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At low temperatures submicron-size structures may exhibitcertain distinctive quantum features. These include, e.g.,
quantum interference effects, many-body correlation effects and different collective phenomena. At the borderline of
the microscopic and macroscopic world resides a regime which is called mesoscopic. Mesoscopic systems are small
enough to exhibit quantum coherent behavior, yet they contain a sufficiently large number of particles to allow a
statistical description. Mesoscopic conductors may be considered as a realistic platform for information processing
and future nanoelectronics since they allow for scalability and integration to larger circuits.

The charge transfers through disordered mesoscopic conductors exhibit different kinds of variations referred as
mesoscopic fluctuations, e.g., noise, universal conductance fluctuations, and higher-order fluctuations. Containing
information on the physics of the transport phenomenon not contained in conductance, these phenomena provide a
delicate way to probe quantum coherence in disordered structures. Moreover, mesoscopic fluctuations can be used as
a test bench for conventional condensed matter theories. Inthis Thesis, mesoscopic fluctuations are studied in order to
extend the existing theories for the fluctuation point of view, for example, for the superconducting proximity effect,
reflectionless tunneling, and weak localization.

When a normal metal is in contact with a superconductor, the superconducting proximity effect induces coherent
correlations of electrons and holes in the former. Studyingshot noise indicates that, in addition, the proximity effect
induces anticorrelations between different electron-hole pairs in a normal metal. In this Thesis, for example, noise
correlations in phase coherent normal-superconducting structures are investigated. In normal metals, weak
localization behavior is considered. For example, a novel scaling relation for cumulants characterizing conductance
fluctuations is found.

The quantum coherent phenomena considered in this Thesis have been studied by using three different kinds of
theoretical approaches: the quasiclassical Keldysh Green’s function formalism, the random matrix theory, and a
numerical scattering approach.
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Matalissa lämpötiloissa riittävän pienten rakenteiden kvanttimekaaniset koherentit ominaisuudet nousevat esiin.
Tällaisia ovat esimerkiksi kvantti-interferenssi-, monihiukkas- ja erilaiset kollektiiviset ilmiöt. Mikroskooppisen ja
makroskooppisen maailman välissä sijaitsee mesoskooppiseksi kutsuttu alue. Mesoskooppiset systeemit ovat tarpeeksi
pieniä, jotta kvanttikoherentteja ilmiötä voi esiintyä. Toisaalta ne sisältävät riittävästi hiukkasia tilastollisen kuvauksen
kannalta. Mesoskooppisten johteiden voidaan odottaa soveltuvan tulevaisuuden nanoelektroniikan käyttöön, sillä niistä
koostuvia komponentteja on mahdollista liittää yhteen suuremmiksi virtapiireiksi.

Epäjärjestyneissä mesoskooppisissa johteissa kuljetusilmiöitä kuvaavat suureet vaihtelevat aika- ja
ensemble-keskiarvojensa ympärillä. Nämä mesoskooppisiksi fluktuaatioiksi kutsutut ilmiöt sisältävät informaatiota,
jota ei ole esimerkiksi keskiarvoistetussa johtavuudessa. Tässä väitöskirjassa laajennetaan aiempia teorioita
käsittelemään mesoskooppisia fluktuaatioita, esimerkiksi suprajohtavan läheisilmiön, heijastumattoman tunneloinnin ja
heikon lokalisaation ilmiön yhteydessä. Joissakin tapauksissa mesoskooppiset fluktuaatiot tarjoavat myös uuden tavan
testata olemassa olevia kondensoituneen aineen fysiikan teorioita.

Suprajohteessa kiinni olevaan normaalimetalliin indusoituu suprajohtavan läheisilmiön vaikutuksesta elektronien ja
aukkojen koherentteja korrelaatioita. Ns. raekohinan tutkiminen näyttää, että tämän lisäksi läheisilmiö indusoi
normaalimetalliin erillisten elektroni-aukko -parien välisiä antikorrelaatioita. Tässä työssä on tutkittu esimerkiksi
virran raekohinaa vaihekoherenteissa normaali-suprajohtavissa rakenteissa. Normaalimetalleissa on tarkasteltu
esimerkiksi heikon lokalisaation ilmiötä, johon liittyenlöydetään konduktanssifluktuaatioita kuvaaville kumulanteille
uusi skaalauslaki.

Kvanttikoherentteja ilmiötä on tässä työssä tutkittu käyttäen kolmea erilaista teoreettista lähestymistapaa:
kvasiklassista Keldysh Greenin funktio -formalismia, satunnaisten matriisien teoriaa sekä numeerista
sirontalähestymistapaa.
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1 Introduction

Physical systems cold and small enough may exhibit certain distinctive quantum

features. First, because of the wave nature of matter, the alternative paths for

its time evolution influence simultaneously the outcome of the measurement. For

example, an electron may interfere with itself [1–3]. Second, it may be necessary to

know the behavior of an object as a whole instead of the sum of its parts. The many-

body correlation effects that may affect the behavior of the electric current [4–6]

provide one example. Third, a large numbers of particles may collectively behave

like a single quantum state. For instance, when a piece of metal has turned into a

superconducting state, its conduction electrons share a definite quantum mechanical

phase [7–10]. These phenomena constitute examples of the features characteristic

for systems referred as coherent.

Figure 1.1: Scanning electron microscope image of a normal-superconducting
nanostructure. The bright areas are patterned from a silver film (a normal metal).
The slightly darker wires are made of aluminum (a superconductor below its critical
temperature Tc). The types of thermoelectric effects studied in Paper IV can be
measured in this kind of structures. In a bulk metal, Tc for aluminum is 1.1 K; in
a film, Tc is somewhat higher. (Courtesy of Igor Sosnin, the scale bar added by the
author.)

At the borderline of the microscopic and macroscopic world resides a regime

which is called mesoscopic. Mesoscopic systems are small enough to exhibit quantum
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coherent behavior, yet they contain a sufficiently large number of particles to allow

a statistical description, e.g., through distribution functions. Mesoscopic conductors

[11–13] (Fig. 1.1) may be considered as a realistic platform for future nanoelectronics

since they should allow for scalability and integration. Such mesoscopic circuits

might deliver new applications, such as quantum computing. Making use of novel

device architectures, e.g., superconducting transistors or quantum bits, they might

also outperform conventional electronics due to higher current densities, lower power

consumption and faster switching times.

Figure 1.2: The current transferred through a mesoscopic conductor varies in time
(a). The width of the current distribution in Fig. 1.2a is

√

SI/t0, with the noise
power SI and measurement time t0. In an ensemble of disordered conductors, the
conductances vary from sample to sample (b). The width of the conductance distri-
bution in Fig. 1.2b is

√
Var G.

In all electronic conductors, the flow of electric current exhibits statistical fluc-

tuations. In macroscopic conductors, the noise in the flow of particles mostly arises

from the dominant thermal fluctuations. However, even at vanishing temperature,

the charge transferred through a mesoscopic sample in unit time varies due to the

quantum, i.e., discrete and probabilistic, nature of the transport process (Fig. 1.2a).

Further, also the time-averaged quantities change if the configuration of disorder

which scatters the particles in the structure is altered, e.g., through annealing the

sample for a short time [14] (Fig. 1.2b). These variations are called mesoscopic fluc-
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tuations. Mesoscopic fluctuations provide information on the physics of transport

phenomenon not contained in conductance, e.g., on the unit charge of the elementary

excitations and on the correlations between charge transfers.

In a metal, conduction electrons scatter from impurities and imperfections of the

underlying ionic lattice such that usually the mean free path lel, the length scale over

which the electrons lose their memory1 on the direction of their initial velocity, is

of the order of 1− 100 nm. However, elastic scatterings from nonmagnetic or static

impurities do not destroy the fixed phase relationship of electrons [15]2. Hence, at

low temperatures, the phase coherence length λϕ, i.e., the distance over which the

phase of an electron remains correlated to its initial value, may vastly exceed lel.

Since the end of 1980s, experiments at sub-Kelvin temperatures have been performed

with λϕ of the order of micrometers [18–21], and in recent measurements [22–24],

λϕ of the order of one hundred micrometers has been achieved.

Transport experiments may also yield more specific information about the phase

coherence of the electrons. The types of transport experiments mentioned here may

be conducted [25], for example, by the use of the structures consisting of wires or

loops made of normal (e.g., Au, Pd, Ag or Cu) or superconducting (e.g., Al, Pb,

Sn or Nb) metals, in carbon structures [26, 27], or in a two-dimensional electron

gas formed at an interface between two different semiconductors (e.g., AlGaAs and

GaAs). For example the standard procedure to determine λϕ is to fit the predic-

tion of the theory for the quantum interference effect of weak localization [28] to

magnetoresistance measurements. In the past few years, advances on the measure-

ments [29–34] of higher-order mesoscopic fluctuations have also been made, and

presently experiments up to the sixth current cumulant and fourth conductance cu-

mulant have been performed. In normal-metal structures the nature of transport

is typically diffusive but, e.g., in graphene, carbon nanotubes, or two-dimensional

electron gas at a semiconductor interface, electrons can travel over the length scales

1The time evolution of particles is invertible but this statement has to be understood in a more
macroscopic sense. That is, if the exact impurity configuration is unknown, the information about
the initial quantum state vanishes on a time scale τel = lel/vF , with vF the magnitude of the Fermi
velocity.

2The energy exchange between a system and its environment is not necessary for dephasing nor
do inelastic processes always destroy phase coherence [16, 17].



– 4 –

of the order of micrometers without being scattered. In these condensed matter sys-

tems, the major sources for dephasing are usually electron-electron, electron-phonon

and magnetic impurity interactions [35].

There are several reasons to investigate mesoscopic fluctuations in phase coher-

ent systems. First, studying fluctuations is a way to extend the existing theories for

the fluctuation point of view, for example, for the superconducting proximity effect,

reflectionless tunneling, or weak localization. This is one of the goals of this Thesis.

