
Publication 4

c© 2007 IEEE. Reprinted, with permission, from Vesa Siivola, Teemu
Hirsimäki, and Sami Virpioja, On Growing and Pruning Kneser-Ney
Smoothed N-Gram Models, IEEE Transactions on Speech, Audio and
Language Processing, volume 15(5), pages 1617–1624, 2007

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement
of any of Helsinki University of Technology's products or services.
Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of
the copyright laws protecting it.

IV

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007 1617

On Growing and Pruning Kneser–Ney
Smoothed N -Gram Models

Vesa Siivola, Teemu Hirsimäki, and Sami Virpioja

Abstract— -gram models are the most widely used language
models in large vocabulary continuous speech recognition. Since
the size of the model grows rapidly with respect to the model
order and available training data, many methods have been
proposed for pruning the least relevant -grams from the model.
However, correct smoothing of the -gram probability distri-
butions is important and performance may degrade significantly
if pruning conflicts with smoothing. In this paper, we show that
some of the commonly used pruning methods do not take into
account how removing an -gram should modify the backoff
distributions in the state-of-the-art Kneser–Ney smoothing. To
solve this problem, we present two new algorithms: one for
pruning Kneser–Ney smoothed models, and one for growing
them incrementally. Experiments on Finnish and English text
corpora show that the proposed pruning algorithm provides
considerable improvements over previous pruning algorithms on
Kneser–Ney-smoothed models and is also better than the baseline
entropy pruned Good–Turing smoothed models. The models
created by the growing algorithm provide a good starting point
for our pruning algorithm, leading to further improvements. The
improvements in the Finnish speech recognition over the other
Kneser–Ney smoothed models are statistically significant, as well.

Index Terms—Modeling, natural languages, smoothing methods,
speech recognition.

I. INTRODUCTION

N-GRAM models are the most widely used language models
in speech recognition. Since the size of the model grows

fast with respect to the model order and available training data,
it is common to restrict the number of -grams that are given
explicit probability estimates in the model. A common approach
is to estimate a full model containing all -grams of the training
data up to a given order and then remove -grams according to
some principle. Various methods such as count cutoffs, weighted
difference pruning (WDP) [1], Kneser pruning (KP) [2], and
entropy-based pruning (EP) [3] have been used in the literature.
Experiments have shown that more than half of the -grams
can be removed before the speech recognition accuracy starts to
degrade.

Another important aspect in -gram language modeling is
smoothing to avoid zero probability estimates for unseen data.
Numerous smoothing methods have been proposed in the past,
but the extensive studies by Chen and Goodman [4], [5] showed

Manuscript received November 3, 2006; revised January 27, 2007. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Bill Byrne.

The authors are with the Adaptive Informatics Research Centre, Helsinki Uni-
versity of Technology, FI-02015 HUT, Finland (Vesa.Siivola@tkk.fi; Teemu.
Hirsimaki@tkk.fi; Sami.Virpioja@tkk.fi).

Digital Object Identifier 10.1109/TASL.2007.896666

that a variation of Kneser–Ney smoothing [6] outperforms other
smoothing methods consistently.

In this paper, we study the interaction between pruning
and smoothing. To our knowledge, this interaction has not
been studied earlier, even though smoothing and pruning are
widely used. We demonstrate that EP has some assumptions
that conflict with the properties of Kneser–Ney smoothing, but
work well for the Good–Turing smoothed models. KP, on the
other hand, takes better into account the underlying smoothing,
but has other approximations in the pruning criterion. We
then describe two new algorithms for selecting -grams of
Kneser–Ney smoothed models more efficiently. The first algo-
rithm prunes individual -grams from models, and the second
grows models incrementally starting from a 1-gram model. We
show that the proposed algorithms produce better models than
the other pruning methods.

The rest of the paper is organized as follows. Section II sur-
veys earlier methods for pruning and growing -gram models,
and other methods for modifying the context lengths of -gram
models. Similarities and differences between the previous work
and the current work are highlighted. Section III describes the
algorithms used in the experiments, and Section IV presents the
experimental evaluation with discussion.

II. COMPARISON TO PREVIOUS WORK

A. Methods for Pruning Models

The simplest way for reducing the size of an -gram model
is to use count cutoffs: An -gram is removed from the model
if it occurs fewer than times in the training data, where is a
fixed cutoff value. Events seen only once or twice can usually be
discarded without significantly degrading the model. However,
severe pruning with cutoffs typically gives worse results than
other pruning methods [7].

WDP was presented by Seymore and Rosenfeld [1]. For each
-gram in the model, WDP computes the log probability given

by the original model and a model from which the -gram has
been removed. The difference is weighted by a Good–Turing
discounted -gram count, and the -gram is removed if the
weighted difference is smaller than a fixed threshold value. In
their experiments (presumably with Good–Turing smoothed
models), the weighted difference method gave better results
than count cutoffs.

