scale across the thickness of the gap. For typical lubricant films (Szeri (1998), p. 71): 
 
 ( )3( / ) 10h l O −= . (3.15) 
 
As an example, it is now assumed that the hull has a spherical shape, 75xR =  m, 

75yR =  m, and the  ice  floe  has  a  rectangular shape with dimensions l x b = 2 m x 

2 m. The fluid in the gap is assumed to be water at 0oC with a density 31000 kg/mρ =  
and a viscosity 0.001792 Pa sη = ⋅ . In this example the gap height varies from 0 to 
6.7 mm and thus h/l varies from 0 to 33.4 10−⋅  m. This indicates that the order of 
magnitude of the various terms in the governing equations (3.7) and (3.8) can be 
evaluated in a similar way as for fluid film bearings (see Szeri (1998), Chapter 2.2). 
The variables participating in the Navier-Stokes equations are first normalised, 
assuming that b l∼ , by defining: 
 
 ˆ ˆ ˆ/ ,      / ,      / ,x x l y y l z z h= = =  (3.16) 
 
giving the non-dimensional coordinates ˆ ˆ ˆ,  and x y z , which range from 0 to 1.  
 
Similarly, the velocity is normalised by using the maximum velocity, U, in the x,y-
plane: 
 
 ˆ ˆ ˆ/ ,      / ,      / ,u u U v v U w w W= = =  (3.17) 
 
where W is the velocity scale in the direction across the film: 
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l
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The non-dimensional quantities for pressure, ˆˆ , and time, ,dp t  are defined as: 
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ReC  is the local Couette Reynolds number: 
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ν
= , (3.20) 

 
where ν  is the kinematic viscosity of the fluid, /ν η ρ= . The non-dimensionalised 
forms of Navier-Stokes equations can now be written by inserting Equations (3.16),  
(3.17), and (3.18) into the Navier-Stokes equations (3.7) and (3.8), and taking account 
of Equations (3.19): 
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Here the reduced Reynolds number, Re*, is defined as follows: 
 

 2Re* ReC
h
l

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (3.23) 

 
As was earlier noted, the length scale ( ) ( )3/ 10h l O −= , and therefore the last equation 
in (3.21), can be completely dispensed with, as: 
 

 ( )6ˆ
10 ,

ˆ
dp O
z

−∂ =
∂

 (3.24) 

 
Thus, to order (h/l)2, the pressure is constant across the film: ( )ˆˆ ˆ ˆ ˆ, ,d dp p x y t= . 
 
The first two equations in (3.21) now show that inertia terms will survive if 

( )Re* 1O≥ . On taking the limit ( )2/ 0h l →  in the equations in (3.21) the reduced 
Navier-Stokes equations in non-dimensional form can be obtained: 
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 (3.25) 



 46 

 

 
ˆ ˆ ˆ

0
ˆ ˆ ˆ
u v w
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

. (3.26) 

 
When studying shear layer flows it is convenient to use the local Couette Reynolds 
number ReC as defined in Equation (3.20). The Couette Reynolds number at the 
section x = 0 m is drawn in Figure 3-3 for five hull surface speeds, 1 m/s to 5 m/s. In 
this figure it can be seen that the local Couette number ranges from 0 to about 9000. 
According to experiments, a Couette flow, i.e. the flow between two parallel plates in 
relative motion, is turbulent if ReC >1300 (see e.g. Schlichting and Gersten (2000)). 
This indicates that laminar as well as turbulent flow may occur in the gap. 
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Figure 3-3. Local Couette Reynolds number for a flow in the gap between an ice floe 
and the hull surface. 
 
  
Assuming that the average Couette Reynolds number of the gap is 2000, the average 
height of the gap is 3 mm, and l = 2 m, Equation (3.23) gives Re* = 6 on the average. 
This indicates that inertia forces cannot be neglected in the calculation of the flow in 
the gap. At this point it may be recalled that the hydrodynamic lubrication theory is 
normally applied to the design of bearings. Most common bearings operate in the 
laminar region at small or moderately large Reynolds numbers (Constantinescu 
(1970), p. 473). However, if very high speeds, or unconventional lubricants, such as 
air, water, or liquid metals, are used, inertial forces and turbulent flow may have to be 
taken into account. In this case the lubricating fluid is water, which explains the need 
also to consider inertial and turbulent effects when calculating the flow in the gap. 
 
In reality the hull surface of a ship does not usually have a constant curvature, but the 
curvature varies both in the longitudinal and transverse directions of the hull surface, 
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as can be seen in the examples given in Figures 2-32 and 2-33. This indicates that the 
flow in the gap is not stationary, but time-dependent. 
 
The preliminary analysis of the flow in the gap, based on the calculation of the 
Couette Reynolds number and the reduced Reynolds number for the example case, 
thus indicates that the calculation method has to be able to model time-dependent 
laminar and turbulent shear flows with inertia effects in the gap between the hull 
surface and an ice floe. The method must also be able to model contact between the 
surfaces at a certain point or area within the gap. 
 
 
3.3 Outline of the solution methods 
 
Two strategies now exist to solve the calculation problem described in the previous 
section. Attempts can be made to solve either the "full" Navier-Stokes equations (3.5) 
and (3.6) or the simplified Navier-Stokes equations (3.25) and (3.26). In general, the 
problem of finding exact analytical solutions to the Navier-Stokes equations (3.5) and 
(3.6) presents insurmountable mathematical difficulties. Nevertheless, it is possible to 
find exact solutions in certain particular cases with simple geometry, mostly when the 
quadratic convective terms vanish in a natural way (Schlichting (1979), p. 83). 
 
In general, numerical methods have to be used to solve the full or simplified Navier-
Stokes equations. The most commonly used methods are the finite difference method, 
the finite volume method, and the finite element method. Hybrid methods also exist, 
combining, for example, the finite volume and the finite element methods.  
 
One can clearly see that the numerical solution of the simplified Navier-Stokes 
equations can be obtained much more easily than the solution of the full Navier-
Stokes equations, since the simplified equations have one equation less to be solved 
than the full Navier-Stokes equations. Therefore the analyses in this thesis are mainly 
performed by solving the simplified equations. For this purpose the Iceflo computer 
code was developed (see Chapter 5), which is based on the finite difference method. 
However, for reference, some calculations were performed by solving the full Navier-
Stokes equations. These calculations were carried out by the commercial CFD 
computer code Fluent, which is based on the finite volume method. Some aspects of 
the Fluent computer code are described in the next chapter. 
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4 The Fluent computational fluid dynamics computer code  
 
In this chapter some aspects of the Fluent CFD computer code are described in 
Section 4.1. In order to evaluate the suitability of Fluent for the analysis of the 
computational problem described in the previous chapter, Fluent is validated in 
Section 4.2 against the direct numerical simulation (DNS) data of Bech et al. (2000) 
for plane-turbulent Couette flow, and against the experimental data of Nakabayashi 
(1993) for a turbulent Couette-type flow with repeated longitudinal pressure gradients. 
 
The Fluent computer code was installed on CSC's2 SGI Origin 2000 platform 
cedar.csc.fi. Preprocessing was carried out using Gambit, which is part of the Fluent 
package. After preprocessing, the CFD solver of Fluent does the calculations and 
produces the results. Post-processing can also be performed by Fluent. 
 
 
4.1 The Fluent CFD computer code  
 
Although Finite Element methods have recently gained popularity in the field of CFD 
applications, most of the commercial CFD software, like Fluent, is still based on the 
Finite Volume (FV) method. The finite volume method uses the integral form of the 
conservation equation as the starting point. For example, the momentum conservation 
inside an arbitrary control volume V can be expressed as (see e.g. Blazek (2001), p. 
10): 
 

 ( ) ( )d d de
V S V S S

udV u u n S f dV pn S n S
t

ρ ρ ρ τ∂ + ⋅ = − + ⋅
∂ ∫ ∫ ∫ ∫ ∫ , (4.1) 

 
where u  is the fluid velocity, V  the volume occupied by the control volume, S the 
surface enclosing the control volume, n  the unit vector orthogonal to S and directed 
outwards, efρ  the body force per unit volume, and τ  stands for the viscous stress 
tensor. 
 
A benefit of writing the governing equation in this particular form is that the 
conservation laws are fulfilled implicitly. More detailed information on the finite 
volume method and its numerical implementation can be found in the literature, such 
as Patankar (1980), Anderson et al. (1984), and Ferziger and Peric (2002). 
 
The following turbulence models can be used in Fluent: 
 
- Standard k e-  model 
- Standard k ω−  model 
- Spalart-Almaras turbulence model 
- Low Reynolds number k e-  model 
- RNG k e-  model 
- Realisable k e-  model 
 

                                                           
2 CSC is the Finnish IT centre for science, administered by the Ministry of Education of Finland 
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As an example of the turbulence models of Fluent, the standard k e-  model as given 
in Fluent (1998) is described in Section 4.1.1. Descriptions of the other turbulence 
models mentioned above can be found in Fluent (1998). 
 
4.1.1 The Standard k ε−  turbulence model used by Fluent 
 
The standard k ε−  model (see e.g. Launder and Spalding (1972)) is a semi-empirical 
model based on model transport equations for the turbulent kinetic energy, k, and its 
dissipation rate, e . The model transport equation for k is derived from Navier-Stokes 
equations, while the model transport equation for e  is obtained using physical 
reasoning and bears little resemblance to its mathematically exact counterpart. 
 
In the derivation of the k e-  model, it is assumed that the flow is fully turbulent and 
the effects of molecular viscosity are negligible. The standard k e-  model is 
therefore valid only for fully turbulent flows. 
 
4.1.1.1 Transport equations for the standard k ε−  model 
 
The turbulent kinetic energy, k, and its rate of dissipation, e , are obtained from the 
following transport equations: 
 

 t
k b M

i k i

Dk k G G Y
Dt x x

hr h re
s

È ˘Ê ˆ∂ ∂= + + + - -Í ˙Á ˜∂ ∂Ë ¯Í ˙Î ˚
 (4.2) 

 
and 
 

 ( )
2

1 3 2
t

k b
i i

D C G C G C
Dt x x k ke e e

e

he e e er h r
s

È ˘Ê ˆ∂ ∂= + + + -Í ˙Á ˜∂ ∂Ë ¯Í ˙Î ˚
 (4.3) 

 
 
In these equations, kG  represents the generation of turbulent kinetic energy resulting 
from the mean velocity gradients, bG  is the generation of turbulent kinetic energy 
caused by buoyancy, and MY represents the contribution of the fluctuating dilatation in 
compressible turbulence to the overall dissipation rate. 1 2 3,  and C C Ce e e  are constants.  

 and k es s  are the turbulent Prandtl numbers for k and e , respectively. 
 
4.1.1.2 Modelling turbulent production in the k ε−  model 
 
From the exact equation for the transport of k, the term kG , representing the 
production of turbulent kinetic energy, may be defined as: 
 

 ' ' j
k i j

i

u
G u u

x
r

∂
= -

∂
. (4.4) 

 
kG  is evaluated in a manner consistent with the Boussinesq hypothesis: 
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 2

k tG Sh= , (4.5) 
 
where S is the modulus of the mean rate-of-strain tensor, defined as: 
 
 2 ij ijS S S∫ , (4.6) 
 
with the mean strain rate ijS  given by: 
 

 1
2

ji
ij

j i

uuS
x x

Ê ˆ∂∂
= +Á ˜∂ ∂Ë ¯

. (4.7) 

 
4.1.1.3 Modelling the turbulent viscosity 
 
The "eddy'' or turbulent viscosity, th , is computed by combining k and e  as follows: 
 

 
2

t
kCmh r
e

= , (4.8) 

 
where Cm  is a constant. 
 
4.1.1.4 Model constants 
 
The model constants 1 2, ,  ,  ,  and kC C Ce e m es s  have the following default values (see 
Launder and Sharma (1974)): 
 

1 21.44, 1.92,  0.09,  1.0,  and 1.3kC C Ce e m es s= = = = =  
 
These default values have been determined from experiments with air and water for 
fundamental turbulent shear flows, including homogeneous shear flows and decaying 
isotropic grid turbulence. They have been found to work fairly well for a wide range 
of wall-bounded and free shear flows. 
 
 
4.2 Validation of Fluent 
 
In this section the turbulence models of Fluent are validated against the direct 
numerical simulation data of Bech et al. (1995 and 2000) for plane-turbulent Couette 
flow, which are considered the most consistent and readily available data for this type 
of flow (Bech et al. (1995), p. 299). The calculation results of Fluent are also 
compared with the experimental data of Nakabayashi (1993) for a turbulent Couette-
type flow with repeated longitudinal pressure gradients. 
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4.2.1 Validation of the turbulence models of Fluent 
 
Bech et al. (1995 and 2000) studied the turbulence structure in plane Couette flow at 
low Reynolds numbers using data obtained both from direct numerical simulation and 
physical experiments. The plane turbulent Couette flow studied by Bech et al. (1995 
and 2000) is depicted in Figure 4-1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1. Schematic illustration of plane-turbulent Couette flow.  
 
 
The upper wall was moving at a speed of 2U  with respect to the lower wall, which 
was stationary. The half-channel height, h, was 0.01 m. The fluid between the plates 
was water. The properties of the fluid were not given in Bech et al. (1995 and 2000). 
The Fluent standard values for water were used ( 20 oT C= ) in the calculations: ρ  = 
998.2 kg/m3 and η  = 0.001003 Pa s⋅ . 
 
The Couette Reynolds number was Re / 1300Uh n= =   (Bech et al. (1995), p. 303, 
and (2000)) from which the speed of the upper wall, 2 0.261 m/sU = , can be 
obtained. Using the notation of Bech et al. (1995), the Couette Reynolds number as 
defined in Equation (3.20) is Re 2 /C Uh n= . This means that in the experiments the 
Couette Reynolds number, as defined in this thesis, was 2600 and thus the flow was 
turbulent (see Section 3.2). 
 
The friction velocity uτ  is defined as: 
 

 wut
t
r

= , (4.9) 

 
where wt  is the wall shear stress. Bech et al. (1995) define the Reynolds number on 
the basis of wall friction velocity,  
 

z 

x 

2U 

2h 

Moving wall 

Stationary wall
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 Re u ht
t n
= , (4.10) 

 
for which they give the value Re 82.2t =  (see Bech et al. (1995), page 304) from 
which the friction velocity, 0.00825 m/sut = , can be obtained, and the wall shear 
stress, 20.06799 N/mwt = , can then be calculated from Equation (4.9). 
 
The calculations were performed using the following turbulence models of Fluent: 
 
- Standard k e-  model with two-zonal wall treatment 
- RNG k e-  model with two-zonal wall treatment 
- Realizable k e-  model with two-zonal wall treatment 
 
The two-zonal wall treatment means that the whole domain is subdivided into a 
viscosity-affected region and a fully turbulent region. The demarcation of the two 
regions is determined by a wall-distance-based, turbulent Reynolds number, Rez, 
defined as: 
 

 zRe k zρ
η

≡ , (4.11) 

 
where z is the normal distance from the nearest wall at the cell centres of the 
computational grid. In the fully turbulent region (Rez > 200), the k e-  models are 
employed. In the viscosity-affected near-wall region (Rez < 200), the one-equation 
model of Wolfshtein (1969) is employed. For more details, see Fluent (1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-2. The computational domain (in metres). Note the different scales in the x- 
and z-coordinate directions. 
 
A uniform 80x80 low Reynolds number grid was generated; see Table 4-1. The 
dimensionless wall distance, i.e. the height of the centre of the first cell from the wall 
in the z-coordinate direction, has to fulfil the following criteria in order for reliable 
results for the wall friction to be obtained: 
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 1
zu

z t

n
+ = £ . (4.12) 

The following boundary conditions were used: velocity of the upper wall 2U  = 0.261 
m/s in the positive x-coordinate direction, and velocity of the lower wall is zero. For 
the inlet and the outlet the translationally periodic boundary condition was used. 
Translationally periodic boundaries are boundaries that form periodic planes in a 
rectilinear geometry (Fluent (1998), p. 6-93). When the flow through the periodic 
boundary adjacent to a fluid cell is being calculated, the flow conditions at the fluid 
cell adjacent to the opposite periodic plane are used (see also Section 5.3.4.3). 
 
Table 4-1. The 80x80 low Reynolds number grid ( / 50x zD D = ). 
 
Direction Number 

of cells 
Length of the 
first and the 
last cell [m] 

Length of the 
cell in the 
middle [m] 

Grid 
expansion 
factor 

x (-0.5 m to 0.5 m) 80 0.0125 0.0125 1 
z (0 m to 0.02 m) 80 0.00025 0.00025 1 

 
 
4.2.1.1 Comparison of the calculated shear stresses with the data of Bech et al. 
 
The results of the calculations were compared with the DNS data provided by Bech et 
al. (2000). The calculated wall shear stress using the turbulence models of Fluent are 
compared with the data of Bech et al. (2000) in Table 4-2. 
 
As can be seen in Table 4-2, both the standard k e-  model of Fluent and the RNG 
k e-  model of Fluent with two-zonal wall treatment give reasonable results for the 
wall shear stress, the error being less than 10%. In the following section the results 
obtained by the standard k e-  model of Fluent with two-zonal wall treatment will be 
compared with the DNS data of Bech et al. (2000) in more detail. 
 
Table 4-2. Comparison of the calculated wall shear stress with the data of Bech et al., 
(2000). 
 
 Bech et 

al. 
Fluent,  
Standard k e-  
turbulence model 

Fluent,  
RNG k e-  
turbulence model 

Fluent,  
Realisable k e-  
turbulence model 

2
 [N/m ]wt  0.06799 0.063189 0.06334 0.059466 

Error [%] - -7.06 -6.84 -12.54 
 
 
4.2.1.2 Results of the standard k e-  model of Fluent 
 
Velocity distribution 
 
The dimensionless mean velocity distribution in the streamwise direction (u-velocity) 
in the lower half of the channel is depicted in Figure 4-3. It can be noted that in the 
viscous sub-layer and buffer regions the standard k e-  model of Fluent gives slightly 
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lower values for the u velocity and slightly higher values in the logarithmic region, 
compared with the DNS data of Bech et al. (2000).  
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Figure 4-3. Dimensionless mean velocity distribution of the velocity in the x-
coordinate direction in the lower half of the channel. 
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Figure 4-4. Dimensionless mean velocity, u+, in the x-coordinate direction in the 
lower half of the channel as a function of the dimensionless wall distance, z+, drawn 
on a semi-logarithmic scale.  
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This indicates that the standard k e-  model of Fluent gives slightly lower values for 
the shear stress at the wall than the DNS calculations of Bech et al. (2000). This is 
indeed the case: Bech et al. (1995) give 20.06799 N/mwt = , while Fluent gives 

20.063189 N/mwt = , which is 7.06% less. 
 
The mean velocity in Figure 4-4 is plotted in a semi-logarithmic form, normalised 
with viscous scales as follows: /  and z / .u u u zut t n+ += =  In addition to the DNS 
data of Bech et al. (2000) and the k e-  data of Fluent, the familiar logarithmic 
relation: 
 
 lnu A z B+ += +  (4.13) 
 
with the constants A and B adapted to the DNS data of Bech et al. (2000) is shown in 
Figure 4-4. A value of 2.55 for the constant A and a value of 4.5 for the constant B 
correlate well with the DNS data according to Bech et al. (1995). 
 
Turbulent magnitudes 
 
Dimensionless fluctuating velocities, ' ' '/ , /  and /rms rms rmsu u v u w uτ τ τ , according to the 
DNS data of Bech et al. (2000), are depicted in Figure 4-5. In Figure 4-5 it can be 
seen that the fluctuating velocity has its highest value in the x-coordinate direction. In 
the other directions the fluctuating velocity has a much lower value. This indicates 
that the turbulent fluctuations are anisotropic. According to the DNS data of Bech et 
al. (2000), the average value of u'w' was negative; this is depicted schematically in 
Figure 4-6. This is logical for the type of flow depicted in Figure 4-1, which has 

/ 0u z∂ ∂ > . 
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Figure 4-5. Distribution of the root-mean-square values of the dimensionless 
fluctuating velocities ' ' '/ , /  and /rms rms rmsu u v u w uτ τ τ  according to the DNS data of Bech 
et al. (2000). 
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Figure 4-6. Schematic illustration of isotropic and anisotropic turbulent fields 
according to Kundu and Cohen (2002), Figure 13.6. The dots represent the 
instantaneous values of the u'w' pairs at different times. 
 
 
Dimensionless turbulence kinetic energy 2/k k ut

+ =  is depicted in Figure 4-7. 
Turbulence kinetic energy, k, was calculated by using Equation (3.14). In Figure 4-7 it 
can be seen that the standard k e-  model of Fluent can model the average turbulent 
kinetic energy reasonably well for this type of flow, which is not surprising, since the 
coefficients of the k ε−  model have been derived on the basis of measurements of 
Couette flow. 
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Figure 4-7. Dimensionless turbulence kinetic energy from the DNS simulation of Bech 
et al. (2000) and by Fluent. 
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Dimensionless turbulent and viscous stresses across the channel are depicted in Figure 
4-8. Turbulent stresses are obtained from the Boussinesq approximation (3.13). With i 
= 1 and j = 2, and setting / 0w x∂ ∂ = : 
 

 ' '
t

uu w
z

r h ∂- =
∂

. (4.14) 

 
It can be concluded that the calculated results of the standard k e-  model of Fluent 
with two-zonal wall treatment correlate reasonably well with the data of Bech et al. 
(2000). 
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Figure 4-8. Dimensionless Reynolds and viscous stresses across the channel obtained 
from the DNS simulation of Bech et al. (2000) and by Fluent. 
 
 
4.2.2 Comparison of the results obtained by Fluent with the experimental data 

of the turbulent Couette-type flow of Nakabayashi 
 
Experimental work has been performed by Nakabayashi et al. (1991) to investigate 
turbulent Couette-type flow with repeated longitudinal pressure gradients that are 
realised in a channel consisting of a wavy fixed wall on one side and a moving plane 
wall on the other side. This type of flow simulates the flow in high-speed journal 
bearings operating in turbulent conditions. The flow is two-dimensional with a 
constant temperature. 
 