As an example, the superconducting proximity effect induces sort of ”superconduct-

ing” properties in a normal metal. Until the beginning of this decade, the studies

of the superconducting proximity effect concentrated on the influence of the effect

on electric conductance. Since the discovery of the phenomenon it has been known

that due to the superconducting proximity effect correlations between electrons and

holes in a normal-metal arise. Studying shot noise (Papers II and III) reveals that,

in addition, the superconducting proximity effect induces anticorrelations between

different electron-hole pairs in a normal metal.

A second motivation for the study of mesoscopic fluctuations is the fact that

they can be used as a test bench for conventional condensed matter theories. For

example, the one-parameter scaling model [36] is a kind of cornerstone of mesoscopic

physics. In Subs. 2.7 we introduce the conductance and current distributions char-

acterizing mesoscopic fluctuations and define conductance and current cumulants.

The one-parameter scaling hypothesis suggests that the dimensionless conductance

g ≡ hG/e2 is the only relevant parameter that governs the evolution of conductance

distribution with sample size L. A well-known consequence of the noninteracting

scaling model is that for the nth conductance cumulant, say, in the absence of

time reversal symmetry, one has 〈〈gn〉〉 ∼ 〈g〉2−n (see, e.g., Ref. [37]). Or so it was

thought. In Paper I we prove by a detailed calculation that the correct result for

the conductance cumulants higher than second is actually 〈〈gn〉〉 ∼ 〈g〉−n. Both

expressions, however, yield small values for these higher-order cumulants. But in

the experiments [29], where the third and fourth conductance cumulants in metallic

wires were measured, considerably larger values were observed under certain condi-

tions. If correct, these results of the measurements would constitute a violation of
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the one-parameter scaling model. A noninteracting model may also bear relevance

in the studies of interactions. Mohanty and Webb, the authors of Ref. [29], suggest

that the failure of the scaling model in these experiments would be caused by the

electron-electron interactions but these conclusions have not been accepted without

skepticism (see Refs. [38, 39]) and the situation has remained somewhat unclear.

Besides these measurements of higher-order conductance cumulants, in another ex-

periment, inconsistencies were found when λϕ was inferred from two independent

methods: through weak-localization measurements and the measurements of the

time-dependent universal conductance fluctuations [40].

A third aspect in the study of fluctuations is more technologically oriented. For

example, multiterminal structures carrying supercurrent through a normal-metal

weak link have been suggested for a realization of a superconducting transistor [41],

and have been used for quantum-bit measurements [42]. Quantum information may

be encoded in the direction of the supercurrent which can be controlled by tun-

ing the electrostatic potential of a normal-metal terminal [43, 44]. Recently, the

nonequilibrium current noise in such superconducting transistors has been investi-

gated (see, e.g., Paper II). In some cases the current fluctuations might find appli-

cation relevance, such as, shot noise which can be used to measure the properties of

normal-superconducting interfaces as we discuss in Subs. 2.4 and Paper III.

Outline of the Thesis

This Thesis presents the author’s work on the theory of quantum coherent meso-

scopic systems with the emphasis on mesoscopic fluctuations. The overview serves as

an introduction to Papers I–V that contain the author’s contributions to the topic.

Section II describes, on a qualitative level, some of the quantum coherent effects

studied in this dissertation. The treatment of Sec. II should be accessible also for

nonspecialists. In the Secs. III–V, a short introduction, from a perspective deter-

mined by the focus of this Thesis, to the quasiclassical Nambu-Keldysh formalism,

the random matrix theory, and the scattering approach to quantum transport is

given. The presentation in Secs. III–V is targeted for a reader who wishes to follow

the calculations in more detail. Section VI summarizes the results and discusses
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some open problems and the development of the field.
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2 Quantum coherent transport phenomena

2.1 Superconductivity and supercurrent

Many metals, such as aluminum, lead, tin or niobium, can carry electric current

without dissipation, supercurrent, below certain material specific critical tempera-

ture Tc. For conventional superconductors Tc ranges from less than 1 K to around 20

K [10,45]. Below Tc, correlated pairs of the conduction electrons, Cooper pairs, are

formed. In conventional superconductors, the Cooper pairing is brought forth by an

attractive interaction, with coupling strength λ, which is mediated by phonons. The

average distance of the conduction electrons is of the order of Fermi wavelength or

O(0.1 nm) [45]. The characteristic length, the superconducting coherence length ξS ,

over which the correlations, described by the pairing amplitude F , of the quasipar-

ticles extend, is much larger, typically of the order of O(10− 100 nm) [46]. Further,

the global gauge symmetry is broken and the quantum mechanical phase of the elec-

tron system becomes ”rigid” [47]. Hence a pairing potential ∆ = |∆|eiφ = λF , which

essentially describes a macroscopic wave function, may be introduced [7–10]. In a

normal metal, the state of an electron may be changed by adding an arbitrarily small

amount of energy but there is a minimum amount of energy, |∆| ∼ Tc, that must be

supplied in order to break apart or excite the electrons bound into Cooper pairs3.

By coherent tunneling of Cooper pairs, supercurrent also flows through a thin in-

sulating barrier, a so-called weak link, between two superconductors provided there

is a finite phase difference between the superconductors [48]. Through a different

mechanism, a weak link composed of a wider piece of a normal metal or semicon-

ductor may also carry supercurrent [49]. In a two-terminal setup, the supercurrent

can basically be controlled only by the phase difference between the superconductors

and the external temperature, but in multi-terminal devices it is possible, and also

experimentally feasible [43,44], to invert the direction of supercurrent by an external

control voltage. This may be achieved by applying the control voltage V in a normal

terminal connected to a weak link and tuning the microscopic current-carrying elec-

3Natural units with ~ = kB = 1 are used throughout the Thesis unless otherwise indicated.
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tronic states through V [41,50,51]. A possible setup is illustrated in Fig. 2.1, where

the supercurrent I flows between the superconducting terminals T1 and T2 and V

is applied to the normal terminal T3. This kind of structure is particularly relevant

for information processing since it is suitable for a realization of a superconducting

transistor. In Paper II we studied current noise in such nanostructures. Unlike a

T

T

T
U=V - (I + I )2 I   -

 I2
1

I + I
1

1

2

3

Figure 2.1: Setup schematic of a three-terminal nanostructure.

dissipative current, supercurrent also flows when the system is in equilibrium, with-

out any applied voltage. Since it is a ground state property of the system, one may

anticipate that supercurrent does not fluctuate4. Neither does supercurrent induce

its own correlations in the current fluctuations in the presence of dissipative currents.

Consider, e.g., the three-terminal setup in Fig. 2.1, consisting of diffusive wires. As

long as only normal currents are concerned, the correlations of current fluctuations

in, say, terminals 2 and 3, measured by covariances of incoming charges, depend

on the direction of the current I. However, if the current I is supercurrent, these

covariances are not altered upon the reversal of I. This means that the dissipative

current is in no way correlated with the supercurrent. However, the presence of the

latter changes the correlations of the charge transfers, and the I − V curve, in the

previous (see Paper II).

4Under certain conditions coherent multiple Andreev reflections may change this picture, see,
e.g., Ref. [52].
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2.2 Andreev reflection and superconducting proximity effect

In the first quantization picture, the scattering processes at the normal-superconducting

interface may be viewed by studying the quasielectrons and holes reflected at the

boundary. A quasielectron incident from the normal metal with an energy below

the gap |∆| can not enter the superconductor but is reflected back as a hole which

carries information about the phase of the incident particle and the superconduct-

ing condensate, cf., Fig. 2.2a. This is called Andreev reflection [10, 53, 54]. In the

process an additional electron is removed from the normal side and a Cooper pair is

formed in the superconductor. Close to the Fermi surface, the reflected hole has a

velocity with equal magnitude but opposite direction as the incident electron. Im-

mediately after the Andreev reflection the electron-hole pair is coherent. Hence close

to the Fermi surface, the reflected hole-like wave takes the same path as the incident

particle-like wave but in the opposite direction. With larger energies, however, the

electron-hole pair dephases. The picked-up phase difference is proportional to the

wave vector mismatch and the distance travelled from the interface δϕ = 2
∫

dx · δk
(Fig. 2.2b). In the opposite process, an incident hole may reflect as an electron such

that a Cooper pair is removed from the superconductor.

2 δk

ε
EF

k k kFF F

eh+ -

E

k
- δk + δk

ε
F

E

x

|∆|

N S

E
e

h

-

+

k

k

F

F

+ δk

- δk

a)               b)

Figure 2.2: Schematic illustration of the Andreev reflection at an NS interface in
real (a) and momentum (b) space. The dephasing rate of electrons and holes is
proportional to the wave vector mismatch δk.
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In a piece of a normal metal (N) in good contact to a superconductor (S) the

local density of states and transport properties near the interface are modified [55].

The electron-hole pairs, called Andreev pairs, remain correlated in the normal metal

since F is a smooth function across the interface (Fig. 2.3). This is called the super-

S
N

F(x)

x

ξ

|∆|e iφ

Figure 2.3: Superconducting proximity effect in a typical normal-superconductor
contact, an overlap junction. In a normal metal, the superconducting pairing ampli-
tude decays on a length scale ξ. The Andreev reflected particle carries information
about the phase of the incident particle and the superconducting condensate.

conducting proximity effect. However, there is no attractive interaction between the

electrons on the normal side. Consequently F decays exponentially on the length

scale ξN . In the case of diffusive transport, ξN =
√

D/ε∗, with D the diffusion con-

stant, may be hundreds of nanometers at low temperatures. Here ε∗ is the largest

relevant energy scale, which may be, e.g., T , or, in nonequilibrium, eV .

2.3 Reentrance effect

How does the proximity effect affect the transport characteristics of a normal metal?

Let us consider a diffusive wire between N and S terminals (Fig. 2.4). The effective

charge carrying unit is a Cooper pair with charge 2e. The characteristic energy

scale or the width of the energy levels of the system, Thouless energy ET = D/L2,

is inversely proportional to the time it takes for a particle to diffuse across the sample
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of length L and with diffusion constant D.

L

Figure 2.4: Long NS junction composed of normal and superconducting terminals
and a diffusive normal-metal wire. The superconducting proximity effect affects the
transport properties of the system when electrons and holes dephase on a length
scale comparable to the sample size, i.e., L ∼ ξ =

√

D/ε.

