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Minimum Description Length Denoising
With Histogram Models

Vibhor Kumar, Jukka Heikkonen, Jorma Rissanen, Fellow, IEEE, and Kimmo Kaski

Abstract—In this paper, we relax the usual assumptions in
denoising that the data consist of a “true” signal to which nor-
mally distributed noise is added. Instead of regarding noise as
the high-frequency part in the data to be removed either by a
“hard” or “soft” threshold, we define it as that part in the data
which is harder to compress than the rest with the class of models
considered. Here, we model the data by two histograms: one for
the denoised signal and the other for the noise, both represented
by wavelet coefficients. A code length can be calculated for each
part, and by the principle of minimum description length the
optimal decomposition results by minimization of the sum of the
two code lengths.

Index Terms—Complexity, denoising, minimum description
length, wavelets.

1. INTRODUCTION

HE denoising problem is to separate data 2" =
T1,...,Ty, usually real-valued, into a “smooth” signal

=I1,...,T, and “noise” e" = eq,..., en as follows:

Ty = Ty + €.

The traditionally made assumption is that the data consist of a
“true” underlying signal to which noise, having almost always a
Gaussian distribution, is added. The problem is then regarded
as one of estimating the “true” signal by Z;, expressed as a
linear combination of basis functions such as wavelets. Since the
wavelet transform converts the data sequence ™ into an equally
long coefficient sequence c", one way to do denoising is to re-
tain with help of a threshold a number of the largest coefficients
in absolute value, say C1)s -5 Ck)» and setting the rest to zero,
which by the inverse transform generates the estimate z™. An-
other way is to replace the “hard” threshold with a “soft” one,
where a soft-threshold function shrinks the retained coefficients.
Such techniques with different thresholds are discussed in [1],
[41, [51, [7], [10]-[12], and [19].

The quality of the denoised signal z" clearly depends on
what we assume the noise to be and how to model it. The most
often made assumption is that noise is the high-frequency part
in the data and that it has a Gaussian distribution of zero mean
and some variance, which must be estimated from the data.
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The Gaussian distribution has sometimes been replaced by the
so-called generalized Gaussian distributions and used for de-
noising one-dimensional (1-D) and two-dimensional (2-D) data
(see [1], [2], and [8]). The assumption of high-frequency noise
creates the problem that the variance of noise or the generalized
variance, as it were, is needed before the noise is constructed,
which can be resolved by fixing the way the estimation is done.

A drastically different approach was taken in [9], which, in
turn, was inspired by related but less refined ideas in [3]. In [9],
no “true” underlying signal in the data was assumed. Rather, the
data ™ are modeled by a Gaussian distribution with mean z,
determined by a linear combination of the wavelet basis func-
tions. The variance together with the coefficients in the linear
combination are the model parameters. With such a model, one
can compute the number of bits required to encode both the re-
tained coefficients, defining the denoised signal, and the noise.
The minimization of their sum gives the optimal decomposition
in the minimum description length (MDL) sense. The rationale
for this is that the denoised signal reflects the regular features in
the data that can be described with a shorter code length than
the noise, which, lacking the regular features represented by
the models, is harder to compress. This corresponds to intuition
about noise, which should look random in light of the descrip-
tive power of the models chosen. For those unfamiliar with the
MDL principle, we mention that it is a global maximum-likeli-
hood principle, global because it includes both the values of the
parameters and their number as well as the structure where the
parameters lie.

Such a criterion turns out to provide superb denoising results
up to a certain noise variance level but progressively worse when
the variance increases (see Fig. 2 in the last section). The bad
performance with high noise variance stems from the fact that a
constant that depends on the range, and hence the variance of the
data, is ignored in the criterion. This problem has been recently
explained with suggested solutions by Roos et al. [20].