In this section the experimental data of Nakabayashi (1993) are compared with the 
calculated results obtained by Fluent using the standard k ε−  model with two-zonal 
wall treatment. 
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4.2.2.1 Description of the flow 
 
The channel has its lower wall moving and its upper wall wavy and fixed (see Figure 
4-9). The length of the test section is L = 1.4 m (one wavelength), with a mean height 
(distance between two walls) of 2h = 15 mm. 
 
According to Nakabayashi (1993), the Couette Reynolds number Re 2 /C Uh n=  = 
8000, where 2h = 0.015 m and 7.98 m/sU =  and thus the kinematic viscosity 

0.000014962 m/sn = . This indicates that the fluid is air ( 20 oT C= ) with molecular 
viscosity 51.8375 10  kg/m sh -= ◊ ◊  and density 31.225 kg/mr = . The friction velocity 
ut  and the wall shear stress, wt , are given in Table 4-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-9. The computational domain according to Nakabayashi (1993). Note the 
different scales in the x- and z-coordinate directions. 
 
 
Table 4-3. Friction velocity and wall shear stress (Nakabayashi (1993)). 
 
Section No. x/l [-] h  [m] U [m/s] ut  [m/s] wt  [N/m2] 
1 0.000 0.01094 7.98 0.267 0.087 
2 0.125 0.01164 7.94 0.234 0.067 
3 0.250 0.01446 7.93 0.201 0.049 
4 0.375 0.01776 7.93 0.1745 0.037 
5 0.500 0.01923 8.03 0.1604 0.032 
6 0.625 0.01838 8.05 0.161 0.0318 
7 0.750 0.01503 8.00 0.200 0.049 
8 0.875 0.01151 8.05 0.249 0.076 
 
 
The following boundary conditions were used in the calculations: the velocity of the 
lower wall U = 7.98 m/s in the positive x-direction (see Table 4-3), the velocity of the 
upper wall was zero, and for the inlet and outlet the translationally periodic boundary 
condition was used. Measurements were made at different times at Sections 1 to 8 and 
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therefore the velocity of the moving wall is slightly different at the sections given in 
Table 4-3. 
 
The calculations were performed using the standard k e-  turbulence model of Fluent 
with two-zonal wall treatment using a 49x98 ( )x z xD D low Re number grid (see 
Table 4-4). 
 
 
Table 4-4. The 49x98 low Reynolds number grid used in the calculations. 
 
Direction Number of 

cells 
Length of the 
first cell [m] 

Length of the 
last cell [m] 

Grid expansion 
factor 

x = 0 – 1.4 m 98 0.014286 0.014286 1 
z = 0 – 0.01094 
at the inlet 

49 0.000112 0.000398 1.0542 

z = 0 – 0.01923 
at the centre line 

49 0.000197 0.000699 1.0542 

 
 
The results of the calculations were compared with the following experimental data 
provided by Nakabayashi (1993): 
 
- Velocity measurements 
- Friction velocity, ut , along the wavy wall 
- Longitudinal pressure gradient, ( )/dp dx  
- Turbulence kinetic energy, k 
 
The turbulence kinetic energy was calculated from the experimental data by using the 
following equation obtained from Equation (3.14): 
 

 ( )2  21 ' '
2

k u w= + , (4.15) 

 
where u' is the fluctuating component of the streamwise velocity and w' is the 
fluctuating component of the velocity normal to the wall. Strictly speaking, the level 
of turbulent energy calculated in this way is not accurate, since the fluctuating 
transverse component of the velocity, v', was not available, because it was not 
measured in the tests.  
 
4.2.2.2 Comparison of the velocity magnitudes 
 
The mean velocity distribution in the streamwise direction (u-velocity) at the inlet     
(x = 0 m), at the section x = 0.35 m, and at the section in the middle of the channel    
(x = 0.7 m) are shown in Figure 4-10. The standard k e-  model of Fluent is seen to 
give slightly lower values for the streamwise velocity, compared with the 
measurements of Nakabayashi (1993). 
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Figure 4-10. Comparison of the calculated streamwise velocity at x = 0 m (inlet), at x 
= 0.35 m and at x = 0.7 m (CL) with the data of Nakabayashi (1993). 
 
 
4.2.2.3 Comparison of turbulence kinetic energy 
 
The turbulence kinetic energy, k, at x = 0 m (inlet), and at x = 0.7 m in the middle of 
the channel is depicted in Figures 4-11 and 4-12. The calculated results are not quite 
comparable to the measured ones as the fluctuating transverse component of velocity, 
v', was not measured in the tests. 
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Figure 4-11. Comparison of the turbulence kinetic energy k at x = 0 m (inlet) 
obtained by Fluent with the experimental data of Nakabayashi (1993). 
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Figure 4-12. Comparison of the turbulent kinetic energy k at x = 0.7 m (in the middle 
of the channel) obtained by Fluent with the experimental data of Nakabayashi (1993). 
 
 
4.2.2.4 Comparison of the friction velocities 
 
The friction velocity /wut t r=  at the upper wavy wall obtained by Fluent is 
depicted in Figure 4-13 and shows qualitatively good correlation with the 
experimental data of Nakabayashi (1993). 
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Figure 4-13. Comparison of the friction velocity at the upper wall obtained by Fluent 
with the experimental data of Nakabayashi (1993). 
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4.2.2.5 Comparison of the pressure gradients 
 
The pressure gradient in the x-coordinate direction, /dp dx , obtained by Fluent is 
shown in Figure 4-14 and shows qualitatively good correlation with the experimental 
data of Nakabayashi (1993). 
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Figure 4-14. Comparison of the longitudinal pressure gradient obtained by Fluent 
with the experimental data of Nakabayashi (1993). 
 
 
4.3 Summary of Chapter 4 
 
The turbulence models of Fluent were validated against the direct numerical 
simulation data of Bech et al. (1995 and 2000) for plane-turbulent Couette flow. The 
standard k ε−  turbulence model of Fluent with two-zonal wall treatment was found 
to give a reasonably good estimate for the wall shear stress for the simulation case of 
Bech et al. (1995). The velocity distribution in the channel calculated using Fluent 
correlates very well with the DNS data of Bech et al. (2000). The calculations of Bech 
et al. (2000) showed turbulent fluctuations to be anisotropic and the fluctuating 
velocity has its highest value in the x-coordinate direction. The results of the 
calculations obtained by Fluent showed that the standard k e-  model of Fluent can 
model the average turbulent kinetic energy reasonably well for this type of flow. 
 
The calculation results of Fluent were also compared with the experimental data of 
Nakabayashi (1993) for Couette flow with pressure gradient. The standard k e-  
model of Fluent gave slightly lower values for the streamwise velocity compared with 
the experimental data of Nakabayashi (1993). The results of the turbulent kinetic 
energy calculations obtained using Fluent did not correlate so well with the data of 
Nakabayashi (1993). However, the friction velocity and the pressure gradient obtained 
by Fluent showed a reasonably good correlation with the data of Nakabayashi (1993). 
 
The final conclusion of this chapter is that Fluent can be used for the calculation of 
this type of flow. 
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5 Hydrodynamic lubrication theory 
 
The preliminary analysis of the calculation problem performed in Section 3.2 
indicated that the calculation method has to be able to model time-dependent laminar 
and turbulent flow with inertia effects. The method must also be able to model the 
contact between the surfaces at a certain point or area within the gap. The 
hydrodynamic lubrication theory for a three-dimensional flow without inertia effects 
is presented first, in Section 5.1. The hydrodynamic lubrication theory for a three-
dimensional flow with inertia and turbulence effects is then presented in Section 5.2. 
In Section 5.3 the numerical solution of the equations given in Section 5.2, which 
were implemented in the Iceflo CFD computer code, is presented. Calculation of the 
forces and moment resulting from pressure and shear stress is presented in Section 
5.4, and verification and validation of the Iceflo CFD computer code are presented in 
Section 5.5. Finally, a summary of the chapter can be found in Section 5.6. 
 
The term "hydrodynamic lubrication" may need some clarification at this point. The 
hydrodynamic lubrication theory was originally developed for the design of bearings. 
The idea is to separate moving parts of machinery from each other by a thin fluid film 
in order to reduce friction and the wear of the parts. In this study the geometry of the 
gap between the normally convex hull and flat ice floes may not be suitable for 
lubrication but for a quite opposite phenomenon, i.e. the hull and the ice floes are not 
separated, but pressed together as a result of pressure in the gap, as was described in 
Chapter 1. However, the term "hydrodynamic lubrication" is nevertheless used in this 
study, because the theory can equally well describe overpressure or negative pressure 
resulting from the dynamic effects of the shear flow in the gap between two surfaces. 
 
It should also be borne in mind that the hydrodynamic lubrication theory can be 
applied only when there is a fluid film between two surfaces. If the solid surfaces are 
so close to each other that there is considerable asperity interaction, theories related to 
boundary lubrication, mixed lubrication, or elastohydrodynamic lubrication have to be 
applied in machine element applications (see e.g. Holmberg (1984)). In this study the 
nature of the contact of the hull surface with the ice floes is not studied. It is simply 
assumed that Herzian contact without fluid flow exists in contact areas. Since ice is a 
much weaker material than the steel used as hull material, the surfaces should be 
parallel in contact areas and therefore, even if there were fluid in contact areas, no 
pressure gradient should exist there, and consequently the shear-driven fluid layer in 
contact areas would not have any bearing capacity which could separate the surfaces 
from each other. 
 
In a way the calculation method presented in this chapter is a generalisation of the 
lubrication theory to cover the case in which two non-conformal surfaces are in 
contact at some point or area in the gap. Perhaps the method could be called 
“hydrodynamic pressure theory for shear-driven flow between non-conformal 
surfaces in contact”. 
 
 
 
 
 
 



 64 

5.1 Hydrodynamic lubrication theory for a three-dimensional flow without 
inertia effects 
 

Changing back to non-dimensional variables by inserting Equations (3.16), (3.17), 
and (3.19) into Equations (3.25) and (3.26) and assuming negligible inertia effects by 
requiring that *Re 0→ , Equations (3.25) and (3.26) can be further simplified to read: 
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2

2

2

d

d

p u
x z
p v
y z

h

h

∂ ∂=
∂ ∂
∂ ∂=
∂ ∂

 (5.1) 

 

 0u v w
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

. (5.2) 

 
The equations of momentum (5.1) can now be integrated twice with respect to z, and 
the integration constants can be calculated using the boundary conditions, assuming 
that the molecular forces between the solid wall and the neighbouring molecules in 
the fluid are sufficiently strong to prevent them from being detached by the shear 
stresses developed in the fluid film; see e.g. Holmberg (1984): 
 

 
0,  0 at 0

,  0 at .
u v z
u U v z h

= = =
= = =

 (5.3) 

 
When the resulting expressions for the velocity components are inserted into the 
equation of continuity (5.2), and when this is then integrated across the film (see e.g. 
Szeri (1998), pp. 73-76), the Reynolds equation for three-dimensional flow in a gap is 
obtained: 
 

 
3 3

6 12d dp ph h h hU
x x y y x tη η
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

. (5.4) 

 
Equation (5.4) can be written in a more general form, which takes turbulent flow into 
account (see e.g. Szeri (1998), p. 254): 
 

 
3 3

2
d d

x y

p ph h U h h
x k x y k y x tη η

⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂+ = +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
, (5.5) 

 
where xk  is the effect of turbulent viscosity in the x-coordinate direction and yk  is the 
effect of turbulent viscosity in the y-coordinate direction (see Section 5.2.4). If the 
flow is laminar, 12x yk k= = . Equation (5.5) is valid if the following assumptions are 
valid: the pressure is constant through the thickness of the film; the radii of curvature 
of surfaces are large compared with the film thickness; there is no slip at the 
boundaries; the fluid is Newtonian; fluid inertia is neglected, and the viscosity is 
constant throughout the film thickness (see Cameron (1976), p. 21). 
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Equation (5.5) is a non-homogeneous partial differential equation of two variables, h 
and dp . If the height of the gap is assumed to be known, a numerical solution to 
Equation (5.5) can be obtained in the same way as described in Pinkus and Sternlicht 
(1961), p. 80. Using a rectangular grid, the first three terms of Equation (5.5) were 
discretised using the finite difference method and the last term was discretised using 
Euler’s method. The pressure field can then be solved from the obtained Poisson-type 
equation. The mean velocity of the fluid flow in the gap can be obtained from the 
following equations: 
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d
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ph Uu
k xη

∂= − +
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 (5.6) 

 
2

d
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phv
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∂= −
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5.2 Hydrodynamic lubrication theory for a three-dimensional flow with 

inertia effects 
 
The Reynolds averaged Navier-Stokes equations (3.11) and (3.12) can be written in 
the x-, y-, and z-directions as follows: 
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∂ ∂ ∂+ + =
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. (5.11) 

 
Equations (5.8) to (5.10) can be simplified by making the following boundary layer 
approximations for certain terms (see Kundu and Cohen (2002), p. 315): 
 

 
2 2

2 2 and 
x z x z

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 (5.12) 
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and 

 
2 2

2 2 and 
y z y z

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

, (5.13) 

 
which means that the variation of a quantity is much larger across the boundary layer 
than along it. Assuming that the length scale (h/l) = O(10-6), Equation (5.10) can be 
completely dispensed with; see Chapter 3. Taking these assumptions into account, the 
reduced Navier-Stokes equations (5.8) to (5.11) can be written in the following form, 
also known as Prandtl's turbulent boundary-layer equations: 
 

 ( ) ( ) ( ) ( )2
' '

2
dpu uu u v u w u wu

t x y z x z z
r r r r h r∂∂ ∂ ∂ ∂ ∂ ∂+ + + = - + -
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (5.14) 
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 0 dp
z

∂≈ −
∂

 (5.16) 

 

 0u v w
x y z

∂ ∂ ∂+ + =
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. (5.17) 

 
As Equation (5.16) shows, the pressure is constant across the fluid film, as was 
concluded in Chapter 3. Thus: 
 
 ( ), ,d dp p x y t= . (5.18) 
 
Equations (5.14), (5.15), and (5.17) can be further simplified by integrating them 
across the gap height, h. In this way the dimensions of the calculation problem can be 
reduced from three to two, which greatly simplifies the numerical calculation 
procedure.  
 
5.2.1 Integration of the continuity equation 
 
The continuity equation (5.17) is first integrated across the gap, which gives (see 
Salonen (1987), pp. 6.11.3 to 6.11.5): 
 
  

 2 1
0 0

0
h hu vdz dz w w

x y
∂ ∂+ + - =
∂ ∂Ú Ú , (5.19) 

 
where the subscripts 1 and 2 refer to the lower and upper surfaces respectively. 
According to the Leibnitz rule, Equation (5.19) can be written as follows: 
 

 ( ) ( ) 2 2 2 1 0m m
h hhu hv u v w w

x y x y
∂ ∂ ∂ ∂+ − − + − =
∂ ∂ ∂ ∂

, (5.20) 
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where the mean velocity of the flow in the x-coordinate direction has been defined as 
follows: 

 
0

1 h

mu udz
h

= ∫  (5.21) 

 
and the mean velocity of the flow in the y-coordinate direction as follows: 
 

 
0

1 h

mv vdz
h

= ∫ . (5.22) 

 
From the kinematics of the surfaces and taking the no-slip conditions at the walls into 
account, the continuity equation integrated across the fluid film can be written: 
 

 ( ) ( ) 0m m
hhu hv

x y t
∂ ∂ ∂+ + =
∂ ∂ ∂

 (5.23) 

 
5.2.2 Integration of the momentum equations 
 
Next, the momentum equations in the directions of the x- and y-coordinate axes are 
considered. Integrating Equations (5.14) and (5.15) gives, taking into account 
Equation (5.18): 
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and 
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Using the Leibnitz rule, assuming no-slip conditions at the walls, and taking into 
account the fact that the turbulent fluctuations vanish at z = 0 and z = h, Equations 
(5.24) and (5.25) can be written as follows: 
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and 
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where 
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0 0 0

,   and 
h h h

xx xy yx yyI uudz I I uvdz I vvdz= = = =∫ ∫ ∫ . (5.28) 

To proceed further, assumptions must be made about the distribution of velocity 
within the fluid film in the gap. Constantinescu (1970) and Constantinescu and 
Galetuse (1974) assume that the shape of the mean velocity distribution in the film is 
unaffected by inertia. Now the method given in Leschziner (1976) is followed to 
determine the velocity profiles, ( ) ( )  andu z v z . Neglecting the inertia terms, Equations 
(5.26) and (5.27) can be written approximately as follows: 
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where the velocity and pressure do not now, of course, include inertia effects. 
Integrating Equations (5.29) and (5.30) twice with respect to z allows us to write the 
following equations for the velocity distributions in the x- and y-coordinate directions: 
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where 1 2 3 4, ,  and C C C C  are integration constants, which can be determined by using 
the no-slip conditions on the walls; see the equations in (5.3). After some 
manipulation it can be written: 
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The pressure gradient can now be eliminated by first inserting (5.33) into (5.21) and 
(5.34) into (5.22), which means it can be written: 
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and inserting (5.35) into (5.33), and (5.36) into (5.34), it can finally be written: 
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Now ,   and xx xy yx yyI I I I=  can be calculated by inserting (5.37) and (5.38) into the 
equations in (5.28): 
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5.2.3 The equations of Constantinescu 
 
Recalling the integral form of the continuity equation (5.23) and inserting Equations 
(5.37) to (5.41) into Equations (5.26) and (5.27), the Navier-Stokes equations 
integrated across the fluid film can be obtained: 
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where  
 
 1.2,  =0.133, =0.2, =0.1 and 12x yk kα β γ δ= = = , (5.45) 
 
which can be used to calculate laminar three-dimensional flow with inertia effects in a 
gap between two surfaces. These equations were originally given by Constantinescu 
and Galetuse (1974) for steady flow. Leschziner (1976) also presented the derivation 
of the equations for steady laminar flow. According to Constantinescu and Galetuse 
(1982), the equations can be used for the calculation of turbulent flow by setting: 
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( ) ( )0.367 0.43
1,  0.885 2 Re , ,  0 and 1.95 2 Re ,C Cx y x yα β γ δ− −

= ≅ ⋅ = ≅ ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (5.46) 
 
The turbulence models kx and ky are given in Section 5.2.4 below. The advantage of 
solving Equations (5.42) to (5.44) instead of solving the "full" Navier-Stokes 
equations (3.7) and (3.8) is clear: the solution of the three-dimensional fluid flow has 
been reduced to the solution of a two-dimensional fluid flow problem. In the same 
manner the solution of a two-dimensional fluid flow has been reduced to the solution 
of a one-dimensional fluid flow problem. This reduces the required computing time 
considerably. The grid generation is also much easier when there is no need to 
generate the grid in the vertical direction. 
 
It should be clarified that in the following a three-dimensional fluid flow problem will 
be continued to be called "three-dimensional" even if it is solved using the two- 
dimensional equations (5.42) to (5.44), since the real flow is three-dimensional. The 
same applies to a two-dimensional fluid flow problem. 
 
5.2.4 The turbulence models 
 
Three turbulence models were considered in this study. The model of Constantinescu 
(see Constantinescu and Galetuse (1974)) is based on the mixing length approach: 
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The turbulence model of Hirs (1973) is based on bulk flow theory: 
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The turbulence model of Ng and Pan (1965) is based on the eddy viscosity profile of 
Reichardt (see e.g. Szeri (1998), p. 247). Taylor (1970) presents the Ng and Pan 
model in the following manner: 
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where , ,  and x y x yK K η η  are given in Table 5-1. 
 
Table 5-1. Coefficients of the Ng and Pan turbulence model. 
 
 xK  xη  yK  yη  
ReC>50000 0.0388 0.80 0.0213 0.80 
10000<ReC<50000 0.0250 0.84 0.0136 0.84 
5000<ReC<10000 0.0250 0.84 0.0088 0.88 
ReC<5000 0.0039 1.06 0.0021 1.06 
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Figure 5-1. Comparison of the turbulent viscosity coefficient kx of the turbulence 
models of Constantinescu, Hirs, and Ng and Pan. 
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Figure 5-2. Comparison of the turbulent viscosity coefficient ky of the turbulence 
models of Constantinescu, Hirs, and Ng and Pan. 
 
 
The turbulent viscosity coefficients kx and ky of the three turbulence models are 
compared in Figures 5-1 and 5-2. In these figures it can be seen that the models of 
Constantinescu and Ng and Pan approach the laminar flow value 12x yk k= =  when 
ReC approaches zero. In the model of Hirs, xk  approaches 12 at about ReC = 500 and 
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yk  approaches 12 at about ReC = 1000. The turbulence models of Constantinescu and 
Hirs were implemented in the Iceflo CFD code, since the model of Ng and Pan gives 
almost identical results up to a Couette Reynolds number of 20,000 as the model of 
Constantinescu. 
 
5.2.5 Flow film cavitation 
 
If the fluid is contaminated it will cavitate when the absolute pressure drops below the 
saturation pressure of the dissolved gases (gaseous cavitation). Vapour cavitation 
(boiling) occurs when the absolute pressure falls to the vapour pressure (Szeri (1998), 
p. 98). In such cases the flow film cannot be in direct contact with the surrounding 
surfaces. Flow film vapour cavitation exists if the absolute pressure, i.e. the sum of 
the atmospheric pressure, the hydrostatic pressure, and the dynamic pressure is less 
than the vapour pressure of the fluid: 
 
 atm h d vp p p p+ + < , (5.50) 
 
where patm is the atmospheric pressure, ph is the hydrostatic pressure, and pv is the 
vapour pressure of the fluid. The atmospheric pressure at sea level is about 101.3 kPa 
(Truckenbrodt (1968)) and the vapour pressure of water is 0.61 kPa at 0oC (White 
(1991)).  
 