When the transport is fully phase coherent, i.e., at low voltages, the Andreev-

reflected partial waves trace back the trajectory of the initial waves. Even though the

effective charge in the transport process is twice that of a single electron, conductance

is not altered, since the effective length in the process is also doubled [56]. The

trajectory related to the transfer of charge 2e is composed of the paths of the initial

and reflected particles.

Also in the case where electrons and holes dephase on a length scale much smaller

than the wire length, and their motion is totally uncorrelated, i.e., at high voltages,

conductance exhibits its normal-state value. When, however, the electrons and

holes dephase at the length scale comparable to the wire length, i.e., at the voltages

of the order of ET /e, their correlations alter the transport characteristics. The

differential conductance exhibits a maximum at about eV = 5ET and a similar, but

not identical, effect is observed in the differential shot noise (cf., Papers II and III).

2.4 Reflectionless tunneling

In electric circuits, an insulating barrier can be formed at the interface of two metals,

e.g., by oxidation. Consider a normal and superconducting metal separated by such

a barrier and quasielectrons and holes incident from the normal side and undergoing

normal and Andreev reflections at the interface. A particle-like wave which hits the
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barrier is partially retroreflected back as a hole and partially reflected as a particle-

like wave which may again hit the barrier having scattered in the diffusive metal

(see Fig. 2.5). Near the Fermi surface, the quasiparticles (holes) and the Andreev-

reflected holes (quasiparticles) move along the same paths in opposite directions. On

the trajectories which begin and end at the barrier, the particle and hole-like waves

constructively interfere which increases the number of ”attempts” for transmission.

If the material on the normal-metal side is disordered enough, many scatterings

between the diffusive metal and the tunneling barrier take place, and conductance

through the barrier is increased [57, 58]. Ideally, the conductance at low voltages

equals that of a transparent contact. Hence the phenomenon is called reflectionless

tunneling. At larger energies, where the paths of the quasiparticles and retroreflected

holes do not coincide, the effect is suppressed. In paper III we showed that also shot

noise is increased by reflectionless tunneling. Since the effective charge characterizing

shot noise is a function of the barrier height, shot noise may be used to measure the

strength of the insulating barrier.

Figure 2.5: Illustration of the reflectionless tunneling effect. On the trajectories
which begin and end at the barrier at the NS interface, the particle and hole-like
waves constructively interfere. This modifies the transport characteristics at low
voltages.
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2.5 Localization and fluctuations

In a disordered medium, the direction of motion of quasiparticles is randomized due

to scatterings on a length scale lel. Weak localization and weak antilocalization

result from the interference of the closed trajectories of the electron and their time-

reversed counterparts (Fig. 2.6). In a phase coherent conductor, in the presence

B

Figure 2.6: Illustration of the weak (anti)localization effect. The interference be-
tween the partial waves on a closed trajectory and its time-reversed counterpart may
increase or decrease the coherent backscattering probability. The magnetic field B
suppresses the effects.

of time-reversal and spin-rotation symmetries, the amplitude of a closed Feynman

path equals that of the time-reversed path. In the case of broken spin rotation sym-

metry, however, the spins of the partial waves are rotated in negatively correlated

directions5. Consequently, destructive interference of the closed paths may be re-

alized in a material with strong spin-orbit interaction, or through the Elliot-Yafet

mechanism [59]. Strong spin-orbit scattering is observed, e.g., in samples made of

gold [60, 61]. The resulting enhanced (reduced) backscattering reduces (enhances)

conductance, and is called weak (anti)localization. A magnetic field breaks time-

reversal invariance and suppresses these effects. Putting all together, in a normal-

metal conductance is modified by a term proportional to (m0 − 2)/m0, where m0

may obtain the value 1, 2 or 4, and describes the symmetries in the system [62–64]

(cf., Sec. 4 and standard classes in Table 4.1).

5The statistical expectation value of the inner product between a normalized spin state and its
time-reversed counterpart equals −1/2.
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If the disorder configuration of a mesoscopic sample is altered, e.g., through

annealing, its conductance changes. These conductance fluctuations have a univer-

sal magnitude with the variance Var G = 4e2/(15hm0) [62–64]. An ensemble of

”disorder realizations” may also be generated by sweeping the magnetic field [65] or

changing the gate-voltage [66] in the setup. This phenomenon, referred as universal

conductance fluctuations, is also due to the interference of the partial waves of an

electron.

The conductance of an incoherent wire is inversely proportional to the length L of

the wire according to Ohm’s law, but in a phase coherent wire quantum interference

may change the situation drastically. If L is larger than the Anderson localization

length λloc,
6 i.e., the scale on which the nature of the electronic states is localized

instead of spatially extended, the transmission eigenvalues are close to zero and

conductance decreases exponentially as a function of L [67]. This is referred as

strong localization. In the metallic region, the Ohm’s law is valid fairly well but

corrections, e.g., due to weak localization arise. The transmission eigenvalues are

not evenly distributed in this case either, but the corresponding distribution has a

bimodal shape [68, 69]. The region where the transmission eigenvalues are close to

unity, with L comparable to lel, is called ballistic.

2.6 Correlations of the charge transfers

Consider elementary excitations with charge q traversing through a mesoscopic sam-

ple and crossing a counter at a terminal at random times {ti}. In the static case the

average current is Ī = 〈q∑i δ(t − ti)〉. The zero-frequency noise power, i.e., shot

noise, describes correlations of current at different times t and t′. Shot noise reads

S = 2

∫ ∞

−∞
d(t− t′)

〈

Î(t)Î(t′)− Ī2
〉

= 2

∫ ∞

−∞
d(t− t′)

〈

q2
∑

ij

δ(t− ti)δ(t′ − tj)− Ī2

〉

= 2qĪ + 2

∫ ∞

−∞
d(t− t′)

〈

q2
∑

i6=j

δ(t− ti)δ(t′ − tj)− Ī2

〉

.

(2.1)

Thus the shot noise yields information on the effective charge carrying unit q in the

transport process. Generally, the correlation of two separate statistical variables Ai

6In a quasi-one dimensional conductor the localization length is given by λloc = Nclel.
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and Aj (with i 6= j) is measured by 〈AiAj − ĀiĀj〉. In Eq. (2.1), the second term

on the second line describes the correlations between separate transport events. It

vanishes when the different processes are uncorrelated and is negative in the presence

of anticorrelations. In a tunnel junction or a vacuum diode, transport processes are

uncorrelated and the shot noise is given by the Schottky formula S = 2eĪ [70]. In

an NS junction, in the absence of the superconducting proximity effect, shot noise,

S = 4eĪ , as well as the effective charge (cf. Subs. 2.2) is doubled.

Except for the tunneling limit, Fermi statistics reduce shot noise below the Schot-

tky value. In terms of the transmission eigenvalues {Ti}, the differential shot noise

is given by dS/dV = (4e2/h)
∑

i Ti(1 − Ti), as long as energy is conserved in the

transport process. Due to the Pauli principle, open (Ti = 1) or closed (Ti = 0)

transmission channels do not fluctuate or contribute to the shot noise. In a diffusive

normal-metal wire, where the transmission eigenvalue density takes a bimodal form

(cf., Subs. 2.5, Fig. 4.2), shot noise has a universal value S = (2e/3)Ī [71]. In a

long NS junction (Fig. 2.4), at low and high voltages where the superconducting

proximity effect is negligible, shot noise is given by S = (4e/3)Ī . At voltages of the

order of ET /e, besides correlations between electrons and holes, superconducting

proximity effect induces anticorrelations between Andreev pairs, which suppresses

shot noise. In Paper II we found that the low-voltage behavior of shot noise is a

result of a competition between anticorrelation of Andreev pairs and the depression

of the local density of states.

2.7 Conductance and current cumulants

The types of fluctuation and localization phenomena discussed in Sec. 1 and Subs. 2.5,

2.6 may be conveniently studied by the distributions of two dimensionless vari-

ables: N , the number of particles transmitted through a sample in unit time and

g = hG/e2, a dimensionless conductance. The probability distribution P (x) of

a statistical variable x may be characterized by the generating function f(y) and
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x

Figure 2.7: Illustration of the cumulants κ1 (average), κ2 (width), κ3 (”skewness”)
and κ4 (”sharpness”) of a probability distribution.

cumulants κn

f(y) ≡ ln〈eyx〉 = ln

(
∑

x

P (x)eyx

)

= ln

(∫

dxP (x)eyx

)

, κn ≡
∂n

∂y
f(y)|y=0.

(2.2)

In the first equation, the third and fourth expression apply for a discrete and con-

tinuous variable x, respectively. These definitions imply that the first and second

cumulants are the mean and variance of P (x), respectively, while the higher cumu-

lants measure the deviation of P (x) from the Gaussian form (Fig. 2.7)

κ1 = 〈x〉, κ2 = 〈(x−〈x〉)2〉, κ3 = 〈(x−〈x〉)3〉, κ4 = 〈(x−〈x〉)4〉−3〈(x−〈x〉)2〉2.
(2.3)

Current cumulants Cn are obtained by making in Eqs. (2.2), (2.3) the substitutions

x→ N, P (x)→ Pt0(N), κn → Cn, (2.4)

with Pt0(N) the probability of N particles being transmitted through a sample in

time t0. For conductance cumulants, the notations

x→ g, P (x)→ P (g), κn → 〈〈gn〉〉 (2.5)

are usually adopted. In Paper I the six lowest conductance cumulants and the ten

lowest current cumulants for a quasi-one-dimensional wire in the metallic region

were calculated.
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3 Nambu-Keldysh formalism

This Section gives a brief introduction to quasiclassical Keldysh Green’s function

formalism. This method has become the standard approach to study nonequilib-

rium quantum transport in diffusive normal-superconducting nanostructures but it

can not account for such interference effects as the localization behavior of electronic

states or conductance fluctuations. The equation governing the transport statistics

in such systems is the Usadel equation [see Eq. (3.10)] for a generalized quasiclassical

Green’s function. In principle, it is possible to describe the transport characteristics

of a given system by a method based on a direct discretization of the Usadel equation.