Kneser [2] proposes a similar method for pruning -gram
models. The pruning criterion used in KP also computes the
weighted difference in log probability when an -gram is
pruned. The difference is computed using an absolute dis-
counted model and weighted by the probability given by the

1558-7916/$25.00 © 2007 IEEE

1618 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

model. Kneser also shows that using modified backoff distri-
butions along the lines of the original Kneser–Ney smoothing
improves the results further.

EP presented by Stolcke [3] is also closely related to WDP.
While WDP (and KP) only takes into account the change in the
probability of the pruned -gram, EP also computes how the
probabilities of other -grams change. Furthermore, instead of
using the discounted -gram count for weighting the log prob-
ability difference, EP uses the original model for computing
the probability of the -gram. Hence, EP can be applied to
a ready-made model without access to the count statistics. In
Stolcke’s experiments with Good–Turing smoothed models, EP
gave slightly better results than WDP.

In this paper, we propose a method called revised Kneser
pruning (RKP) for pruning Kneser–Ney smoothed models. The
method takes the properties of Kneser–Ney smoothing into ac-
count already when selecting the -grams to be pruned. The
other methods either ignore the smoothing method when se-
lecting the -gram to be pruned (KP) or ignore the fact that as
an -gram gets pruned, the lower-order probability estimates
should be changed (WDP, EP). We use the original KP and EP
as baseline methods, and they are described in more detail in
Section III.

B. Methods for Growing Models

All the algorithms mentioned in the previous section assume
that the -gram counts are computed from the training data for
every -gram up to the given context length. Since this becomes
computationally impractical if long contexts are desired, various
algorithms have been presented for selecting the -grams of the
model incrementally, thus avoiding computing the counts for all

-grams present in the training data.
Ristad and Thomas [8] describe an algorithm for growing
-gram models. They use a greedy search for finding the

individual candidate -grams to be added to the model.
The selection criterion is a minimum description length
(MDL)-based cost function. Ristad and Thomas train their
letter -gram model using 900 000 words. They get significant
improvements over their baseline -gram model, but it seems
their baseline model is not very good, as its performance
actually gets significantly worse when longer contexts are used.

Siu and Ostendorf [9] present their -gram language model
as a tree structure and show how to combine the tree nodes
in several different ways. Each node of the tree represents an

-gram context and the conditional -gram distribution for
the context. Their experiments show that the most gain can be
achieved by choosing an appropriate context length separately
for each word distribution. They grow the tree one distribution
at a time, and contrary to the other algorithms mentioned here,
contexts are grown toward the past by adding new words to the
beginning of the context. Their experiments on a small training
data (fewer than three million words) show that the model’s size
can be halved with no practical loss in performance.

Niesler and Woodland [10] present a method for backing off
from standard -gram models to cluster models. Their paper
also shows a way to grow a class -gram model which estimates
the probability of a cluster given the possible word clusters of

the context. The greedy search for finding the candidates to be
added to the model is similar to the one by Ristad and Thomas.
Whereas Ristad and Thomas add individual -grams, Niesler
and Woodland add conditional word distributions for -gram
contexts, and then prune away unnecessary -grams.

To our knowledge, no methods for growing Kneser–Ney
smoothed models have been proposed earlier. In this paper, we
present a method for estimating variable-length -gram models
incrementally while maintaining some aspects of Kneser–Ney
smoothing. We refer to the algorithm as Kneser–Ney growing
(KNG). It is similar to the growing method presented earlier
[11], except that RKP is used in the pruning phase. Addition-
ally, some mistakes in the implementation have been corrected.
The original results were reasonably good, but the correct
version gives clearly better results. The growing algorithm
is similar to the one by Niesler and Woodland. They use the
leaving-one-out cross validation for selecting the -grams
for the model, whereas our method uses a MDL-based cost
criterion. The MDL criterion is defined in a simpler manner
than in the algorithm by Ristad and Thomas, where a tighter
and more theoretical criterion was developed. We have chosen
a cost function that reflects how -gram models are typically
stored in speech recognition systems.

C. Other Related Work

Another way of expanding context length of the -gram
models is to join several words (or letters) to one token in
the language model. This idea is presented for example in a
paper on word clustering by Yamamoto et al. [12]. Deligne
and Bimbot [13] study how to combine several observations
into one underlying token. The opposite idea, splitting words
into subword units to improve the language model, has also
been studied. In our Finnish experiments, we use the algorithm
presented by Creutz and Lagus [14] for splitting words into
morpheme-like units.

Goodman and Gao [7] show that combining clustering and EP
can give better results than pruning alone. In the current work,
however, we only consider models without any clustering.

