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ABSTRACT 

In this paper, a new state-space method for language mod- 
eling is presented. The complexity of the model is con- 
trolled by choosing the dimension of the state instead of the 
smoothing and back-off methods common in n-gram mod- 
eling. The model complexity also controls the generaliza- 
tion ability of the model, allowing the model to handle sim- 
ilar words in similar manner. We compare the state-space 
model to a traditional n-gram model in a task of letter pre- 
diction. In this proof-of-concept experiment, the state-space 
model gives similar results as the n-gram model with sparse 
training data, but performs clearly worse with dense training 
data. While the initial results are encouraging, the training 
algorithm should be made more effective, so that it can fully 
exploit the model structure and scale up to larger token sets, 
such as words. 

1. INTRODUCTION 

A language model is an important component of a mod- 
em speech recognition system. The language model ranks 
the hypotheses generated by the acoustic models. Usually, 
a hypothesis is expanded one word at a time, so the lan- 
guage model gives the probability of the new word given 
the known history. The overwhelmingly most common ap- 
proach is n-gram modeling. The n-gram model assigns the 
probabilities based on the relative frequencies of the words 
with same truncated histories in the training set. With heuris- 
tics like smoothing and back-off, the n-gram model pro- 
vides a robust model [l]. Corresponding models based on 
Bayesian probability theory give similar results [2]. 

The main drawback of n-gram models is that the model 
cannot generalize from semantically similar words. If the 
training data has a sentence "Monday morning was clear", 
the n-gram model cannot use any of that information to 
model the sentence "Tuesday evening is cloudy". If simi- 
lar words are clustered and the n-gram estimates are based 
on these clusters, this kind of generalization can be achieved 
[3, 41. Combining cluster n-grams and traditional n-grams 
improves the model. 

In Neural Probabilistic Language Model (NPLM) [5], 
this generalization is achieved differently. A word is mapped 
to a low dimensional feature vector by a neural net. The 
feature vectors for fixed number of previous words are fed 
into the second layer of the network, which maps these vec- 
tors to probabilities through the softmax function. Since the 
network has too few parameters to learn the probability dis- 
tribution separately for all feature vectors, the first layer of 
the network ends up mapping similar words close to each 
other. As the mapping of the second layer is smooth, this 
leads to good generalization ability. The method is com- 
putationally demanding and the authors reduced the size of 
the vocabulary to less than 20000. The method achieved 
approximately 15% lower perplexity than a corresponding 
n-gram model. 

The model presented here is based on state-space mcth- 
ods. A traditional state-space model is a model for continu- 
ous valued time series data. It consists of a linear dynamical 
system describing the evolution of the state. The state is not 
observed directly but through a separate linear observation 
mapping. State-space models are very popular in many ap- 
plications due to their general nature and also because of 
simple processing algorithms such as Kalman filtering [GI. 

In this paper, we present a novel state-space method for 
modeling a discrete token source, such as words of a lan- 
guage. The probability distribution of a token is governed 
by the softmax function of a linear transformation of the 
corresponding state. The new state depends on a fixed num- 
ber of previous tokens in addition to the previous state. Each 
of the previous tokens is projected to a low dimensional fea- 
ture vector and the features form a part of the state vector. 
Because of this dimension reduction, increasing the num- 
ber of tokens affecting the current state increases the model 
complexity only moderately. Since the model does not have 
enough parameters to learn the probability distribution sep- 
arately for each possible feature vector, similar tokens are 
mapped close to each other, just like in NPLM. The lower 
the dimensionality of the state, the more the model genzr- 
alizes. Too low state dimension will, however, make the 
model inflexible and unable to model the source well. Even 
though our model is mostly linear, the softmax nonlinearity 
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Fig. 1. The dependencies for state s ( t )  

makes its training computationally demanding. 