5.2.6 Flow film separation 
 
As a result of the simplifications made when deriving Equations (5.42) to (5.44), 
some information on the flow is also lost, i.e. the vertical distribution of the velocity. 
This means that the hydrodynamic lubrication theory cannot predict flow separation, 
and for the same reason the calculation of the shear stresses on the walls is inaccurate 
for a separating flow. However, for laminar flow, the separation condition will be (see 
Constantinescu et al. (1975)): 
 

 
0

0;   
3m

z

u Uu
z =

∂⎛ ⎞ = =⎜ ⎟∂⎝ ⎠
. (5.51) 

 
For turbulent flow the following quantity can be defined (Constantinescu et al. 
(1975)):  
 

 
*

**H δ
δ

= , (5.52) 

 
where *δ  is the displacement thickness: 
 

 *

0

1 1
h

muu dz h
U U

δ ⎛ ⎞⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  (5.53) 

 
and **δ  is the momentum thickness: 
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2

0

1
h

m xxu Iu u dz h h
U U U U

δ ⎛ ⎞⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ . (5.54) 

 
Now: 
 2 2

xx m mI u h U h u Uhα β γ= + − , (5.55) 
  
see the second term of Equation (5.42). Inserting Equation (5.55) into Equation (5.54) 
with the parameters ,  and α β γ  given in the equations in (5.46), and then inserting 
Equations (5.53) and (5.54) into Equation (5.52) the following expression can be 
obtained: 
 

 
( )

12

0.367 0.367

0.8851
2 Re

m m m

C

u u uH
U U U h

−
⎡ ⎤⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⋅⎢ ⎥⎣ ⎦
. (5.56) 

 
Boundary layer experiments show that separation occurs for a certain value H = Hs. 
According to Constantinescu et al. (1975) for air films Hs = 2.69. Inserting this value 
into Equation (5.56) the following magnitude of the mean velocity, um, at the point of 
separation can be obtained: 
 

 
( )0.367

25.60.686 0.186 2.856
2 Re

ms
C

u U
⎡ ⎤
⎢ ⎥= − −

⋅⎢ ⎥⎣ ⎦
. (5.57) 

 
The calculations performed in Section 5.5.2.2 indicated, however, that Equation 
(5.57) predicts the point of separation poorly when the fluid is water. Better results 
were obtained using the value of 7.45 for Hs. Inserting this value into Equation (5.56) 
gives the following magnitude for the mean velocity, um, at the point of separation, 
when the fluid is water: 
 

 
( )0.367

196.470.567 0.067 41.6
2 Re

ms
C

u U
⎡ ⎤
⎢ ⎥= − −

⋅⎢ ⎥⎣ ⎦
. (5.58) 

 
 
5.3 Numerical solution of the equations of Constantinescu 
 
Three numerical procedures can be found in the literature to solve Equations (5.42) to 
(5.44) (Constantinescu and Galetuse (1982)). One possibility is to replace the 
unknown velocities,  and m mu v , with a stream function ψ  in order to obtain the 
unknowns ψ  and dp  (see e.g. Smalley et al. (1974)). Another idea is to retain the 
primitive variables , ,m m du v p  as unknowns and to use a marching procedure coupled 
with an initial guess as to the pressure field and an iteration scheme to correct mass 
imbalances through new values for the pressure distribution, i.e. the control volume 
method (see Leschziner (1976), Launder and Leschziner (1978a and 1978b), and 
Arghir and Frêne (2001)). The third option would be to solve a pressure equation 
similar to that obtained when no inertia forces are considered, coupled to an iteration 
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scheme to account for inertial terms as source terms (see Constantinescu and Galetuse 
(1982)). 
 
The first option was not tried by the author, because of possible difficulties in 
presenting all the required boundary conditions via the use of a stream function. The 
third option was tried using the finite difference method, but was rejected because of 
convergence problems. Convergence of the iteration procedure was obtained only for 
flow with a very low Couette Reynolds number, ReC. 
 
Finally, the second option, retaining the primitive variables, was selected. The Iceflo 
computer code was written to solve Equations (5.42) to (5.44). The code can be used 
to calculate the velocity of the flow, the pressure, and the shear stress in the gap 
between the hull surface and a rectangular ice floe. Both stationary and time-
dependent calculation of the flow are possible. 
 
Instead of using the control volume method, as was done by Leschiner (1976) and by 
Arghir and Frêne (2001), the numerical solution method presented in this study is 
based on the finite difference method given in Griebel et al. (1998). The solution 
method uses the MAC (marker-and-cell) method first proposed by Harlow and Welch 
(1965). The MAC scheme, like most of the numerical schemes developed for 
computational fluid dynamics problems, can be characterised as an operator splitting 
algorithm (Hu in Kundu and Cohen (2002)). The operator splitting algorithm divides 
each time step into several substeps. Each substep solves one part of the operator and 
thus decouples the numerical difficulties associated with each part of the operator. A 
more detailed description of the numerical solution scheme is given in the following 
sections. 
 
5.3.1 Solution of the momentum equations 
 
The time-dependent terms of Equations (5.42) and (5.43) are first considered: 
 

 ( )m m
m

u h u hh u
t t t

ρ ρ ρ
∂ ∂ ∂= +

∂ ∂ ∂
 (5.59) 

 

 ( )m m
m

v h v hh u
t t t

ρ ρ ρ
∂ ∂ ∂= +

∂ ∂ ∂
. (5.60) 

 
The time derivatives of um and vm on the right-hand side of Equations (5.59) and 
(5.60) can be discretised using Euler's method: 
 

 
( )1 ( 1) ( )n n n

m m mu u u
t t

+ +∂ −⎡ ⎤ ≈⎢ ⎥∂ Δ⎣ ⎦
 (5.61) 

 

 
( 1) ( 1) ( )n n n

m m mv v v
t t

+ +∂ −⎡ ⎤ ≈⎢ ⎥∂ Δ⎣ ⎦
, (5.62) 

 
where the superscript n denotes the value of the variable at time tn and (n+1) denotes 
the value of the variable at the next time step, after the period of time tΔ  has passed. 
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Using Equations (5.61) and (5.62), Equations (5.42) and (5.43) can now be written in 
the following form: 
 

 ( )1n d
m

ptu F
xρ

+ ∂Δ= −
∂

 (5.63) 

 

 ( )1n d
m

ptv G
yρ

+ ∂Δ= −
∂

, (5.64) 

 
where 
 

 ( ) ( )( ) 2 2[n
m m m m m m

tF u u h U h u Uh u v h Uv h
h x y

ρ α β γ ρ α δ
ρ
Δ ∂ ∂= − + − + − +

∂ ∂
  

 
2

]x
m m

k U hu u
h t

η ρ ∂⎛ ⎞+ − +⎜ ⎟ ∂⎝ ⎠
 (5.65) 

and  
 

         ( ) ( )( ) 2 ][ yn
m m m m m m m

kt hG v u v h Uv h v h v v
h x y h t

η
ρ α δ ρ α ρ

ρ
Δ ∂ ∂ ∂= − − + + +

∂ ∂ ∂
.   (5.66) 

 
If F and G are evaluated at time tn , and /dp x∂ ∂  and /dp y∂ ∂  at time tn+1, the following 
time-discretised equations of momentum are obtained: 
 

 ( ) ( )
( )1

1
n

n n d
m

ptu F
xρ

+
+ ∂Δ= −

∂
 (5.67) 

 

 ( ) ( )
( )1

1
n

n n d
m

ptv G
yρ

+
+ ∂Δ= −

∂
. (5.68) 

 
A staggered rectangular grid is used to discretise Equations (5.67) and (5.68) with 
respect to position (see Figure 5-3). The velocity components in the x-coordinate 
direction, 

,i jmu , in the cells of the calculation domain are calculated at the right-hand 

edge of the cells, the velocities in the y-coordinate direction, 
,i jmv , are calculated at the 

upper edges of the cells, and the pressure, 
,i jdp , is calculated in the middle of the cells, 

in order to avoid pressure fluctuations during the iteration process. 
 
A calculation domain surrounded by one row of ghost cells is depicted in Figure 5-4. 
The ghost cells are used to define the boundary conditions at the edges of the 
calculation domain. Compass notation is applied to assign names for the edges of the 
calculation domain: the lower edge in Figure 5-4 is called the southern edge, the 
upper edge is called the northern edge, the edge on the left is called the western edge, 
and the edge on the right is called the eastern edge of the calculation domain. The 
fluid is assumed to flow from west to east. 
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Figure 5-3. Staggered grid. 
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Figure 5-4. Calculation domain surrounded by ghost cells (imax=6, jmax=6). 
 
 
Equations (5.67) and (5.68) can now be discretised with respect to position as follows: 
 

 ( ) ( )
( ) ( )( )
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1 1
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i ji j

n n
d dnn

m i j

p ptv G i i j j
yρ

+

+ +

+
+ +
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Δ

, (5.70) 

 
where F and G are discretised at the right and upper walls of the cells, respectively, in 
the same fashion as the velocities. The spatial derivatives in F and G were calculated 
by replacing the first derivatives by centred differences and the second derivatives by 
donor cell discretisation. 
 
5.3.2 Solution of the Poisson-type equation 
 
In order to solve pressure at the new time step, the continuity equation (5.44) is first 
written as follows: 
 

 0m m
m m

u vh h hh u h v
x x y y t

∂ ∂∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂

. (5.71) 

 

The velocity field ( ) ( )( )1 1,
Tn n

m mu v+ +  from Equations (5.67) and (5.68) is now inserted into 

Equation (5.71) and the following Poisson-type equation can be written: 
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+ + + +
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. (5.72) 

 
The Poisson-type equation can now be discretised, which results in the following set 
of linear equations, which have imax ⋅ jmax unknown values of 

,

( 1)
i j

n
dp + , i = 1,…,imax, j = 

2,…,jmax, which have to be solved using a suitable iterative algorithm, such as the 
Gauss-Seidel method: 
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where the compass notation has been applied for the coefficients A: 
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where the subscripts in ,  and c u vh h h  indicate that the height of the gap is calculated at 
the centre of the cell, at the right-hand edge of the cell, and at the upper edge of the 
cell, respectively. 
 
The iterative solution of the equations in (5.73) is called the inner iteration. Patankar's 
under-relaxation was adopted in order to improve the convergence of the inner 
iteration (see e.g. Ferziger and Peric (2002), pp. 118-119). Normally, under-relaxation 
of the pressure is performed as follows: 
 
 ( ), , , ,

( 1)
i j i j i j i j

n n new n
d d p d dp p p pα+ = + − , (5.74) 

 
where pα  is the under-relaxation factor for pressure, satisfying 0 1pα< < , and 

,i j

new
dp  

is the solution for the pressure in cell i,j from Equation (5.73). Now, solving 
,

( 1)
i j

n
dp +  

from Equation (5.73) and inserting it into Equation (5.74) in place of 
,i j

new
dp , Equation 

(5.74) was re-written as follows: 
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where 

,

*
i jpA  are modified main diagonal matrix elements and *

,i jB  are modified source 
vector components. This modified equation is solved within inner iterations. When the 
outer iterations converge, the terms involving pα  cancel each other out, since 

, ,

( 1)
i j i j

n n
d dp p+ → , and the solution of the original problem (5.73) will be obtained. 

Patankar's under-relaxation was found to have a very positive effect on the 
convergence of the iterative solution method, because the diagonal dominance of the 
matrix A is increased. 
 
5.3.3 The outer iteration 
 
After the pressure in the cells of the calculation domain has been obtained at the new 
time step tn+1, the new values for the velocity components ( )

,

1

i j

n

mu +  and ( )
,

1

i j

n

mv +  can be 
obtained by using the discretised equations of motion (5.69) and (5.70). Under-
relaxation was used in the outer iteration for calculation of the velocities: 
 
 ( ), , , ,

( 1)
i j i j i j i j

n n new n
m m m mu u u uα+ = + −  (5.76) 

and  
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 ( ), , , ,

( 1)
i j i j i j i j

n n new n
m m m mv v v vα+ = + − , (5.77) 

 
where α  is the under-relaxation factor for the velocities in the x- and y-coordinate 
directions and 

, ,
and 

i j i j

new new
m mu v  are obtained from Equations (5.69) and (5.70). 

 
The outer iteration, i.e. the (n + 1)st time step, consists of the following steps: 
 
1. Compute F(n) and G(n) according to (5.65) and (5.66) using velocities ( )n

mu  and ( )n
mv . 

 
2. Solve the Poisson-type equation (5.72) for the pressure ( )1n

dp + . 
 
3. Compute the new velocity field ( ( 1) ( 1),n n

m mu v+ + )T using Equations (5.76) and (5.77) 
with the pressure values, ( 1)n

dp + , obtained in Step 2. 
 
The outer iteration now continues until a preset value for the L2 norm of the change 
of velocity between iteration cycles has been achieved. The L2 norm is defined as: 
 

 ( )
max max

1/ 2
2

, 2
1 1max max

1 i j
it it

i j
i j

r r
i j = =

⎛ ⎞
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⎝ ⎠

∑∑ , (5.78) 

 
where ,

it
i jr  is the change of velocity in the x-coordinate direction, 

, ,

( 1) ( )

i j i j

n n
m mu u+ − , 

between the successive iteration cycles. 
 
5.3.4 The boundary conditions 
 
The iteration process described above gives the solution for the variables in the cells 
of the calculation domain (i = 2 to imax+1, j = 2 to jmax+1; see Figure 5-4). For the 
cells outside the calculation domain, i.e. for the ghost cells, values for the variables 

,  and m m du v p  either have to be given or be determined on the basis of the values of 
the respective variables in the calculation domain. The no-slip, symmetric, periodic, 
inflow, outflow, free flow, and dynamic boundary conditions were used in this study. 
 
5.3.4.1 No-slip boundary condition 
 
The no-slip boundary condition means that the mean velocities should vanish at a 
fixed boundary to satisfy the no-slip condition: 
 
 0,  0n tφ φ= = , (5.79) 
 
where nφ  denotes the velocity normal to the wall and tφ  the velocity tangential to the 
wall. This boundary condition was used at the boundaries of obstacle cells, where no 
fluid motion was assumed to exist, and the calculation domain. The obstacle cells 
were defined in areas where contact between the hull and the ice floe was assumed to 
exist. 
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The case shown in Figure 5-5 is now considered. Because of the no-slip condition the 
velocities vanish at the boundaries, and thus: 
 

 1,

,

0

0
i j

i j

m

m

u

v
−

=

=
 (5.80) 

Similarly, 
 
 

, , 1i j i jm mu u
+

= − . (5.81) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-5. Boundary between obstacle cells and the calculation domain. The shaded 
cells are obstacle cells. 
 
 
The pressure in an obstacle cell is assumed to be the same as in the adjacent cell 
belonging to the calculation domain: 
 
 

1, 1, 1i j i jd dp p
+ + +

= . (5.82) 
 
The pressure in a "corner" obstacle cell, which has two neighbouring cells belonging 
to the calculation domain, is assumed to be the average of the pressure of the 
neighbouring calculation domain cells; see Figure 5-5: 
 
 ( ), 1, , 1

/ 2
i j i j i jd d dp p p

− +
= +  (5.83) 

 
The code allows obstacle cells to have a maximum of two neighbouring cells which 
belong to the calculation domain. 
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5.3.4.2 Symmetric or free-slip boundary condition 
 
The symmetric or free-slip boundary condition prevents fluid flow through the 
boundary, but, contrary to the no-slip boundary condition, there are no frictional 
losses at the boundary: 
 
 0,  / 0, / 0n t dn p nφ φ= ∂ ∂ = ∂ ∂ = . (5.84) 
 
 
The symmetric boundary condition or free-slip boundary condition can be assigned 
e.g. for the southern edge of the calculation domain shown in Figure 5-4 by setting: 
 

 ,1 ,2

,1
0,

i i
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u u
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=

=
 (5.85) 

 
and by setting the following values for the coefficients of the Poisson equation in the 
ghost cells at the southern edge: 
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 (5.86) 

 
a symmetric pressure field at the southern edge will be obtained, i.e. 
 
 ,1 ,2.d di ip p=  (5.87) 
 
5.3.4.3 Periodic boundary condition 
 
For problems which have a periodic geometry with a period l in one coordinate 
direction, the computations can be restricted to one period. The velocities and 
pressure must then coincide at the opposite boundaries, for example for a periodic 
flow in the x-coordinate direction (see Figure 5-4): 
 

( ) ( ) ( ) ( ) ( ) ( )/ 2, / 2, ,  / 2, / 2, ,  / 2, / 2,n n t t d dl y l y l y l y p l y p l yφ φ φ φ− = − = − = .  (5.88) 
 
where the length of the period is l. 
 
The periodic boundary condition can be assigned e.g. for the western edge of the 
calculation domain shown in Figure 5-4 by setting: 
 

 1, max 1,

1, max 1,
,

j i j

j i j

m m

m m

u u

v v
+

+

=

=
 (5.89) 

 
and by setting the coefficients of the Poisson equation in the ghost cells: 
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 (5.90) 

 
and by connecting the pressures in Gauss-Seidel iteration when solving the Poisson-
type equations: 
 
 1, max 1,j d i jB p += , (5.91) 
 
a periodic pressure field between the left- and right-hand edges will be obtained, i.e.: 
 
 1, max 1,d dj i jp p += . (5.92) 
 
5.3.4.4 Inflow and outflow boundary conditions 
 
The inflow boundary condition at the inlet can be set by giving both velocity 
components (see e.g. Griebel et al. (1998)), but in this study the inflow boundary 
condition was set in such a way that the velocity in the x-coordinate direction at the 
inlet or outlet surfaces was calculated from the control volumes of the cells bordering 
the inlet and outlet inside the calculation domain and the velocity in the y-coordinate 
direction at the inlet or outlet was assumed to be zero, in a similar fashion as was done 
by Leschziner (1976): 
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 (5.93) 

 
The last term of the first equation inside the square brackets takes into account the 
effect of possible change in the gap height with time on the velocity. 
 
The outflow boundary condition at the outlet was set in a similar way: 
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 (5.94) 

 
The magnitude of pressure at the inlet or outlet has to be given, if inflow or outflow 
boundary condition is used. 
 
5.3.4.5 Free-flow boundary condition 
 
The free-flow boundary condition means that the velocity does not change in the 
direction normal to the boundary and the pressure is given, being e.g. zero: 
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 / 0,  / 0,  0n t dn n pφ φ∂ ∂ = ∂ ∂ = = . (5.95) 
 
Assuming that the purpose is to assign the free-flow boundary condition at the 
northern edge in Figure 5-4, it can be written: 
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 (5.96) 

 
After the discretisation of the equations in (5.96) the velocities of the flow in the ghost 
cells are: 
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 (5.97) 

 
where  and u vh h  mean the height of the right-hand and upper edges of the cells, 
respectively. The pressure can be assigned a zero value at the boundary by setting: 
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 (5.98) 

 
Inserting the coefficients (5.98) into the Poisson equation (5.73) gives: 
 
 , max 2 , max 1d di j i jp p+ += − , (5.99) 
 
indicating that the pressure is zero at the upper edge of the calculation domain. 
 
5.3.4.6 Dynamic boundary condition 
 
The dynamic boundary condition is a special boundary condition which was only used 
at the northern edge of the calculation domain. The idea is to allow some fluid flow 
through the gap between the adjacent ice floes at the northern edge. For the sake of 
simplicity, the flow through the gap between the ice floes was modelled as a 
stationary laminar flow between two parallel walls, as depicted in Figure 5-6. It is also 
assumed that the gaps between the ice floes and the hull are symmetrical relative to 
the z-axis, see Figure 5-6.  
 
The flow in the gap between the ice floes is driven by the pressure difference 

1 2dp p pΔ = −  between the lower and upper ends of the gap. The pressure difference 
can be obtained from Equation (5.6) by setting h = δ , U = 0, kx = 12, 

,  m mx z u w→ →  and / /d d icedp dx p h→ Δ : 
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12 ice
d m

hp wη
δ

Δ = − , (5.100) 

  
where hice is the ice thickness, δ  is the width of the gap, and wm is the average 
velocity of the flow in the gap between the edges of the ice floes. Assuming that the 
flow in or out from the gap between the hull surface and the ice floe is generated only 
by the flow in the y-coordinate direction, it can be written on the basis of the 
continuity equation: 
 

 
, max 1 , max 12 i j i jm m vw v hδ

+ +
= , (5.101) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-6. Flow in the gap between two adjacent ice floes at the northern edge of the 
calculation domain. 
 
 
where 

, max 1i jmv
+

 is the velocity of the flow in the y-coordinate direction in Cell (i,jmax+1) 

at the northern edge of the calculation domain, and 
, 1i jmaxvh

+
 is the height of that cell. 

Assuming 1  i,jmax+1dp p= , and further assuming p2 = 0 results in the following 
boundary condition for the velocity in the y-coordinate direction at the northern edge:  
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The other boundary conditions at the northern edge are: 
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 (5.103) 

 
5.3.5 Numerical stability of the solution method 
 
Stability conditions must be imposed on the step sizes ,   and x y tΔ Δ Δ , in order to 
ensure stability and avoid generating oscillations in the iteration process. In the Iceflo 
computer code the Courant-Friedrichs-Levy (CFL) conditions were used (see e.g. 
Griebel et al. (1998)), which state that no fluid particle may travel a distance greater 
than the mesh spacing xΔ  or yΔ  in time tΔ : 
 

 
max maxm m

,    x yt t
u v
Δ ΔΔ < Δ < , (5.104) 

 
where 

max maxm m and u v  are the maximal absolute values of the velocities occurring in 
the cells of the calculation domain.  
 
An adaptive step size control may be used by selecting tΔ  for the next time step so 
that each of the two conditions (5.104) is satisfied: 
 

 
max maxm m

: min , ,f
x yt S

u v

⎡ ⎤Δ Δ⎢ ⎥Δ =
⎢ ⎥⎣ ⎦

 (5.105) 

 
where the factor Sf is a safety factor ( )0 1fS< ≤ . 
 