Virpioja and Kurimo [15] describe how variable-length
-gram contexts consisting of subword units can be clustered

to achieve some improvements in speech recognition. They
have also compared the performance to the old version of
KNG with a relatively small data set of around ten million
words, and show that the clustering gives better results with the
same number of parameters. Recent preliminary experiments
suggest that if RKP is applied also to the clustered model, the
improvement in perplexity is about as good as it was for the
nonclustered algorithm.

Bonafonte and Mario [16] present a pruning algorithm, where
the distribution of a lower order context is used instead of the
original if the pruning criterion is satisfied. For their pruning
criterion, they combine two requirements: The frequency of
the context must be low enough (akin to count cutoffs) or the
Kullback–Leibler divergence between the distributions must be
small enough. The combination of these two criteria is shown
to work better than either of the criteria alone when the models
were trained with a very small training set (14 000 sentences,
1300 words in the lexicon).

SIIVOLA et al.: ON GROWING AND PRUNING KNESER–NEY SMOOTHED -GRAM MODELS 1619

III. ALGORITHMS

A. Interpolated Kneser–Ney Smoothing

Let be a word and the history of words preceding . By
we denote the history obtained by removing the first word in

the history . For example, with the three-word history
and word , we have -grams and .
The number of words in the -gram is denoted by . Let

be the number of times occurs in the training data.
Interpolated Kneser–Ney smoothing [4] defines probabilities

for an -gram model of order as follows:

(1)
The modified counts , the normalization sums , and
the interpolation weights are defined as

if
if
otherwise

(2)

(3)

(4)

Order-specific discount parameters can be estimated on
held-out data. In (2), also has to be used for -grams

that begin with the sentence start symbol because no word
can precede them.

The original intention of Kneser–Ney smoothing is to keep
the following marginal constraints (see [6] for the original
backoff formulation, and [5] for the interpolated formulation)

(5)

Despite the intention, the smoothing satisfies the above con-
straints only approximately. In order to keep the marginals ex-
actly, maximum entropy modeling can be used (see [17], for
example), but the computational burden of maximum entropy
modeling is high.

For clarity, the above equations show Kneser–Ney smoothing
with only one discount parameter for each -gram order.
James [18] showed that the choice of discount coefficients
in Kneser–Ney smoothing can affect the performance of the
smoothing. In the experiments we used modified Kneser–Ney
smoothing [4] with three discount parameters for each -gram
order: one for -grams seen only once, one for -grams seen
only twice, and one for -grams seen more than two times.
We use numerical search to to find discount parameters that
maximize the probability of the held-out data.

B. Entropy-Based Pruning

Stolcke [3] described EP for backoff language models. For
each -gram in model , the pruning cost is com-
puted as follows:

(6)

is the original model, and corresponds to a model
from which the -gram has been removed (and backoff
weight updated accordingly). The cost is computed for
all -grams, and then the -grams which cost less than a
fixed threshold are removed from the model. It was shown that
the cost can be computed efficiently for all -grams. Another
strength of EP is that it can be applied to the model without
knowing the original -gram counts.

However, only Good–Turing smoothed models were used in
the original experiments. In the case of Kneser–Ney smoothing,
the lower-order distributions are generally not good
estimates for the true probability . This is because the
lower-order distributions are in a way optimized for modeling
probabilities of unseen -grams that are not covered by the
higher order of the model.1 This property conflicts with EP in
two ways. First, the selection criterion of EP weights the change
in with the probability

(7)

which is not a good approximation with Kneser–Ney smoothing
as discussed above. For the same reason, pruning
may be difficult if is not a good estimate for the true

. Indeed, we will see in Section IV that an entropy-pruned
Kneser–Ney model becomes considerably worse than an en-
tropy-pruned Good–Turing model when the amount of pruning
is increased.

C. Kneser Pruning

Kneser [2] also describes a general pruning method for
backoff models. For an -gram , which is not a prefix of
any -g included in the model (is a leaf -gram), the
cost of pruning from the full model is defined as

(8)

The cost for a non-leaf -gram, is obtained by aver-
aging for -grams that have as prefix (including

).
Kneser also gives a formula for computing modified backoff

distributions that approximate the same marginal constraints as
the original Kneser–Ney smoothing

(9)

The interpolation coefficient can be easily solved from the
equation to account for the discounted and pruned probability

1For example, this can be verified by training a 3-g model using Good–Turing
and Kneser–Ney smoothing, and then computing log probability of test data
using the 1-g and 2-g estimates only. The truncation degrades the performance
of the Kneser–Ney smoothed model dramatically when compared to the
Good–Turing smoothed model.