In this paper, we generalize the linear-quadratic MDL de-
noising method [9] in such a way that we model both the wavelet
coefficients, representing the denoised signal, and the rest, rep-
resenting the noise, by equal bin-width histograms, with which
the code lengths can be calculated; we call this method MDL-
histo (MDL denoising with histograms). In broad terms, this is
done as follows: The coefficients are separated into a number of
different resolution levels, each defining its own histogram. In-
stead of thresholds the selection of the retained coefficients on
each resolution level will be done by setting to zero the coeffi-
cients in a subset of bins, call it S, while leaving the coefficients
intact in the remaining bins. The code length of the retained co-
efficients at each resolution level can be calculated. The code
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length for the noise is obtained by fitting a second histogram to
the coefficients, obtained from all the coefficients that define the
original data such that the retained coefficients are set to zero.
The optimal set of bins S is found by minimization of the sum
of the two code lengths for the denoised signal and the noise.
To find such optimal collections is a daunting computational
problem, and we resort to a greedy search to give a suboptimal
collection.

When all this is done, we modify the construction of the de-
noised signal by a process related to “soft” thresholding, [1],
[19]. Although there are no thresholds in the proposed MDL-
histo approach to denoising, the idea in [1] nevertheless pro-
vided the inspiration to obtain a similar effect albeit in a manner
which cannot be justified within the MDL theory.

This paper is organized such that after a preliminary section
on histogram modeling, we give the details of the denoising al-
gorithm, followed by a section on applications of the method
to a variety of signals with comparisons to other well known
denoising techniques. Despite the several shortcuts we take to
simplify the calculations, the MDL-histo technique turns out to
be clearly the best in the tested 1D cases whenever the noise
added to the data has a distribution that differs from the normal
one. In images, the performance comparison with the best com-
peting algorithm among those tested, BayesShrink [1], is less
clear, although even with Gaussian noise a slight improvement
can be detected.

II. CODE LENGTH OF DATA WITH HISTOGRAMS

As apreliminary topic, we give the code length for a sequence
y" = y1,Y2,..., Y of real valued data points y;, quantized to
a common precision ¢ and modeled by a histogram. Let all y;
fall in the interval [a, b], which is partitioned into m equal-width
bins, the width given by w = R/m, where R = b — a. Let n;
data points fall in the 4’th bin. Then, the code length of the data
string, called stochastic complexity, relative to such histograms,
is given by

n n+m
L(y"|w,m,d) = log (7L1 " ) + log ( " >

+nlog () (1)
o

where the logarithms are to base 2 (see [15] and [16]). The first
term is the code length for encoding the n bin indexes corre-
sponding to the bins of yi,y2,...,y,. The second term is the
code length for the integers n;. To see this, notice that the posi-
tive indexes can be encoded as a binary string, which starts with
n1 0’sand a 1, followed by no 0’s and a 1, and so on. The string
has m 1’s, and its length is n + m. If we sort all such strings we
can encode the index of any one with code length given by the
logarithm of their number ("*™). The third term gives the code
length for the numbers ¥, quantized to the precision 6. Indeed,
each quantized number is one of the w/§ points in its bin. If we
add the code length L(m) = log m+2loglog m for the number
'm, we can minimize the conditional code length

min{L(y"|w,m, ) + logm + 2loglogm}
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to remove the dependence on m and leave only the two numbers
w and 6 on which the code length is conditioned.

Now we need to consider the code length of the modified data
string 3™, obtained by retaining the data points in a subset .S of
the bins while setting the rest to zero; i.e., the points in the set
of the remaining bins S are 0. Denote the indexes of the bins
of the data points g; by (0),(1),...,(|S|), where |S| denotes
the number of the bins in the set S. The bin with index (0) is
added to contain all the ng) = n — k 0-points, where £ denotes
the number of the retained points falling in the bins of S. For
instance, if the first retained bin is the fifth bin out of the m
bins, then (1) = 5. The code length for the sequence of the bin
indexes is now

n
( ) @)
n(1)s -, 0(s), M — k

where n(;) denotes the number of points falling in the bin having
the index (j). Then, the code length for the string 9™, given w,
m, and 0, is

n
L(yg"|m,w,8) = log < )
n(l), e ,n(‘s‘),n —k

+log (n + |:| + 1) + klog (%) +m. (3)

The last term is the code length for S having 2™ subsets.