A constant time step based on the speed of the upper wall and an adaptive time step 
based on the actual velocities in the cells of the calculation domain were implemented 
in Iceflo. 
 
 
5.4 Calculation of forces and moment resulting from pressure and shear 

stress  
 
Assuming that the hull surface moves in the x-direction (see Figure 3-2) the 
expression for the shearing stress, wτ , on the surfaces under laminar flow conditions 
is: 

 
1,2 2

d
w

pU h
h x

ητ ∂= ±
∂

, (5.106) 

 
where the subscripts 1 and 2 refer to the upper and lower walls, respectively. It can be 
seen that for laminar plane Couette flow Equation (5.106) gives a constant shear 
stress

1,2
/w U hτ η= . 
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Constantinescu and Galetuse (1965) and (1974) have shown, employing the mixing 
length theory, that the shearing stresses under turbulent flow acting on the wall 
surfaces depend on the Couette Reynolds number and on the pressure gradient, as 
follows: 
 

 ( )
1,2

0.941 0.0012 2Re
2

d
w C

pU h
h x

ητ ∂⎡ ⎤= + ±⎣ ⎦ ∂
 (5.107) 

 
The total shear force acting on the ice floe or the hull surface is obtained by 
integrating Expression (5.106) or (5.107) numerically over the area of the ice floe. 
 
The average pressure change in the gap between the hull surface and the ice floe, 

1dp , 
is obtained by summing the values of pressure in the cells of the calculation domain 
obtained from Equation (5.75) and dividing the sum by the total number of cells. The 
total normal force resulting from the pressure in the gap acting on the ice floe or the 
hull surface is obtained by multiplying the average pressure change in the gap with 
the area of the ice floe. 
 
The moment around the y-axis acting on the ice floe due to asymmetric pressure field 
in the gap between the hull surface and the ice floe is calculated by summing over the 
calculation domain the force due to pressure in each cell multiplied by the distance 
from the centre of the cell to the y-axis. Moment acting in a clockwise direction is 
defined to have a positive sign. 
 
 
5.5 Verification and validation of the Iceflo CFD code  
 
In this section the Iceflo CFD code is verified for two-dimensional flow against the 
results obtained using the analytical solution given by Constantinescu and Galetuse 
(1974) for a flow between a transversely infinite rotating cylinder and an infinite wall. 
For three-dimensional flow the Iceflo CFD program was verified and validated 
against the analytical solution of Kapitsa (see Cameron (1976)) for a flow between an 
egg-shaped hull moving above a plane. Validation of Iceflo for a time-dependent 
flow, i.e. for a flow with changing gap height, could be performed for the analytical 
solution of two infinitely wide parallel walls approaching or moving away from each 
other, i.e. for a pure squeeze film lubrication case. 
 
5.5.1 Verification of Iceflo against the analytical solution of Constantinescu 

for a two-dimensional flow between a rotating cylinder and an infinite 
wall 

 
As an example, a steady two-dimensional flow in the gap between a circular wall at    
z = h(x), rotating with a tangential speed, U, and a flat stationary wall at z = 0, is 
considered, as depicted in Figure 5-7. It is assumed that the radius of curvature of the 
rotating wall is large compared to the length of the stationary wall l, and thus at the 
upper wall the velocity of the wall surface in the x-coordinate direction is 
approximately the same as the tangential speed, U. The minimum distance between 
the walls is hmin in the middle of the gap at x = 0. The fluid between the walls is water, 
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T = 0 oC, ρ = 1000 kg/m3, and 31.792 10  Pa sη −= ⋅ ⋅ . Periodic boundary conditions are 
assumed at the ends of the channel between the walls. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-7. The geometry of the gap between a rotating cylinder and a stationary flat 
wall. 
 
 
For a steady two-dimensional flow, for example for a flow between a transversely 
infinite rotating cylinder and an infinite wall, the global momentum equations (5.42) 
and (5.43) and the continuity equation (5.44) reduce to: 
 

 ( )2 2 0
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p k Uu h U h u Uh h u
x x h

ηρ α β γ ∂∂ ⎛ ⎞+ − + + − =⎜ ⎟∂ ∂ ⎝ ⎠
 (5.108) 

 
 mu h Q= , (5.109) 
 
where Q is the constant rate of flow in the gap. These give: 
 

 
2 2

2 3

21
2

d xdp k U Q Q dh U dh
dx h Uh h dx h dx

η αρ βρ⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

, (5.110) 

 
where 1.2 and 0.133α β= =  for laminar flow (see the equations in (5.45)). For 
turbulent flow the pressure equation takes a slightly different form, in which  

1 and α β=  is considered as being related to the local Couette Reynolds number, 
( )ReC x ; see the equations in (5.46): 
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21 0.633
2

d xdp k U Q Q dh U dh
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. (5.111) 

 
The pressure distribution in the gap can now be calculated by integrating Equation 
(5.110) in the case of laminar flow and Equation (5.111) in the case of turbulent flow 
and using appropriate boundary conditions at the ends of the gap. 
 
Assuming the pressure to be zero at both ends of the gap, the following expression 
can be obtained for the flow rate in the gap for turbulent flow (see Constantinescu and 
Galetuse (1974)): 
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and the following expression can be obtained for the pressure: 
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(5.113) 

 
where h = h(x) is the equation giving the height of the gap.  
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Figure 5-8. The geometry of the gap of the example case, Rx = 75 m, hmin = 0.001 m, 
and l = 1 m. The height of the gap is 0.0027 m at the ends of the gap. Note the 
different scales of the x- and z-coordinate axes. 
 
 
It is assumed that the upper surface in Figure 5-7 is an arc of a circle with radius Rx. 
The height of the gap between the walls can be written as: 
 
 ( ) 2 2

min x xh x h R R x= + - - . (5.114) 
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The geometry of the gap is depicted in Figure 5-8, when Rx = 75 m, l = 1 m and     
hmin  = 0.001 m using a distorted scale. The pressure distribution in the gap obtained 
by Iceflo is compared with the results obtained by the analytical solution of 
Constantinescu for laminar flow in Figure 5-9 and for turbulent flow in Figure 5-10. 
For turbulent flow the turbulence model of Constantinescu was used (see the first 
expression (5.47)).  The analytical solution was obtained from Equations (5.112) and 
(5.113). The results of Iceflo are compared with the results obtained by the analytical 
solution in Tables 5-2 and 5-3. In both cases the numerical solution coincides very 
well with the analytical solution. It may also be noted that, as a result of inertia 
effects, in both cases the average pressure in the gap is negative. 
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Figure 5-9. Comparison of the results of Iceflo with the analytical solution of 
Constantinescu. Laminar flow, ReC = 279 - 744, U = 1 m/s. 
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Figure 5-10. Comparison of the results of Iceflo with the analytical solution of 
Constantinescu. Turbulent flow, ReC = 1395 - 3720, U = 5 m/s. 
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Table 5-2. Comparison of the analytical solution with the results of Iceflo (laminar 
flow). 
 
 Mass flow [kg/sm] Average shear 

stress [N/m2] 
Average  
pressure [Pa] 

Analytical solution 0.613 1.035 -12.2 
Iceflo 0.613 1.034 -12.8 

 
 
Table 5-3. Comparison of the analytical solution with the results of Iceflo (turbulent 
flow). 
 
 Mass flow [kg/sm] Average shear 

stress [N/m2] 
Average  
pressure [Pa] 

Analytical solution 3.178 20.538 -1660 
Iceflo 3.179 20.526 -1653 

 
 
5.5.2 Validation of Iceflo against Fluent for two-dimensional flow 
 
The Iceflo computer code was verified against Fluent for a steady flow between a 
transversely infinite rotating cylinder and an infinite wall (see Figure 5-7). The lower 
wall is steady, the upper wall is rotating with a tangential speed of U, the left-hand 
wall is the inlet, and the right-hand wall is the outlet. Periodic boundary conditions 
were used between the inlet and the outlet. The length of the lower wall, l, is 1.0 m, 
the radius of curvature of the upper wall, R, is 75 m, and the minimum distance 
between the walls, hmin is 0.001 m (see Figure 5-8). 
 
 
Table 5-4. The 149x39 low Reynolds number grid. 
 
Direction Number 

of cells 
Length of the 
first and the 
last cell [m] 

Length of the 
cell in the 
middle [m] 

Grid 
expansion 
factor 

x (-0.5 m to 0.5 m) 149 0.006711409 0.006711409 1 
z (0 m to 0.001666685 m) 39 0.000004444 0.00022 1.18 

 
 
The  fluid  between  the walls is water, T = 0 oC, ρ = 1000 kg/m3, and  

31.792 10  Pa sη −= ⋅ ⋅ . The k ε−  turbulence model of Fluent with two-zonal wall 
treatment was used and therefore the dimensionless wall distance was required to be 
less than unity, / 1.z zut n+ = £  The height of the first cell in the z-coordinate 
direction was selected to be = 0.000004444 m.zD  A 149x39 grid was generated, as 
shown in Table 5-4. The cell width-to-height ratio /x zΔ Δ  thus varies from 1510 to 
30.5. 
 
 
 
 



 91 

5.5.2.1 Laminar flow 
 
The Iceflo computer code was run using the same geometry, the same boundary 
conditions, and a grid with 149 cells in the x-coordinate direction. The results of the 
calculation are shown in Table 5-5. Fluent gives a larger average pressure decrease in 
the gap than Iceflo.  
 
Table 5-5. Comparison of the numerical solutions of Fluent and Iceflo (laminar flow). 
 
 Mass flow [kg/sm] Average shear 

stress [N/m2] 
Average  
pressure [Pa] 

Fluent  0.613 1.036 -21.4 
Iceflo 0.613 1.034 -12.8 

 
 

 
Figure 5-11. Velocity vectors at three sections near the inlet.  
 
 
The velocity vectors at the inlet calculated by Fluent are depicted in Figure 5-11. It 
should be noted that backflow exists at the inlet. According to Equation (5.51), flow 
film separation should occur at the point where um = U/3. According to the results 
obtained by Iceflo, it occurs at about 0.36 x m= ± in this case. This result is in line 
with the results obtained by Fluent. The pressure distribution in the gap obtained by 
Fluent and Iceflo for laminar flow is shown in Figure 5-12. 
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Figure 5-12. Comparison of the pressure distribution in the gap obtained by Iceflo 
and Fluent. Laminar flow, ReC = 279 - 744, U = 1 m/s. 
 
 
5.5.2.2 Turbulent flow 
 
A double-precision, two-dimensional version of Fluent with a segregated and implicit 
solver was used. In Fluent standard treatment of pressure, using the SIMPLE method 
for pressure-velocity coupling, was selected. Second-order upwind was selected for 
the discretisation of the momentum, k and ε  equations. The results of the calculations 
are shown in Table 5-6. Fluent gives a higher average pressure decrease in the gap 
than Iceflo.  
 
Table 5-6. Comparison of the numerical solutions of Fluent and Iceflo (turbulent 
flow). 
 
 Mass flow [kg/sm] Average shear 

stress [N/m2] 
Average  
pressure [Pa] 

Fluent  3.191 22.778 -2009 
Iceflo 3.179 20.526 -1653 

 
 
The velocity vectors at the inlet calculated by Fluent are depicted in Figure 5-13. It 
should be noted that there is no backflow at the inlet. The calculations made using 
Equation (5.57), however, indicate that backflow should occur. Therefore the use of 
Equation (5.57) does not seem to be relevant for backflow analysis. Correct results 
could be obtained using Equation (5.58), when a value of 7.45 was used for Hs (see 
Section 5.2.6). 
 
The Iceflo computer code was run using the same geometry, the same boundary 
conditions, and a grid with 149 cells in the x-coordinate direction. The turbulence 
model of Costantinescu was used in the calculations. The results of the calculation are 
shown in Table 5-6. The pressure distributions in the gap obtained by Fluent and 
Iceflo for turbulent flow are shown in Figure 5-14 (U = 5 m/s). As in the case of 
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laminar flow, a slight difference between the results of Iceflo and Fluent can be 
observed. The reason for this may not be due to the different kinds of turbulence 
models used in Iceflo and Fluent, because the same trend can also be observed in the 
laminar case. The reason for this difference may thus be due to the simplifications 
made in the derivation of Equations (5.42) and (5.43). 
 

Figure 5-13. Velocity vectors at two sections near the inlet. 
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Figure 5-14. Comparison of the results of Iceflo with Fluent. Turbulent flow, ReC = 
1395 - 3720, U = 5 m/s. 
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5.5.3 Validation of Iceflo for a three-dimensional flow 
 
An egg-shaped hull moving at a speed U above a plane is now considered. The flow is 
assumed to be laminar and steady and thus 12x yk k= = . Let the minimum distance 
between the hull and the plane be minh , and the hull have radii and x yR R  in the x- and 
y-coordinate directions. Then 
 

 
2 2

min 2 2x y

x yh h
R R

≈ + + . (5.115) 

 
Assuming further that the inertia effects are negligible, a solution for Equation (5.4) is 
sought. Put as the trial solution 2/dp kx h= , where k is some as yet unknown 
constant. The first and the second terms in Equation (5.4) can now be written: 
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η η
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 (5.116) 

 
With this trial solution Equation (5.4) now becomes: 
 

 3
12 6 2x y x

kx kx Ux
R R Rη η

− − = , (5.117) 

 
so ( )6 / 3 2 /x yk U R Rη= − + , and hence: 
 

 ( ) 2

6
3 2 /d

x y

U xp
R R h

η= −
+

. (5.118) 

 
 
This first analytical solution of the Reynolds equation in three dimensions was 
derived by Kapitsa; see Cameron (1976). An example of the pressure distribution 
calculated according to Equation (5.118) is shown in Figure 5-15 for the flow in the 
gap between a ball-shaped hull and a plane. The following parameters were used in 
the  calculation:   l = 1 m,  b = 1 m,  Rx = 75 m,  Ry = 75 m,  hmin  = 0.0001 m,  U = 
1.0 m/s, and 31.792 10  Pa sη −= ⋅ ⋅  for water. 
 
The pressure distribution in the section y = 0.005 m is shown in Figure 5-16 both for 
the analytical solution and for the numerical solution calculated using Iceflo. Iceflo 
was run with the pressure at the boundaries of the calculation domain set according to 
Equation (5.118). It can be seen that the numerical solution follows the analytical 
solution quite closely. It can also be observed that the pressure distribution in the gap 
is anti-symmetric and thus the average pressure in the gap is zero (compare with the 
results given in Section 5.5.1). 
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Figure 5-15. Pressure distribution in the gap, according to Kapitsa. 
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Figure 5-16. Comparison of the results of Iceflo with the results of Kapitsa, pressure 
distribution in the section y = 0.005 m. 
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5.5.4 Validation of Iceflo against a flow generated by infinitely wide parallel 
walls approaching or moving apart 

 
Let two parallel walls which are infinitely wide in the y-axis direction approach or 
move away from each other (compare with Cameron (1976), pp. 117-118); then, for 
laminar flow, the Reynolds equation (5.4) reduces to: 
 

 3 12dp dhh
x x dt

η∂∂ ⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
. (5.119) 

 
Integrating twice yields: 
 

 2
1 23

/6d
dh dtp x C x C

h
η= + + . (5.120) 

 
Zero pressure boundary conditions at the ends are used, p = 0 on  x = ± l/2, when l is 
the length of the walls. Hence C1 = 0 and 
 

 
2
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4

l dh dtC
h

η= − , (5.121) 

 
and 

 
2

2
3

/6
4d

dh dt lp x
h

η ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (5.122) 

 
For approaching walls /dh dt  is negative, and thus there is a positive pressure 
between the walls. Correspondingly, the pressure is negative if the walls are moving 
apart and /dh dt  is positive. 
 
An approximate solution of the above-mentioned problem can also be found for a 
laminar flow with inertia effects (see Pinkus and Sternlicht (1961)). Recalling 
Equation (5.14), the following equation for a two-dimensional steady laminar flow 
can be obtained: 
 

 ( ) ( )
2

2
dp uuu wu

x z x z
ρ η∂∂ ∂ ∂⎡ ⎤+ = − +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

. (5.123) 

 
Using the same assumptions as in Section 5.2, Equation (5.123) is integrated across 
the film thickness, which results in: 
 

 
2

2
0

1 h
dpu u uu w dz

h x z x z
ρ η
⎡ ⎤ ∂∂ ∂ ∂⎛ ⎞+ = − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∫ . (5.124) 

 
By moving all the terms, which are a function of x alone, to the left-hand side of the 
equation, Equation (5.124) can be written as follows: 
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0

1 ( )
h

dpu uu w dz f x
h x z x
ρ
η η

∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠∫ , (5.125) 

 
where 
 

 
2

2 ( )u f x
z

∂ =
∂

. (5.126) 

 
Integrating Equation (5.126) twice yields: 
 
 2

1 2½ ( ) ( ) ( )u f x z C x z C x= + + . (5.127) 
 
By using the continuity equation / / 0u x w z∂ ∂ + ∂ ∂ = : 
 

 3 ' 2 '
1 2 3

1 1'( ) ( ) ( ) ( )
6 2

uw z f x z C x z C x z C x
x

∂ ⎛ ⎞= − ∂ = − + + +⎜ ⎟∂ ⎝ ⎠∫ , (5.128) 

 
where the primes denote differentiation with respect to x. The boundary conditions 
are: 
 

 
0,  0 at 0
0,  /  at 

0 at / 2    d

u w z
u w dh dt z h
p x l

= = =
= = =

= = ±
 (5.129) 

 
Using the boundary conditions for velocities in the equations in (5.129): 
 

 ( )
43 3

12 / 12( )
dh dt x

f x C
h h

= − , (5.130) 

 
where C4 is an integration constant. Inserting f(x) into Equation (5.125) and using the 
boundary conditions for pressure in the equations in (5.129), the following equation 
for the pressure in the gap can be obtained from Equation (5.125): 
 

 
2

2
3

6( / ) ( / )( )
5 4d

dh dt dh dt h lp x x
h

ρη ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.131) 

 
Equation (5.131) differs from Equation (5.122) obtained from the Reynolds equation 
by the supplementary term ( )/ / 5dh dt hρ− , which does not depend on the viscosity 
but which contains the density. Its effect on the pressure in the gap is proportional to 
the velocity of the upper wall and the distance between the walls. For approaching 
walls /dh dt  is negative, there is overpressure between the walls, and the inertia term 
increases the pressure in the gap. If the walls are moving away from each other, 

/dh dt  is positive, there is negative pressure between the walls, and the inertia term 
again increases the pressure in the gap. 
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An example of pressure distribution in the gap between two infinitely wide parallel 
walls is given in Figure 5-17. The distance between the walls, h, was assumed to 
increase from 0.0009 m to 0.001 m in 0.2 s, and thus / 0.0005dh dt =  m/s. The length 
of the parallel walls, l, was 1 m and the fluid was water with 31.792 10 Pa sη −= ⋅ ⋅ . The 
analytical solutions calculated using Equations (5.122) and (5.131) are compared with 
the results of Iceflo in Table 5-7 and in Figure 5-17. The results obtained by Iceflo 
coincide very well with the analytical solutions. 
 
Table 5-7. Comparison of the numerical solutions of Iceflo with analytical solutions. 
 

 Average pressure between the walls 
[Pa] 

Analytical, without inertia effects  -895.6 
Iceflo, without inertia effects -910.0 
Analytical, with inertia effects -845.7 
Iceflo, with inertia effects -841.4 
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Figure 5-17. Pressure distribution between two infinitely wide walls moving away 
from each other, hmin = 0.001 m. 
 
 
This analysis also tells us that a high negative pressure between the walls is generated 
if the gap is small enough and the walls are moving away from each other. A greater 
distance between the walls gives much smaller values for the average force on the 
lower wall as a result of the negative pressure in the gap between the walls, as can be 
seen in Figure 5-18. 
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Figure 5-18. Vertical force resulting from pressure on the lower wall when two 
infinitely wide walls are moving away from each other. Calculations were made using 
Equation (5.122), hmin ranges from 0.0001 m to 0.01 m. 
 
 
5.6 Summary of Chapter 5 
 
In this chapter the hydrodynamic lubrication theory for a three-dimensional flow with 
and without inertia effects was introduced. The Iceflo CFD code was written to 
calculate the flow in the gap between the hull surface and an ice floe. Iceflo was 
verified for a two-dimensional flow against the results calculated by the analytical 
solution derived by Constantinescu and Galetuse (1974) and validated against the 
results calculated by the Fluent computer code for a flow between an infinite rotating 
cylinder and a transversely infinite wall. The code was also verified for a three-
dimensional flow against the analytical solution of Kapitsa for the flow between an 
egg-shaped hull and a plane that it was moving above. Verification and validation of 
Iceflo for a time-dependent flow, i.e. for a flow in a gap with changing gap height 
with time, were performed for the analytical solution of two, in a transverse direction, 
infinitely wide parallel walls approaching or moving away from each other. This 
analysis also indicated that a high negative pressure between the walls is generated if 
the gap is small enough and the walls are moving apart. 
 
In all cases the calculated results obtained with Iceflo coincided very well with the 
analytical solutions and reasonably well with the results obtained by Fluent. 
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6 Theoretical calculations 
 
In Section 1.8 the main goal of this study was set as being to study the effect of the 
following two phenomena on ice resistance in the sliding phase: 
 

- the acceleration of water in the shear layer in the gap between the ice floe and 
the hull surface, and  

- the flow of water to and from the shear layer resulting from changes in the 
geometry of the hull along the trajectory of an ice floe sliding against the hull.  

 
In Section 6.1 the first phenomenon is analysed and in Section 6.2 the second one. 
The effect of the negative pressure in the gap between the hull surface and an ice floe 
on ice resistance due to the sliding phase is evaluated in Section 6.3. A summary of 
the analysis performed in Chapter 6 is presented in Section 6.4. The numerical 
analysis was carried out using the Iceflo computer code described in Chapter 5. A 
personal computer was used to perform the calculations. 
 