1620 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

mass. The above formulation corresponds to the original def-
inition,2 except that the original formulation was for backoff
model, while ours is for interpolated model and the discount
term is explicitly shown. As with Kneser–Ney smoothing,
the marginal constraints are not satisfied exactly.

The criterion for selecting -grams to be pruned contains
the following approximations: The selection is made before any
model modification takes place, and the criterion utilizes the
difference between the log probability of the -gram and its
backed-off estimate for the full absolute discounted model. Only

is updated during pruning. In practice, however, both the
backoff coefficient and the backoff distribution may be consid-
erably different in the final pruned model with modified backoff
distributions.

We have implemented an interpolated version of the algo-
rithm, since it has been shown that interpolated models gener-
ally work better [4]. It is not explicitly clear how KP should
be implemented with three discounts per model order, so we
implemented the original unmodified version (one discount per
order). In practice, the difference between modified and unmod-
ified models with large training data should be very small [5].

We conducted some preliminary experiments with different
approximations for selecting the -grams, and it seemed that
the criterion could be improved. These improvements are im-
plemented in the algorithm presented in the next section.

D. Revised Kneser Pruning

Since the original KP and EP ignore the properties of
Kneser–Ney smoothing when selecting -grams to be pruned,
we propose a new algorithm that takes the smoothing better into
account. The main motivation is that removing an -gram from
a Kneser–Ney smoothed model should change the lower-order
distributions. The algorithm tries to maintain the following
property of Kneser–Ney smoothing: As shown in (2), a backoff
distribution of a Kneser–Ney-smoothed model does not use
actual word counts. Instead, the number of unique words ap-
pearing before the -gram are counted. For the highest-order

-grams, the actual counts from the training data are used. We
can view the highest-order -gram counts in the same way as
the lower-order counts if we pretend that all -grams
have been pruned, and each appearance of the highest-order

-gram is considered to have a unique preceding word in the
training data.

This property is maintained in the algorithm shown in Fig. 1.
PRUNEGRAM describes how the counts and normal-
ization sums are modified when an -gram is pruned.
Before pruning, the first word of is considered as one unique
preceding word for in . After pruning , all the

instances of are considered having a new unique
preceding word for . Thus, is increased by

. Note that the condition on line 2 of PRUNEGRAM is always
true if the model contains all -grams from the training data.
However, if model growing or count cutoffs are used,
may be zero even if is positive. Additionally, the sum

2In the original paper [2, Eq. 9], there are parentheses missing around
N(v; h ; w) � d in the numerator and denominator.

Fig. 1. Pruning algorithm. Note that lines 3 and 6 in PRUNEORDER modify the
counts C (�), which also alters the estimate P (wjhhh).

of pruned counts is updated with . The probabili-
ties are then computed as usual (1), except that the
interpolation weight has to take into account the discounted
and pruned probability mass:

(10)

For each order in the model, PRUNEORDER is called
with a pruning threshold . Higher orders are processed before
lower orders. For each -gram at order , we try pruning
the -gram (and modifying the model accordingly), and com-
pute how much the log probability of the -grams decreases
in the training data. If the decrease is greater than the pruning
threshold, the -gram is restored into the model. Note that the
algorithm also allows pruning non-leaf nodes of an -gram
model. It may not be theoretically justified, but preliminary ex-
periments suggested that it can clearly improve the results. For
efficiency, it is also possible to maintain a separate variable for

in the algorithm. After pruning, we re-esti-
mate the discount parameters on a held-out text data. In contrast
to EP, the counts are modified whenever an -gram is pruned,
so the pruning cannot be applied to a model without count in-
formation.

The pruning criterion used in PRUNEORDER has a few approx-
imations. It only takes into account the change in the probability
of the pruned -gram. In reality, pruning -gram alters

directly for all . The interpolation weights
and are altered as well, so may change for
all and . For weighting the difference in log probability, we
use the actual count . This should be a better approximation
for Kneser–Ney smoothed models than the one used by EP. The
Good–Turing weighting, as used in WDP, would probably be
better, but would make the model estimation slightly more com-
plex, since the model is now originally Kneser–Ney smoothed.

Note that apart from the criterion for choosing the -grams
to be pruned, the proposed method is very close to KP. If we
chose to prune the same set of -grams, RKP would give almost
the same probabilities as shown in (9); only the factor
would be approximated as one. This approximation makes it
easier to reoptimize the discount factors on a held-out text data
after pruning. In our preliminary experiments, this approxima-
tion did not degrade the results.

SIIVOLA et al.: ON GROWING AND PRUNING KNESER–NEY SMOOTHED -GRAM MODELS 1621

Fig. 2. Growing algorithm.