2. THE STATE-SPACE MODEL 

In this paper, boldface capital letters denote matrices and 
boldface lower case letters vectors. s; denotes the i:th ele- 
ment of the vectors, A j , k  the corresponding element of the 
matrix A and   AS)^ the I:th element of the vector resulting 
from the multiplication of A and s.  

2.1. Traditional state-space models 

A basic state-space model for a time series x(t)  is defined 
by two equations 

s(t + 1) = As(t)  + m(t) 
x ( t )  = Bs(t) + n(t) ,  

(1) 
(2)  

where s ( t )  are the states of the system, A is the state trans- 
formation matrix and B is the observation matrix. Vector 
n( t )  is Gaussian observation noise and m(t) is Gaussian 
process noise forming the innovation process. 

The continuous state model is also related to discrete 
state hidden Markov model (HMM) that can be obtained 
by adding a simple discretizing nonlinearity to Eq. (1) as 
shown in [7]. In our case we perform the transformation to 
discrete domain in a different manner by adding a softmax 
nonlinearity to Eq. (2). Additionally our model contains 
explicit mappings from a few previous tokens to the new 
state as illustrated in Figure 1. 

2.2. Structure of our model 

Let us assume that we have a source which produces a stream 
of tokens y ( t ) ,  for example words or letters. The source is 
a random process, in which the distribution of the next to- 
ken depends on the previously generated tokens. The goal 
is to model this source. For simplicity, let us assume that we 
can enumerate the set of tokens that the source can produce 
and the size of the set .is W .  A token w; can be mapped to 
continuous space by using indicator vector x ,  where the i:th 
element is set to 1 and others to zero. When the observation 

is missing, the elements of the estimate 2 give the proba- 
bility of each token. Later it will be shown how tokens that 
were not present in the training set can be cleanly handled. 

Our model has a state vector s ( t ) ,  which represents the 
state of the source. From this state, the probability distribu- 
tion for the current token can be generated by linear map- 
ping B and a softmax function. Thus, the estimated proba- 
bility of drawing the i:th token is 

P(y( t )  = UJ? 1 s ( t ) )  = P(x.( t )  = 1 I s ( t ) )  

The state vector is actually a concatenation of smaller 
vectors. The previous state is mapped to the internal state 
vector q(t) by matrix A. The dimension of the internal state 
is Nq. The probability vectors of the tokens in the history 
can be mapped by matrix C to lower dimensional feature 
vectors l ( t )  that are concatenated to the original internal 
state vector. The dimensionality of vector l( t)  is denoted 
by NI. 

To estimate the new state vector G(t), the prediction from 
the previous state s ( t -  1) is concatenated with the mappings 
from previous tokens, thus forming N, = Nq + n . N, di- 
mensional vector, where n is the number of tokens that are 
connected to current state. Curly braces show the dimen- 
sions of the components: 

G(t) = 

- - 

l(t - ' n) 1) 
N,xN, N.xl 
A- 
A s(t - 1) 

NzxW W x 1  
A- c x(t - 1) 

Cx(t  - 2) 

Cx(t  - n) 

Assuming a Gaussian innovation process with covari- 
ance A, the probability of a new state s ( t )  given the previ- 
ous state s(t - l), the past history Xt = {x ( t  - l), . . . , x ( t -  
n)} and the model parameters M = { A , B ,  C }  is 

P(s( t )  I s(t - U, Xt,  M )  
= ~ e - ~ ( s ( t ) - a ( t ) ) T A - l ( a ( t ) - ~ ( t ) ) ,  (6) 

where cis a normalization constant. Figure 1 illustrates the 
dependencies of the model. 
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2.3. Training the model 

The model is trained by maximizing the posterior probabil- 
ity density of the state and the model parameters M for the 
training data: 

P(s ( t ) ,M I s( t  - l ) , x ( t ) , X t )  
- - P ( X ( t )  Is(t),M).P(s(t),M l ~ ( t - l ) , & )  (7) 