For noise (or higher current cumulants), such calculations, however, become com-

putationally heavy and do not provide much interpretation for results. A physically

more transparent and computationally more efficient approach is to parametrize the

equations and look for the solutions for these parameters. For conductance, in the

presence of the superconducting proximity effect, such parametrizations have been

used since the 1990s [72]. In the absence of supercurrent, a parametrization to cal-

culate shot noise was recently found [73]. In Paper II we give a parametrization,

applicable also in the presence of supercurrent, to calculate noise correlations.

3.1 Bogoliubov-de Gennes equations

At low temperatures and excitation energies, the conduction electrons of a normal

metal may be described by substituting the non-interacting fermions with elementary

excitations or quasiparticles, each of which carries the same quantum numbers as

the original particles. The quasiparticles may be thought of as particles who perturb

the motion of the particles in their vicinity and are ”screened” by the positive charge

of the background ions. Such Fermi systems, which, in many respects, are analogous

to a Fermi gas, are called Fermi liquids [74–76].

In the presence of attractive interactions this picture has to be modified. The

excitations in the heterostructures consisting of normal metals and spin-singlet su-
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perconductors may be described by the effective one-electron Hamiltonian

Heff =

∫

dr
∑

α

(

ψ̂†
α(r)H0ψ̂α(r) + ψ̂†

α(r)U(r)ψ̂α(r)
)

+∆(r)ψ̂†
↑(r)ψ̂

†
↓(r)+∆∗(r)ψ̂↓(r)ψ̂↑(r),

(3.1)

with H0 ≡ −∇2/2m−EF , and the pairing potential ∆(r) ≡ λ(r)〈ψ̂↑(r)ψ̂↓(r)〉. The

real-space field operator in Schrödinger picture with spin α is denoted by ψ̂α(r) and

λ(r) is the coupling strength. The Hamiltonian Heff may be diagonalized by the

canonical Bogoliubov transformation

Ψ̂(r) ≡




ψ̂↑(r)

ψ̂†
↓(r)



 =
∑

n>0



γ̂n↑




un(r)

vn(r)



− γ̂†n↓




v∗n(r)

−u∗n(r







 . (3.2)

Here Ψ̂(r) is a vector in Nambu, i.e., electron-hole space [77], and γ̂n↑, γ̂
†
n↓ are de-

struction and creation operators for quasiparticles. The amplitudes un(r) and vn(r)

obey the Bogoliubov-de Gennes equations [7]




H0 + U(r) ∆(r)

∆∗(r) −[H0 + U(r)]








un(r)

vn(r)



 = εn




un(r)

vn(r)



 , (3.3)

which constitute a self-consistent set of equations where the pairing potential is

obtained from ∆(r) = λ(r)
∑

n>0 v
∗
n(r)un(r)[1 − 2f(εn)]. Here εn are excitation

energies. For each positive energy solution (un(r), vn(r))T of Eq. (3.3) there exists a

solution (v∗n(r),−u∗n(r))T with negative energy −εn. At the normal-superconducting

interface, λ(r) diminishes to zero at the length scale of the Fermi wavelength. In

practical calculations, the attractive interaction is usually assumed to vanish in the

normal-metal and set to some finite constant in a superconductor.

3.2 Quasiclassical Keldysh Green’s function formalism

Imagine the time coordinate running from ti to tf along the curve c1 and back along

c2 as in Fig. 3.1. This curve, cK , is called the Keldysh contour. The Keldysh

formalism [35, 54, 78, 79] is convenient for the study of systems out of equilibrium,

but also for equilibrium systems it provides a natural theoretical framework. There

are four ways to place two time coordinates t and t′ on the two parts, c1 and c2, of
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c1

2

t
ti

f
cK

t

t’
c

Figure 3.1: The Keldysh contour cK . There are four ways to place two time
coordinates t and t′ on the two parts, c1 and c2, of cK . The ordering corresponding
to the upper-right element of the matrix (3.4) is illustrated in Figure.

the time contour. Hence the Green’s function time ordered with respect to contour

cK may be represented by introducing the following matrix structure

Ǧur(1, 1
′) =




−i〈−→T ψ̂(1)ψ̂†(1′)〉 i〈ψ̂†(1′)ψ̂(1)〉
i〈ψ̂(1)ψ̂†(1′)〉 i〈←−T ψ̂(1)ψ̂†(1′)〉



 . (3.4)

Here the field operators are represented in the Heisenberg picture. In their argu-

ments, a compact notation has been introduced such that 1 ≡ (r1, t1) etc. The

time-ordering and anti-timeordering operators are denoted by
−→
T and

←−
T , respec-

tively. The expectation value 〈. . . 〉 is taken over the quantum state of the system.

In the Green’s function the subscript ur refers to ’unrotated’. All the elements of Ǧur

are not independent but one of the submatrices may be eliminated by performing

the Keldysh rotation7

ĽǦurĽ
†(1, 1′) =




ĜR(1, 1′) ĜK(1, 1′)

0̂ ĜA(1, 1′)



 ≡ Ǧrot(1, 1
′), Ľ = τ̂0⊗(σ̄0−iσ̄2)/

√
2.

(3.5)

This equation may be taken as a definition for the retarded, advanced and Keldysh

Green’s functions, ĜA, ĜR, ĜK . Here τ̂i, σ̄j are matrices in Nambu (̂ ) and Keldysh

(̄ ) space. The spectral or equilibrium properties are described by ĜR and ĜA,

whereas ĜK contains information about the (nonequilibrium) distributions of the

electrons and holes. In the following, the subscripts for Ǧ are dropped since the

derivations of the equations of motion do not depend on the representation of the

7For example in Ref. [78], the transformation Ľσ̄3(·)Ľ on the Green’s function is performed.
Here the matrix σ̄3 has been included in the definition of Ǧur.
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Green’s function. When calculating observables, a specific representation for Ǧ is

chosen.

Below, the derivation of the equation of motion for the quasiclassical Green’s

function, the Usadel equation, is summarized in Keldysh formalism. The starting

point is the Dyson equation for Ǧ, which is called the Gor’kov equation [4, 80]

∫

d1′
(
Ǧ−1

0 − ∆̌− Σ̌
)
(1, 1′)Ǧ(1′, 2) = δ(1 − 2)τ̂0 ⊗ σ̄0. (3.6)

In this formula, the operator Ǧ−1
0 (1, 2) = δ(1− 2)τ̂0⊗ σ̄0

(

iτ̂3
∂

∂t1
+

∇2

1

2m − eφ(1) + µ
)

describes the scattering-free propagation of the electrons while τ̂3 is the third Pauli

matrix. The external potential φ is assumed to vary only on the length scales much

larger than the Fermi wavelength, and the chemical potential is denoted by µ. The

self-energy Σ̌ describes the scattering which is here assumed to be elastic. The

pair-potential matrix related to superconductivity is of the form

∆̌(1, 2) = δ(1 − 2)




0 ∆(1)

∆∗(1) 0



⊗ σ0. (3.7)

The Green’s function Ǧ(1, 2) oscillates rapidly as a function of the relative coor-

dinate ∆r = r2− r1, and its Wigner transformation Ǧ(p, r; t, t′), which is a function

of the center of mass momentum and position, p and r, is strongly peaked at p

near the Fermi surface. If the interference effects second order in ε/EF are ignored

the information contained in these oscillations may be neglected. Hence it is natu-

ral to eliminate the dependence on the magnitude of the momentum and integrate

the Green’s function over ξp ≡ p2/2m − µ. This yields the quasiclassical Green’s

function [72,78,79,81–83]

g̃(r,vF ; ε) =
i

π
−
∫

dξpǦ(ξp,vF , r; ε). (3.8)

Here a stationary case has been assumed and the Fourier transformation from t2−t1
to energy ε has been performed but the quasiclassical approximation does not involve

the temporal coordinates. With momenta far from the Fermi surface, Ǧ(ξp,vF , r; ε)

is dominated by terms ∼ 1/ξp. They contribute, e.g., to the electron density, but are

not altered when the system is driven out of equilibrium. These terms are irrelevant
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for the transport characteristics and the integration −
∫

performed along a specific

contour [78,82,84] neglects them.

For conventional superconductors the dimensionless parameter ∆/EF is of the

order of 10−3. Hence the superconducting coherence length ξS is much larger than

λF , and at sufficiently low temperatures and voltages the dispersion relation around

the Fermi energy for the quasiparticles is linear. Under these conditions the Eilen-

berger equation [84]

vF · ∇g̃(r,vF ; ε) = [−iετ̌3 + iσ̌(r,vF ; ε), g̃(r,vF ; ε)] (3.9)

follows from the Gor’kov equation (3.6). Here τ̌3 is the matrix τ̌3 = τ̂3 ⊗ σ̄0. For

later convenience, a new kind of self-energy term σ̌(r,vF ; ε) = ∆̌ − i〈g̃〉pF
/2τel has

been introduced. Here the last term follows from the Born approximation. In the

dirty limit, i.e., when σ̌ is dominated by strong elastic scattering with 1/τel ≫
ET ,∆, eV, T , the Green’s function g̃ is nearly isotropic. It may be expanded in

spherical harmonics g̃ = ǧ + vF · ǧp such that ǧ and ǧp denote the s-wave and p-

wave components. The self-energy is then σ̌(r; ε) = ∆̌(r)− iǧ(r)/2τel. Furthermore,

g̃, and thus also ǧ, obeys the normalization condition g̃2 = ǧ2 = τ̂0 ⊗ σ̄0 reflecting

the conservation of probability. Multiplying the Eilenberger equation (3.9) by vF

and taking the angular average over its direction gives ǧp = τelǧ∇ǧ. Substituting

this into Eq. (3.9) and taking the angular average yields the Usadel equation

−D
σ
∇ · ǰ(x) ≡ D∇ · (ǧ(r, ε)∇ǧ(r, ε)) = [−iετ̌3 + ∆̌(r), ǧ(r, ε)]. (3.10)

Here the matrix current density ǰ(r) ≡ −σǧ(r)∇ǧ(r) has been introduced. The

diffusion coefficient D = v2
F τel/3 has been assumed to be constant in space, σ =

2e2N0D is the normal-state Drude conductivity and N0 is the normal-state density

of states. In a quasi-one-dimensional diffusive wire with length L and cross section

A the matrix current equals J̌(x) ≡ Aǰ(x) = −LGDǧ(x)∂xǧ(x). Here GD = σA/L

is the normal-state conductance of the wire and x the spatial coordinate along the

wire.