Thus, the main differences to KP are the following: We
modify the model after each -gram has been pruned, instead
of first deciding which -grams to prune and pruning the
model afterwards. The pruning criterion uses these updated
backoff coefficients and distributions. Lastly, the pruning cri-
terion weights the difference in log probability by the -gram
count instead of the probability estimated by the model.

The method looks computationally slightly heavier than
EP or WDP, since some extra model manipulation is needed.
In practice, however, the computational cost is similar. The
memory consumption and speed of the method can be slightly
improved by replacing the weighting by in
line 2 and 4 of PRUNEORDER algorithm (Fig. 1), since then the
original counts are not needed at all, and can be discarded. In
our preliminary experiments, this did not degrade the results.

E. Kneser–Ney Growing

Instead of computing all -gram counts up to certain order
and then pruning, a variable-length model can be created incre-
mentally so that only some of the -grams found in the training
data are taken into the model in the first place. We use a growing
method that we call Kneser–Ney growing. KNG is motivated
similarly to the RKP described in the previous section.

The growing algorithm is shown in Fig. 2. The initial model
is an interpolated 1-g Kneser–Ney model. Higher orders are
grown by GROWORDER , which is called iteratively with
increasing order until the model stops growing. The al-
gorithm processes each -gram already in the model at order

, and adds all -grams present in the training data
to the model, if they meet a cost criterion. The cost criterion
is discussed below in more detail. The ADDGRAM algo-
rithm shows how count statistics used in (1) are updated when
an -gram is added to the model.

Since the model is grown one distribution at time, it is still
useful to prune the grown model to remove the individual unnec-

essary -grams. Compared to pruning of full -gram models,
the main computational benefit of the growing algorithm is that
counts only need to be collected for histories that are
already in the model. Thus, much longer contexts can be brought
into the model.

1) About the Cost Function for Growing: For deciding which
-grams should be added to the model, we use a cost function

based on the MDL principle. The cost consists of two parts: the
cost of encoding the training data , and the cost of
encoding the -gram model . The relative weight of
the model encoding is controlled by , which affects the size
of the resulting model. The cost of encoding the training data
is the log probability of the training data given by the current
model. For the cost of encoding the model, we roughly assume
the tree structure used by our speech recognition system (the
structure is based on [19]). The cost of growing the model from

-grams to -grams is then

(11)
where is related to the number of bits required for storing
each float with given precision. The first term assumes that con-
stant amount of bits is required for storing the parameters of an

-gram, regardless of the -gram order. The remaining terms
take into account the tree structure for representing the -gram
indices (see [11] for details), but omitting them does not seem to
affect the results. In practice, during the model estimation, the
model is stored in a different structure where model manipula-
tion is easy.

More compact representations can be formulated. Ristad and
Thomas [8] show an elaborate cost function which they use for
training letter-based -gram models. Whittaker and Raj [19],
[20], on the other hand, have used quantization and compression
methods for storing -grams compactly while maintaining rea-
sonable access times.

In practice, however, pruning or growing algorithms are not
used for finding the model with the optimal description length.
Instead, they are used for finding a good balance between the
modeling performance (or recognition accuracy) and memory
consumption. Moreover, even if the desired model size was, say,
only 100 MB, we probably want to create first as large model
as we can (perhaps a few gigabytes with current systems), and
then prune it to the desired size. The same applies for growing
methods. It may be hard to grow an optimal model for 100 MB,
unless one first creates a larger model to see which -grams
really should be omitted. In this sense, the main advantage of
the growing algorithms may be the ability to create good initial
models for pruning algorithms.

F. Some Words on the Computational Complexity

The limiting factors for the algorithms are either the con-
sumed memory or the required processing power. All of the al-
gorithms presented here can be implemented with similar data
structures. For models containing equal amount of -grams, the
methods will end up using similar amounts of memory. When
looking at the processor time, some algorithms are clearly sim-
pler than the others. In practice though, they all scale similarly
with the number of -grams in the model. In our experiments,

1622 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

the computation times of the methods were roughly equivalent
using a computer with a 2-GHz consumer level processor and
10 GB of memory.

IV. EXPERIMENTS

A. Setup and Data

The Finnish text corpus (150 million words) is a collection
of books, magazines, and newspapers from the Kielipankki
corpus [21]. Before training the language models, the words
were split into subword units, which has been shown to sig-
nificantly improve the speech recognition of Finnish [22] and
other highly inflecting and agglutinative languages [23]. We
used the Morfessor software [24] for splitting the words. The
resulting 460 million tokens in the training set consisted of 8428
unique tokens. The held-out and test sets contained 110 000
and 510 000 tokens, respectively. Full 5-g models were trained
for Good–Turing smoothing and for unmodified and modified
Kneser–Ney smoothing. The models were pruned to three
different size classes: large, medium, and small. SRILM toolkit
[25] was used for applying EP to the Good–Turing and the
modified Kneser–Ney smoothed models. RKP was performed
on the modified Kneser–Ney smoothed model, and KP was
performed on the unmodified Kneser–Ney smoothed model.
Using KNG, we trained a model to the same size as the full 5-g
models and then pruned the grown model with RKP to similar
sizes as the other models were pruned to.