III. MDL-HISTO ALGORITHM

We now describe the main denoising algorithm. Let ¢ =
c1,...,c, denote the sequence of coefficients obtained by ap-
plying a wavelet transform to the data sequence ™ to be de-
noised, and let R denote their range. We separate the coefficients
into, say r resolution levels, ¢" = ¢}*,..., ¢!, each having a
sequence of coefficients ¢'* = ¢; 1,...,¢ n,, Wheren; = n/2,
ne = n/4, and so on, with their sum ), n; = n. At each res-
olution level, an equal bin-width histogram is fitted to the coef-
ficients with the same number of bins m of width w = R/m.
Let H; denote the histogram on the ith level, which contains n;
points. The number of bins determines the amount of computa-
tions needed, and it is not optimized. Here, it is selected to be
m =T.

‘We start the selection process for the retained coefficients on
the first resolution level. Let S; be one of the 2" subsets of the
m bins on the first level having k; coefficients from the sequence
¢y falling in the bins of Sy. Put my = |S1|. Define ¢]* as the
string of the points falling in the bins of S7, and zero otherwise.

The code length for é7'! is given as in (3) by

o ny
L(¢7S,w,8) =lo
(151, w,0) g<n1(1)~~~-~,n1,(m1)-,nl_kl)
1
+log <"1+m1+ >+k110g (9) @
ni )

where n; (;) denotes the number of points falling in the bin of
H; having the index (7). To clarify these indexes, let by, denote
the k’th bin of Hy for k = 1,2,...,7, and let the set Sy of the
retained non-zero bins be S1 = {bs, b3, b5, b7}. Then, (1) = 2,
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(2) = 3,(3) = 5,and (4) =
length m = 7 for the set S.

Next, we calculate the code length of the residual &”. Since
the wavelet transform can be inverted, the code length is ob-
tained from the coefficients ¢™, in which the coefficients re-
tained so far are set to zero. Let ¢;* = c¢}'* — ¢]'* denote the
string of the re51duals on the first resolution level, and put ¢" =
'ty es? ", where each coefficient is written to the preci-
sion 6. In thls sequence there are n — k; nonzero coefficients,
provided that all the n coefficients in ¢™ are nonzero. Let R; de-
note the range of the coefficients in ¢". We model this sequence
by an equal bin-width histogram of M bins. Hence, the common
bin width is given by wy; = Ry /M. Since k; coefficients in ¢;*
were set to zero the sequence ¢", given S1, wy, 8, and M, can
be encoded with the code length

7. We also omit the fixed code

Tlog (” - "]'\1; M) = klog () )

where v; is the number of points falling in the jth bin.

Writing L(M) = log M +2log log M and ignoring the code
lengths for the ranges R and RR; the code length for the data is
given by

L(Inl‘slvwawl)

= L(é1*|S1,w, 6) + L(2"|S1, w1, 6, M) + L(M).
In this the precision 6 does not appear at all, and the term
nlog Ry does not depend on S7. The subset Sy is then deter-
mined by the following minimization criterion:

. ni ny+mg+1
min 4 log +log
Sy, M Y1)y s 11 (my s 1 — K1 ny

TL—k‘l —k'1+M
+10g<l/1,..‘.l/1\[>+log( M >*(774*1)

x log M + k; log (ﬂ) + 210g10gM}. (6)
(le )

We continue the process for the second resolution level. For
this we denote by IAcl the number of retained coefficients in the
optimal subset §1 found so far and by Iil the corresponding min-
imum code length (4). Let S, be a tentatively selected subset of
the bins of the m-bin histogram H, for ¢5* with ky coefficients
falling in the bins of S». As above, we deﬁne ¢5? and ¢4? as
the strings obtained from cy? by setting the coefficients to zero
that fall in Sy and Ss, respectively. Put ma = |Sa|. The code
length for the retained coefficients on the second resolution level
is given by

A n2
52182, w,6) =lo
( ‘ > ) & (nZ,(l) <3 M2 (mo)s N2 — k?)