 
6.1 Analysis of the flow between the hull and the ice floe with constant hull 

curvature 
 
The analysis of a three-dimensional flow in the gap between a "ball-shaped" hull form 
and an ice floe is presented in this chapter. The flow between the hull and a square-
shaped ice floe with an area of one square metre is presented in Section 6.1.1. The 
effect of the boundary conditions on the results of the calculation is analysed in this 
section. In Section 6.1.2 the effect of the pressure below the ice floes on ice resistance 
due to the sliding phase is shortly analysed. The effect of the variation in the 
computational parameters on the calculation of the flow is given in Section 6.1.3 and 
in Section 6.1.4 the effect of the variation of the various geometric parameters on the 
pressure in the gap between the hull surface and the ice floe is analysed. 
 
6.1.1 The flow between a "ball-shaped" hull form and a square-shaped ice floe 
 
A square-shaped ice floe and a ball-shaped hull form with Rx = Ry was chosen to be 
the basic case for the analysis in this section. On the basis of the data given in Section 
2.4, a radius with a curvature of 75 m was chosen for the hull surface. The origin was 
set in the middle of the ice floe (see Figure 3-2). The ball-shaped hull form was 
approximated by using Equation (5.115). Both surfaces were assumed to be perfectly 
smooth. The parameters used in the calculation are shown in Table 6-1. As a result of 
the assumed symmetry, half of the ice floe ( 0y ≥ ) was chosen to be the calculation 
domain and the symmetry boundary condition was set at the southern edge. The 
uniform grid and the height of the gap between the hull surface and the ice floe are 
depicted in Figure 6-1.  
 
The flow in the gap is both laminar and turbulent, the local Couette number, ReC, 
ranging from 139.7 to 4743.5 (see Figure 6-2). The turbulence model of Hirs was used 
in the calculations. 
 
The effect of the boundary conditions on the results is analysed in the following two 
sections. 
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Table 6-1. The parameters used in the calculations. 
 
Parameter Value of the 

parameter 
Velocity of the hull surface in the x-coordinate direction, U 5 m/s 
Radius of the curvature of the hull in the x-coordinate direction, Rx 75 m 
Radius of the curvature of the hull in the y-coordinate direction, Ry 75 m 
Length of the ice floe, l 1 m 
Breadth of the ice floe, b 1 m 
Minimum distance between the ice floe and the hull, hmin 0.1 mm 
Density of water, ρ  1000 kg/m3 

Viscosity of water, η  0.001792 Pa⋅s 
Number of equidistant cells in the x-direction, imax 100 
Number of equidistant cells in the y-direction, jmax 50 
Grid spacing 0.02 m 
Under-relaxation parameter for pressure 0.7 
Under-relaxation parameter for velocities 0.3 
The criterion for the convergence of the outer iteration, L2 of dum  0.5⋅10-8 
 
 
 

-0
.5

0

-0
.4

5

-0
.4

0

-0
.3

5

-0
.3

0

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

x  [m]

y  [m]

0.00E+00-5.00E-04 5.00E-04-1.00E-03 1.00E-03-1.50E-03 1.50E-03-2.00E-03
2.00E-03-2.50E-03 2.50E-03-3.00E-03 3.00E-03-3.50E-03

Figure 6-1. The grid and the height of the gap, h, in metres between the hull surface 
and the ice floe. 
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Figure 6-2. The grid and the Couette Reynolds number, ReC, in the gap between the 
hull surface and the ice floe. 
 
 
6.1.1.1 Case 1: No leakage occurs through the gaps between the edges of the ice 

floes 
 
In Case 1, it was assumed that the ice floe is surrounded by ice floes of a size equal to 
its own size, and that no leakage of water occurs through the gaps between the edges 
of the ice floe and the neighbouring floes. Periodic boundary conditions (see Section 
5.3.4.3) were set at the inlet (western edge, x = -0.5 m) and at the outlet (eastern edge, 
x = 0.5 m). The pressure was set to zero at the inlet. A symmetry boundary condition 
was set at the southern and northern edges (see Section 5.3.4.2). These assumptions 
mean that a shear-driven channel flow is assumed to exist in the gap between the hull 
surface, the ice floe, and its southern and northern edges. 
 
Table 6-2. The results of the calculations for Case 1. 
 

Mass flow at the 
inlet 

[kg/s] 

Average pressure 
in the gap,  

1

*
dp [Pa] 

Moment about 
the y-axis 

[Nm] 

Average shear stress 
on the ice floe 

[N/m2] 

1.110243 -2045.4 1323.4 22.9 
 
 
The results of the calculations are shown in Table 6-2. The pressure distribution in the 
gap is depicted in Figure 6-3. The pressure field is characterised by high positive and 
negative pressure peaks. Because of inertia effects, the negative pressure peak is 
higher than the positive pressure peak, which can be seen in Figure 6-4. For this 
reason, the average pressure in the gap is negative. Since the pressure distribution in 
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the gap is asymmetric with respect to the y-axis, a positive (clockwise) moment is 
generated on the ice floe (see Table 6-2). This means that the ice floe has to be 
supported by the shear forces, Q, between the ice floe and the adjacent ice floes in 
order to maintain its position (see Figure 1-5).  
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Figure 6-3. The pressure distribution in the gap. The inlet (western edge) is on the 
left-hand side, the outlet (eastern edge) on the right-hand side, the centreline 
(southern edge) at the back of the figure, and the outer edge (northern edge) of the ice 
floe is in the foreground of the figure. 
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Figure 6-4. The distribution of the pressure, dp ,  at section y = 0.24 m. 
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There is no cavitation in the gap, since the minimum dynamic pressure in the gap, 
about –50 kPa, plus the atmospheric pressure, about 100 kPa, is much higher than the 
vapour pressure of water, 0.61 kPa, even if the hydrostatic pressure were small; see 
Equation (5.50). Analysis of the flow in the gap using Equation (5.58) indicated that 
flow film separation does not occur in the gap. In Figure 6-3 it can also be seen that 
the pressure at the northern edge is not zero. 
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Figure 6-5.  The mean velocity, um, in the x-coordinate direction in the gap at                    
y = 0.24 m. 
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Figure 6-6.  The mean velocity, vm, in the y-coordinate direction in the gap at             
y = 0.24 m. 
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The distribution of the velocity in the x-coordinate direction and in the y-coordinate 
direction and the shear stress distribution on the lower wall at y = 0.24 m are depicted 
in Figures 6-5 to 6-7, respectively. The convergence of the iteration is depicted in 
Figure 6-8. In this figure it can be seen that the value of 0.5⋅10-8 of the L2 norm of the 
change of velocity in the x-coordinate direction is an appropriate criterion for the 
convergence of the outer iteration. 
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Figure 6-7. The shear stress distribution on the lower wall in section y = 0.24 m. 
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Figure 6-8. The convergence of the iteration showing the L2 norms for the mass 
balance, for the velocities in the x- and y-coordinate directions, and for the pressure 
in the cells of the calculation domain. 
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In order to confirm the periodicity of the flow, two ice floes of equal size were set one 
after another, and the calculations were performed with the same parameters as given 
in Table 6-1. The velocity distribution in the section y = 0.25 m along the floes is 
presented in Figure 6-9. The same kind of periodicity could also be found for the 
other flow variables. 
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Figure 6-9.  The mean velocity in the x-coordinate direction, um, in the gap at             
y = 0.25 m for two adjacent floes. 
 
6.1.1.2 Case 2: Leakage occurs through the gap between the ice floes at the 

northern edge 
 
The previous calculations were performed by using periodic boundary conditions 
between the western (inlet) and the eastern (outlet) boundaries of the calculation 
domain, and the symmetric boundary condition on the southern and northern edges. 
The flow in this case is like a "channel flow" in the gap between the ice floe, the hull 
surface, and the southern and northern edges, with no leakage in or out of the 
calculation domain through the small gaps between the adjacent ice floes. 
 
The calculations were now repeated using the inflow boundary condition at the 
western edge and the outflow boundary condition at the eastern edge (see Section 
5.3.4.4) and the free flow boundary condition at the northern edge of the calculation 
domain (see Section 5.3.4.5). The pressure was set to zero at the western, northern, 
and eastern edges of the calculation domain. As in Case 1, the symmetry boundary 
condition was set at the southern edge. The results of the calculations are shown in 
Table 6-3. The pressure field is depicted in Figure 6-10. The average pressure in the 
gap is higher than in Case 1, but is still negative. 
 
Table 6-3. Results of the calculations for Case 2. 
 

Mass flow through edges [kg/s] 
Western 

edge 
(inlet) 

Northern 
edge 

Eastern 
edge 

(outlet) 

Average 
pressure in the 
gap, 

1

*
dp  [Pa] 

Moment 
about the y-

axis  
[Nm] 

Average shear 
stress on the 

ice floe 
[N/m2] 

1.396 0.634 -2.030 -733.94 1012.48 24.823 
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Figure 6-10. The distribution of the pressure in the gap. The inlet (western edge) is on 
the left-hand side, the outlet (eastern edge) on the right-hand side, the centreline 
(southern edge) at the back of the figure, and the outer edge (northern edge) of the ice 
floe is in the foreground of the figure. 
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Figure 6-11. Velocity in the y-coordinate direction, vm, at the northern edge of the 
calculation domain. 
 
 
Analysis of the flow in the gap using Equation (5.58) indicated that flow film 
separation does not occur in the gap. The velocity in the y-coordinate direction, vm, at 
the northern edge of the calculation domain is depicted in Figure 6-11. This figure 
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shows that there is a net flow into the calculation domain through the northern edge. 
Table 6-3 shows that about one third of the flow into the calculation domain enters the 
domain via the northern edge and the flow in the gap is not periodic with respect to 
the inlet and the outlet, as in the first case presented in Section 6.1.1.1. This was 
confirmed by setting two ice floes of equal size one after another, and the calculations 
were performed with the same parameters as in Table 6-1. The velocity distribution in 
the section y = 0.25 m of the floes is presented in Figure 6-12. 
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Figure 6-12. The mean velocity in the x-coordinate direction, um, in the gap at y = 
0.25 m for two adjacent floes. 
 
 
Table 6-4. Results of the calculations for Case 2 with the dynamic boundary 
condition. 
 

Mass flow through edges [kg/s]Gap 
width  
[mm] 

Western 
edge 

(inlet) 

Northern 
edge 

Eastern 
edge 

(outlet) 

Average 
pressure in 

the gap,  

1

*
dp [Pa] 

Moment 
about the y-

axis  
 

[Nm] 

Average 
shear stress 
on the ice 

floe  
[N/m2] 

0 1.11 0 -1.11 -2067.7 1308.4 22.857 
0.5 1.11 0.01 -1.12 -2024.9 1307.4 22.863 
1.0 1.12 0.08 -1.19 -1789.7 1297.8 22.927 
1.5 1.15 0.17 -1.32 -1454.1 1266.0 23.141 
2.0 1.21 0.27 -1.48 -1201.3 1214.3 23.491 
2.5 1.27 0.37 -1.64 -1041.8 1161.3 23.848 
3.0 1.31 0.46 -1.77   -938.2 1118.3 24.138 
∞  1.40 0.63 -2.03   -734.0 1012.5 24.823 

  
 
The effect of the width of the gap at the northern edge between adjacent ice floes on 
the average pressure in the gap was also studied. The calculations were repeated using 
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the inflow boundary condition at the western edge and the outflow boundary 
condition at the eastern edge and the dynamic boundary condition described in 
Section 5.3.4.6 at the northern edge of the calculation domain. The pressure was set to 
zero at the western, northern, and eastern edges of the calculation domain. The 
symmetry boundary condition was set at the southern edge. The width of the gap at 
the northern edge varied from 0 to 3.0 mm. The results of the calculations are shown 
in Table 6-4. In the last line of Table 6-4 the results of the calculations presented 
above for the free-flow boundary condition at the northern edge are given (see Table 
6-3). It can be seen in Table 6-4 that the flow in the gap approaches the results 
obtained using the free-flow boundary condition at the northern edge, when the gap 
width at the northern edge increases. 
 
This analysis indicates – as is to be expected – that the effect of the boundary 
conditions at the boundaries of the calculation domain has a significant effect on the 
average pressure in the gap. The first case, with no leakage through the boundaries, is 
probably too strong an assumption. The latter case, with a leaking northern boundary, 
is probably a more realistic assumption. However, it is very difficult to say how large 
the gaps are and how much leakage occurs through the gaps between ice floes. Figure 
2-21 indicates that, for a cylindrical bow form, the ice floes at the centreline seem to 
be pressed together quite firmly. The gap between the adjacent queues of ice floes on 
both sides of the queue of ice floes at the centreline seems to be more visible, 
obviously due to the reason that the ice floes off the centreline also slightly move 
sideways away from the centreline. Figure 1-2 shows the icebreaking pattern for a 
more conventional hull form. Some of the gaps between ice floes are quite visible, but 
some of the ice floes seem to be pressed quite firmly together. 
 
The width of the gaps between the ice floes in the sliding phase has not been studied. 
Valanto (1989) studied the rotative phase (see Figure 1.1) and mentions that in his    
2-D experiments no water was observed leaking from the crack between the rotating 
ice floe and the level ice sheet, and this does not happen in 3-D in nature, either, when 
ships advance in level ice. These observations indicate that, if the ice floes are pressed 
firmly together, no water leakage occurs through the gaps. An ice floe is actually 
submerged by the hull and the ice floes are pressed down, leaning into each other, as 
depicted in Figure 6-13. This indicates that there is firm contact between the 
submerged ice floes in the sliding phase. 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 6-13. An ice floe is submerged by the ice floes above it when the ship advances 
in level ice.  
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6.1.2 The effect of pressure below the ice floes on ice resistance due to the 
sliding phase 

 
Changes in pressure below the ice floes was discussed in Section 1.6. All the previous 
calculations were performed assuming that the pressure is zero at all boundaries of the 
ice floe. 
  
The calculations were now repeated assuming that even if the ice floes are in contact 
with each other, the pressure below the ice floe, denoted as 

2dp in Section 1.5, has an 
effect on the pressure in the gap between the hull surface and the ice floe through the 
gaps between the ice floe and the ice floes adjacent to it. It was further assumed that 
the pressure around the calculation domain changes linearly from zero at the western 
edge to a certain value at the eastern edge of the calculation domain. In other words, 
there is a pressure gradient between the western and eastern edges. Calculations were 
performed for three cases using the following values of pressure at the eastern edge:   
-500 Pa, 0 Pa and 500 Pa. The inflow boundary condition was used at the western 
edge and the outflow boundary condition at the eastern edge (see Section 5.3.4.4) and 
the free flow boundary condition at the northern edge of the calculation domain (see 
Section 5.3.4.5). At the southern edge, the symmetry boundary condition was set. The 
parameters given in Table 6-1 were used in the calculations except that it was 
assumed that the velocity of the hull surface was 1 m/s and thus the flow in the gap 
between the hull surface and the ice floe was laminar. The results of the calculations 
are shown in Table 6-5 and the pressure distribution in the gap at y = 0.25 m is 
depicted in Figure 6-14. 
 
Table 6-5. The results of the calculations. 

Mass flow through edges [kg/s] Pressure 
at the 

eastern 
edge 
[Pa] 

Western 
edge 

(inlet) 

Northern 
edge 

Eastern 
edge 

(outlet) 

Average 
change in 
pressure in 

the gap, 

1dp   
[Pa] 

Moment 
about the y-

axis  
[Nm] 

Average 
shear 

stress on 
the ice 

floe 
[N/m2] 

-500 0.334460 0.092996 -0.42746 -259.801 167.759 2.06 
      0 0.282989 0.061850 -0.34484 -1.345 116.139 1.82 
  500 0.215420 0.039880 -0.25530 256.851 64.677 1.58 

 
 
The results indicate that negative pressure at the northern and eastern edges increase 
the flow in the gap, which results in decrease of the pressure in the gap. In a similar 
way, overpressure at these edges decreases the flow in the gap and consequently 
increases the pressure in the gap. However, the “net effect” of the pressure below the 
ice floe on level ice resistance is almost zero, because the effect of the average 
dynamic pressure below the ice floe, 

2dp = ∓ 250 Pa, on ice resistance is almost 
cancelled by the change of the pressure in the gap between the hull surface and the ice 
floe. This conclusion is not exactly correct in cases when the dynamic pressure below 
the ice floe does not change linearly between the edges of the ice floe, because the gap 
between the hull surface and the ice floe “feels” the pressure below the ice floe only 
through the gaps between the ice floe and the ice floes adjacent to it.  
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This analysis does not take into account the fact that the dynamic pressure below the 
ice floe changes with time as the hull glides over it, see Figure 1-6. Naturally, the 
tightness of the gaps between the adjacent ice floes should also be taken into account, 
if the effect of the pressure below the ice floes is properly taken into account in the 
analysis. This is clearly an area which needs further research. 
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Figure 6-14. The distribution of the pressure in the gap between the hull surface and 
the ice floe at y = 0.25 m. The inlet (western edge) is on the left-hand side and the 
outlet (eastern edge) on the right-hand side. 
 
 
6.1.3 Variation of the computational parameters and the effect of the 

 turbulence model on the results 
 
The under-relaxation parameters for the calculation of the average velocity and the 
pressure in the gap were varied in order to gain an idea of their effect on the speed of 
the convergence of the iteration. The grid size was also varied in order to find its 
effect on the solution. The calculations were performed using two turbulence models, 
the turbulence model of Constantinescu and the turbulence model of Hirs. In the 
following paragraphs the results of the calculations are shown for Case 1, the "channel 
flow", in the gap. 
 
6.1.3.1 Variation of the under-relaxation parameters 
 
The effect of the under-relaxation parameter for the calculation of the pressure is 
demonstrated in Figure 6-15. The calculations were performed with the same 
parameters as given in Section 6.1.1 for Case 1.  
 
In Figure 6-15 the effect of Patankar's under-relaxation (see Section 5.3.2) can be 
clearly seen: the number of inner iterations decreases dramatically, from almost 800 
iteration cycles to 3 cycles, when the value of the under-relaxation parameter for 
pressure, pα  (see Section 5.3.2), decreases from 1.0 to 0.05. The optimal value for the 
under-relaxation parameter for pressure for the selected calculation parameters seems 
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to be about 0.5, when the product of the number of the inner and outer iterations has a 
minimum value of about 6000. 
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Figure 6-15. The effect of the variation of the under-relaxation parameter for 
pressure, pα , on the number of iterations. ITER means the number of outer iterations 
and ITLGSM means the number of inner iterations. 
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Figure 6-16. The effect of the under-relaxation parameter for velocity, α , on the 
number of outer iterations. 
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The effect of the under-relaxation parameter for velocity, α  (see Section 5.3.3), on 
the number of outer iterations is shown in Figure 6-16. The under-relaxation 
parameter for pressure was 0.2 and the other parameters are the same as in Section 
6.1.1. An oscillating solution was obtained when the value of the under-relaxation 
parameter for velocity was higher than or equal to 0.35. The optimal parameters for 
the under-relaxation factors for the problem given in Section 6.1.1 are thus 0.5 for 
pressure and 0.3 for velocity. 
 
6.1.3.2 The effect of the grid density on the solution 
 
The effect of the grid density on the solution was studied by varying the number of 
cells in the x- and y-coordinate directions. The effect of the grid density on the 
average pressure in the gap is shown in Figure 6-17. The accuracy of the solution 
naturally increases when the grid size is refined, because a fine grid can take into 
account the geometry of the gap better than a coarse grid. Additionally, the derivatives 
can be calculated more accurately on a fine grid. 
 
Richardson's extrapolation (see Ferziger and Peric (2002), pp. 58-60) was applied in 
order to estimate the accurate value of the mass flow at the inlet, the shear stress on 
the lower wall, and the average pressure in the gap. The results are presented in 
Tables 6-6 and 6-7 using the turbulence models of Constantinescu and Hirs, 
respectively. 
 
 
Table 6-6. Estimate of the exact values of mass flow, average shear stress, and 
average pressure in the gap according to Richardson's extrapolation (turbulence 
model of Constantinescu). 
 

imax jmax Mass 
flow 
[kg/s] 

Average 
shear stress 

[N/m2] 

Average 
pressure, 

1

*
dp  [Pa] 

Error for 
calculation of 
pressure [%] 

40 20 1.09447 21.82 -1962.7 2.64 
80 40 1.09603 21.85 -1983.4 1.61 
160 80 1.09627 21.87 -1996.1 0.99 

"Exact" by extrapolation 1.09631 21.95 -2016.0  
 
 
Table 6-7. Estimate of the exact values of mass flow, average shear stress, and 
average pressure in the gap according to Richardson's extrapolation (turbulence 
model of Hirs). 
 

imax jmax Mass 
flow 
[kg/s] 

Average 
shear stress 

[N/m2] 

Average 
pressure, 

1

*
dp  [Pa] 

Error for 
calculation of 
pressure [%] 

40 20 1.10831 22.87 -2007.2 3.65 
80 40 1.10999 22.91 -2039.7 2.09 
160 80 1.11029 22.94 -2058.4 1.20 

"Exact" by extrapolation 1.11035 23.01 -2083.3  
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Figure 6-17. The effect of the grid density on the average pressure in the gap. The 
turbulence model of Constantinescu was used in the calculations. 
 
 
6.1.3.3 The effect of the turbulence model on the results of the calculations 
 
Three turbulence models were presented in Section 5.2.4: the turbulence model of 
Constantinescu (see Constantinescu and Geletuse (1974)); the turbulence model of 
Hirs (see Hirs (1973)), and the turbulence model of Ng and Pan (see Ng and Pan 
(1965). Since the turbulence model of Constantinescu seems to be almost identical to 
the turbulence model of Ng and Pan, the calculations were performed using the 
turbulence models of Constantinescu and Hirs. The results are given in Tables 6-6 and 
6-7. The results of the calculations do not seem to differ very significantly from each 
other. 
 