The English text corpus was taken from the second edition
of the English LDC Gigaword corpus [26]. 930 million words
from the New York Times were used. The last segments were ex-
cluded from the training set: 200 000 words for the held-out set
and 2 million words for the test set. 50 000 most common words
were modeled, and the rest were mapped to an unknown word
token. Full 4-g models were trained for modified and unmod-
ified Kneser–Ney smoothing. We were unable to train full 4-g
models with the SRILM toolkit because of memory constraints,
so we used count cutoffs for training a Good–Turing and a mod-
ified Kneser–Ney smoothed model to be used with EP. The cut-
offs removed all 3-g seen only once and all 4-g seen fewer than
three times. With KNG, we trained the largest model we practi-
cally could with our implementation. KP was used with the full
4-g unmodified Kneser–Ney model and RKP was used with the
full 4-g modified Kneser–Ney model as well as the KNG model.
Again, we created models of three different sizes.

The audio data for the Finnish speech recognition experiment
was taken from the SPEECON corpus [27]. Only adult speakers
in clean recording conditions were used. The training set con-
sisted of 26 h of material by 207 speakers. The development
set was 1 h of material by 20 different speakers and evaluation
set 1.5 h by set of 31 new speakers. Only full sentences without
mispronunciations were used in the development and evaluation
sets.

The HUT speech recognizer [28] is based on decision-tree
state-clustered hidden Markov triphone models with contin-
uous-density Gaussian mixtures. Each clustered state was
additionally associated with a gamma probability density func-
tion to model the state durations. The decoder has an efficient

Fig. 3. Cross-entropy results on the Finnish text corpus. Note that the reported
cross-entropy and perplexity values are normalized per word.

Fig. 4. Cross-entropy results on the English text corpus.

time-synchronous, beam-pruned Viterbi token-passing search
through a static reentrant lexical prefix tree.

B. Results

For each model , we computed the cross-entropy with
previously unseen text data containing words

(12)

The relation to perplexity is . The cross-en-
tropy and perplexity results for Finnish and English are shown
in Figs. 3 and 4. Note that in the Finnish case, the entropy is
measured as bits per word, and perplexity as word perplexity
even if the Finnish models operate on subword units. Normal-
izing entropies and perplexities on whole-word level keeps the
values comparable with other studies that might use different
word splitting (or no splitting at all). Finnish models were also
evaluated on a speech recognition task, and the results are shown
in Fig. 5. We report letter error rates (LER) instead of word error
rates (WER), since LER provides finer resolution for Finnish

SIIVOLA et al.: ON GROWING AND PRUNING KNESER–NEY SMOOTHED -GRAM MODELS 1623

Fig. 5. Results of the Finnish speech recognition task. Note that we report the
letter error rate and not the language model token error rate.

Fig. 6. Distribution of N -grams of different orders in RKP and KNG models
for Finnish. Orders up to 10 are shown. The highest order in any model was 16.

words, which are often long because of compound words, inflec-
tions, and suffixes. The best obtained LER 4.1% corresponds to
WER of 15.1%.

We performed a pairwise one-sided signed-rank Wilcoxon
test to see the significance of the differences with
to selected pairs of models. In Finnish cross-entropy experi-
ments, the KNG models were significantly better than the RKP
models and the entropy pruned Good–Turing models for all
but the small models. The RKP model was significantly better
than Good–Turing model for all but the small models. In Eng-
lish cross-entropy experiments, all differences between simi-
larly sized Good–Turing, RKP, and KNG models were signif-
icant. In Finnish speech recognition tests, the KNG model was
not significantly better than the RKP model. The RKP model
was significantly better than the Good–Turing model only for
the full model.

C. Discussion

In the Finnish cross-entropy results (Fig. 3), we can see that
EP and KP degrade the Kneser–Ney-smoothed model rapidly
when compared to pruning the Good–Turing-smoothed model.
We believe that this is due to two reasons. In Kneser–Ney
smoothing, the backoff distributions are optimized for the cases
that higher orders do not cover. Thus, the backoff distributions

should be modified when -grams are removed from the
model. KP does that, EP does not. However, fixing the backoff
distributions does not help if wrong -grams are removed.
Both KP and EP assume that the cost of pruning an -gram
from the model is independent of the other pruning operations
performed on the model. This approximation is reasonable for
Good–Turing smoothing. In Kneser–Ney smoothing, this is not
the case, as the lower order distributions should be corrected to
take into account the removal of higher order -grams.