1
+ log (nz +:Z;2 + ) + ks log (%) 7

where n (j) denotes the number of points falling in the bin of
H having the index ().
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This time, the coefficients of the residual are ¢" = ¢},
Cy?, 5%, ..., crm. Let their range be Ry. We model the resid-
uals by an equal bin-width histogram with a variable number
M bins and the bin width wy = Ry/M. As above, we get the

criterion to be minimized, as follows:

. N2 [n2+m2+1
min < log + log
S, M N2 (1)s - s s 102, (my), M2 — k2 N2

,7]2?17]{,2 77,7]1,17]{?2+M
1 log —(n—-1
+ Og(lll7...7l/1\/[)+ og( M ) (n-1)

A MR
X lOgM+k2+(k1+k2) 10g<@)+210glogM}.
®)

Notice that the criterion (8) to minimize Ss does not include
the optimized code length L(éT! |Sl ,w,0), (4), obtained on the
first layer, since by our greedy algorithm we do not let it af-
fect the minimization. The process is repeated for the subse-
quent resolution levels until the number k= ffl + e ,IET of
the retained coefficients for all resolution levels are determined,
which gives the sequence ¢" = ¢1*, ..., ér . If we take the in-
verse transform of ¢ we get the den01sed signal. We call this
the rigid MDL-histo denoising algorithm.

We summarize the major steps in the algorithm.

1) Start with the wavelet transformed sequence of coefficients

on r resolution levels, ¢™ = ¢J*,... ¢l
2) Recursively on resolution levels ¢« = 1,...,r fit an m-bin
histogram H; to the coefficients ’31 ) and select a tentative
partition of the bins into two sets S; and S;. Put m; =
|S;|. Denote by n; ;) the number of points falling in the

bin of H; having the index (j). The bins in S; contain k;

retained coefficients on this resolution level. Write the two

sequences of the retained coefficients and the rest as ¢™
and c"¢, respectively.
3) Fit a second histogram with M bins of width
R;/M to the coefficients of the residual sequence
e =¢yt,.. e, eyt - ¢, where the first i residual
strings are obtained by setting the already optimized
retained coefficients to zero.
Find the optimal S; by the minimization criterion, as
follows:

. N n;+m; +1
min< log +log
Si, M T (1)« - s i, (my)> i — ki n;

i—1
”—Ekj—k'i n+M=37 ki —k
+ log ( j=1 )—I—log < j=1 )

4

=

Vids-- s ViM M
i—1
. MR
—(n—1)logM + Zk] log ((mR,-))
Jj=1
MR
+ kilog | ——== | + 2loglog M 9)
(mR;)

where Z;;ll k; denotes the number of retained coefficients
in the so far optimized sets Sj, j < 4. For ¢ = 1 this sum
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is zero, and v; ; is the number of coefficients falling in the
7’th bin of the M -bin histogram fitted to the string ¢".

5) The denoised signal is obtained by taking the inverse trans-
form of the sequence ¢" = ¢é7*, ..., ' of all the retained
coefficients.

Next, we describe a softer version of the algorithm, to be
called softl, where the nonretained coefficients in the string
¢" — ¢" instead of having set to zero will be attenuated in a
certain manner. Such techniques do not conform with the MDL
principle without further arguments, and the only reason we dis-
cuss them is to see if they improve denoising as they do in the
other denoising techniques. The results turn out to be mixed as
seen in the next section.