The Usadel equation (3.10) is based on the assumption that ǧ varies smoothly

on the length scale of lel. At the boundaries where ǧ changes rapidly, e.g., at the
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interface with a tunnel barrier created by an oxide layer, or at the interface of two

different metals, the behavior of ǧ may be treated with the help of the boundary

conditions. The Nazarov boundary conditions [85] yield the matrix current through

the interface from the left-hand side (with the Green’s function ǧL) to the right-hand

side (with the Green’s function ǧR)

J̌L→R = −e
2

π

∑

n

2Tn[ǧL, ǧR]

4 + Tn[{ǧL, ǧR} − 2]
. (3.11)

Here {Tn} are the eigenvalues of the transmission matrix (cf. Subs. 4.1) through the

interface. The derivation of Eq. (3.11) employs the normalization of ǧ but does not

assume any specific matrix structure. When the contact resistance 1/GB through

the interface is much smaller than the resistance 1/GD of the wire the boundary

conditions may be deduced from the continuity of ǧ.

With the Keldysh rotation, ǧ is cast to a triangular form in Keldysh space.

Equation (3.5) is also valid with the substitutions Ǧ(1, 1′) → ǧ(r1), Ĝ
R(1, 1′) →

R̂(r1), etc. The retarded part R̂ may be represented by two complex parameters, θ

and φ, characterizing the magnitude and phase of the electron-hole correlations [72]

R̂ = cosh(θ)τ̂3 + sinh(θ)(cos(φ)iτ̂2 + sin(φ)iτ̂1). (3.12)

By their definition, the retarded and advanced Green’s functions are related by the

retarded-advanced symmetry Â = −τ̂3R̂†τ̂3. The distributions of the electrons and

holes are contained in K̂ and can be treated by dividing the functions into even and

odd components with respect to Fermi surface, fT and fL

K̂ = R̂ĥ− ĥÂ, ĥ = fL + fT τ̂3. (3.13)

The even part fT = 1 − f(eV − ε) − f(eV + ε) describes the imbalance between

the hole [1− f(eV − ε)] and electron [f(eV + ε)] distributions. The odd part fL =

f(eV − ε)− f(eV + ε) characterizes the occupation of the electron-hole-pair states.

With this parametrization, at equilibrium with temperature T and potential V , the

definition of ǧ yields in a normal bulk metal

ǧN =




τ̂3 2ĥN τ̂3

0̂ −τ̂3



 , ĥN =




1− 2fN0(ε+ eV ) 0

0 2fN0(−ε+ eV )− 1



 ,

(3.14)
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with fN0(ε+ eV ) = 1/{1 + exp[(ε+ eV )/T ]} the usual Fermi distribution function.

This implies fT (L) = {tanh[(ε+ eV )/2T ]± tanh[(ε− eV )/2T ]}/2 in equilibrium. At

a superconducting terminal one has

ǧS =
|ε|

√

ε2 − |∆|2




R̂S (1− sgn(|∆| − |ε|))R̂SfL

0̂ sgn(|∆| − |ε|)R̂S



 , R̂S = τ̂3 + |∆|eiτ̂3φiτ̂2/ε.

(3.15)

At the NS interface with GB ≫ GN , the distribution of particle-like excitations

equals that of holes and one has fT = 0. Moreover, the Nazarov boundary conditions

imply ∂xfL(x) = 0 across the NS interface, which reflects the fact that the thermal

current into a bulk superconductor vanishes [cf. Eqs. (3.17) and (3.21)].

The retarded and advanced parts of the Usadel matrix equation (3.10) for ǧ are

equivalent to two coupled complex differential equations for θ and φ, which in a

normal metal read

D∇2θ = −2iε sinh θ +
D

2
(∇φ)2 sinh(2θ),

∇ · jE = 0, jE = − sinh2 θ∇φ.
(3.16)

The electrons and holes have slightly different energies around the Fermi surface

and their dephasing is described by the first equation. The second equation is the

conservation law for a spectral supercurrent jE . The kinetic variables fT,L obey two

coupled real linear equations

∇ · jL = 0, jL = DL∇fL − T ∇fT + jSfT , (3.17)

∇ · jT = 0, jT = DT∇fT + T ∇fL + jSfL, (3.18)

where jS is given by jS = Im(jE) and also the coefficients DL,T ,T are functions of the

spectral variables (see Ref. [86]). The conserved quantities jT,L may be interpreted

as spectral charge and energy current densities.

Starting from the definitions, the time-independent charge current density for

spin-degenerate electrons in a diffusive wire with length L and cross section A may
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be calculated as follows

jc =
i~e

2m
(∇1 −∇2)Tr〈τ̂3Ψ̂†(r2, t)⊗ Ψ̂(r1, t)〉|r1=r2

=
e~

4m
∇∆rTr[τ̌KǦ(∆r, r,∆t)]|∆r=0,∆t=0+

= −eN0

2

∫

dξp

∫
dΩp

4π

∫
dε

2π
vTr

[
iτ̌KǦ(ξp,v, r, ε)

]

= −eN0

4

∫

dε

∫
dΩp

4π
vF Tr[τ̌K g̃(r,vF , ε)] =

GDL

8eA

∫

dεTr[τ̌K ǧ(r, ε)∇ǧ(r, ε)]

(3.19)

In the first equality, the factor 2 has been inserted for spin degeneracy. The factor

1/2 arises once from the symmetrization with respect to spatial coordinates and

once more because the field operators take into account both the particle and hole

contributions [cf. Eq. (3.2)]. In the last expression on the first line, τ̌K depends on

the representation of Ǧ. In order to make connection with the Keldysh structure,

the equality i〈Ψ̂†(2) ⊗ Ψ̂(1)〉 = [K̂ + (R̂ − Â)](2, 1)/2 is used. The term R̂ − Â

does not contribute to the nonequilibrium current since it only depends on the

equilibrium properties of the system. Thus with Ǧ equal to Ǧrot [cf. Eq. (3.5)] the

physical current is obtained by picking the Keldysh component and taking the trace

Tr[τ̌K(·)] with τ̌K = τ̂3 ⊗ σ̄1. With Ǧ = Ǧur [cf. Eq. (3.4)], on the other hand,

τ̌K = τ̂3 ⊗ σ̄3 may be used due to the identity K̂(1, 2) ≡ −i〈[Ψ̂(1) ⊗, Ψ̂†(2)]〉 =

−i(〈−→T Ψ̂(1) ⊗ Ψ̂†(2)〉 + 〈←−T Ψ̂(1) ⊗ Ψ̂†(2)〉). On the second line the gradient with

respect to the relative coordinate has been expressed in terms of the center-of-mass

velocity, v. On the third line, the quasiclassical approximation has been adopted

and the contribution of the momenta far from the Fermi surface, which do not

contribute to the current, has been neglected. In the last equality, the diffusive

approximation in a diffusive wire has been employed, and the matrix current density

ǰ = −σN ǧ(r, ε)∇ǧ(r, ε) may be identified in the final form. For the energy current

jQ an analogous expression may be derived.

Putting all together, in the parametrization chosen in Eqs. (3.16)–(3.18) the

observable charge and energy currents are given by

jc = − 1

8e

∫

dεTr[τ̌K ǰ] =
σN

2e

∫ ∞

−∞
dεjT , (3.20)

jQ = − 1

8e2

∫

dεεTr[τ̌K ǰ] =
σN

2e2

∫ ∞

−∞
dεεjL. (3.21)
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Thus the conserved quantities jT and jL in Eqs. (3.17) and (3.18) are the spectral

charge and energy current densities. Their first two terms constitute the dissipative

part and the last ones are the supercurrent parts. The local chemical potential µ(x)

may be defined through the condition that jc through the probe connected to the

terminal with the chemical potential µ, and at a position x to a mesoscopic wire,

vanishes with µ(x) = µ. In a normal-metal terminal, the equilibrium form of fT

[cf. Eq. (3.14)] yields
∫∞
−∞ dεfT = 2µ. Since in the absence of superconductivity T

and jS vanish, Eqs. (3.18) and (3.20) imply µ(x) =
∫∞
0

dεfT (x) in a wire. In an

analogous way it may be shown that the deviation of fL from its equilibrium value

is related to the local effective temperature [87].

3.2.1 Full counting statistics

Consider the electrons transmitted through mesoscopic conductors and being mea-

sured in terminals {Tj}. The numbers N ≡ (. . . ,Nj , . . .) of particles transferred

in unit time t0 vary due to the quantum nature of the transport process and may

be assigned a probability Pt0(N). The full counting statistics [88–91] has recently

become the method of choice to study the current distribution in mesoscopic conduc-

tors. The current distribution Pt0(N) is conveniently discussed through its Fourier

transform and the cumulant generating function S̃(χ)

exp(−S̃(χ)) ≡
∑

N

Pt0(N) exp(iN · χ) = 〈−→T e(−i/2e)
R t0
0

dtχ·Î(t)←−T e(−i/2e)
R t0
0

dtχ·Î(t)〉.

(3.22)

Here χ ≡ (. . . , χj , . . .)
T is called the counting field, the component χj is associated

with the number of particles measured in terminal Tj, and Î = (. . . , Îj, . . .)
T contains

the current operators for the currents flowing into the terminals. The time-ordering

and anti-timeordering operators are denoted by
−→
T and

←−
T , respectively. The nth

current cumulant measured in terminal Tj is obtained from

Cn,j = −∂
nS̃(χ)

∂(iχj)n

∣
∣
∣
∣
χ=0

. (3.23)

The first and second cumulants are directly related to average current and shot

noise, respectively, while the higher cumulants measure the deviation of Pt0(N)
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from the Gaussian form, cf. Subs. 2.7. The cumulant generating function S̃(χ) may

be expressed through a generalized Green’s function ǧ(r,χ). This Green’s function

still satisfies the Usadel equation (3.10) in diffusive wires and the Nazarov boundary

conditions (3.11) at interfaces but its values in terminals are different from ǧ(r).