RKP addresses both of these issues and maintains good per-
formance both for the full Kneser–Ney smoothed model and the
grown model. Since the largest KNG model has lower entropy
than the full 5-g model, the KNG model must benefit from
higher-order -grams. The advantage is also maintained for
the pruned models. Fig. 6 shows how -grams are distributed
on different orders in RKP and KNG models for Finnish.
For heavily pruned models, the distributions become almost
identical.

Note that for highly inflecting and compounding languages,
such as Finnish, the entropy and perplexity values measured on
the whole-word level are naturally higher than corresponding
English values. This is simply because inflected and com-
pounded words increase the number of distinct word forms.
Thus, a Finnish translation typically contains fewer but longer
words than the corresponding English sentence.3 In our test
sets, the average number of words per sentence was 11 for
Finnish and 20 for English. The sentence entropies for the best
models were around 160 bits regardless of the language. Thus,
the Finnish word entropy is almost twice the English word
entropy, and the perplexity is almost squared.

Also in the English case (Fig. 4), EP and KP seem to de-
grade results rapidly. Surprisingly, the largest entropy pruned
Kneser–Ney model seems to give a good result when compared
to other models. That model is actually unpruned, except for
count cutoffs. As mentioned in the previous section, count cut-
offs were used only for being able to build larger models for EP.
The result is in line with [7] where it was reported that count cut-
offs can produce better results than plain EP if only light pruning
is desired. Preliminary experiments indicate that small cutoffs
also improve RKP and KNG.

In speech recognition (Fig. 5), EP and KP degrade the full
Kneser–Ney model considerably, too. For example, medium-
sized KNG and RKP models have about the same error rate
as the large-sized EP and KP models that are almost one order
of magnitude larger. Further experiments would be needed for
reliably finding out the relative performances of RKP, KNG, and
entropy pruned Good–Turing models.

V. CONCLUSION

This work demonstrated that existing pruning algorithms
for -gram language models contain some approximations
that conflict with the state-of-the-art Kneser–Ney smoothing
algorithm. We described a new pruning algorithm, which
in contrast to the previous algorithms takes Kneser–Ney
smoothing into account already when selecting the -grams
to be pruned. We also described an algorithm for building

3For example, the six-word sentence The milk is in the fridge translates into
a three-word sentence in Finnish: Maito on jääkaapissa

1624 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

variable-length Kneser–Ney smoothed models incrementally,
which avoids collecting all -gram counts up to a fixed
maximum length. Experiments on Finnish and English text
corpora showed that the proposed pruning algorithm gives
significantly lower cross-entropies when compared to the
previous pruning algorithms, and using the growing algorithm
improves the results further. In a Finnish speech recognition
task, the proposed algorithms significantly outperformed the
previous pruning methods on Kneser–Ney smoothed models.
The slight improvement over the entropy pruned Good–Turing
smoothed models turned out not to be statistically significant.
The software for pruning and growing will be published at
http://www.cis.hut.fi/projects/speech/.

REFERENCES

[1] K. Seymore and R. Rosenfeld, “Scalable backoff language models,” in
Proc. ICSLP, 1996, pp. 232–235.

[2] R. Kneser, “Statistical language modeling using a variable context
length,” in Proc. ICSLP, 1996, pp. 494–497.

[3] A. Stolcke, “Entropy-based pruning of backoff language models,” in
Proc. DARPA Broadcast News Transcription Understanding Work-
shop, 1998, pp. 270–274.

[4] S. Chen and J. Goodman, “An empirical study of smoothing techniques
for language modeling,” Comput. Speech Lang., vol. 13, no. 4, pp.
359–393, Oct. 1999.

[5] J. Goodman, “A bit of progress in language modeling,” Comput. Speech
Lang., vol. 15, no. 4, pp. 403–434, Oct. 2001.

[6] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in Proc. ICASSP, 1995, pp. 181–184.

[7] J. Goodman and J. Gao, “Language model size reduction by pruning
and clustering,” in Proc. ICSLP, 2000, pp. 110–113.

[8] E. Ristad and R. Thomas, “New techniques for context modeling,” in
Meeting Assoc. Computat. Ling., 1995, pp. 220–227.

[9] M. Siu and M. Ostendorf, “Variable N -grams and extensions for
conversational speech language modeling,” IEEE Trans. Speech Audio
Process., vol. 8, no. 1, pp. 63–75, Jan. 2000.

[10] T. R. Niesler and P. C. Woodland, “Variable-length category n-gram
language models,” Comput. Speech Lang., vol. 13, no. 1, pp. 99–124,
Jan. 1999.

