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Abstract

In this work, the use of factor analysis to chemical state quantification of XPS data is studied. First, the theory of the method is
reviewed with a special emphasis on the issues related to XPS data analysis. In particular, we concentrate on the transformation of
the abstract components into physically meaningful ones in the case where reliable reference spectra are not available. We have observed
that in the commonly used iterative target transformation factor analysis (ITTFA), in which a delta peak serves as the initial guess, the
shape of the obtained component depends strongly on the position of the delta peak and on the minimum allowed intensity level. We
propose an approach in which these parameters are varied in order to generate different representations for each component of the data.
With simulated model data we show that if the variation is done with a sufficiently small step size, the correct representation will be gene-
rated. We also show that in the case of two-component data the iteration of the components is not necessary because a position can be
found where a delta peak directly transforms into the correct component without unphysical features. Besides the model data, the pro-
posed method is applied to experimental 2p photoelectron spectra of iron and chromium oxides.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When XPS (X-ray photoelectron spectroscopy) is used
to study changes on a sample surface, each of the interest-
ing peak regions is typically recorded successively. This
produces series of spectra for the analysis. Examples of this
kind of surface studies are depth profiling and oxidation/
reduction treatments. Qualitative behavior, such as oxida-
tion or reduction, can in most cases be deduced by visual
comparison of the spectra, but in order to obtain quantita-
tive information, such as the proportion of each oxidation
state through the series, mathematical methods become
necessary. Non-linear curve fitting and factor analysis are
typically used for this purpose.

Factor analysis is a multivariate statistical method
which can be used to analyze a set of spectra if all the spec-
tra can be expressed as a linear combination of a few com-
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ponents (also called principal components or factors).
Considering XPS data, the components correspond typi-
cally to different chemical states of the element under
study. The advantages of factor analysis over curve fitting
are that a complete set of spectra can be analyzed at once
and that there is no need for a mathematical function
describing the lineshape. Since the early 1980s, application
of factor analysis to XPS data has been reported by several
authors, see e.g., Refs. [1–20].

The objectives of this article are to illustrate the applica-
bility of factor analysis to quantitative determination of
chemical states in XPS data, to point out aspects which af-
fect the accuracy of the results, and to propose modifica-
tions to the iterative target transformation factor analysis
(ITTFA) technique which can be used when no reference
spectra are available for the analyzed chemical states.

The data analyzed in this paper consist of simulated
model spectra and experimental data on 2p regions of iron
and chromium oxides. These oxides were chosen because
they present a large intrinsic background and complicated
2p spectra and because only few articles [3,5,18,20] have
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been published regarding the application of factor analysis
to them. These oxides are also widely studied in the field of
surface science due to their various applications in, e.g.,
catalysis, steel fabricating, and gas sensors. Our interest
has been in the growth of iron oxide thin films [21] and
in the growth of chromium oxide islands on alumina [22–
24].

2. Experimental

The data analyzed in this study were collected with a
Surface Science Instruments SSX-100 ESCA spectrometer
using monochromatic Al Ka X-rays and an electrostatic
hemispherical analyzer. The spectra were recorded with a
pass energy of 50 eV, X-ray spot size of 600 lm, and step
size of 0.1 eV. Base pressure in the analysis chamber was
around 10�9 mbar.

The algorithms used in this work were programmed
with Matlab version 6.5.1. The calculations were done with
a 2-GHz desktop computer.

2.1. Samples

The studied iron oxide sample was commercial FeO
(wustite) powder (99.5%, Alfa Aesar), crushed into an in-
dium foil under ambient atmosphere. In stoichiometric
FeO iron ions are in the Fe2+ state, but due to the atmo-
spheric exposure, the surface of the sample was oxidized
to Fe3+ and contained some adventitious carbon. The data
set, consisting of seven spectra, was collected by sputtering
the sample with 4-keV argon ions and recording the Fe 2p
photoelectron spectrum as a function of the cumulative
sputtering time. In addition, O 1s, In 3d, and C 1s spectra
were recorded after each sputtering period. Because no sig-
nificant shifting of O 1s, In 3d, or C 1s peak positions was
observed, the BE (binding energy) scale of the Fe 2p spec-
tra was not corrected. The position of the oxidic O 1s peak
was 530.6 eV.