 
6.1.4 Variation of the geometric parameters 
 
The geometric parameters were varied in order to gain an idea of their effect on the 
results of the calculations, particularly on the average pressure in the gap. The basic 
parameters were the same as in Section 6.1.1. The following parameters were varied: 
the minimum distance between the hull surface and the ice floe, hmin, the radii of the 
hull surface, Rx and Ry, the velocity of the upper wall, U, the position of the ice floe, 
and the area of the ice floe. In the following paragraphs the results of the calculations 
are presented for Case 1, the "channel flow" in the gap. 
 
6.1.4.1 Contact between the hull surface and the ice floe 
 
The previous calculations were performed on the basis of the assumption that the hull 
surface and the ice floe are separated from each other by a small distance, hmin = 0.1 
mm. It is now assumed that there is an elastic contact between the surfaces; see Figure 
6-18. 
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Figure 6-18. Elastic contact between two surfaces. 
 
 
The radius of the contact area, a, between two balls in elastic contact is, according to 
Kivioja et al. (2001): 
 

 
'

3
'

3
4

nF Ra
E

= , (6.1) 

 
where Fn is the normal force between the balls and R' is the combined radius of the 
surfaces: 
 

 '
1 2

1 1 1
R R R

= + , (6.2) 

 
where R1 and R2 are the radii of the surfaces and E' is the combined modulus of 
elasticity for the materials of the balls: 
 

 
2 2
1 2

'
1 2

1 1 1
E E E

ν ν− −= + , (6.3) 

 
 
where E1 and E2 are the moduli of elasticity and 1ν  and 2ν  are the Poisson coefficients 
of the balls. Assuming that the hull is a "steel ball", R1 = 75 m, E1 = 206 GPa, and 

1 0.3ν = , and the ice floe is an "ice ball", R2 = ∞  m, E2 = 4 GPa, and 2ν  = 0.3, and   
Fn ≈  2500 N (2000 N as a result of dynamic pressure and 490 N as a result of the 
static lift of an ice floe with a thickness of 0.5 m), the radius of the contact area is 
0.0319 m. The area of the circular contact area is thus about 0.0032 m2. 
 
The calculation of the flow in the gap was next carried out on the basis of the 
assumption that there is a contact area of 0.0032 m2 between the surfaces. The cells in 
the calculation domain which are in the contact area were considered as obstacle cells 
where no fluid flow exists. The no-slip boundary conditions described in Section 
5.3.4.1 were set at the boundaries of the obstacle cells and the calculation domain. 
The result of the calculation gives an average pressure in the gap between the hull 
surface and the ice floe of -2024 N. Comparing this figure with the data given in 
Table 6-7, it can be concluded that the elastic contact between the two surfaces has a 
negligible effect on the average pressure in the gap compared with the results obtained 
when the distance between the two surfaces is e.g. 0.1 mm. It is more convenient to 

a 

   2a 

Half of the contact 
area 
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perform the calculations for the case with a small minimum distance between the 
surfaces than for the case with elastic contact, since the convergence of the former 
calculation is two orders of magnitude faster than for the latter. For this reason the 
calculations in the following paragraphs were performed with a small minimum 
distance of 0.1 mm assumed between the surfaces. 
 
6.1.4.2 Minimum distance between the surfaces 
 
The effect of the minimum distance between the hull and ice surfaces on the average 
pressure in the gap can be seen in Figure 6-19. The calculations and the analysis 
presented in the previous section show that the average pressure seems to be almost 
constant when 0.0 mm minh≤ ≤  0.1 mm. 
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Figure 6-19. Average pressure in the gap when the minimum distance between the 
hull and ice surfaces varies from 0.01 mm to 10 mm. 
 
 
The effect of the minimum distance between the surfaces on the average shear stress 
on the ice surface is shown in Figure 6-20. The distance between the surfaces was 
varied from 0.0 mm to 0.5 mm. The calculations indicate that the average shear stress 
on the lower surface increases to a certain level with decreasing minimum distance 
and then slightly decreases when there is contact between the surfaces. The reason for 
this is that high shear stresses occur at the area of the minimum distance between the 
surfaces when the surfaces are slightly separated. When the surfaces are in contact, it 
was assumed that no fluid flow took place in the contact area. 
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Figure 6-20. Average shear stress on the lower surface when the minimum distance 
between the hull and the ice surfaces varies from 0.0 mm to 0.5 mm. 
 
 
6.1.4.3 Variation of the size of the ice floe 
 
The effect of the size of the ice floe on the average pressure between the hull and the 
ice floe was studied by varying the breadth of the ice floe, the length of the ice floe, 
and the area of the ice floe. The other parameters were the same as in Section 6.1.1.  
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Figure 6-21. The effect of the variation of the breadth, b, and the length, l, of the ice 
floe on the average pressure in the gap. 
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The results for the variation of the breadth and the length of the ice floe are shown in 
Figure 6-21, where it can be observed that the average pressure in the gap reaches its 
minimum when the ice floe is square-shaped. The results for the variation of the area 
of the square-shaped ice floe are shown in Figures 6-22 and 6-23. The average 
pressure in the gap decreases with increasing flow area, as can be seen in Figure 6-22. 
The average shear stress on the ice surface increases with decreasing floe size, as can 
be seen in Figure 6-23. This is logical, because the average distance between the hull 
surface and the ice floes also decreases with decreasing floe size. 
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Figure 6-22. The effect of the variation of the area of the square-shaped ice floe on 
the average pressure in the gap. 
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Figure 6-23. The effect of the variation of the area of the ice floe on the average shear 
stress on the surface of the ice floe. 
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6.1.4.4 Variation of the velocity of the hull surface 
 
The velocity of the hull surface was varied from 1 m/s to 6 m/s. The other parameters 
were the same as in Section 6.1.1. The effect of the velocity of the hull surface on the 
average pressure in the gap is shown in Figure 6-24. 
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Figure 6-24. The effect of the velocity of the hull surface on the average pressure in 
the gap. 
 
 
6.1.4.5 Variation of the curvature of the hull surface 
 
The effects of the hull curvature on the average pressure between the egg-shaped hull 
surface and the ice floe are presented in this section. First, both radii of the hull 
surface were varied and then one radius was held constant and the other was varied.  
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Figure 6-25. Average pressure in the gap when the radii of the hull surface are 
varied. 
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First, both radii of the hull surface, Rx and Ry, were varied from 15 m to 150 m. The 
effect of the radii of the hull surface on the average pressure in the gap is depicted in 
Figure 6-25. The average pressure seems to be at a minimum when both Rx and Ry are 
about 35 m. When the curvature of the hull surface approaches infinity, the average 
pressure in the gap approaches zero, as the flow approaches the Couette flow between 
two parallel walls. 
 
The radius of the hull surface in the y-coordinate direction, Ry, was varied while the 
radius of the hull surface in the x-coordinate direction was kept constant, Rx = 75 m. 
The average pressure is now at its minimum when Ry = 50 m. Finally, the radius of 
the hull surface in the x-coordinate direction, Rx, was varied while the radius of the 
hull surface in the y-coordinate direction was kept constant, Ry = 75 m. The average 
pressure in the gap is now at its minimum when Rx = 100 m (see Figure 6-25). 
 
6.1.4.6 The effect of the inclination of the ice floe on the pressure in the gap 
 
All the previous calculations were performed for a symmetric geometry of the gap; 
see Case 1 in Figure 6-26. The case where the gap is not symmetrical but inclined 
with respect to the y-coordinate axis is now considered. This is achieved by shifting 
the contact point of the ice floe with the hull surface forwards or backwards along the 
x-coordinate axis. The gap is thus still symmetrical with respect to the x-coordinate 
axis. Two cases where the flow is assumed to be periodic, as depicted in Figure 6-26, 
are now considered. In Case 2 the gap at the western edge (inlet) is larger than the gap 
at the eastern edge (outlet). In Case 3 the gap at the inlet is smaller than the gap at the 
outlet. The other parameters were the same as in Table 6-1. The results of the analysis 
are shown in Figure 6-27. 
 
In Figure 6-27 the significant effect of the position of the ice floe on the average 
pressure in the gap can be observed. If the inclination angle is -0.23 degrees (the 
contact point of the ice floe is moved 0.15 m in the negative x-coordinate direction), a 
considerable decrease in pressure can be seen to exist in the gap, whereas if the 
inclination angle is 0.23 degrees (the contact point of the ice floe is moved 0.15 m in 
the positive x-coordinate direction), a considerable increase in pressure exists in the 
gap.  
 
The turning moment on the ice floe resulting from the pressure in the gap is always 
positive. This means that the pressure distribution in the gap seems to favour Case 2. 
In ice model tests in thick ice the layer of broken ice floes is quite stable and the floes 
keep together as is shown in Figure 1-2. However, at high speed in thin level ice the 
broken ice floes do not stay together under the hull but stray further away from the 
hull quite early, and result in “a cloud” of ice floes around the hull of the ship. This 
phenomenon may be at least partly explained by the positive moment due to 
asymmetric pressure distribution in the gap between the hull and the ice floes. 
 
 
 
 
 
 
 



 121 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-26. The considered cases with an inclined ice floe. 
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Figure 6-27. Average pressure in the gap, 

1

*
dp , and the turning moment about the     

y-coordinate axis for the inclined ice floe resulting from the pressure in the gap. The 
distance of the contact point of the ice floe and the hull surface measured from the 
centre of the ice floe is dxl. 
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6.2 Analysis of the flow between the hull and the ice floe with changing hull 
curvature 

 
An analysis of the flow between the hull surface and the ice surface when the hull 
curvature changes with time, with respect to the ice floe, is presented in this section. 
The variation of the radii of the hull surface with time is presented in Section 6.2.1 
and the effect of the waviness of the hull surface on the pressure in the gap is 
presented in Section 6.2.2. 
 
6.2.1 Variation of the radii of the hull surface with time 
 
In this section the case when the curvature of the hull surface changes with time with 
respect to the ice floe is considered. First, a case is presented in which the surfaces 
have a zero relative velocity in the x-coordinate direction, and then a case with a non-
zero velocity of the hull surface in the x-coordinate direction is analysed. 
 
6.2.1.1 Zero relative velocity of the surfaces in the x-coordinate direction 
 
First, the rather theoretical case is considered of when the surfaces have a zero relative 
velocity in the x-coordinate direction, and both radii of the hull surface, Rx and Ry, 
change in a linear manner from 75 m to 65 m in time 0.2 s. The other parameters were 
the same as in Section 6.1.1. The inflow boundary condition was used at the inlet 
(western edge), the outflow boundary condition was used at the outlet (eastern edge), 
the free-flow boundary condition was used at the northern edge, and the symmetry 
boundary condition was used at the centreline. The pressure distribution in the gap is 
shown in Figure 6-28. 
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Figure 6-28. The pressure distribution in the gap. The inlet (eastern edge) is on the 
left-hand side, the outlet (western edge) on the right-hand side, the centreline 
(southern edge) at the back of the figure, and the outer edge (northern edge) of the ice 
floe is in the foreground of the figure. 
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It can be seen in Figure 6-28 that negative pressure resulting from the separation of 
the surfaces occurs in the gap. The pressure has the lowest value at the point where 
the distance between the surfaces has the smallest value. This observation is in line 
with Equation (5.131), which indicates that the pressure in the gap is inversely 
proportional to the third power of the distance between the surfaces. 
 
6.2.1.2 Non-zero relative velocity of the surfaces in the x-coordinate direction 
 
In this section the case is considered of when the radii of the hull surface, Rx and Ry, 
change linearly from 75 m to 65 m within a distance of 1 m in the x–coordinate 
direction and the hull surface has a non-zero velocity in the x-coordinate direction. 
The speed of the ship was varied from 1 m/s to 5 m/s. The time during which the hull 
geometry changes, t, depends on the speed of the ship (see Table 6-8). The other 
parameters were the same as in Section 6.1.1. The results of the calculations are 
shown in Figure 6-29. 
 
 
Table 6-8. The time during which the radius of the hull surface changes from 75 m to 
65 m. 
 

v [m/s] t [s] 
1 1.00 
2 0.50 
3 0.33 
4 0.25 
5 0.20 
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Figure 6-29. The average pressure in the gap resulting from constant and increasing 
hull curvature. 
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In Figure 6-29 it can be observed that the average pressure in the gap decreases 
considerably as a result of increasing hull curvature. The pressure in the gap is lower 
the faster the ship moves. 
 
6.2.2 The effect of the waviness of the hull surface 
 
In reality the plating of the hull surface may have permanent deformations caused by 
ice loads or slamming pressure loads. It is assumed that the “waviness” of the hull can 
be expressed as follows: 
 

 max cos sin
x y

h h x yπ π
λ λ

⎛ ⎞⎛ ⎞
Δ = Δ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, (6.4) 

 
where hΔ  is the permanent deflection of the hull plating, maxhΔ  is the maximum 
permanent deflection, xλ  is the wavelength of the permanent deflection in the           
x–coordinate direction and yλ  is the wavelength of the permanent deflection in the   
y–coordinate direction. The waviness of the hull surface calculated using Equation 
(6.4) is depicted in Figure 6-30 using the following parameters: maxhΔ  = 0.0001 m, 

xλ = 1.0 m and yλ  = 1.0 m. 
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Figure 6-30. Waviness of the hull surface compared with the un-deformed hull 
surface. 
 
 
The flow in the gap between the wavy hull surface and an ice floe was calculated 
using the parameters given in Section 6.1.1. The flow is now time-dependent as a 
result of the waviness of the hull surface. The average pressure in the gap is shown in 
Figure 6-31. The average pressure seems to fluctuate quite considerably, even if the 
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waviness of the hull surface is moderate. In reality the maximum permanent 
deformation of the hull plating may be several millimetres. 
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Figure 6-31. Average pressure in the gap between a wavy hull surface and an ice floe 
during the period of time when one “wave” of the deformed hull surface passes the 
ice floe. 
 
 
6.3 The effect of the negative pressure in the gap on the magnitude of ice 
         resistance in the sliding phase 
 
In Sections 6.1 and 6.2, theoretical calculations were performed in order to evaluate 
the dynamic pressure in the gap between the hull surface and the ice floe. On the basis 
of the analysis performed in these sections, some theoretical estimates of the effect of 
the negative pressure in the gap between the ice floe and the hull surface on ice 
resistance due to the sliding phase can be made.  
 
The resistance due to the sliding phase for 1 m2 of level ice as a function of the 
velocity of the hull surface is depicted in Figure 6-32. The calculations were 
performed using Equation (1.11) and were based on the assumptions that the 
difference between the density of water and ice, ρΔ  = 100 kg/m3, the level ice 
thickness, hice = 0.5 m,  the length of the ice floe, l = 1 m,  the breadth of the ice floe,  
b = 1 m, the inclination angle of the bow with the horizontal, φ  = 15o, and the friction 
coefficient, μ  = 0.1. The same boundary conditions as in Section 6.1.1.1 were used 
when calculating the average decrease of pressure in the gap, 

1

*
dp . In Figure 6-32, a 

clear increase in the resistance with velocity resulting from a decrease in the pressure 
in the gap between the hull and an ice floe can be observed. It should be noted that in 
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this analysis, the length of the broken ice floes is assumed to be constant. As the data 
given in Section 2.3 indicate, the length of the broken ice floes decreases with 
increasing velocity. The calculations were then repeated assuming that the length of 
the broken ice floes  decreases  from  1.0 m to 0.5 m, when the speed of the ship 
increases from 1 m/s to 6 m/s. This is an arbitrary choice, but in line with the data 
given in Section 2.3, see Figures 2.30 and 2.31. The results of the calculation shows 
that with these assumptions, ice resistance, due to the sliding phase, increases almost 
linearly with increasing velocity, see Figure 6-32. A similar kind of speed dependence 
of level ice resistance due to the sliding phase is also shown in Figure 1-4. 
 
 

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7

Velocity of the hull surface [m/s]

R
es

is
ta

nc
e 

du
e 

to
 th

e 
sl

in
di

ng
 p

ha
se

 fo
r 1

 m
2 

of
 le

ve
l i

ce
  [

N
]

Constant ice floe length Ice floe length decreases with speed

Figure 6-32. Resistance due to the sliding phase for 1 m2 of level ice calculated with 
constant and decreasing ice floe length. 
 
 
6.4 Summary of Chapter 6 
 
A theoretical analysis was carried out in this chapter to study the effect of the 
following two phenomena on ice resistance in the sliding phase: 
 

- the acceleration of water in the shear layer in the gap between the ice floe and 
the hull surface, and  

- the flow of water to and from the shear layer resulting from changes in the 
geometry of the hull along the trajectory of an ice floe sliding against the hull.  

 
In Section 6.1 the first phenomenon was analysed with constant hull geometry. The 
flow between a "ball-shaped" hull form and a square-shaped ice floe with an area of 
one square metre was presented in this section. The optimal computational parameters 
were first studied. The under-relaxation parameter for pressure was found to have a 
significant effect on the speed of the convergence of the iteration. The effect of 
boundary conditions at the edges of the ice floe was found to have a very important 
effect on the results. However, the pressure below the ice floe does not affect ice 
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resistance due to the sliding phase, if it is assumed that the pressure below the ice floe 
has an effect on the pressure in the gap between the hull surface and the ice floe 
through the gaps between the ice floe and the ice floes adjacent to it. The effect 
clearly depends on how tightly the ice floes are pressed together, which needs further 
research. 
 
The geometric parameters were also varied in Section 6.1. It was found that the 
average pressure in the gap does not depend very greatly on the distance between the 
ice floe and the hull surface when the minimum distance between the surfaces is less 
than 0.1 mm. The effect of the size of the ice floe, the curvature of the hull surface, 
the velocity of the hull surface, and the inclination angle of the ice floe on the average 
pressure in the gap were also studied in Section 6.1. The velocity of the hull surface 
and the inclination angle of the ice floe had a considerable effect on the average 
pressure in the gap for the geometry considered in the analysis. 
 
The average pressure in the gap was found to be negative for the example case 
analysed in Section 6.1, but this depends on the position of the ice floe relative to the 
hull surface; see Figure 6-27.  
 
The second phenomenon was studied in Section 6.2. It was found that an increase in 
the gap height with time further decreases the pressure in the gap between the hull 
surface and the ice floe, compared with the analysis performed in Section 6.1 for a 
constant gap height between the hull surface and the ice floe; see Figure 6-29. The 
calculations also indicated that the waviness of the hull surface generates large 
pressure fluctuations in the gap.   
 
The effect of the negative pressure in the gap on the magnitude of ice resistance in the 
sliding phase was evaluated in Section 6.3. The analysis performed in this section 
indicated that the frictional force caused by the dynamic pressure in the gap between 
the hull surface and the ice floe may cause a significant increase of ice resistance in 
the sliding phase; see Figure 6-32. The linear dependence of the resistance in the 
sliding phase with speed may be explained by the decrease of the length of ice floes 
with speed, which reduces the increase of the negative pressure in the gap with speed.  
 
The analysis performed in this chapter confirms that the change of pressure in the gap 
between the hull surface and the ice floe may exist as a result of two phenomena: the 
acceleration of water in the shear layer in the gap between the ice floe and the hull 
surface, or the flow of water to and from the shear layer as a result of changes in the 
geometry of the hull along the trajectory of an ice floe sliding against the hull. 
Naturally, both phenomena may also occur simultaneously. 
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7 Discussion 
 
In this chapter the effect of hull and ice surface roughness on level ice resistance in 
the sliding phase is first briefly discussed, in Section 7.1. In Section 7.2 the model test 
results given in Chapter 2 are discussed in the light of the experience gained from the 
calculations presented in the previous chapter. The pressure decrease in the gap 
between the hull surface and the ice floes for the hull surfaces of "real" ships is then 
discussed in Section 7.3. The effect of the low-pressure phenomenon on friction panel 
tests is discussed in Section 7.4. A comparison of calculations made on a full scale 
and model scale is presented in Section 7.5. In Section 7.6 the possibility of 
calculating the ice resistance of ships in level ice is discussed. A summary of the 
analysis performed in Chapter 7 is presented in Section 7.7. 
 
 
7.1 The effect of hull and ice surface roughness on level ice resistance in the 

sliding phase  
 
All the previous calculations presented in Chapter 6 were based on the highly 
unrealistic assumption of perfectly smooth ice and hull surfaces. In reality, both 
surfaces are covered with asperities (see Section 2.5).  
 
7.1.1 The effect of hull surface roughness on level ice resistance in the sliding 

phase 
 
If the surface roughness of the hull surface is of the same order of magnitude as given 
for the ship coating in Table 2-4, it can be concluded that if the average asperity of the 
hull surface is two orders of magnitude smaller than the average gap height, as given 
in the example in Chapter 3, the surface roughness of the hull surface can be ignored 
altogether when the pressure resulting from shear flow in the gap between the hull 
surface and the ice floes is calculated. Naturally, the hull surface roughness affects 
level ice resistance through the friction coefficient, if Coulomb friction between the 
surfaces is assumed. 
 
7.1.2 The effect of ice surface roughness on level ice resistance in the sliding 

phase 
 
The surface roughness, Ra, of natural ice has much higher values than that of the hull 
coating (see Table 2-4). Because of ice asperities, more than one contact area may 
also occur between the hull surface and an ice floe. In principle, the analysis of such 
cases could be performed using Iceflo, but in practice the PC computer resources did 
not allow such computations because of the very fine grid required for such 
calculations. One could assume intuitively that the surface roughness of level ice 
could generate the same kind of local pressure fluctuations as was presented in 
Section 6.2.2 for a wavy hull surface caused by plate deformations. However, the 
effect of such local pressure fluctuations on the average pressure in the gap between 
the hull surface and the ice floes requires further research. 
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7.2 Analysis of model test results given in Chapter 2 
 
In Chapter 2 some model test results given by Liukkonen (1989a), Kayo (1993), and 
Puntigliano (1995) were presented. For several reasons, calculating the pressure 
decrease in the gap between the model surface and the ice floes is not very 
straightforward in most cases. There is insufficient information about the size of the 
ice floes, and the boundary conditions at the edges of individual ice floes require 
further research, as does the distance of the ice floes from each other. However, some 
qualitative estimates on the existence of the phenomenon can be made if certain 
assumptions are made. In the following sections the model test results are discussed in 
the light of the experience gained from the calculations presented in Chapter 6.  
 