[11] V. Siivola and B. Pellom, “Growing an N -gram model,” in Proc. In-
terspeech, 2005, pp. 1309–1312.

[12] H. Yamamoto, S. Isogai, and Y. Sagisaka, “Multi-class composite
n-gram language model,” Speech Commun., vol. 41, no. 2–3, pp.
369–379, Oct. 2003.

[13] S. Deligne and F. Bimbot, “Inference of variable-length linguistic and
acoustic units by multigrams,” Speech Commun., vol. 23, no. 3, pp.
223–241, 1997.

[14] M. Creutz and K. Lagus, “Unsupervised discovery of morphemes,” in
Proc. Workshop Morphol. Phonol. Learning ACL-02, 2002, pp. 21–30.

[15] S. Virpioja and M. Kurimo, “Compact n-gram models by incremental
growing and clustering of histories,” in Proc. Interspeech, 2006, pp.
1037–1040.

[16] A. Bonafonte and J. Mariño, “Language modeling using x-grams,” in
Proc. ICSLP, 1996, pp. 394–397.

[17] S. Chen and R. Rosenfeld, “A survey of smoothing techniques for ME
models,” IEEE Trans. Speech Audio Process., vol. 8, no. 1, pp. 37–50,
Jan. 2000.

[18] F. James, Modified Kneser–Ney Smoothing of N -Gram Models Res.
Inst. Adv. Comput. Sci., Tech. Rep. 00.07, Oct. 2000.

[19] E. W. D. Whittaker and B. Raj, “Quantization-based language model
compression,” in Proc. Eurospeech, 2001, pp. 33–36.

[20] B. Raj and E. W. D. Whittaker, “Lossless compression of language
model structure and word identifiers,” in Proc. ICASSP, 2003, pp.
388–391.

[21] “Finnish Text Collection,” 2004, collection of Finnish text documents
from years 1990–2000. Compiled by Department of General Linguis-
tics, University of Helsinki, Linguistics and Language Technology De-
partment, University of Joensuu, Research Institute for the Languages
of Finland, and CSC. [Online]. Available: http://www.csc.fi/kieli-
pankki/

[22] T. Hirsimäki, M. Creutz, V. Siivola, M. Kurimo, S. Virpioja, and J.
Pylkkönen, “Unlimited vocabulary speech recognition with morph lan-
guage models applied to Finnish,” Comput. Speech Lang., vol. 20, no.
4, pp. 515–541, Oct. 2006.

[23] M. Kurimo, A. Puurula, E. Arisoy, V. Siivola, T. Hirsimäki, J.
Pylkkönen, T. Alumae, and M. Saraclar, “Unlimited vocabulary
speech recognition for agglutinative languages,” in Proc. HLT-NAACL,
2006, pp. 487–494.

[24] M. Creutz and K. Lagus, “Unsupervised morpheme segmentation and
morphology induction from text corpora Using Morfessor 1.0,” Pub-
lications Comput. Inf. Sci., Helsinki Univ.Technol., Tech. Rep. A81,
2005.

[25] A. Stolcke, “SRILM—An extensible language modeling toolkit,” in
Proc. ICSLP, 2002, pp. 901–904.

[26] D. Graff, J. Kong, K. Chen, and K. Maeda, English Gigaword Second
Edition. Philadelphia, PA: Linguistic Data Consortium, 2005.

[27] D. Iskra, B. Grosskopf, K. Marasek, H. van den Heuvel, F. Diehl,
and A. Kiessling, “SPEECON—Speech databases for consumer de-
vices: Database specification and validation,” in Proc. LREC, 2002, pp.
329–333.

[28] J. Pylkkönen, “New pruning criteria for efficient decoding,” in Proc.
Interspeech, 2005, pp. 581–584.

Vesa Siivola received the M.Sc. degree in electrical
engineering from the Helsinki University of Tech-
nology, Espoo, Finland, in 1999.

Since then, he has been researching language mod-
eling for speech recognition systems in the Adaptive
Informatics Research Centre, Helsinki University of
Technology.

Teemu Hirsimäki received the M.Sc. degree in
computer science from Helsinki University of
Technology, Espoo, Finland, in 2002 where he is
currently pursuing the Ph.D. degree.

Since 2000, he has worked in the Speech Group,
Adaptive Informatics Research Centre, Helsinki Uni-
versity of Technology. His research interests are lan-
guage modeling and decoding in speech recognition.

Sami Virpioja received the M.Sc. degree in com-
puter science and engineering from Helsinki Univer-
sity of Technology, Espoo, Finland, in 2005.

He is currently a Researcher at the Adaptive Infor-
matics Research Centre, Helsinki University of Tech-
nology. His research interests are in statistical lan-
guage modeling and its applications in speech recog-
nition and machine translation.