By the definition (3.22), the CGF measured in a certain terminal may be accessed

by the Green’s function Ǧ(1, 1′;χ) satisfying the following equation of motion [88,

90,92]

[

i
∂

∂t1
− Ȟ(1) +

χj

2e
τ̌K(∇Fj(r1)) · lim

r1→r′
1

e

2m
(∇r1

−∇r′
1
)

]

Ǧ(1, 1′;χ) = δ(1 − 1′)

(3.24)

The function Fj(r1) has to be such that it changes smoothly from 1 to 0 across some

surface Bj inside the terminal Tj (Fig. 3.2). Provided Fj(x) changes from 1 to 0 on

F=1 F=0

∆

F=0

lB

B

Figure 3.2: Charge counter measuring the current statistics in a terminal. The ex-
plicit dependence of the equations of motion from the component χj of the counting
field (see text) may be eliminated by performing a counting rotation (3.25) on the
Green’s function in the terminal Tj . The value of function F changes from 1 to 0
across the boundary B on a length scale lB .

the length scale lB with λF ≪ lB ≪ lel, ξS , the quasiclassical equations of motion

for the Green’s function ǧ(r, ε,χ) may be employed so that it satisfies near Bj the

Eilenberger equation Eq. (3.9) with the self-energy σ̌ = −χj∇(Fj(x)) · vF τ̌K/2.

Since Fj(x) vanishes inside the wires, the Eilenberger equation may be solved by
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performing a gauge transformation [90]

g̃(r,vF , ε,χ) = e−iχjFj(r)τ̌K/2g̃(r,vF , ε,χ = 0)eiχjFj(r)τ̌K/2 (3.25)

on the Green’s function in each terminal Tj . In the diffusive approximation ǧ(r, ε,χ)

thus satisfies the Usadel equation (3.10) in the wires. At the interfaces the Nazarov

boundary conditions (3.11) for ǧ(r, ε,χ) hold, since their derivation, originally car-

ried out for ǧ(r, ε,χ = 0), does not assume any specific matrix structure for the

quasiclassical Green’s functions but only makes use of their normalization. Deep in

the terminal Tj the value of ǧ(r, ε,χ) is obtained from Eq. (3.25) with the substitu-

tions g̃(r,vF , ε, χj)→ ǧ(r, ε, χj), Fj(r)→ 1.

The cumulant generating function S̃(χ) in the terminals and the Green’s function

ǧ(r,χ) in a wire connected to the terminal Tj are related by [90]

−∂S̃(χ)

∂(iχj)
=
t0
e

1

8e

∫

dεTr[τ̌K J̌j(χ)], J̌j(χ) ≡ −LGDǧ(r,χ)∇ǧ(r,χ). (3.26)

This is obtained by considering the diagrammatic expansions of both sides of the

equality [90] and making use of the linked cluster theorem [4]. The conserved quan-

tity Jj(χ) ≡ −
∫

dεTr[τ̌K J̌j(χ)]/8e, which formally resembles electric current, is

called the counting current and is in this equation to be evaluated in the wire con-

nected to Tj .

3.2.2 Noise correlations

In metallic conductors, the corrections induced by quantum coherence are rather

small, but in a metal in contact to a superconductor more pronounced effects may

be observed, e.g., in the out-of-equilibrium noise experiments [93–96]. The voltage

dependence of the shot noise in a two-terminal setup has been theoretically studied

in Paper III and in Ref. [97]. Current fluctuations in multiterminal structures have

been previously theoretically studied in the incoherent regime [92, 98–100], and in

the presence of a supercurrent, in a short junction [101], and for specific values of

a phase difference in a three-terminal setup. The latter was described by a method

based on a direct discretization of the Usadel equation (3.10) [96]. In the following
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we present a parametrization of the Usadel equation to calculate noise correlations

in the presence of supercurrent.

Noise correlations are obtained from counting current through

Sij ≡
∫ ∞

−∞
dt〈{δIi(t), δIj(0)}〉 = −2ie

∂Ji(χ)

∂χj
|χ=0. (3.27)

Here δIi = Ii − Īi is the deviation of the current from its quantum mechanical

expectation value. The matrix current in the first order in χj

J̌ (1,j)(x) ≡ −2i∂χj
J̌(x)|χ=0 = −LGD(ǧ0∂xǧ1,j + ǧ1,j∂xǧ0) (3.28)

is defined so that the Usadel equation in the first order in χj is identical to Eq. (3.10)

with the substitution ǧ → ǧ1,j, ǰ → ǰ(1,j) = J̌ (1,j)/A. Here the notation ǧ0 ≡ ǧ(χ =

0), ǧ1,j ≡ 2i∂χj
ǧ(χ)|χ=0 has been introduced. With i 6= j the Nazarov boundary

conditions for J̌ (1,j) through the interface to the terminal with the Green’s function

ǧT are given by [73]8

J̌ (1,j) = −2GB

P

n TnǍB̌Ǎ
P

n Tn
, Ǎ = [4 + Tn({ǧ0, ǧT } − 2)]−1,

B̌ = 4[ǧ1,j , ǧT ] + 2Tn(ǧT ǧ0ǧ1,j ǧT − ǧ0ǧ1,j − [ǧ1,j , ǧT ]). (3.29)

Here {Tn} are the eigenvalues of the transmission matrix through the interface, with

conductance GB = e2
∑

n Tn/π. The normalization of ǧ(χ) implies {ǧ0(x), ǧ1(x)} =

0. This is readily satisfied by introducing the change of the variables ǧ1(x) =

{ǧ0(x), φ̌(x)}9.
We find a parametrization for φ̌(x) valid also in the presence of a supercurrent

(see Paper II)

φ̌ =




r̂ k̂

l̂ â



 =




r1τ̂1 + r3τ̂3 k0τ̂0 + k3τ̂3

fLτ̂0 − fT τ̂3 r∗1τ̂1 − r∗3 τ̂3



 , (3.30)

with r1 = r11 + r12i, r3 = r31 + r32i, and r11, r12, r31, r32, k0, k3 ∈ ℜ. With this

parametrization, χ has to be generated in the normal terminal and an arbitrary

number of superconducting terminals be at zero potential. With i 6= j the boundary

conditions for the parameters are obtained from Eq. (3.29), and for i = j, in a good

8There is a misprint in Eq. (3.29) in Ref. [73].
9For clarity the subindex j is dropped here.
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contact, from ǧ1,j = [τ̌K , ǧN,0] with τ̌K = τ̂3⊗ σ̄1. On the other hand, for example, in

a case of several normal terminals, the boundary conditions would imply a vanishing

ǧ1,j at a good contact between a wire and a normal terminal other than the one

generating χj , which would not be compatible with the parametrization (3.30).

Not all the coefficients in the retarded part of the Usadel equation are indepen-

dent but the equations take the form

R(2)
11 r

′′
11 +R(1)

11 r
′
11 +R(0)

11 r11 +R(2)
12 r

′′
12 +R(1)

12 r
′
12 +R(0)

12 r12 +R(2)
31 r

′′
31 +R(1)

31 r
′
31

+R(2)
32 r

′′
32 +R(1)

32 r
′
32 = C1,

−R(2)
21 r

′′
11 −R

(1)
12 r

′
11 −R

(0)
11 r11 +R(2)

11 r
′′
12 +R(1)

11 r
′
12 +R(0)

11 r12 −R
(2)
32 r

′′
31 −R

(1)
32 r

′
31

+R(2)
31 r

′′
32 +R(1)

31 r
′
32 = C2,

R(2)
31 r

′′
11 + P(1)

11 r
′
11 + P(0)

11 r11 +R(2)
32 r

′′
12 + P(1)

12 r
′
12 + P(0)

12 r12 + P(2)
31 r

′′
31 + P(1)

31 r
′
31

+P(2)
32 r

′′
32 + P(1)

32 r
′
32 = C3,

−R(2)
32 r

′′
11 − P

(1)
12 r

′
11 − P

(0)
12 r11 +R(2)

31 r
′′
12 + P(1)

11 r
′
12 + P(0)

11 r12 − P
(2)
32 r

′′
31 −P

(1)
32 r

′
31

+P(2)
31 r

′′
32 + P(1)

31 r
′
32 = C4.

(3.31)

Here R(k)
ij , P

(k)
ij , Ci ∈ ℜ depend on θ, φ, fL,T and their derivatives and are obtained

by direct calculation from the Usadel equation. These expressions are, however, too

long to write here. The Keldysh part obeys two coupled differential equations

K(2)
0 k′′0 +K(1)

0 k′0 +K(2)
3 k′′3 +K(1)

3 k′3 = S1,

−K(2)
0 k′′0 +Q(1)

0 k′0 +Q(2)
3 k′′3 +Q(1)

3 k′3 = S2. (3.32)

Here K(1,2)
0,3 , Q(1,2)

0,3 , S1,2 ∈ ℜ depend on θ, φ, fL,T , r1,3 and their derivatives and are

also obtained from the Usadel equation.

Putting all together, the spectral equations for θ, φ and the kinetic equations for

fL, fT are first solved, then Eq. (3.31) for r1, r3, and thereafter Eq. (3.32) for k0, k3.

Equations (3.27) and (3.28) yield an expression for noise correlations into which the

values of these parameters are finally substituted. Such calculations were carried

out in Paper II.
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4 Random matrix theory

Compared to the Nambu-Keldysh method of Sec. 3, the methods based on the

random matrix theory and the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation

(introduced in Subs. 4.2) have an advantage of being applicable to the localization

behavior (both weak and strong) of electronic states and the fluctuations of con-

ductance around the mean. Random matrix theory can also be used, e.g., to derive

the distribution of transmission eigenvalues Tn appearing in the Nazarov boundary

conditions (3.11). Below in Subs. 4.1 we introduce the general scattering matrix

theory that is the basis for the random matrix theory, the DMPK equation, and

the numerical scattering approach of Sec. 5. The DMPK equation for the standard

and the so-called BdG symmetry classes is the starting point for the calculations in

Paper I.