For chromium a commercial foil sample (99.99%,
Goodfellow) was used. It was first sputtered with argon
ions in order to reveal the clean metallic surface, and then
oxidized at room temperature in UHV with O2 exposures
increasing up to 100 L. Finally, the sample was oxidized
in air flow in a reactor cell at 400 �C for 15 min. The oxy-
gen exposures were chosen so that the chromium would be
in states Cr0 and Cr3+ [5]. The Cr 2p region was recorded
after each oxidizing step, which produced a set of 10 spec-
tra. The BE scale was shifted to set the O 1s peak to
530.5 eV.

2.2. Background subtraction

The fundamental assumption of factor analysis – that
the spectra to be analyzed can be represented as a linear
combination of component spectra – makes the role of
the inelastic background subtraction particularly impor-
tant. Generally, the background contribution is not a con-
stant component and if a wrong background function is
used, each spectrum contains a unique background resid-
ual, which violates the assumption and makes the analysis
subject to errors. Only in the case of invariable depth dis-
tribution of the sample composition the background can
be included in the components.

In the reported studies comparing the three common
backgrounds, linear, Shirley [25] and Tougaard [26], sub-
traction of the Tougaard background has been found to
produce the true unattenuated spectrum (primary excita-
tion spectrum) most correctly [27,28]. Considering the
chemical state analysis of Fe 2p and Cr 2p spectra, the ef-
fect of the background subtraction method has been dis-
cussed in Ref. [29]. Based on the results reported in these
papers, the so called universal Tougaard background [26]
was chosen to be used in this work. The background was
evaluated at 695–820 eV for the Fe 2p spectra and at
564–770 eV for the Cr 2p spectra. The C parameter was
set to the ‘‘universal’’ value 1643 eV2 and the value of the
B parameter was determined so that the background fol-
lows the measured intensity in the end of the energy range.
In the iron oxide spectra, B decreased from about 3440 eV2

to 3280 eV2 with increasing sputtering time. For the chro-
mium oxide, B was about 2900 eV2 in all the spectra.

For the factor analysis, a shorter BE range was consid-
ered useful in order to have more weight for the peak area
and to decrease the computing time. Thus, the spectra were
truncated after the background subtraction so that the
analysis range became 695–760 eV for the Fe 2p region
and 564–660 eV for Cr 2p. Finally, all the spectra were
normalized to unit area.
3. Factor analysis

3.1. Decomposition of the data

In order to apply factor analysis to XPS data, the s mea-
sured spectra, each having p points, are first arranged to
columns of a data matrix D. The objective of the analysis
is to decompose the data matrix D (p · s) into a product
of two matrices

D ¼ RC: ð1Þ

The columns of R (p · n) are called components or factors
and the coefficients for a given component are on the cor-
responding row of C (n · s). In terms of XPS this means
that each measured spectrum will be expressed as a linear
combination of n component spectra, typically correspond-
ing to various chemical states, and the relative amount of
each component can be calculated directly from the corre-
sponding column of C. The second objective of the factor
analysis is to help determine the number of components
needed to reproduce the data within the experimental
error.

Decomposition of the data matrix is done by calculating
the eigenvectors of the covariance matrix DTD. Several
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techniques can be applied to this purpose; in this work we
have used singular value decomposition (SVD) which
decomposes the data matrix D as

D ¼ USV T ð2Þ

so that R and C are obtained as

R ¼ US; ð3Þ
C ¼ V T: ð4Þ

Now the columns of R are components that can be used to
reproduce the measured spectra, i.e., R forms a basis in
which the columns of D can be expressed. Above, S is a
diagonal matrix having the square roots of the eigenvalues
in decreasing order on the diagonal. The columns of U are
the eigenvectors of DDT and the columns of V are the
eigenvectors of DTD.

In an ideal case, R would have exactly as many columns
as necessary to reproduce D; this is equal to the rank of D.
Experimental data, however, contain noise which increases
the number of the columns of R equal to the number of the
columns of D. It turns out that only the components corre-
sponding to the largest eigenvalues present significant spec-
tral features whereas those with smaller eigenvalues consist
mainly of noise. Thus, when determining the number of
necessary components, the analyst typically seeks a distinc-
tive drop in the magnitude of the eigenvalues and compares
the structure of the components to the noise. With the
chosen number of components, �n < n, the data matrix is
reproduced as

D � D ¼ RC; ð5Þ

where R consists of the �n first columns of R and C of the �n
first rows of C. With a proper number of components, the
recorded spectra can be reproduced with decreased noise.