Assuming that the parameters M have non-informative uni- 
form priors and they are independent of the state s(t  - 1 )  
we get joint posterior probability density 

P ( x ( t )  I s( t  - 1 ) , X t )  

For simplicity, we will also assume diagonal covariance A. 
Maximization of this function is performed with an EM- 

like algorithm one parameter at a time. A5 the denominator 
is constant with respect to parameters to be maximized, it 
can be ignored. First, the best state s(t) is found by max- 
imizing the logarithm of the Eq. (8) with respect to s ( t )  
while keeping parameters M constant: 

(9) 

The function can not easily be analytically maximized, but 
a numerical solution is feasible. A good starting point for 
searching the exact solution is the predicted new state S(t).' 
In this work, Fletcher-Reeves conjugate gradient algorithm 
[8] as implemented in GNU scientific library' is used. 

After fixing s ( t ) ,  we update the parameters M .  Gradi- 
ent of logarithm of Eq. (8) is calculated with respect to each 
of parameters in M and the parameters are updated toward 
the maximum. This yields the following update rules. 

A;;"= Aij+ a A ~ ~ s j ( t - l ) ( s i ( t )  - ( A s ( t - l ) ) i ) ( l O )  

B;S"=Bi,j+Psj(t) ( ~ ( t )  - ki(t)) (11) 
"-1 

C~~"=Cij+yCA,~(s,(t)-Ci,j)xj(t-n), 

where q = N4 + k . Nl + i 
k=O 

(12) 

Here a, 0 and 7 are the corresponding learning rate param- 
eters. Note that x ( t )  has only one nonzero element. Above, 
the procedure for updating the model for one learning sam- 
ple was outlined. This procedure is iterated until conver- 
gence. 

These update rules are valid for on-line learning. A cor- 
responding batch algorithm can trivially be computed from 

' http://wwv.gnu.org/software/gsV 

Eqs. (IO), (11) and (12) by summing the steps along the 
gradient over the batch window before updating the actual 
parameters. Note, that this is not the exact solution: Dxir- 
ing batch learning, we know also the future tokens. Based 
on these future tokens, we can approximate the future state, 
which should directly affect our current state. 

2.4. Computational considerations 

Since the scale of M is not fixed, we can choose arbitrary 
A and the scale of M should adapt accordingly. For numer- 
ical reasons, M should be kept small enough, so that expo- 
nential functions involved can be calculated without fear of 
overflow. Here, we choose that A is diagonal with values 
0.1 on the diagonal. 

If the model would be able to learn the data almost per- 
fectly, it would still try to make the absolute values of pa- 
rameters M bigger, since the softmax function would still 
give slightly higher likelihoods for bigger values. To pre- 
vent M from tending to infinity, we have restricted the sum 
of squared elements of each matrix to maximum of 10. 

Training the model is computationally intensive. Find- 
ing the most probable s(t)  requires iterations. During each 
of the iterations, we need to calculate the softmax function, 
which takes up most of the computation time of the whole 
learning (up to 70% in these experiments). Some clever 
approximations could make the algorithm computationally 
less demanding but such optimizations are beyond the scope 
of this paper. 

25. Using the model for prediction 

When predicting new tokens, the probability estimates are 
drawn from the estimated state S ( t  + 1). When the current 
token is fixed, the state estimate is corrected to the most 
likely state (Eq. (9)). As in training, this maximization can 
only be solved numerically. 

In this model, no probability mass has been left to to- 
kens that were not present in the training data. If such out- 
of-vocabulary (OOV) token is encountered in the history, 
the indicator vector x(t)  is set to zero. This turns off the 
contribution of the OOV token for the next prediction. 