4.1 Scattering theory

The Landauer-Büttiker formalism [11] describes a scattering area connected to quasi-

particle reservoirs by ideal crystalline leads (see Fig. 4.1). The incoming and

Figure 4.1: Scattering area coupled to two terminals through crystalline leads.

outgoing quasiparticle fluxes are characterized by the vectors ain and aout of com-

plex amplitudes such that the total flux is normalized to unity. For example ain ≡
(ain,L,ain,R), contains the incoming amplitudes on the left and right hand side, e.g.,

ain,L = (ain,L
1 , . . . , ain,L

Nc
). Here the subindices refer to the Nc transmission channels.
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The scattering matrix S describes the transmissions and reflections between the

quasiparticle states in the two leads through

aout = Sain, S =




r t′

t r′



 . (4.1)

For example, in a normal metal, the differential conductance and shot noise may be

expressed through [15,102]

G =
dI

dV
=

2e2

h

∑

α

Tα,
dS

dV
=

4e2

h

∑

α

Tα(1− Tα). (4.2)

Here the probabilities Tα are the eigenvalues of the matrix tt†.

An equivalent approach is to consider the transfer matrix M which relates aL =

(ain,L
1 , . . . , ain,L

Nc
, aout,L

1 , . . . , aout,L
Nc

) and aR through aR = MaL. The transfer matrices

have the advantage of obeying a simple composition rule. When two scattering areas

with transfer matrices M1 and M2 are combined, the resulting transfer matrix equals

M1M2.

A given transfer matrix M may be parametrized through the polar decomposi-

tion10 [63,68,103]

M =




u(1) 0

0 u(3)









√
I + Λ

√
Λ

√
Λ

√
I + Λ








u(2) 0

0 u(4)



 ≡ UΓV. (4.3)

Here Λ ≡ diag(λ1, . . . , λNc) with λα ≡ (1−Tα)/Tα describes the transmission eigen-

values while the remaining phase factors are contained in U and V . The physical

symmetries of the system can be directly related to the symmetries of the subma-

trices u(i). For example time-reversal symmetry implies u(3) = u(1)∗, u(4) = u(2)∗.

4.2 Dorokhov-Mello-Pereyra-Kumar equation

Mesoscopic samples contain different kinds of nonidealities: impurity atoms, lattice

dislocations, surface roughness etc. It is natural to examine the characteristics of an

ensemble of conductors, and hence treat transfer and scattering matrices as random

10This is because current conservation implies ”pseudo-unitarity” of M , i.e., ΣzM−1Σz = M†.
Here Σz is a diagonal matrix with the elements (Σz)nn = 1 for 1 ≤ n ≤ Nc and (Σz)nn = −1 for
Nc + 1 ≤ n ≤ 2Nc
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Class TR SR m0 ml d

Yes Yes 1 1 2

Standard No Yes (No) 2 1 2(1)

Yes No 4 1 2

Yes Yes 2 2 4

BdG No Yes 4 3 4

Yes No 2 0 2

No No 1 0 1

Table 4.1: Classification of symmetry classes. The symmetry classes discussed in
Paper I are classified according to the fundamental symmetries of the system (stan-
dard or BdG), and in terms of the presence or absence of time-reversal (TR) and
spin-rotation (SR) symmetry. Parameters m0 and ml characterizing symmetries
appear, for example, in the DMPK equation (4.8). The degeneracy d of the trans-
mission eigenvalues stems from the spin degree of freedom for standard classes, and
for the BdG classes from the particle type (electron or hole) and spin.

quantities obeying some general properties11 [104,106–109]. There exists altogether

ten different symmetry classes [110] of which seven (see Table 4.1) are studied in

Paper I. The standard classes refer to quantum transport in normal metals [104]. The

BdG classes may be applied, e.g., for normal metals in contact to a superconductor

[111,112] or for the so-called ”disorder facilitated” heat transport in unconventional

superconductors [113,114].

The Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [62, 103, 115] describes

the evolution of the distribution function wL(λ) of the parameters λ = (λ1, . . . , λNc),

with increasing wire length L. The idea is that the transmission eigenvalues {Ti} of

a disordered wire undergo Brownian motion, i.e., ”walk” randomly, on the interval

[0, 1] as the length of the wire is altered. The main points of the derivation of the

DMPK equation are sketched below.

11Here the so-called local approach to random matrix theory is considered. The global approach
[104] is not exact, and, even though originally believed so, is not equivalent to the local approach
[105].
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To begin with, distinct transfer matrices are supposed to be statistically inde-

pendent

p̃L+δL(M) =

∫

p̃L(MM−1
δL )p̃δL(MδL)dµ̃(MδL) ≡ 〈p̃L(MM−1

δL )〉δL. (4.4)

Here p̃L(M) is the probability density for the transfer matrices in a wire segment

with length L. The measure dµ̃

dµ̃(M) = J̃m0
(λ)

∏

a

dλa

∏

i

dµ[u(i)], dµ(u) =
∏

a≤b

δsab

∏

c<d

δacd,

u†du ≡ δa+ iδs, J̃m0
(λ) =

∏

a<b

|λa − λb|m0

∏

c

[λc(1 + λc)]
(ml−1)/2

(4.5)

is invariant under the multiplication of arbitrary transfer matrices M ′,M ′′ such that

dµ̃(M) = dµ̃(M ′MM ′′). The first equality on the second line of Eq. (4.5) defines the

matrices δsab and δacd (subindices refer to matrix elements, superscripts have been

dropped for clarity). The probability density related to M may thus be obtained

by considering the distribution of matrices Λ and the probability density pL(Λ). A

small change in the length δL ≪ lel of the wire may be expected to lead to a small

change δλa ≪ 1 in the parameters λa. So the changes δλa may be calculated using

perturbation theory. Expanding both sides of Eq. (4.4) yields

pL+δL(Λ) = pL(Λ) +
∂pL(Λ)

∂L
δL+ · · · = 〈pL(Λ + δΛ)〉δL

≈ pL(Λ) +
∑

a

∂pL(Λ)

∂λa
〈δλa〉δL
︸ ︷︷ ︸

∼δL

+
1

2

∑

ab

∂2pL(Λ)

∂λa∂λb
〈δλaδλb〉δL
︸ ︷︷ ︸

∼δL+O((δL)2)

.
(4.6)

Here the averages depend on the distributions of the matrices Λ and V of Eq. (4.3).

The so-called ”isotropy”assumption is used to decouple averages like 〈u∗cau∗cbudaudb〉 ≡
∫

(· · · )dµ(u), from λis.

For the distribution of matrices Λ, the starting point is the transmission eigen-

value distribution for a short wire segment with length δL ≪ lel. The average

reflection probability is assumed to be linear in δL12. Moreover, the probability

distribution of the transfer matrices for a short wire segment is assumed to maxi-

mize Shannon’s information entropy [116]13. The distribution of matrices V can be

12The equality 〈Tr(r†r)〉δL = 〈TrΛ〉δL = NcδL/lel, or equivalently, 〈Tr(M†M)〉δL = 2Nc(1 +
δL/lel) is used.

13One has p̃δL(M) = exp[−(Nc + 1)lelTrΛ/2δL].
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related to the physical symmetries of the system. For example, in a normal metal

in the absence of the spin-orbit scattering, the matrices u(i) (cf. Eq. (4.3)) belong

to the unitary group U(N) and for the averages of their products one has [117]

〈uabucd〉 = 〈u∗abu
∗
cd〉 = 0, 〈u∗abucd〉 =

1

Nc
δacδbd,

〈u∗cau∗cbudaudb〉 =
(1 + δab)δcd
Nc(Nc + 1)

, 〈u∗cau∗caudbudb〉 =
2δabδcd

Nc(Nc + 1)
.

(4.7)

If the motion of the particles is ergodic, i.e., uniformly distributed over the phase

space, these averages over the unitary group directly yield the correct expectation

values in the corresponding ensemble. In quasi-one-dimension14, the motion of the

particles is not uniformly distributed over the phase space but the ergodicity of

the motion perpendicular to the wire length allows a random matrix theory to be

applied. The last approximation (cf., marking ≈ on the second line of Eq. 4.6) is to

neglect in Eq. (4.6) the terms proportional to
∑

α λ
2
δL,α. These terms are small in

a quasi-one-dimensional wire but not if the width of the wire is much larger than

lel [118]. Finally, one obtains a diffusion-like equation [62,113,114,119]

∂sws(λ) =
2Nc

m0Nc + 1 +ml −m0

Nc∑

i=1

∂

∂λi

{

[λi(1 + λi)]
(ml+1)/2

×Jm0
(λ)

∂

∂λi
[λi(1 + λi)]

(1−ml)/2 ws(λ)

Jm0
(λ)

}

.

ws(λ) =pL(Λ)Jm0
(λ), Jm0

(λ) =
∏

a<b

|λa − λb|m0 , s ≡ L/Ncl. (4.8)

This is the Dorokhov-Mello-Pereyra-Kumar equation. In the DMPK equation, the

number of transport channels Nc is a variable but one remarkable result obtained

from the DMPK equation is also the one-parameter scaling equation for the trans-

mission eigenvalue density for a large number of channels. As an example, the forms

of the transmission eigenvalue distributions obtained from this equation in different

regimes (ballistic, diffusive and localized) in normal-metal wire are illustrated in

Fig. 4.2. These analytical solutions of the DMPK equation in the absence of weak

(anti)localization in the large-Nc limit can be found in Refs. [68,69] for the diffusive

regime and in [120] for the ballistic and localized regimes.

14In quasi-one-dimension, one has for the width W of the wire λF ≪ W ≪ L, and W is smaller
than, or comparable to, lel.
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Figure 4.2: Transmission eigenvalue density ρ(T ) in ballistic (solid), diffusive (dash-
dotted), and localized (dashed) regime.