In addition to the comparison of the eigenvalues and
component shapes, several mathematical functions have
been introduced to assist in the determination of the num-
ber of necessary components. One of the most commonly
used is the indicator function proposed by Malinowski
[30]. It can be formulated as

fINDð�nÞ ¼ DRMSðD� DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s

ðs� �nÞ5
r

; ð6Þ

where DRMSðD� DÞ is the RMS difference between the re-
corded and reproduced data. This empirical function has
been designed to minimize at a proper number of compo-
nents. Obviously, the RMS difference decreases as more
components are included, and the expression in the square
root is employed as a correction factor to increase the func-
tion value.

3.2. Physical interpretation of components

Although capable of reproducing the recorded spectra,
the columns of R are in general not physically meaningful
and are thereby called abstract components. In order to ob-
tain a physically meaningful results, R and C need to be
transformed by multiplying them with an appropriate
transformation matrix T:

X ¼ RT ; ð7Þ
Y ¼ T�1C: ð8Þ

Now the columns of X are the new components, i.e., the
spectra of the different chemical states, and the rows of Y

have the corresponding coefficients, i.e., the relative
abundances. Mathematically this means that a new basis
(columns of X) is formed as a linear combination of the
original basis (columns of R). Because there are infinitely
many ways to form the linear combination, the compo-
nents cannot be determined unambiguously, and the phys-
ically meaningful ones are just one combination.
3.2.1. Target transformation

Several methods have been presented in the literature for
constructing the transformation matrix, see e.g., Ref. [30]
for a review. In a method called target transformation or
target testing, the transformation matrix T is obtained by
guessing the components and expressing them in the basis
formed by R. Malinowski has shown [30] that for a given
test component (vector) ~xl a representation, called a pre-
dicted component xl, in the R basis is obtained as

xl ¼ RðR T RÞ�1R T|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�A

~xl: ð9Þ

This transformation minimizes in the least-squares sense
the deviation between the test component and the predicted
component [30]. It is to be noted that the matrix A is calcu-
lated using only the abstract component matrix R. Thus,
each component candidate is transformed independently.

Typically, experimental reference spectra or fits to them
are used as test components. If xl � ~xl within a specified
tolerance or the shape of xl is otherwise satisfactory, xl is
accepted for being used in the final data interpretation.
When a necessary number ð�nÞ of linearly independent com-
ponents have been found, matrix X is formed by setting the
vectors xl, l ¼ 1 . . . �n, as columns. The transformation ma-
trix T is then obtained through Eq. (7) as

T ¼ R�1X ; ð10Þ

or through Eqs. (7) and (9) as

T ¼ ðR T RÞ�1R T eX ; ð11Þ

where the test components ~xl form the columns of eX .
Finally, the corresponding coefficients (matrix Y) are calcu-
lated with Eq. (8). This method has been used in XPS data
analysis, e.g., in Refs. [6–8,18].

Instead of the component spectra, guesses of their rela-
tive amounts, i.e., the elements of C, can also be used to
calculate the transformation matrix. Examples of this ap-
proach can be found in Refs. [5,9,19,31].
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3.2.2. Iterative target transformation factor analysis

(ITTFA)

In many cases, a reliable reference spectrum or even a
reasonable guess may not be available for the components.
Gemperline has introduced a method called needle search
where a delta peak is used as the test component [32].
The position of the delta peak is scanned through the x-
axis of the data and the predicted component is calculated
at each position using Eq. (9). The squared difference be-
tween the delta peak and the predicted component is then
plotted as a function of the delta peak position and the
local minima are interpreted as the probable component
positions. Gemperline has also proposed an iterative proce-
dure to find physically meaningful components without
any reference data [32]. In this method, a delta peak placed
at a given local minimum is taken as the initial test compo-
nent and the predicted component is calculated using Eq.
(9). In each iteration round, the predicted component is re-
fined by removing unphysical features and then used as a
new test component. Typically, the refining is done by
updating points below a certain predetermined intensity
level to some positive value. The iteration scheme can be
formulated as

xl;iþ1 ¼ Ax0l;i; ð12Þ

where x0l;i is the refined version of xl,i. The iteration is con-
tinued until no refining is needed, i.e., x0l;i ¼ xl;i, or if this
cannot be achieved in reasonable time, until xl,i+1 � xl,i

within a desired limit. The iteration is done separately for
each of the �n components.