7.2.1 Analysis of the model tests of Liukkonen 
 
A significant increase in ice resistance with speed was measured for Segment No. 2 in 
the model tests of Liukkonen (1989a) (see Figure 2-3). Two possible reasons for this 
phenomenon may be presented: the increase in ice resistance with speed may be 
caused by viscous forces in the gap between hull model surface and the ice floes or by 
the increase in frictional forces between the surfaces as a result of low pressure in the 
gap. The third possible reason, which requires to be considered in this case, is the 
effect of the change in pressure below the ice floes on resistance of Segment No. 2.  
 
7.2.1.1. The effect of viscous forces on ice resistance 
 
First, the possibility of an increase in ice resistance with speed as a result of viscous 
forces in the gap is discussed. It is assumed that, because of small asperities on the ice 
surface, there is a small gap, h, between the surfaces outside the contact areas. 
Assuming laminar flow in the gap with no pressure gradients, the required average 
height of the gap corresponding to the measured resistance of Segment No. 2 can be 
calculated using the following equation (see Section 5.4): 
 

 cos
x

Uh A
F

η φ= , (7.1) 

 
where 31.792 10  Pa sη −= ⋅ ⋅  for water, U = 0.4 m/s, Fx = 4.78 N (5.5 N - 

cosicegh Aμρ φΔ ), 0.06μ = , 3144 kg/mρΔ = , hice = 0.05 m, the area of the surface of 
Segment No. 2, A = 0.175 m2, and o15φ = (see Figures 2-1 and 2-3). If these values 
are inserted into Equation (7.1), a value of 0.025 mm can be obtained for h. There are 
no data on the smoothness of the model and model ice surfaces, but because of the 
very low friction coefficient, the model surface can be considered to be quite smooth. 
The centreline average, Ra, value of 0.69 mm of the surface roughness for natural sea 
ice was measured by Johansson (1988); see Section 2.5. It is unlikely that the surface 
roughness of model ice would be as high as that of natural ice, because model ice is 
“manufactured” in very controlled conditions indoors. However, because of a lack of 
data on model ice surface roughness, it is uncertain whether the calculation given 
above can explain the increase with speed in the resistance of Segment No. 2. In any 
case, Equation (7.1) gives a linear dependency of the resistance with speed which is in 
line with the model test results (see Figure 2-3).  
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7.2.1.2 The effect of change in pressure in the gap between the model and ice 
             floes on ice resistance 
 
Another possible explanation for the increase in resistance with speed is the possible 
increase in frictional forces between the surfaces resulting from low pressure in the 
gap. However, the model surface is completely flat within Segment 2, as can be seen 
in Figure 2-2, and thus no inertia effects resulting from model surface curvature are 
expected to take place in this segment. The model ice surface roughness was not 
measured in the tests, as already explained above, and thus the surface topology of the 
model ice surface is not known. The surface height profile of natural ice given in 
Figure 2-37 indicates that, in addition to “local” roughness of level ice, the ice surface 
height also has a certain waviness. This may be explained by the formation process of 
level ice. The first indication of ice formation is the appearance of small ice spicules 
or plates in the top few centimeters of water (see World Meteorological Organization 
(1981)). This means that ice formation starts at certain locations on the water surface. 
After some time the water gradually freezes into a thin layer of level ice. Thus certain 
areas of the water surface freeze earlier than some other areas and a wave-like level 
ice surface may develop as Figure 2-37 indicates. 
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Figure 7-1. Wave-like model ice surface, maxhΔ = 0.05 mm. 
 
 
It is not clear whether the model ice surface has a wave-like surface topology, 
especially if water has been sprayed on the model ice during the ice “manufacturing” 
process, but some calculations are presented below that assume a wave-like model ice 
surface. It is assumed that there is contact between the model surface and an ice floe 
at the highest points of the ice floe surface. Thus a flow of water may exist in the gap 
between the surfaces. The flow in the gap was calculated by using Equation (6.4) as 



 131 

an estimate for the waviness of the model ice with the following parameters: surface 
wave height, maxhΔ = 0.025 mm to 0.1 mm, xλ = 0.1 m, and yλ  = 0.1 m. The size of 
the ice floe was assumed to be 0.3 m x 0.35 m (l x b). The model ice surface topology 
is depicted in Figure 7-1. 
 
The velocity of the hull surface relative to the ice surface, U, was assumed to be      
0.4 m/s (see Figure 2-3). The ice floe was assumed to be symmetric with respect to 
the x-coordinate axis and thus the symmetry boundary condition was used at the 
southern edge. The inlet boundary conditions were assumed to be at the western edge, 
the outlet boundary conditions at the eastern edge, and the inlet boundary conditions 
at the northern edge. The pressure was assumed to be zero at the western, northern, 
and eastern boundaries. The flow in the gap is laminar, since the maximum Couette 
Reynolds number, ReC, is about 20. The results of the calculations are shown in Table 
7-1. Even if the flow is laminar, pressure decrease exists in the gap having this kind of 
geometry as a result of inertia forces. 
 
 
Table 7-1. The results of the calculations. 
 

Model ice surface 
wave height 

maxhΔ  [mm] 

Mass flow at the 
inlet  

[kg/m3] 

Average pressure, 

1

*
dp ,  in the gap 

[Pa] 

Average shear 
stress, avτ , on the ice 

surface [N/m2] 
0.025 0.000740 -287.067 11.536 
0.039 0.001143 -119.711  9.018 
0.050 0.001453   -71.558  7.834 
0.064 0.001856   -42.508  6.692 
0.075 0.002167   -29.730  5.653 
0.100 0.002873   -14.758  4.878 

 
 
The results indicate that the average pressure in the gap decreases with decreasing 
model surface wave height and the average shear stress increases with a decreasing 
average distance between the surfaces, as expected. 
 
The resistance resulting from the flow in the gap between the model and ice surfaces 
for Segment No. 2 was then calculated using the following equation: 
 
 

1

* cos cosflow d avR p A Aμ φ τ φ= − + . (7.2) 
 
The results of the resistance calculations are given in Figure 7-2. These calculations 
indicate that the increase in resistance with speed may be caused by the combined 
effect of low pressure resulting from the waviness of the model ice surface and 
viscous shear force caused by the flow in the gap. However, at the moment the 
validity of the assumptions made above requires further research on the actual 
topology of the model ice surface. The softness of model ice may also have a 
considerable effect on the height of the gap between the model surface and the ice 
floes. 
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Model tests of Liukkonen
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Figure 7-2. Resistance resulting from flow in the gap between the model surface and 
the model ice surface for Segment No. 2 as a function of model ice surface wave 
height. 
 
 7.2.1.3 The effect of change in pressure below the ice floes on ice resistance 
 
The third possible reason for the increase of ice resistance of Segment No. 2 is the 
effect of the change in pressure below the ice floes on ice resistance. The geometry of 
Segment No. 2 is depicted in Figure 7-4a).  
 

 
Figure 7-3. The calculated pressure distribution below the hull of the ship model 
(Liukkonen (1989a), part of Figure 15). 
 
 
As was already mentioned in Section 1.6, Liukkonen (1989a) calculated the pressure 
field around the model using a CFD code. The velocity field and the distribution of 
pressure around the model were computed assuming that the ice field forms a 
watertight boundary around the model. This calculation indicated that the change in 
pressure would be about zero at the front section and about -40 Pa at the aft section of 
Segment No. 2, when the velocity of the model is 0.446 m/s, see Figure 7-3. 
 
The model was freely floating and thus the model was allowed to slightly sink due to 
negative pressure below the model. For simplicity, this slight increase of draft is 
neglected in this analysis. For the same reason, it is also assumed that the change in 
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pressure below Segment No. 2 is linear. Due to change in pressure below the segment, 
2dp , the water level at the aft end of the segment is slightly decreased as is shown in 

Figure 7-4b). The hydrostatic pressure at the aft and fore ends of the segment and 
below it is also depicted in this figure. The change of the water level, ,TΔ  at the aft 
end of the segment due to change in pressure was calculated to be about -4 mm 
( 40Pag Tρ Δ = − ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-4. The geometry of Segment No. 2 is depicted schematically in figure a). 
Hydrostatic and dynamic pressure around the segment is depicted in figure b). Figure 
c) shows the forces due to dynamic pressure acting on the segment. 
 
 
The hydrostatic pressure acting at the aft and fore ends of the segment as well as 
below the segment do not cause any resistance and thus it is sufficient to consider the 
effect of the dynamic pressure on resistance. The forces due to dynamic pressure 
acting at the aft end and below the segment are depicted in Figure 7-4c). The resultant 
force of these forces in the x-coordinate direction was calculated to be -2.68 N 
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( o
1 2 sin15xF F F= − + ). In model tests in open water, the resistance of Segment No. 2 

was measured to be 1.19 N, when the velocity of the model was 0.446 m/s 
(Liukkonen (1989a), Table 2). According to Liukkonen, the effect of the gaps 
between the segments were taken into account by subtracting the open water 
resistance from the total measured resistance of Segment No. 2 when the ice 
resistance of Segment No. 2 given in Figure 2-3 was obtained. However, no 
measurements of the water level in the gaps between the segments were reported in 
Liukkonen (1989a). It is also interesting to note that in his tests for a segmented 
model, Puntigliano (1995, page 18) observed that the proximity of two vertical walls 
at a distance of 4 mm could produce strong hydrodynamic forces even with a small 
relative motion. 
 
Figure 2-4 shows that the average normal force on Segment No. 2 did not increase 
with speed although Figure 7-3 indicates negative pressure below the segment. 
Obviously, since the model was freely floating in the tests, it can be assumed that the 
increase of the draft of the model compensated the change in pressure below the 
model, and for this reason the measurements did not show any change in the average 
normal force on Segment No. 2.  
 
7.2.1.4 Summary 
 
The theoretical calculations presented above indicate that the increase in resistance of 
Segment No. 2 with velocity may be caused by the combined effect of low pressure 
resulting from the waviness of the model ice surface and viscous shear force caused 
by the flow in the gap. However, at present the validity of the assumptions made 
above requires further research on the actual topology of the model ice surface.  
 
The analysis given above also indicates that the effect of the change in pressure below 
the ice floes on ice resistance of Segment No. 2 requires further research. It is possible 
that the change in pressure below the ice floes in ice model tests is higher than the 
change in pressure below the model in open water tests. Puntigliano’s (1995, page 18) 
observation that the proximity of two vertical walls at a distance of 4 mm could 
produce strong hydrodynamic forces even with a small relative motion, is worth 
noticing when model test results with segmented models are analyzed. These 
phenomena, together with the effect of viscous forces between the model and ice 
floes, could also explain the measured increase of resistance with velocity for 
Segment No. 2. Thus no final conclusions concerning the reasons for the measured 
increase in resistance of Segment No. 2 with velocity can be made.  
 
7.2.2 Analysis of the model tests of Kayo 
 
The body plan of the ship model used by Kayo (1993) shows that the ship has the 
conventional hull shape of an ice-going ship (see Figure 2-5). It is difficult to estimate 
the curvature of the hull surface from the small figure, but qualitatively it can be 
estimated that since the radius of curvature of the frames shown in Figure 2-5 
decreases from amidships to the bow, a decrease in pressure in the gap between the 
model surface and the ice floes may take place as a result of the increase in the 
distance between the hull surface and the ice floes in the bow area.   
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7.2.3 Analysis of the model tests of Puntigliano with a simplified Waas bow 
 
The model tests of Puntigliano (1995) with a simplified Waas bow represent a very 
interesting case, because the model test results showed that a clear decrease in 
pressure occurred in the gap between the model surface and the ice floes in the bow 
area (see Figure 2-11). It may be argued that the decrease in pressure at the stem is 
caused by the ventilation phenomenon, but the decrease in pressure behind the stem 
requires special consideration. 
 
7.2.3.1 Analysis of ice resistance of Segment No. 2 
 
The average pressure below Segment No. 2 in open water tests was estimated to be     
-36 Pa, when the velocity of the model was 1 m/s, by calculating the average pressure 
obtained from the transducers located in the same area as Segment No. 2. Assuming 
that the pressure measurements in open water would give a good approximation for 
the pressure below the ice floes in model tests in level ice, the resistance due to the 
pressure field around Segment No. 2 was calculated to be 1.0 N. The calculations 
were performed in the same way as in Section 7.2.1.3 for Segment No. 2 of the model 
used by Liukkonen (1989a). In open water tests, a value of about 1.8 N was measured 
for resistance at the velocity of 1 m/s. This indicates that about 0.8 N of the resistance 
of Segment No. 2 is due to other phenomena, like viscous forces, rather than due to 
the pressure field around the segment. 
 
The average pressure below Segment No. 2 in model tests in level ice was estimated 
to be -103 Pa by calculating the average pressure obtained form the transducers 
located in the same area as Segment No. 2. When the average pressure below the ice 
in the area of Segment No. 2, -36 Pa is subtracted from -103 Pa, a value of -67 Pa can 
be obtained for the average decrease of pressure in the gap between the model surface 
and the ice floes, 

1

*
dp .  

 
Ice resistance at a speed of 1 m/s for Segment No. 2 was then calculated using 
Equation (1.11) using the following values for the parameters: ρΔ = 107.5 kg/m3,          
g = 9.81 m/s, hice = 0.05 m, φ  = 15.1o, μ = 0.1, 

1

*
dp = -67 Pa as calculated above and       

Af = 0.36 m2, the area of the bottom of Segment No. 2. Inserting these values of the 
parameters into Equation (1.11), a value of 8.9 N was obtained for the resistance at 
the velocity of 1 m/s. For zero velocity, Equation (1.11) gives a value of 6.5 N for the 
resistance assuming that there is no change in pressure in the gap between the model 
surface and ice floes. Comparing these values with the measured values shown in 
Figure 2-12, about 2 N at zero velocity and about 5 N at the velocity of 1 m/s, 
indicates that the measured values are lower than the calculated values. The reason for 
this difference may be due to the hydrodynamic effects of the gaps between Segment   
No. 2 and the segments around it. However, the change of ice submerging resistance 
with speed calculated above using Equation (1.11), 2.4 N, is quite close to the 
measured one, about 2.2 N. Figure 2-12 gives 3.2 N, but 1 N has to be subtracted from 
this value due to the effect of the pressure field around the segment.  
 
The measured vertical force at Segment No. 2 decreased with speed as is shown in 
Figure 2-13. This phenomenon cannot be explained by a decrease of pressure in the 
gap between the model surface and ice floes, see Section 1.7.4.1, nor by decrease of 
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pressure below ice floes because Segment No. 2 was fully submerged, see          
Figure 2-10. This indicates that the hydrodynamic phenomena in the gaps around 
Segment No. 2 should be further investigated. 
 
The analysis presented above indicates that the pressure decrease phenomenon exists 
in the gap between the bottom surface of Segment No. 2 and the ice floes. The 
possible reason for this is considered in the following section. 
  
7.2.3.2 The possible reason for the change in pressure in the gap between the 
            model surface and ice floes 
 
The hull of the model has quite a special form. The hull form resembles a landing-
craft bow. The frames are straight with zero curvature, but the verticals have some 
curvature. The radius of curvature of the verticals decreases in magnitude from the 
bow to amidships (see Figure 7-5). Because the frames are straight and the verticals 
have some curvature, it may be assumed that rectangular ice floes have a line-like 
contact with the model surface, which prevents the water in the gap between the hull 
surface and the ice floes from flowing in the longitudinal direction. This means that a 
cavity-type flow might occur in the gap between the model surface and the 
rectangular ice floes (see Figure 7-6). The volumes of the cavities increase when they 
move downwards along the verticals with decreasing radius, i.e. increasing hull 
curvature: compare “Gap 1” with “Gap 2” in Figure 7-6. Thus the pressure in the gap 
decreases as a result of the increase in the distance between the hull surface and the 
ice floes in the lower bow area (compare with the calculations made in Section 
6.2.1.1). 
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Figure 7-5. Radius of the curvature, Rx, of the vertical of the simplified Waas bow at 
B/4. The origin is located amidships in the model. 
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The recorded video films and photographs taken during the model tests seem to 
confirm the assumptions and conclusions made above (see Puntigliano (1995), pp. 
118-131). Air bubbles seen in the water layer between the hull surface and the ice 
floes were often observed to move downwards at the same velocity as the model 
advanced, especially at higher velocities. This indicates that the bubbles were dragged 
downwards by the gaps between ice floes, and no fluid flow would occur in the 
longitudinal direction. However, some observations showed that the bubbles suddenly 
left the gap, running upwards until the next gap. This indicates that fluid flow could 
also take place occasionally in the longitudinal direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-6. Cavity-type flow in the gap between the model surface and the 
rectangular ice floes. 
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Figure 7-7. Length of the broken ice floes obtained in the model tests for the 
simplified Waas bow (personal communication Puntigliano-the author, 2000).    
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The idea of the origin of the low pressure in the gap was tested using Iceflo. For this 
purpose the size of the ice floes was analysed. In Figure 7-7 the length of the broken 
ice floes is depicted as a function of the speed of the model. In line with the 
observations given in Section 2.3, the length of the broken ice floes decreases with 
increasing speed. In most cases, the breadth of the broken ice floes was 0.25 m. A 
constant breadth could be obtained by pre-sawing the ice field in a longitudinal 
direction before the tests were performed. In the calculations the size of the broken ice 
floes was assumed to be 0.1 m x 0.25 m (l x b). 
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Figure 7-8. Velocity distribution in the transverse direction, hmin = 0.07 mm. 
 
 
The calculation was made by assuming zero speed in the model, but the radius of the 
curvature, Rx, was allowed to decrease in a linear manner from 31.4 m to 31.118 m 
during a time period of 0.015 s, simulating the change of the radius of curvature of the 
vertical of the simplified Waas bow when the ship advances at a speed of 1 m/s. The 
minimum distance between the model surface and the ice floe was assumed to be  
0.07 mm. The inflow boundary condition was assumed to be at the western edge, the 
free-flow boundary condition at the northern edge, and the outflow boundary 
condition at the eastern edge. A symmetric boundary condition was assumed at the 
southern edge as a result of the symmetry assumption. Zero pressure was assumed at 
the western, northern, and eastern edges.  In other words, free flow of water was 
assumed at all edges, except at the southern edge.  
 
The velocity of the flow in the gap in the transverse direction is depicted in Figure    
7-8. In this figure it can be observed that water flows from both sides of the ice floe 
into the gap.    
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The pressure distribution in the gap is depicted in Figure 7-9. It can be observed that 
the pressure has its lowest value at x = 0 m, where the distance between the ice floe 
and the model surface is shortest. According to this calculation, the average pressure 
in the gap is -77.15 Pa. The order of magnitude is thus roughly the same as obtained 
in the model-scale tests; see Figure 2-11. However, the results of the calculations are 
very sensitive to the minimum distance between the surfaces; see Equation (5.122). If 
a zero distance between the surfaces is assumed, then the calculations show pressure 
in the gap that is two orders of magnitude smaller. Surface roughness and the possible 
waviness and even bending of the ice floe have an influence on the pressure in the 
gap. 
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Figure 7-9. The pressure distribution in the gap, hmin = 0.07 mm. 
 
 
7.2.4 Analysis of the model tests of Puntigliano with a cylindrical bow 
 
The model tests of Puntigliano (1995) with a cylindrical bow showed, as was the case 
for the Waas bow, a very strong increase in resistance for the fully submerged 
Segment No. 2 (see Figure 2-19). The radius of the curvature of the bow does not 
change along the model surface as a result of the cylindrical form of the bow. The 
curvature of the frames is difficult to estimate from the small Figure 2-17, but it seems 
to be fairly constant in the bow area. Thus no decrease in pressure resulting from an 
increase in the distance between the hull and ice surfaces should occur in the bow 
area. However, inaccurate pressure measurements in the model tests (see Puntigliano 
(2003)) do not allow verification of this assumption. 
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7.3 Calculations for real ships 
 
For the same reasons as in the model test results analysed above, calculation of the 
pressure decrease in the gap between the hull surface and the ice floes for "real" hull 
surfaces is not very straightforward. However, some qualitative estimates on the 
existence of the phenomenon can be made, considering the curvature of existing hull 
surfaces. In the following sections the full-scale test results of the MPV Neuwerk are 
discussed and the existence of the low-pressure phenomenon for the IB Kapitan 
Evdokimov is discussed. 
 
7.3.1 Full-scale and model-scale tests of MPV Neuwerk 
 
Negative pressure was measured in the gap between the hull surface and the ice floes 
during the full-scale tests of the MPV Neuwerk (see Section 2.2.1). It should be noted 
that the hull form of the ship resembles quite closely the shape of the simplified Waas 
bow in the area where the pressure transducers were installed. Comparing Figure 2-25 
with Figure 2-9, it can be observed that in both cases the frames are straight, with zero 
curvature, and the verticals have some curvature. In particular, Pressure Transducer 
No. 5 is in the middle of the “Waas bow”-type area (see Figure 2-25). An increase in 
the distance between the hull and ice surfaces in the cavity-type flow, as described in 
Section 7.2.3.2, may thus be the reason for the observed low-pressure phenomenon 
presented in Section 2.2 both on a full scale and on a model scale. 
 
7.3.2 IB Kapitan Evdokimov 
 
The case when the hull of the IB Kapitan Evdokimov sails over square-shaped ice 
floes is considered in this section. It is assumed that the path of a single ice floe is 
identical to the diagonal of the ship shown in Figure 2-32. The section of the diagonal 
between the stations 46.5 m and 56.5 m from the aft perpendicular when the radius of 
the hull surface changes in a linear manner from about 140 m to 75 m in the direction 
of the diagonal and from about 80 m to 35 m in the transverse direction of the 
diagonal is considered  (see Figure 2-34).   
 
 
Table 7-2. The time during which the radius of the hull surface in the longitudinal 
direction, Rx, changes at the contact point of the hull surface and the ice floe from 140 
m to 75 m, and in the transverse direction, Ry, from 80 m to 35 m, and the calculated 
average pressure in the gap as a function of the speed of the hull surface. 
 