3. EXPERIMENTS 

In this work, we examine a task of letter prediction. We 
use letters as tokens for our language model and the goal of 
our language model is to predict the next letter. To measure 
the quality of our model, we calculate for the training mate- 
rial the reciprocal of the geometric mean of the probabilities 
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given to each token, also known as perplexiry: 

Perp(y(1) ,..., Y(W) = 

where N is the size of the test set. The handling of the 
out-of-vocabulary tokens is done in the same way as is tra- 
ditional for the n-gram models: If the current token y(t) is 
not in the vocabulary, the prediction is discarded from the 
mean and N is decreased accordingly. If a token in history 
(y(t'), t' < t )  is an OOV token, the prediction is taken into 
account normally. For our state-space model this means that 
for the OOV token, a zero vector is used instead of a token 
indicator vector. 

For comparison, perplexity results obtained by a n-gram 
model with Good-Turing smoothing and back-off as imple- 
mented in the CMU-Cambridge toolkit [91 are also given. 

3.1. Data 

As data, we use excerpts from a book in Finnish. We test 
our model in two different situations: 

A sparse training data set (1 016 letters) 

A dense training data set (100080 letters) 

We use a different excerpt of the book (development set, 
5 006 letters) to test, how different choices for parameters 
affect our model. Based on these tests, we choose the best 
state-space model and the best n-gram model and compare 
these in yet another data set (test set, 5 037 letters). 

The sparse training data included 24 different tokens. 
The development set included 8 instances of OOV tokens 
and the test set 2. The dense training data included 25 dif- 
ferent tokens. The development set included 6 instances of 
OOV tokens and the test set 2. These OOV tokens were let- 
ters that don't normally appear in Finnish text, but can be 
found in foreign names. 

3.2. Results 

When referring to state-space models, we try to conform 
with the traditional n-gram model naming: order 1 (uni- 
gram) refers to model with no direct connections to previous 
tokens, order 2 (bigram) refers to a model with one previous 
token directly connected to the current state etc. 

In training, the initial state s(0) was set to zero and 
model parameters M were randomly initialized. The learn- 
ing parameters (a, @, 7 )  were set at first to fast learning and 
then decreased toward the end. The learning was done in 
batches, with small batch sizes at the beginning of the train- 
ing and increasingly bigger batches toward the end. The 

20 12.5 13.4 
10 15 14.4 12.7 

Table 1. Development set results, sparse training data. Or- 
der 1 state-space model does not seem to learn the data very 
well and order 5 state-space model also has some problems. 
Both order 2 and 3 state-space models get slightly better 
results than the best n-gram model (of order 5). 

order I N F  NFst  perplexity n-gramperp. 
2 1  3 15 11.1 10.8 

25 10.0 8.0 
5 15 9.7 5.7 

Table 2. Development set results, dense training data. N- 
gram models are clearly better than the state-space models. 

type training set best order perplexity 
state-space sparse 2 12.3 

n-gram sparse 5 11.8 
state-soace dense 5 9.5 

n-eram dense 5 5.7 

Table 3. Test set results. The n-gram model gets slightly 
better perplexity with the sparse training data and clearly 
better perplexity with dense training data. 

tests were run for orders {1,2,3,5} with internal dimen- 
sions {0,1,3,5,10, 20,40} and tokens were projected to 
dimensions {1,3,5,10, 15,25}. When the development set 
perplexity started to rise, the teaching was stopped to pre- 
vent overfitting. 

To be fair, n-gram model's discount ranges and cutoffs 
were tuned by hand. This improved the n-gram performance 
significantly with the sparse training data. 

The perplexity results for development set are shown 
in Tables 1 and 2. The models are grouped according to 
the number of previous directly connected tokens. For our 
state-space model, the tables show the best obtained per- 
plexity for each order and the corresponding parameters. To 
show that the model is not overly sensitive to choice of pa- 
rameters, the perplexity as function of model dimensions is 
plotted in Figure 2. 

For the test set, the state-space model and the n-gram 
model which gave the lowest perplexities for the develop- 
ment set were chosen. The results are shown in Table 3. 
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Fig. 2. Perplexity as a function of internal state dimen- 
sion Np and feature space dimension N[ for order 2 model 
trained from sparse data. Other state-space models behave 
similarly. The models are not very sensitive to the choice of 
parameters. 