The conventional DMPK equation applies to quasi-one-dimensional wires but

generalizations for the equation have also been derived in higher dimensions [121,

122]. The present formulations of the DMPK equation, however, can not take into

account nonequilibrium effects such as the reentrance effect (Subs. 2.3).
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5 Scattering approach to quantum transport

The numerical scattering approach to quantum transport is a sort of numerical

counterpart to the random matrix approach of Sec. 4. The scattering processes

are described by the general scattering formalism of Subs. 4.1. Like the random

matrix theory in normal metal systems, the numerical approach can be used to

describe all the regimes, ballistic, diffusive, and localized, of transport. Further,

the numerical approach applies also for normal-superconducting systems and finite

voltages. The obvious drawback of this method is that it does not, per se, provide

any interpretations, and the computations may become time consuming. In Papers

III and IV the numerical scattering approach was adopted to study shot noise and

thermoelectric effects.

In a similar way as for the random matrix theory, the idea of the numerical

scattering approach is to calculate the quantity in question for many disorder ”re-

alizations”. However, the expectation values are computed for some finite system

with a finite number of realizations. Often the starting point is the tight-binding

Hamiltonian of the scattering region

H =
∑

α=±1

α

[
∑

m

εm|m,α〉〈m,α| +
∑

〈m,n〉

(γ|n, α〉〈m,α| + h.c.)

]

+
∑

m

[∆mm|m, 1〉〈m,−1| + h.c.], (5.1)

where only the interactions with neigbouring sites are included. Here m,n index the

lattice site, 〈m,n〉 refers to the nearest neighbours, and α denotes the quasiparticle

type (α = 1 for an electron, α = −1 for a hole). The disorder potential is modeled

by generating random numbers or site energies εm from the range [−w/2, w/2]. The

width of the disorder distribution also determines the mean free path lel in the model.

The superconducting pair potential is ∆ii and γ is the nearest-neighbour coupling

constant.

Because of the limited computational time, the conductors studied usually con-

tain no more than some tens of thousands of lattice sites. In two dimensions, this

corresponds to the width and length of the order of a few tens of nanometers. To
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exclude possible finite-size effects one has to check that altering the size of the struc-

ture does not qualitatively change the results. The number of realizations needed

to estimate certain quantity with a reasonable confidence interval depends on the

distribution of the quantity. For conductance this is of the order of one hundred,

whereas for shot noise thousands of realizations are usually needed. The retarded

Green’s function

ĜR = (EÎ − Ĥ − Σ̂L)−1 (5.2)

takes into account the coupling of the scattering are to the semi-infinitely long ideal

leads through the self-energy Σ̂L. This matrix inversion is the most time-consuming

task in the algorithm. Originally, the matrix Ĥ+Σ̂L also contains information on the

couplings of the sites inside the conductor. However, only the couplings between the

leads are needed. Hence, for example, a so-called decimation method [123], which is

essentially an efficient implementation of the Gaussian elimination method, may be

used to exclude the excessive information.

From the Green’s function GR
ji connecting the leads i and j the scattering matrix

is obtained using the Fisher-Lee relation [124]

sβα
(j,b),(i,a)

= δβα
(j,b),(i,a)

+ i~

√

vβ
b v

α
a 〈b, β, j|GR

ji|a, α, i〉, (5.3)

where vα
a is the group velocity of the electrons (α = 1) or holes (α = −1) in mode

a. Finally, the observables are expressed through scattering matrices and calculated

from formulas similar to those in Sec. 4.1.

There is no permanent dividing line between the physical problems which are

feasible for more analytical considerations and the ones which have to be solved

mainly numerically. Generally, if it is possible to solve the transport problem at

hand, e.g., through the quasiclassical approach, the random matrix theory, or the

DMPK equation, these methods may be considered more convenient than the nu-

merical scattering approach. In the absence of an analytical method the numerical

scheme may prove useful. For the moment, the numerical scattering approach could

be suitable to study, for example, the localization behavior of electronic states in

the presence of the superconducting proximity effect.
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6 Discussion

This Thesis considers quantum coherent phenomena from the point of view of meso-

scopic fluctuations. The motivation for the studies of quantum coherence stems both

from scientific and technological interest.

The role of quantum coherence in normal-metal structures is currently consid-

ered to be rather well understood, except for certain controversial topics. The one-

parameter scaling hypothesis [36] may be considered as one of the fundamental

principles in mesoscopic physics. It suggests, for example, that in an ensemble of

mesoscopic wires, the behavior of conductance distribution is essentially described

by a single scaling parameter, the dimensionless conductance g. In Paper I we cal-

culated the corrections induced by the quantum interference effects, such as weak

localization, on the conductance and current distributions in metallic wires. As

long as noninteracting one-parameter scaling model is valid, the third and higher

conductance cumulants are small with respect to unity. Actually, as was shown in

Paper I, they are even smaller than previously thought. But noninteracting the-

ory also provides a baseline for the study of interactions. In the measurements [29]

that have spurred debate [38, 39], nonvanishing third and fourth conductance cu-

mulants in low-conductance (∼ 10 e2/h) metallic wires were observed. The authors

of Ref. [29] suggest that the possible failure of the one-parameter scaling model in

these experiments would be caused by electron-electron interactions. In another

experiment, discrepancy has also been found when the mean free paths deduced

from the magnetoresistance measurements and from the measurements of the time-

dependent universal conductance fluctuations have been compared [40]. Typically,

different parameters in mesoscopic structures are measured through conductance,

the transport quantity easiest to detect. Generally, when feasible, it may be an

interesting and nontrivial task to try to reconcile results obtained by conductance

measurements and the outcome of the measurements of mesoscopic fluctuations. In

the context of metallic disordered conductors, one can still mention one controversial

topic: whether or not there exists electron dephasing at zero temperature. A widely

recognized theory put forward in 1980s by Altshuler and Aronov [125] predicts a
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diverging dephasing time at zero temperature, but in the experiments at low tem-

peratures the dephasing rate seems to saturate to a finite value [21]. Presently, the

part of the community involved in this question is divided into two camps. Roughly

speaking, one group supports the aforementioned theory, and argues that, in one

way or another, the dephasing observed in the experiments is caused by ”external”

sources or due to misinterpretation of the experiments [22, 126]. The other group

holds the view that a finite dephasing rate is caused by more fundamental ”intrinsic”

mechanisms as suggested in a series of papers by Golubev and Zaikin [127–130].

In the presence of superconductivity, the calculations on the transport charac-

teristics usually become more involved than in the normal-metal structures. For ex-

ample, the localization-delocalization transition in normal-metal wires has been ex-

tensively studied by using random matrix theory and the DMPK equation [104,131]

but currently there is no counterpart for this equation for normal-superconducting

systems at finite voltages. Despite the absence of an analytical scheme, the numer-

ical scattering approach introduced in Sec. 5 could be applied to study localization

behavior of the electronic states in the presence of the superconducting proximity

effect.

The mesoscopic community has started to view current fluctuations, not as a

distraction, but as a source of information. For example shot noise provides infor-

mation not contained in conductance about different quantum coherent phenomena.

Since the 1960s it has been known that a superconductor in good contact to a normal

metal induces coherence of Andreev pairs to the latter. Shot noise measurements, or

theoretical calculations, show that this superconducting proximity effect also brings

about anticorrelations between the different Andreev pairs. Multiterminal struc-

tures, such as in Paper II, transmitting supercurrent, have been used to elucidate

the role of the anticorrelation effect. In multiterminal structures it is feasible to

control supercurrent by an external voltage. This is interesting also from a more

device-oriented perspective since such structures make up a so-called π-junction [43]

that bears relevance in the context of information processing applications, such as a

superconducting transistor [41]. In a metallic wire in contact to a superconductor,

the coherent quantum effects tend to surpass those in the absence of superconduc-
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tivity. Besides supercurrent, this guideline is also exemplified by the reflectionless

tunneling effect. This quantum interference effect may induce excess current and

shot noise (Paper III) in NS structures at voltages much smaller than ET /e. By

measuring the differential conductance and shot noise through the structure at a

certain voltage one can, for example, deduce the strength of the insulating barrier

at the interface.

In recent years, besides charge transport, thermoelectric effects in normal-su-

perconducting nanostructures have attracted attention [132–134]. Normal metals

are good conductors of heat, compared, e.g., to superconductors. Further, the best

conductors of electric current usually also carry heat well. This is summarized

in the Wiedemann-Franz law, according to which the constant of proportionality

between the thermal and electric conductivity linearly depends on temperature.

Thermopower, however, measures the nonlinearities in the quasiparticle dispersion

relation, and is small, of the order of T/EF , in a normal metal. In the presence of

superconductivity, Andreev reflection may induce deviations from the Wiedemann-

Franz law [135] and Mott’s law (Paper IV).

Since the beginning of 1990s a prominent, still on-going, trend in condensed mat-

ter physics has been to consider different man-made analogies to the structures ob-

served in nature. For example quantum dots, or so-called artificial atoms may serve

as building blocks for future tunable solid-state lasers or nanoelectronic circuits.

The Anderson atom model, originally put forward to describe magnetic impurities

in a metal, applies also for the study of quantum dots and molecules [136, 137]. In

Paper V we calculated the response functions of the exactly soluble Anderson atom

model. This model for an isolated atom can be used as a reference point for more

involved considerations.

In devices made out of metallic components, the nature of transport is typically

diffusive, and the operation frequency is limited by the Thouless energy ET = D/L2,

or the diffusion constant D and the characteristic length L. The carbon structures,

e.g., graphene, allow ballistic transport and, therefore, potentially faster operation of

devices. In fabrication technologies, there is an incessant quest for cleaner materials,

and integration of smaller elements into larger circuits. From the technological, and
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even commercial point of view, solid state structures are intriguing since they allow

for scalability and integration to larger circuits. As an example, the existence of

nonclassical correlations, entanglement, between particles is at the heart of quantum

information. Such correlations, which may manifest themselves as a breaking of Bell

inequality, have recently been detected in noise correlation measurements, e.g., in

a solid state analogy of a Hanbury Brown Twiss geometry, a setup familiar from

optics since the 1950s [138]. Controlling entanglement in the nanocircuits including

large numbers of quantum bits is one of the great challenges in the field of quantum

computing.

Mesoscopic physics is progressing, but the direction of the development is to some

degree unpredictable. Mesoscale conductors are a realistic and promising platform

for making practical use of quantum coherence.
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[86] P. Virtanen and T. T. Heikkilä, J. Low Temp. Phys. 136, 401 (2005).
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