This method is called iterative target testing or iterative
target transformation factor analysis (ITTFA). It has been
applied to XPS data in, e.g., Refs. [2–4,15–17].

3.2.3. Varying the parameters of ITTFA

Although knowledge of the peak shape or exact position
is not needed in ITTFA, the analyst has to set values of two
parameters for each component: (i) the position of the delta
peak serving as the initial test component and (ii) the min-
imum allowed value (minimum level) for the intensity of
the predicted component. When applying ITTFA to our
XPS data, we have observed that in many cases the values
of these parameters cannot be determined unambiguously.

Regarding the delta peak position, the needle search
output does not always show �n clear local minima or set-
ting a delta peak at a minimum does not always result in
an acceptable component after iteration. In these cases it
is necessary to change the delta peak position which in turn
will change the predicted component.

The ambiguity of the minimum level results from the
noise. The background subtraction is usually performed
so that the mean intensity is about zero in the off-peak re-
gion, typically in both ends of the analyzed BE range. In
the presence of noise this means that the spectra inevitably
contain negative values, and the iteration will typically pro-
ceed too long if the minimum allowed intensity value is set
strictly to zero; this has also been pointed out by Gemper-
line [33]. Thus, a negative minimum level is needed but it
seems to be impossible to determine any correct value for
it. Moreover, the value of the level significantly affects
the shape of the predicted component and thereby the anal-
ysis results.

Because the delta peak positions and the minimum al-
lowed intensity level cannot be determined a priori, it is
convenient to vary these parameters in order to generate
different representations for each principal component.
With synthetic model data we have observed that if the var-
iation is done with a sufficiently small step size, the set of
generated components includes the correct representation
for each principal component. In the case of experimental
data, there is no general way to identify the correct repre-
sentation, and thus the practical strategy is to reject the
unphysical ones based on the available information on
the true shape of the component. Here, at least two require-
ments for XPS spectra can be used: (i) the component must
not have features that go below the noise level and (ii) the
chosen set of components must be such that their coeffi-
cients (elements of Y) are positive. Depending on the ana-
lyzed data, it may be possible to formulate additional
criteria based, e.g., on the symmetry of the peaks. Typi-
cally, the analyst ends up with a set of acceptable represen-
tations for each component and this determines the
uncertainty of the analysis. It should be noted that different
representations of the principal components cannot be
compared by observing the deviation between the mea-
sured and reconstructed data. This deviation only shows
how well the data can be expressed with the chosen number
ð�nÞ of components and is independent on the shape of the
components as long as the components are expressed in the
R basis.

We have found that if the data can be explained with
two components, the component iteration is not needed.
It namely turns out that a position can be found where only
one multiplication by A (Eq. (9)) is enough to transform a
delta peak into a physically meaningful component. In
practice, a delta peak is scanned through the BE axis like
in the needle search but instead of minimizing the deviation
between the delta peak and the predicted component, the
optimal shape of the predicted component is searched.

In many cases it seems that the optimal position for the
delta peak would lie between two measured BE values. To
reach this, the BE step size of the data matrix can be de-
creased using linear interpolation; this increases the num-
ber of points but does not create artificial features, such
as smoothing, to the original spectra. The corresponding
R and A are calculated with Eqs. (3) and (9), respectively.
It turns out that after the optimal predicted component
has been generated with a decreased BE step size, it can
be expressed equivalently on the original BE axis and it
gets an equal proportion in the spectra. Alternatively, a
narrow Gaussian peak can be used as the test component
instead of a delta peak. This allows setting the peak center
between the points of the original BE scale, and decreasing
the step size is not needed. For the data analyzed in this
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work, a narrow Gaussian with the FWHM (full width at
half maximum) equal to the BE step size of the data
(0.1 eV) was found to give results which were equal to those
obtained with a delta peak.