There are a number of ways to introduce such a modification
and next we describe one of them. Sort all the coefficients in c™
in descending order by the absolute value |c(1)| > -+ > |c(n)l,
which induces the 1-1 map i + (i), or in words, "c(; in the
original sequence c" = ci,ca,...c, is the ith largest coeffi-
cient. Let C and C be the sets of the retained and the nonre-
tained nonzero coefficients in c", respectively. We construct a
string ¢ = ¢y, ..., C,, Which consists of the retained coeffi-
cients of C left intact and the remaining coefficients attenuated
as follows:

If ey € C, then Ciy = efm‘/"c(i),
else, 5@) = C(i)-

For instance, let the largest nonretained coefficient be the
seventh largest coefficient c(7) of them all. Then, it gets atten-
uated by the factor e~7/n while if the smallest nonretained
coefficient is the last c,, then it gets attenuated most by the
factor e~®. The denoised signal z™ is the inverse transform of
the sequence ¢".

Discussion

Although the simplicity of the calculations is not the main
objective in denoising it is clear that our algorithm requires a
lot more calculations than the other techniques. The main time
consuming tasks are the search through 128 subsets of the bins
of the retained coefficients on each resolution level to find the
optimum and the optimization of the number of bins in the his-
togram for the residuals. There are a number of ways to speed up
the calculations. For instance, instead of optimizing the number
of bins M for each layer and test each integer from 1 to n,
in reality we tested M only for every fifth integer from 1 to
n/2. It turned out that the values ranging from 30 to 100 gave
good results in all the data tested. Similarly, we found experi-
mentally that the value of « in our soft] algorithm giving good
results is n/(n — k). In our MATLAB implementation, for a
256 x 256 pixel grayscale image on an ordinary workstation
with the number of bins m = 7 it takes typically less than one
minute to get the denoised image.

A most important way to improve the results is to increase the
number of bins m from seven, which would permit a finer sep-
aration of the retained coefficients from the rest. This however
would rapidly increase the calculations for finding the optimum
even with the greedy search, which finds the optimum separately
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Fig. 1. Comparison of different methods for denoising a particular signal with
added Gaussian noise.

for each resolution level rather than jointly for them all. On the
other hand there is a way to pick the retained coefficients for all
the resolution levels jointly—albeit nonoptimally. We could re-
strict the selection of the bins such that at each level 7 we take m;
bins of the largest coefficients in absolute value, and find the op-
timal collection of r integers {k1, ..., k,}. Another rather im-
portant way is to fit variable bin-width histograms on each res-
olution level to the retained coefficients, where the break points
are calculated from the empirical fact that the distribution of the
coefficients can well be approximated by a Laplace distribution.

Finally, we have modeled the retained coefficients on each
resolution level as independent of the other levels, while cer-
tainly there is a strong dependency between them. For instance,
the location of the retained coefficients on the first level affects
their position in the second level, and so on. Such improvements,
however, are applicable to all the different denoising algorithms,
and we do not study them.

IV. EXPERIMENTAL RESULTS

In this section, we test our MDL-histo method by applying
it to data where the original signal is both 1-D and 2-D mixed
with different types of noise, and the results are compared with
other denoising methods. In all the experiments, we have ap-
plied Daubechies (db5) [17] wavelet basis functions.

Fig. 1 illustrates a time series signal of 4096 sample points
consisting of two parts, a sinusoidal and a ramp, to which low
variance Gaussian noise of zero mean and standard deviation
10 was added. The tested denoising techniques are BayesShrink
[1], Minimax thresholding [6], Fixedform thresholding [6], and
Rissanen’s linear-quadratic MDL-LQ method [9]. In addition
to comparing the results visually, we have also calculated the
mean absolute error (MAE) measure. We find that Rissanen’s
MDL-LQ denoising gives good performance, but it clearly
has some peak-like leftovers. The Fixedform, BayesShrink,
and MDL-histo rigid methods give similar performance with a
slight edge in favor of MDL-histo.
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Fig. 2. Comparison of different methods for denoising the signal in Fig. 1 with
added zero-mean Gaussian noise of increasing variance.