4. DISCUSSION 

In the tests, the proposed state-space models seem to be 
about as good as the n-gram model with sparse training data. 
In the dense case, the n-gram models were clearly the better. 
Having examined training set perplexity, we conclude that 
the bad performance of state-space model is not because of 
model overfitting. This case illustrates clearly, that although 
our model should be able to give accurate representation of 
the dense case (there are enough free parameters), the train- 
ing algorithm does not find the correct parameter values. 

It is also clear that the training algorithm is unable to 
make full use of the internal state. Take for example 

1) order 5 model with N9 = 0 and Ni = 5 (training set 
perplexity for dense data 10.0) 

2) order 2 model with N9 = 20 and N[ = 5 (training set 

We can transform the fist model into equivalent model of 
order 2 with N9 = 20 and NI = 5 :  Instead of explicitly 
connecting the previous tokens to the state, we can have 
the internal state to remember these previous tokens. This 
equivalent model should get the same training set perplexity. 
The best solution that our training algorithm finds is clearly 
worse. 

Looking at the training set perplexity, we noticed that 
toward the end of the training, the perplexity occasionally 
got worse, There are two possible explanations for this: We 
have limited the sum of each matrix’s squared elements to 
10 and this causes problems or the learning speed parame- 
ters were poorly chosen. This phenomenon should be stud- 
ied more closely. - 

perplexity for dense data 11.1) 

It is possible that single letters cannot be mapped all 
that well to a low dimensional feature space, since they 
do not have an independent semantic meaning. For words, 
the mapping should be more effective, because words have 
clear semantic meanings, which allows semantically similar 
words to be handled similarly. 

4.1. Future work 

In the future, the training algorithm should be studied and 
improved. The efficiency should be increased so that the 
model can be used for predicting words. Ultimately, ?he 
model should be fast enough to be used in real speech recog- 
nition tasks. Finding better ways to initialize the model 
could be a part of the solution. 

Instead of random model initialization, the initialization 
could be based on a priori knowledge. For our letter predic- 
tion task, we could make use of the knowledge, that Finnish 
has a strict rule of vowel harmony. Encoding this kind of 
information into initialization is not trivial, however. 

Different model structures should be studied. This pa- 
per shows one possibility of connecting states and tokens, 
different variations are possible. Maybe some of these vari- 
ations are easier to train effectively. Ultimately, one connec- 
tion from previous token should be sufficient and the train- 
ing algorithm should store all other information it needs to 
the internal state. 

The linear mapping from previous state to next state 
could be too restrictive. Nonlinear mappings for state dy- 
namics, for example MLP networks, could be explored. In- 
terpolating n-gram and state-space model estimates could 
lead to improved performance. 

5. CONCLUSIONS 

In this paper it was shown that a token source (here let- 
ters) can be modeled with a simple state-space model. With 
sparse training data, the model yields similar results as the 
baseline n-gram model. With dense training data, the n- 
gram model is clearly better than our state-space model. 
Here, the training algorithm seems to have difficulties in 
finding the optimal parameter values. 

This kind of model does not need a separate smoothing 
and back-off steps to prevent overlearning, since the model 
complexity is directly controlled by the state dimension. It 
was shown that with sparse data, the state dimension can be 
set to a fairly small value and good results are still obtained. 
The internal state should be able to store also longer term 
dependencies, but it seems that the training algorithm is not 
capable of fully exploiting the internal state. 

The results obtained in the experiments are encourag- 
ing. Despite some problems with the aaining algorithm, the 
state-space model performs on par with the baseline n-gram 
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model on sparse training data. This is important, since when 
modeling word sequences, the data is usually also sparse. 
For words, there are probably stronger semantical relation- 
ships than with letters. This means that the mapping of the 
history to lower dimension in the state is probably more ef- 
fective with words as tokens. 
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