If three or more components are needed to explain the
data, a single multiplication of a delta peak by A is not
always able to generate the correct representation for every
principal component, and the iteration is needed to remove
the unphysical features. In such case, different representa-
tions can be generated by varying both the delta peak posi-
tion and the minimum allowed intensity level individually
for each component.
4. Results and discussion

4.1. Model data

Before analyzing the real experimental spectra, synthetic
model data was used to verify that the correct components
can be generated by varying the ITTFA parameters.
4.1.1. Two-component data

The first example, shown in Fig. 1, is a set of 11 spectra
created using two Gaussian peaks with height of 1, FWHM
of 2 eV, and centers at 10.0 eV and 11.5 eV. The proportion
of the first component, defined here as A1/(A1 + A2) where
Ai is the area of component i, increases from 10% to 90%
through the set. The BE range of the spectra is 20 eV with
a step size of 0.1 eV. Gaussian noise with standard devia-
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Fig. 1. Example of a model data set created using two Gaussian peaks and
noise. The component separation is 1.5 eV and the FWHM of the peaks is
2 eV.
tion of 0.01 was added to the spectra producing a signal-
to-noise ratio (SNR) of �95.

First, the standard ITTFA was applied to the model
data. For the lower BE component, the needle search indi-
cated (correctly) a position of 10.0 eV, and a delta peak,
serving as the test component, was placed there. The itera-
tion was done with two different minimum levels, 0 and the
minimum of the data. When the level was set to 0, the iter-
ation converged after about 10,000 rounds, whereas only
six rounds were required when the data minimum was
used. The obtained predicted components, as well as the
true one, are shown in Fig. 2. It is observed that the mini-
mum allowed intensity clearly affects the component shape
but neither of the obtained components matches with the
true one, i.e., that used to create the data. Thereby, it seems
reasonable to vary the ITTFA parameters in order to
generate a better representation for the component.

Fig. 3a illustrates the idea of varying the position of the
delta peak. At each position, the delta peak is multiplied
only once by A (see Eq. (9)) and no iteration is performed.
The figure clearly indicates that the optimal position for the
delta peak can be found around 10.4 eV: setting the delta
peak below the optimal position produces components
with a negative dip above the peak. Delta peaks above
the optimal position result in asymmetric components with
extra intensity on the high BE side.

With experimental data, the true component shape is
naturally not known, and the next step after generating a
set of predicted components is to reject the unphysical
ones. In the example above (Fig. 3a), the predicted compo-
nents with the negative dip can be obviously rejected
(requirement (i) in Section 3.2.3). On the other hand, the
predicted components with extra intensity on the high BE
side have no negative features and thus cannot be rejected
unless they get negative coefficients (requirement (ii)). If the
maximum proportions of the true components in the
analyzed set of spectra are less than 100% (i.e., purely
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Fig. 2. Lower BE component of the data in Fig. 1 obtained using the
standard ITTFA with the minimum allowed intensity level set to 0 and to
the minimum of the data. Also shown is the true component.
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single-component spectra are not included in the set), some
non-negative mixed components will always get positive
coefficients and have to be accepted. This naturally brings
uncertainty to the analysis results which can be reduced
only by applying some additional criteria for the compo-
nent shape.

Next, we wanted to find out whether a better component
representation can be obtained if the delta peak position is
varied with a step size smaller than the BE step size of the
data. To this end, predicted components were generated by
varying the delta peak position with different step sizes,
starting from the BE step size of the data (0.1 eV) and then
halving it successively. As a measure of the analysis error
EFA, we used the mean absolute deviation of the compo-
nent proportion from its true value:

EFA ¼
P�n

i¼1

Ps
j¼1jf �i;j � fi;jj
�ns

; ð13Þ

where fi,j is the obtained proportion of component i in spec-
trum j and f �i;j is the corresponding true value which was
used in creating the data. The random error was character-
ized by creating and analyzing 100 data sets with an equal
noise distribution. The error which would result if the ana-
lyst were able to select the optimal (in the least-squares
sense) representations for the components is plotted as a
function of the step size in Fig. 4. Also shown is the lowest
achievable error estimated using the true components as
the test components in Eq. (11) which corresponds to an
ideal case where a perfect noiseless reference spectrum is
available for each component. It is observed that the error
made with the optimal predicted components decreases
with the step size and finally reaches the ideal level when
the delta peak positioning becomes sufficiently accurate.