Fig. 2 illustrates the MAE results of the application of the
tested methods to denoise the same signal as in Fig. 1 with
added Gaussian noise of increasing variance. In this case, the
MDL-LQ method gives the best performance for small variance
but the worst performance for the variance exceeding 15. Our
MDL-histo method appears to give excellent results for all vari-
ance levels, beating the BayesShrink, Minimax and Fixedform
thresholding methods.

Fig. 3 illustrates two cases where the added noise has a non-
Gaussian distribution. In the upper part, noise was generated
with an asymmetric gamma distribution of zero mean, of the
kind observed in many real-world situations like in spectro-
scopic measurements [13] and electrical noise [14]. Clearly, the
best result, both visually and in the MAE score, is obtained with
MDL-histo. We also find that the Fixedform algorithm beats
BayesShrink.

The lower part illustrates the case where noise has a sym-
metric uniform distribution. This time, there is not much
difference in the visual appearance of the denoised curve ob-
tained with MDL-histo and Fixedform algorithms, although the
former has a lower MAE score. Of the algorithms tested, the
BayesShrink performed worst. Apparently, since the symmetric
uniform distribution can be approximated reasonably well with
a Gaussian, the difference in the performance of the algorithms
compared is less drastic than in the previous case.

After the above 1-D data, we applied the denoising algo-
rithms to image data, to which either Gaussian noise (Fig. 4)
or speckled noise (Fig. 5) was added. In both cases, we com-
pared our softl algorithm with BayesShrink, VisuShrink, [4],
and Fixedform [19] algorithms, all with soft thresholding. Al-
though in images the visual appearance is often considered a
better measure of merit than the MAE values, we show both.

In case of Gaussian noise (see Fig. 4), the MAE values of our
soft] and BayesShrink algorithms are close. The visual appear-
ance of the denoised image with soft! is smoother than that with
BayesShrink, but the edges are not quite as sharp. On the whole,
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Fig. 3. Comparison of different denoising methods for non-Gaussian noise.
(a) Comparison of methods on gamma distributed zero mean noise.
(b) Comparison of methods on uniformly distributed noise.

the quality of the two denoised images is comparable and better
than that obtained with the other two algorithms.

The noisy image in Fig. 5 was generated by adding
a multiplicative noise to the image pixels I(i,7), thus
J(i.4) = Ii.4) + I(i.j) x U(i,5), where U(i,j) has a
uniform distribution with zero mean and variance V' = 0.4.
Our softl algorithm gave clearly the smallest MAE score,
but since it distorts the image somewhat while removing the
speckled noise, it is a matter of judgment whether one would
prefer the denoised image obtained with BayesShrink, which is
sharper while leaving more of the speckled noise. This time, the
VisuShrink algorithm performed quite well, with the denoised
image only slightly more blurred than ours. While the result
of Fixedform was visually the worst, its MAE turned out to be
better than that of BayesShrink and VisuShrink.

V. CONCLUSION

The proposed MDL-histo technique is distinguished by its
ability to remove noise no matter how it is distributed. In partic-
ular, there is no need to specify a zero-zone around low magni-
tude wavelet coefficients as done conventionally. Although the
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Fig. 4. Comparison of different denoising methods on an image with added
Gaussian noise. (a) Original 256 X 256 pepper image rescaled to interval
[0,1]. (b) Noisy image with Gaussian noise of variance 0.04. (c) MDL-histo
soft] with residual MAE = 0.0528. (d) BayesShrink with soft thresh-
olding; residual MAE = 0.0545. (e) VisuShrink with soft thresholding;
residual MAE = 0.0594. (f) Fixedform with soft thresholding; residual
MAE = 0.058.

setting in this paper was in the wavelet domain, the idea can be
extended to other transforms which rely on energy compaction.

For image data the performance of MDL-histo is comparable
with the best of the tested algorithms. However, when the noise
distribution differs from the Gaussian, in particular in 1-D data,
the MDL-histo algorithm is found to excel.

There are a few problems to be studied in the future, the most
important being to find a method to select the bins of the retained
coefficients for a larger number of bins. This would permit sep-
aration of noise even from high frequency data.
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