U [m/s] t [s] Average pressure 
in the gap [Pa] 

1 10.00   -103.8 
2   5.00   -409.0 
3   3.33   -922.1 
4   2.50 -1643.8 
5   2.00 -2573.7 

 
 
The speed  of  the ship was varied from  1 m/s to 5 m/s. The time, t, during which the 
hull geometry changes at the contact point of the hull surface and the ice floe, depends 
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on the speed of the ship (see Table 7-2). The other parameters and boundary 
conditions were the same as in Section 6.1.1.1. The results of the calculations are 
shown in Table 7-2 and in Figure 7-10. The results indicate that a considerable 
decrease in pressure may take place in the gap between the hull surface and the ice 
floes when the ship is moving at high speeds. 
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Figure 7-10. The average pressure in the gap as a result of the changing hull 
curvature of IB Kapitan Evdokimov. 
 
 
7.3.3 The optimal form of the hull for breaking level ice 
 
Concerning the low-pressure phenomenon, the hull curvature along the ice floe 
trajectory should be constant and as low as possible in order to avoid decrease of 
pressure in the gaps between the hull surface and the ice floes when breaking level 
ice. For example, a cylindrical hull form can be considered to be such an optimal hull 
form (see Figure 2-17). In such a case it can be assumed that the broken ice floes glide 
along the verticals of the hull. Since the verticals have a constant and almost zero 
curvature, the pressure decrease in the gap between the hull and the ice floes is 
minimised. 
 
 
7.4 The low-pressure phenomenon and friction panel tests 
 
Full-scale measurements of friction between the hull surface and ice floes when 
breaking level ice were made in the winter of 1985 in the Gulf of Finland, using an 
innovative icebreaker bow (see Enkvist and Mustamäki (1986)). For friction 
measurements the bow was fitted with two friction panels. The so-called high-
pressure friction panel was located in the ice-crushing zone just below the waterline, 
and the so-called low-pressure friction panel was installed deeper in the flat bottom 
area of the bow section; see Figure 7-11. 
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The high-pressure panel had a diameter of 260 mm and the diameter of the low-
pressure panel was 1000 mm. The measuring plates of the panels were connected to 
the bow structure through force transducers so that normal and tangential forces 
acting on the panels could be measured (Liukkonen (1989b). 
 
On a full scale in level ice with snow, the friction coefficients of 0.098 and 0.224 for 
the high- and low-pressure panels, respectively, were measured. As was pointed out in 
Puntigliano (2003, p. 7), the high friction coefficient obtained for the low-pressure 
panel may be explained by the existence of the low-pressure phenomenon. Since the 
area of the low-pressure panel was rather large, the panel may not have been able to 
measure the real total contact force between the panel and the ice floes. 
 
 

       
 

     
Figure 7-11. Forebody plan and perspective drawing of the Wärtsilä experimental 
bow and locations of the friction panels (Enkvist and Mustamäki (1986), Figures 6(a) 
and 10. 
 
 
7.5 Comparison of calculations made on full scale and on model scale 
 
Ice model tests conducted in an ice model test basin are a useful tool to predict the 
level ice resistance of a ship in ice on a full scale. The following similitude relations 
can be given for the parameters and the calculated quantities for a given model scale 
factor, λ , (see e.g. Free, 1987): 
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where the subscript "msc" refers to model scale and "fsc" to full scale.  
 
The density, 31000 kg/mρ =  and the kinematic viscosity, 31.792 10  Pa sη −= ⋅ ⋅  for 
water at o0 C  cannot be modelled in practice on a model scale and they are the same 
on a model scale and on a full scale. In order to get some idea about the theoretical 
error in predicting the resistance of the ice submerging phase resulting from the use of 
the same fluid properties on a model scale and on a full scale, “computational model 
tests” were performed by calculating the average pressure and the average shear stress 
in the gap on a model scale and on a full scale. The model scale factor, λ , was varied 
from 1 to 30. The parameters used in the calculations on a model scale (see Table 7-3) 
were calculated using the equations in (7.3). It was assumed that the surface 
roughness of the ice would be the same on a model scale and on a full scale and, 
therefore, the minimum distance, hmin, between the hull surface and the ice floe was 
assumed to be the same in all cases. A value of 0.01 mm was selected for hmin. The 
same boundary conditions as given in Section 6.1.1.1 were used in the calculations. 
 
The flow in the gap is turbulent in the full-scale case, but laminar in all model-scale 
cases. The average pressure, 

1

*
dp , and the average shear stress, avτ , in the gap between 

the hull surface and the ice floe are given in Table 7-4. The total normal force acting 
on the ice floe as a result of pressure, 

1

*
( )p msc dF p lb= , the total normal force resulting 

from the static lift of  the ice floe, ( )s msc iceF gh lbρΔ= , and the total shear force acting 
on the ice floe as a result of shear stresses, ( )shear msc avF lbτ= , are also shown in     
Table 7-4. The difference between the densities of water and ice, ρΔ , was assumed to 
be 100 kg/m3. 
 
 
Table 7-3. Parameters used in the calculations. 
 
Model scale 
factor , λ  

1 
(full 
scale) 

5 10 15 20 25 30 

l [m] 1.0 0.2 0.1 0.0667 0.05 0.04 0.0333 
b [m] 1.0 0.2 0.1 0.0667 0.05 0.04 0.0333 
Rx [m] 75 15 7.5 5 3.75 3 2.5 
Ry [m] 75 15 7.5 5 3.75 3 2.5 
hice [m] 1.0 0.2 0.1 0.067 0.05 0.04 0.033 
U [m/s] 5 2.236 1.581 1.291 1.118 1.000 0.912 
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Table 7-4. The results of the calculations. 
 
Model scale 
factor , λ  

1 
(full 

scale) 

5 10 15 20 25 30 

1

*
dp  [Pa] -2066.4 -87.4 -80.3 -80.0 -80.4 -80.3 -80.0 

avτ  [N/m2] 22.9 26.7 30.0 31.0 33.4 35.2 36.6 
Fp(msc) [N] 2066.4 3.50 0.80 0.35 0.20 0.13 0.09 
Fs(msc) [N] 981.00 7.85 0.98 0.29 0.12 0.06 0.04 
Fshear(msc) [N]   22.86 1.07 0.30 0.14 0.08 0.06 0.04 
 
 
Table 7-5. Full-scale resistance prediction. 
 
Model scale 
factor , λ  

1 
(full 
scale) 

5 10 15 20 25 30 

Fp(fsc) [N] 2066.4  437.1 802.8 1200.0 1607.1 2006.9 2402.0 
Fs(fsc)  [N] 981.0  981.0 981.0 981.0 981.0 981.0   981.0 
Rf(fsc) [N] 304.7 141.8 178.4 218.1 258.8 298.8   338.3 
Rshear(fsc)  [N]   22.9 133.4 300.0 465.2 668.1 880.0 1098.3 
 
 
The full-scale resistance prediction and the results of the resistance calculations are 
shown in Table 7-5 and in Figure 7-12. The forces on a full scale were calculated 
using the last of the equations in (7.3). The frictional resistance, Rf(fsc), tangent to the 
hull surface resulting from the normal forces was calculated using the following 
equation (compare with Equation (1.11)): 
 
 ( )( ) ( ) ( )f fsc s fsc p fscR F Fμ= + , (7.4) 
  
where μ  is the friction coefficient. A value of 0.1 was used in the calculations for the 
friction coefficient. Since the hull geometry is similar on a full scale and on a model 
scale, the effect of the geometry was omitted in Equation (7.4); compare with 
Equation (1.11). 
 
As expected, the forces caused by shear stress predicted by the calculations made on a 
model scale are much higher than the forces calculated on a full scale. This is due to 
the fact that it is not possible to scale down the density and viscosity of water in 
model tests. This may be one of the reasons why a low friction coefficient is used on a 
model scale in order to obtain a good correlation of the model test results with results 
obtained on a full scale (see Liukkonen (1989b)). On the other hand, Figure 7-12 
indicates that, according to these calculations, the pressure decrease phenomenon is 
relatively well modelled in model tests. 
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Figure 7-12. Comparison of the results of the calculations performed using the full-
scale and model-scale values of the parameters. 
 
 
7.6 Calculation of ice resistance of ships in level ice 
 
The interesting question now emerges of whether it is possible to calculate the ice 
resistance of a ship in level ice. Such an effort could be made by combining the work 
of Valanto (2001a) and Puntigliano (2003) with the work presented in this thesis. 
Valanto (2001a) presented the calculation procedure for the ice-breaking and rotative 
phases and Puntigliano (2003) for the sliding phase. The method presented in this 
study to calculate the pressure between the hull surface and the ice floes could be 
incorporated into the model of Puntigliano (2003). The calculation method presented 
in this study should be amended as follows in order to improve the accuracy of the 
calculation procedure: 
 

- The finite volume method, as presented by Argir and Frêne (2001), should be 
used instead of the finite difference method used in this study. 

- Triangular-shaped cells should be used in order to be able to model arbitrarily 
shaped ice floes. 

- Different sizes of cells should be used. 
 
The calculation procedure presented by Valanto (2001a) can predict the size and form 
of the broken ice floes, which is a necessary input for the calculation of the ice 
resistance in the sliding phase. The method should also take into account the 
possibility of the further breaking of the ice floes, for example as a result of the load 
induced by the low pressure between the hull surface and the ice floes when they are 
submerged. 
 
The way is open for enthusiastic and hard-working scientists to try to calculate the 
resistance of a ship in level ice.   
 
Finally, it should be mentioned that further research is required to study the effect of 
snow on level ice resistance. Another interesting topic for research is the effect on 
level ice resistance of air pressed into the gap between the hull and ice floes by air 
bubbling systems. 
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7.7 Summary of Chapter 7 
 
In this chapter, the effect of surface roughness on level ice resistance was briefly 
discussed. The model test results given in Chapter 2 were discussed in the light of the 
experience gained from the calculations presented in Chapter 6. For several reasons, 
no calculation of the pressure decrease in the gap between the model surface and the 
ice floes was possible in most of the cases. For example, the size of the submerged ice 
floes was not known. Additionally, in most cases the hull form was rather flat, unlike 
in “normal” convex hull shapes.  
 
The analysis given above concerning the observed increase in ice resistance with 
speed of Segment No. 2 in the model tests of Liukkonen (1989a) indicates that the 
effect of the change in pressure below the ice floes on ice resistance of Segment No. 2 
requires further research. It is possible that the change in pressure below the ice floes 
in ice model tests is higher than the change in pressure below the model in open water 
tests. This phenomenon, together with the effect of viscous forces between the model 
and ice floes, may explain the measured increase of resistance with velocity for 
Segment No. 2. 
 
Some calculations were also presented to explain the model test results obtained for 
the simplified Waas bow. The calculations indicated that the origin of the measured 
low pressure in the model tests of Puntigliano (1995) may be the change in the hull 
geometry when ice floes are submerged by the hull. Although several assumptions 
had to be made in the calculations in order to get similar results to those in the model 
tests, the origin of the measured low pressure resulting from the change in the hull 
curvature seems to explain the phenomenon for this type of hull form qualitatively. 
 
It should also be noted that if the magnitude of pressure below the ice floes in ice 
model tests is different from the magnitude of pressure below the model hull in open 
water tests, then it is not quite clear how well the pressure measurements in ice reflect 
the real change of the pressure in the gap between the model surface and the ice floes. 
This issue could be studied by measuring the water level in the gaps between the 
segments in model tests in ice and in open water. 
 
In addition, calculation of the pressure decrease in the gap between the hull surface 
and the ice floes for "real" hull surfaces was discussed and the effect of the low-
pressure phenomenon on the results of measurements made in friction panel tests was 
also highlighted. 
 
Finally, calculations made with parameters given on a full scale and on a model scale 
using several model-scale factors were also presented. These calculations indicated 
that the pressure decrease phenomenon is relatively well modelled in model-scale 
tests, but the viscous forces cause a considerable error in the results obtained by the 
model tests. 



 147 

8 Summary 
 
The resistance of a ship in level ice as a result of a decrease in pressure between the 
hull surface and an ice floe when the ice floe is submerged was studied in this thesis. 
In Chapter 1 three basic phenomena were presented to explain the origin of the 
change in pressure in the gap between the hull and an ice floe in the sliding phase:  
 

- the ventilation phenomenon;  
- the acceleration of water in the shear layer in the gap between the ice floe and 

the hull surface, and  
- the flow of water to and from the shear layer as a result of changes in the 

geometry of the hull along the trajectory of an ice floe sliding on the hull.  
 
In this study the last two phenomena were studied using the hydrodynamic lubrication 
theory. For this purpose the Iceflo computer code was developed. 
 
In Chapter 2 model- and full-scale data related to the pressure decrease phenomenon 
were presented. All the model-scale data presented indicate that there is an increase in 
ice resistance with speed in the sliding phase. The model tests of Liukkonen (1989a) 
for a two-dimensional model indicate that the normal forces do not increase with 
speed in the sliding phase, although the ice resistance does increase with speed in the 
sliding phase. The model tests of Puntigliano (1995 and 2003), both for a two-
dimensional model and a cylindrical bow model, even indicate that the normal forces 
decrease with speed in the sliding phase, although the ice resistance does increase 
with speed in the sliding phase. 
 
These observations, together with the measurements of low pressure in the shear layer 
between the hull surface and the ice floes, both on a model scale (Puntigliano (1995 
and 2003)) and on a full scale (Puntigliano (2000 and 2003)), strongly support the 
idea that the increase in ice resistance in the sliding phase is due to either the increase 
in the mechanical friction forces resulting from low pressure in the gap between the 
hull surface and the ice floes or viscous forces in the gap, or both. 
  
In Chapter 3 the governing equations, i.e. the Navier-Stokes equations, were given, 
the calculation problem was presented, and an outline of the solution methods for the 
shear-driven motion of fluid between the hull surface and an ice floe in relative 
motion was given. The preliminary analysis of the flow in the gap, based on the 
calculation of the Couette Reynolds number and the reduced Reynolds number for the 
example case, indicated that the calculation method has to be able to model time-
dependent laminar and turbulent flow with inertia effects. 
 
In Chapter 4 some aspects of the Fluent CFD computer code were described. In order 
to evaluate the suitability of Fluent for the analysis of the computational problem 
described in Chapter 3, Fluent was validated against the direct numerical simulation 
data of Bech et al. (2000) for plane-turbulent Couette flow, and against the 
experimental data of Nakabayashi (1993) for turbulent Couette-type flow with 
repeated longitudinal pressure gradients. The conclusion was that Fluent can be used 
for the calculation of this type of flow. 
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The Iceflo CFD code, based on hydrodynamic lubrication theory with fluid inertia 
effects, was written to calculate the flow in the gap between the hull surface and an 
ice floe. Iceflo was verified for a two-dimensional flow against the results calculated 
by the analytical solution derived by Constantinescu and Galetuse (1974) and 
validated against the results calculated by the Fluent computer code for the flow 
between a transversely infinite rotating cylinder and a transversely infinite wall. The 
code was also verified for a three-dimensional flow against the analytical solution of 
Kapitsa for the flow between an egg-shaped hull moving above a plane. Verification 
and validation of Iceflo for a time-dependent flow, i.e. when the gap height changes 
with time, was done for the analytical solution of two, in a transverse direction, 
infinitely wide parallel plates approaching or moving away from each other. In all 
cases the calculated results obtained by Iceflo coincided very well with the analytical 
solutions and reasonably well with the results obtained by Fluent. 
 
In Chapter 6 the flow between an "ball-shaped" hull form and a rectangular ice floe 
with an area of one square metre was presented. The effect of the boundary conditions 
at the edges of the ice floe was found to have a very important influence on the 
results. Optimal computational parameters were studied and the geometric parameters 
were varied in this chapter. It was found out that the pressure in the gap does not 
depend very greatly on the minimum distance between the ice floe and the hull 
surface when the minimum distance between the surfaces is less than 0.1 mm. The 
effect of the size of the ice floe, the curvature of the hull surface, the velocity of the 
hull surface, and the inclination angle of the ice floe on the pressure in the gap were 
also studied in this chapter. The change in the gap geometry with time, the velocity of 
the hull surface, and the inclination angle of the ice floe had a considerable effect on 
the pressure in the gap for the geometry considered in the analysis. 
 
The analysis confirms that in theory the change in pressure in the gap between the hull 
and the ice floes may exist as a result of two phenomena: inertia forces or a change in 
the gap geometry, or both. 
 
In Chapter 7 the effect of surface roughness on level ice resistance was briefly 
discussed. The model test results given in Chapter 2 were discussed in the light of the 
experience gained from the calculations presented in Chapter 6. For several reasons, 
no calculation of the pressure decrease in the gap between the model surface and the 
ice floes was possible in most of the cases. For example, the size of the submerged ice 
floes was not known. Additionally, in most cases the hull form was rather flat, unlike 
in “normal” convex hull shapes.  
 
The analysis given above concerning the observed increase in ice resistance with 
speed of Segment No. 2 in the model tests of Liukkonen (1989a) indicates that the 
effect of the change in pressure below the ice floes on ice resistance of Segment No. 2 
requires further research. It is possible that the change in pressure below the ice floes 
in ice model tests is higher than the change in pressure below the model in open water 
tests. This phenomenon together with the effect of viscous forces between the model 
and ice floes may explain the measured increase of resistance with velocity for 
Segment No. 2. 
 
The calculations indicated that the origin of the measured low pressure in the model 
tests of Puntigliano (1995) may be the change in the hull geometry when ice floes are 
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submerged by the hull. Although several assumptions had to be made in the 
calculations in order to get similar results to those in the model tests, the origin of the 
measured low pressure resulting from the change in the hull curvature seems to 
explain the phenomenon for this type of hull form qualitatively. 
 
It should also be noted that, if the magnitude of pressure below the ice floes in ice 
model tests is different from the magnitude of pressure below the model hull in open 
water tests, then it is not quite clear how well the pressure measurements in ice reflect 
the real change of the pressure in the gap between the model surface and the ice floes. 
This issue could be studied by measuring the water level in the gaps between the 
segments in model tests in ice and in open water. 
   
In addition, calculation of the pressure decrease in the gap between the hull surface 
and the ice floes for "real" hull surfaces was discussed and the effect of the low-
pressure phenomenon on the results of measurements made in friction panel tests was 
also highlighted in Chapter 7. 
 
In Chapter 7 calculations made with parameters given on a full scale and on a model 
scale using several model-scale factors were also presented. These calculations 
indicated that the pressure decrease phenomenon is relatively well modelled in model-
scale tests, but the viscous forces cause a considerable error in the results obtained by 
the model tests. 
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9 Conclusions 
 
The following two main conclusions can be drawn concerning the origin of the low-
pressure phenomenon: 
 

1. The low-pressure phenomenon in the gap between the hull surface and ice 
floes may be caused by the inertia forces under favourable conditions, as 
was proposed in Kämäräinen (1993b). However, the existence of this 
phenomenon requires a continuous shear-driven flow of water in the gap 
between the hull surface and the ice floes. In this phenomenon the 
existence of low average pressure in the gap is very sensitive to the 
position of the ice floes. 

2. It is also clear that a change in the hull geometry can be a reason for the 
existence of low pressure in the gap between the hull surface and ice floes, 
as was proposed by Enkvist (1972) for convex hull forms and by 
Puntigliano (2000) for both convex and concave hull forms. The existence 
of this phenomenon does not require a continuous shear-driven flow of 
water in the gap between the hull surface and the ice floes. 

 
The following conclusions related to the low-pressure phenomenon can also be 
drawn: 
  

3. Change of pressure below the ice floes has a negligible effect on ice 
resistance in the sliding phase, if it is assumed that the pressure below the 
ice floes has an effect on the pressure above the ice floes through the gaps 
between adjacent ice floes. 

4. Change of pressure below the ice floes should be taken into account in 
model tests when measurements of resistance of individual segments cut 
in the transverse direction are evaluated.  

5. The low-pressure phenomenon has to be taken into account when the ice 
resistance of ships in level ice is calculated, since the force resulting from 
a pressure decrease in the gap between the hull surface and ice floes may 
be several times higher than the force resulting from the static lift of the 
ice floes. 

6. The low-pressure phenomenon also has to be taken into account in friction 
panel tests, as was pointed out by Puntigliano (2003).   

7. On a full scale the frictional resistance caused by the low pressure in the 
gap between the hull surface and the ice floes and the static lift of the ice 
floes is higher than the resistance resulting from viscous forces in the gap. 

8. In model-scale tests the viscous forces in the gap between the hull surface 
and the ice floes may cause considerable error in the full-scale prediction 
of level ice resistance. 

9. Concerning the low-pressure phenomenon, the hull curvature along the ice 
floe trajectory should be constant and as low as possible in order to avoid 
decrease of pressure in the gaps between the hull surface and the ice floes 
when breaking level ice. An inclined cylindrical bow form can be 
considered to be close to an optimal hull form for this purpose. 

 
 
 



 151 

More research is required on the following topics: 
 

1. There is insufficient knowledge about the boundary conditions at the 
edges of individual ice floes, as well as the distance of the ice floes from 
each other in the sliding phase. Model- and full-scale tests should be 
conducted in order to further investigate this issue. 

2. The amount of full-scale data on the low-pressure phenomenon is still 
quite limited. More tests should be performed on a full scale using 
different hull forms to further investigate the phenomenon. It should 
especially be noted that, if the magnitude of pressure below the ice floes 
in ice model tests is different from the magnitude of pressure below the 
model hull in open water tests, then it is not quite clear how well the 
pressure measurements in ice reflect the real change of the pressure in the 
gap between the model surface and the ice floes. This issue could be 
studied by measuring the water level in the gaps between the segments in 
open water tests and in model tests in ice. 

3. The effect of snow and slush on level ice resistance requires further 
studies. 

4. The effect of air bubbles in the fluid between the hull surface and the ice 
floes was not studied in this thesis. This issue also requires further studies. 
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