Fig. 3b shows the optimal predicted component,
searched with a step size of 0.01 eV, for the lower BE com-
ponent of the model data in Fig. 1; also shown is the true
component. It is observed that the two spectra are practi-
cally identical and the difference is only noise. With a sim-
ilar procedure the higher BE component can be generated
as well.

The effects of two essential properties of the analyzed
data, namely the component separation (overlap) and the
noise level, on the analysis performance were studied by
creating and analyzing two series of data sets where these
parameters had different values. The first series consists
of seven data sets with the BE separation between the
two components (Gaussian peaks) increasing from 0.5 eV
to 3.5 eV; the standard deviation of noise was 0.010
(SNR � 95). In the second series, having six data sets, the
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separation was kept fixed at 1.5 eV but the standard
deviation of noise was increased from 0.002 to 0.025
(SNR � 450–40). Otherwise each data set in these series
was similar to the one shown in Fig. 1. The random error
was, as previously, estimated by generating each data set
100 times with an equal noise distribution. In Fig. 5 the
performance of the analysis is described by plotting the
analysis error, obtained as above by selecting the optimal
components, as a function of the component overlap and
noise level for three different step sizes. Also shown is the
error resulting from the use of the ideal reference spectra.
It is observed that the analysis error stays below 1% unit
in a wide range of component separation and noise level
and that the ideal level is reached when the delta peak posi-
tion is varied with a sufficiently small step size.

Table 1 compares the optimal delta peak positions to the
true component positions for the series where the compo-
nent separation was increased (Fig. 5a). The reported val-
ues were obtained with noiseless data, varying the delta
Table 1
Comparison between the true component positions, the positions of the
delta peaks yielding the best predicted components, and the positions
indicated by the needle search

True component
positions (eV)

Optimal delta peak
positions (eV)

Needle search
positions (eV)

10.0 and 10.5 10.13 and 10.37 9.6 and 10.9
10.0 and 11.0 10.25 and 10.75 9.8 and 11.2
10.0 and 11.5 10.37 and 11.13 9.9 and 11.6
10.0 and 12.0 10.50 and 11.50 10.0 and 12.0
10.0 and 12.5 10.62 and 11.88 10.0 and 12.5
10.0 and 13.0 10.75 and 12.25 10.0 and 13.0
10.0 and 13.5 10.87 and 12.63 10.0 and 13.5

The reported values have been determined for a series of noiseless 2-
component model data corresponding to Fig. 5a.
peak position with a step size of 0.01 eV. It is interesting
to note that although the positions of the optimal predicted
components (not reported in the table) coincided in all
cases with the true component positions, the deviation be-
tween the optimal delta peak position and the true compo-
nent position increases systematically with increasing
component separation. This raises a question whether the
optimal positions could be deduced directly from the data
matrix. This would eliminate the need for generating sev-
eral component representations and make the analysis
results unambiguous.

Table 1 includes also the component positions indicated
by the needle search (see Section 3.2.2). In the literature
these positions are sometimes interpreted as the true posi-
tions of the components. Table 1 shows, however, that
for a small component separation (i.e., strong overlap),
the positions indicated by the needle search are too wide
apart; thus, e.g., the shift between two chemical states
should not be determined using only the needle search
results.
4.1.2. Three-component data

As an example of three-component data, a set of 10
spectra, shown in Fig. 6, was created using three asymmet-
ric peaks, with proportions varying between 10% and 80%,
and Gaussian noise with a standard deviation of 0.01. The
BE range was 0–20 eV with a step size of 0.1 eV.

As previously, a set of predicted components were first
generated by scanning the delta peak position. For the
outermost components (numbers 1 and 3) the optimal
predicted components were obtained without iteration as
described in the case of two-component model data. For
the middle component (number 2), however, all represen-
tations contained negative features and the iteration
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Fig. 6. Three-component model data created using three asymmetric
peaks and Gaussian noise.
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(Eq. (12)) became necessary. Because the minimum allowed
intensity level affects the result of the iteration, it was var-
ied along with the delta peak position. Fig. 7 shows the
optimal components and the true ones; here the delta peak
position was varied with a step size of 0.01 eV and the min-
imum allowed intensity level with 0.01 Æ Dmin, where Dmin is
the minimum intensity of the analyzed data. The optimal
delta peak positions are shown with dotted lines in the fig-
ure; the optimal minimum level for the middle component
was �0.0225 which is 2.25 times the standard deviation of
1.2
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Fig. 7. Comparison between the optimal predicted components (solid
line) and true components (dashed line) corresponding to the three-
component model data in Fig. 6. The differences are shown below the
spectra and the optimal delta peak positions are indicated with dotted
vertical lines.
the generated noise. With these components the analysis er-
ror EFA was 0.17% which equals the error obtained with
the true components.

Concerning the iteration, it was found out that the
intensity value to which the negative points are updated
in each iteration round affects the convergence behavior:
increasing this value makes the iteration converge more
rapidly but too large values lead to distorted component
shapes. Here, we set this value to 1% of the component
maximum intensity.

In conclusion, the analysis of the model data has shown
that in ITTFA it is useful to generate several representa-
tions for each principal component by varying the position
of the delta peak and the minimum allowed intensity level.
If this variation is done with a sufficiently small step size,
the set of generated components includes the correct repre-
sentation. In the case of two-component data, the compo-
nents can be generated without iteration simply by
multiplying the delta peak at each position once by A.

4.2. Experimental data

4.2.1. Iron oxide

The recorded Fe 2p spectra of the iron oxide sample and
an example of the Tougaard background are shown in
Fig. 8. The indicator function (Eq. (6)) minimized at two
suggesting that it is reasonable to represent the data with
two components. Using two components is also well justi-
fied from the chemical standpoint because oxidized iron is
normally encountered in the Fe2+ and Fe3+ states.

When predicted components were generated by varying
the delta peak position with a step size of 0.01 eV, delta
peaks around 711.14 eV and 711.70 eV were found to yield
spectra that could be interpreted as the Fe2+ and Fe3+

states, respectively. The 2p3/2 maximum was at �710.2 eV
in the Fe2+-like spectra and at �711.4 eV in the Fe3+-like
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Fig. 8. Recorded Fe 2p photoelectron spectra and an example of the used
Tougaard background. The cumulative sputtering time increases with the
spectrum index. The small peak at �704 eV comes from the indium foil
used as the substrate.
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Fig. 9. Results of the factor analysis of Fe 2p spectra. (a) Spectrum number 5 reproduced using a pair of accepted component spectra. The difference
between the measured and reproduced spectrum is shown at the bottom. (b) Proportion of the Fe2+ state in the analyzed set of spectra. The two lines
correspond to the lowest and highest proportions obtained by combining the accepted component spectra.
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Fig. 10. Cr 2p region of the recorded chromium oxide spectra and an
example of the Tougaard background (dotted line). Spectra 1–9 were
recorded after O2 exposures of 0–100 L at the room temperature and
spectrum 10 after oxidizing at the atmospheric pressure at 400 �C. The BE
range used in the background subtraction and factor analysis was wider
than shown here, see Section 2.2.
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spectra. These positions as well as the shape of the compo-
nent spectra agree well with those reported in the literature.

Because the true shape of the component spectra was
not known and the variation step size was so small, a group
of slightly different predicted components, each with an
acceptable shape and no negative features (requirement
(i) in Section 3.2.3), was obtained for both states. Propor-
tions of the Fe2+ and Fe3+ states were then evaluated cor-
responding to all possible combinations of these predicted
components and only the combinations yielding positive
proportions were accepted (requirement (ii) in Section
3.2.3). Fig. 9a shows an example of a pair of such accepted
components and a reproduction of one of the measured
spectra using them. The proportion of the Fe2+ state
through the analyzed set of spectra is plotted in Fig. 9b.
The two curves in the figure are the lowest and highest pro-
portions obtained with the accepted components; thus,
they represent the uncertainty that results from the lack
of reference spectra or other exact knowledge on the com-
ponent shape. Here, the difference between the lowest and
highest Fe2+ proportion for a given measured spectrum is
about 6% units.

For the sake of comparison, the Fe 2p data was analyzed
also with the Shirley background subtracted. Also in this
case the data could be explained with two components.
The obtained Fe2+ proportion in the analyzed spectra devi-
ated 0–20% units from the results obtained with the Toug-
aard background (Fig. 9b). Thus, the difference in the state
proportions caused by the choice of the background sub-
traction method was in some spectra larger than that result-
ing from the uncertainty in the component shape. Such high
sensitivity of the Fe 2p analysis to the background subtrac-
tion method was found also in our earlier study in which the
spectra were analyzed with curve fitting [29].

As the third background alternative, the factor analysis
was performed after subtracting only a constant back-
ground. This produced reasonable component spectra
with proportions close to those obtained above with the
Tougaard background.
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Fig. 11. Results of the factor analysis of Cr 2p spectra. (a) Spectrum number 9 reproduced using the obtained component spectra. The difference between
the measured and reproduced spectrum is shown at the bottom. (b) Proportion of the Cr0 state in the analyzed set of spectra. The two lines correspond to
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4.2.2. Chromium oxide

Fig. 10 shows the Cr 2p region of the recorded chro-
mium oxide spectra and an example of the Tougaard back-
ground. Also for this set, the indicator function (Eq. (6))
minimized at 2.

Varying the delta peak position with a step size of
0.01 eV resulted in physically meaningful components
around 575.17 eV and 575.65 eV. As in the case of iron
oxide, several acceptable predicted components could be
found for both states. However, the positions of the 2p3/2

main peak were �574.3 eV (Cr0) and �576.6 (Cr3+) eV in
all acceptable component spectra; these as well as the shape
of the components are well in accordance with the values
reported in the literature. An example of a two-component
reproduction of one of the spectra is shown in Fig. 11a and
the maximum and minimum proportions of Cr0 in the ana-
lyzed spectra are shown in Fig. 11b. Also in this case the
obtained results seem reasonable.

5. Conclusions

In this work, we have studied the use of factor analysis
to XPS data interpretation. First, the theory of the method
was reviewed with a special emphasis on the issues related
to XPS data. The most critical step in the factor analysis is
the transformation of the abstract components to physi-
cally meaningful ones. In the XPS studies reported in the
literature, this has been performed either by using recorded
reference spectra or, if these are not available, by iterating a
delta peak at a position indicated by the needle search
(ITTFA). Typically, only one representation for each prin-
cipal component (e.g., chemical state) is reported without
any discussion of other possible alternatives and, thereby,
the uncertainty in the component proportions.

We have observed that in ITTFA the delta peak position
and the minimum allowed intensity level affect the shape of
the obtained components. Values for these parameters can-
not be determined before the analysis, but on the other
hand, they provide a straightforward way to generate dif-
ferent representations for the components. The examples
of simulated model data have shown that if these parame-
ters are varied with a sufficiently small step size, the ob-
tained set of predicted components includes the correct
representation for each component. Typically this requires
that the position of the delta peak is varied with a step size
smaller than the BE step size of the data. This can be
achieved either by increasing the number of data points
by linear interpolation or using a narrow Gaussian peak in-
stead of a delta peak. In the special case of two-component
data, the correct components can be generated without
iteration. Several acceptable representations are usually ob-
tained for each principal component and this determines
the uncertainty of the analysis.

Two sets of experimental XPS data, iron and chromium
oxide 2p spectra, were analyzed with the presented method,
and the obtained results seem reasonable.
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[6] A.R. Gonzáles-Elipe, J.P. Holgado, R. Alvarez, G. Munuera, J. Phys.

Chem. 96 (1992) 3080.
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Elipe, Surf. Interface Anal. 35 (2003) 256.
[10] S. Oswald, S. Baunack, Surf. Interface Anal. 25 (1997) 942.
[11] S. Baunack, S. Oswald, D. Scharnweber, Surf. Interface Anal. 26

(1998) 471.
[12] S. Oswald, S. Baunack, Fresenius J. Anal. Chem. 365 (1999) 59.
[13] R. Reiche, R. Thielsch, S. Oswald, K. Wetzig, J. Electron. Spectrosc.

Relat. Phenom. 104 (1999) 161.
[14] R. Reiche, S. Oswald, K. Wetzig, Appl. Surf. Sci. 179 (2001) 316.
[15] A. Arranz, Surf. Sci. 563 (2004) 1.
[16] C. Palacio, A. Arranz, Surf. Sci. 578 (2005) 71.
[17] A. Arranz, C. Palacio, Appl. Phys. A 81 (2005) 1405.
[18] T. Yamamura, N. Okuyama, Y. Shiokawa, M. Oku, H. Tomiyasu,

W. Sugiyama, J. Electrochem. Soc. 152 (2005) B540.
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