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ABSTRACT

The language model is one of the key components of a largebutarg continuous
speech recognition system. Huge text corpora can be usddafbing the language
models. In this thesis, methods for extracting the esdent@mation from the training
data and expressing the information as a compact modelatiedt

The thesis is divided in three main parts. In the first pam, ifsue of choosing the
best base modeling unit for the prevalent language modeiettpod, n-gram language
modeling, is examined. The experiments are focused on marpHike subword units,
although syllables are also tried. Rule-based grammatiedhods and unsupervised
statistical methods for finding morphemes are comparedtéthbaseline word model.
The Finnish cross-entropy and speech recognition expatsrshow that significantly
more efficient models can be created using automaticallydead morpheme-like sub-
word units as the basis of the language model.

In the second part, methods for choosing the n-grams thatédsgplicit probability esti-
mates in the n-gram model are studied. Two new methods digecian selecting the
n-grams for Kneser-Ney smoothed n-gram models are presemte for pruning and
one for growing the model. The methods are compared witlopyptbased pruning and
Kneser pruning. Experiments on Finnish and English texpa@ show that the pro-
posed pruning method gives considerable improvementstbegorevious pruning al-
gorithms for Kneser-Ney smoothed models and also is bétéeréntropy pruned Good-
Turing smoothed model. Using the growing algorithm for tirgpa starting point for
the pruning algorithm further improves the results. Therovements in Finnish speech
recognition over the other Kneser-Ney smoothed models sigreficant as well.

To extract more information from the training corpus, wostsuld not be treated as in-
dependent tokens. The syntactic and semantic similadgfidee words should be taken
into account in the language model. The last part of thissteglores, how these sim-
ilarities can be modeled by mapping the words into contisigpace representations. A
language model formulated in the state-space modelingefinark is presented. The-
oretically, the state-space language model has severiahblesproperties. The state
dimension should determine, how much the model is forceceternlize. The need
to learn long-term dependencies should be automaticalanbad with the need to re-
member the short-term dependencies in detail. The expetinshow that training a
model that fulfills all the theoretical promises is hard: thaning algorithm has high
computational complexity and it mainly finds local minimeh€Be problems still need
further research.
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THVISTELMA

Kielimalli on yksi avainosa suurisanastoisessa jatkuvalmegn tunnistusjarjestelmas-
sa. Valtavia tekstiaineistoja on saatavilla kielimallgpettamiseen. Tassa vaitostyossa
tutkitaan, miten opetusainestosta I6ydetaén oleellisiet ga miten ne voidaan esittda
tiiviisti mallissa.

Vaitostyo on jaettu kolmeen osaan. N-grammimallinnus @isyinmin kaytetty kielen-
mallinnustapa puheentunnistuksessa. Ensimmaisessadatigtaan, miten paras mal-
linnuksen perusyksikkd voidaan valita n-grammimalleik®keet keskittyvat morfee-
mipohjaisten sanapalojen kayttéon, vaikkakin myos tahjgieia malleja kokeillaan.
Seka saantbpohjaisia ettd ohjaamattomaan oppimiseestpeiumenetelmia morfee-
mien ldytamiseksi verrataan sanoihin perustuvaan pedlism@uomenkieliset ristient-
ropiakokeet ja puheentunnistuskokeet osoittavat, ety@tdmalla automaattisesti 16y-
dettyja morfeeminkaltaisia sanapaloja mallinnuksen pgrsikkona voidaan tuottaa sel-
vasti tehokkaampia kielimalleja.

TyOn toisessa osassa tutkitaan, miten voidaan parhaitéa na n-grammit, joiden to-
dennakdoisyydet estimoidaan malliin. Esitelladn kaksiaiakgoritmia, joilla voidaan va-
lita n-grammit Kneser-Ney-menetelmalla siloitetuille liedle. Toinen algoritmi perus-
tuu mallin karsimiseen ja toinen mallin kasvattamiseerkd& suomen- ja englannin-
kielisella tekstiaineistolla osoittavat, etta esitetygmatelméat antavat huomattavat paran-
nukset verrattuna aikaisempiin Kneser-Ney-siloitetiujellien karsintamenetelmiin ja
ovat myds parempia kuin entropiaan perustuva karsinta Gowoithg-menetelmalla si-
loitetulla mallilla. Kayttamalla kasvatettua mallia pahp karsinnalle saadaan lisapa-
rannuksia. Suomenkielisissa puheentunnistuskokeissatsaan uusilla menetelmilla
merkittavat parannukset verrattuna muihin karsittuihimeker-Ney-siloitettuihin mal-
leihin.

Opetusaineistosta pystytaan erottamaan enemman tietosafoja ei kasitella riippu-
mattomina symboleina. Sanojen syntaktiset ja semans@geankaltaisuudet tulisi ottaa
huomioon kieltd mallinnettaessa. Vaitoksen viimeinen taskastelee, miten naita sa-
mankaltaisuuksia voidaan hyddyntaa, jos sanat kuvatdlunvgan avaruuteen. Esitel-
laan tila-avaruusmallinnukseen perustuva kielimallorf@ssa mallilla on lukuisia hy-
vid ominaisuuksia. Tilan koko maaraéa kuinka paljon malgisiad. Tasapaino pitkan
aikavalin riippuvuuksien ja lyhyen aikavalin tapahtumiygesityiskohtaisen mallintami-
sen valilla saavutetaan automaattisesti. Kokeissa lzaraitta naiden teoreettisten lu-
pausten saavuttaminen on vaikeaa: opetusalgoritmi oeaslisesti raskas ja [0ytaa
paaasiassa paikallisia minimeja. Nama ongelmat kaipgatkatutkimusta.
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Chapter 1

Introduction

1.1 Historical perspective

A lot of effort has been put into the research of automatie@speecognition systems
since the 1950’s. The focus of the early research was on thestic modeling of speech
and the recognition systems were able to recognize only alié@rent words. As the
technology progressed, the vocabularies of the recogninereased and efforts were
made to move from recognizing isolated words to continugeesh recognition. It
became apparent that the acoustic modeling alone was nagen®he 1980's saw the
breakthrough in statistical language modeling as the mgitiog systems were pushed to
recognize continuous speech. The available computatmvedr continued to grow ex-
ponentially and the algorithms were improved to take achgambf the available compu-
tational resources. Consequently, more and more data veateddo train the complex
models. The end of 1980’s and the start of 1990’s saw the bfrthe huge commonly
available data collections made for the express purpogaiofrig the acoustic and lan-
guage models for the English language. The typical comgsmémecognition systems
were highly similar to the typical modern speech recogngisystems: hidden Markov
models with Gaussian mixture emission distributions weeifor acoustic models and
the language models were based on n-grams. Although theredeam research on dif-
ferent methods of modeling acoustics and language, for pleaneural networks have
been used to model both, the traditional methods are effieieth seem to work well.
They are used in most of the state-of-the-art speech rebogrsystems. What has
changed is that the basic ideas have been refined and aigsritave been developed
that help to exploit the base framework more efficiently.

Today, speech recognition is increasingly used in prdctpalications. Flight tick-

ets can be reserved and lost luggage can be traced by tekeplittncomputer as the
operator at the other end of the line. Radio broadcasts opia tuf interest can be
searched from the massive audio archives of some natiodial sgations. Simple user
interfaces based on speech are appearing on consumersieXiogachine translation
system, which helps American troops to communicate withisrés being tested. Law
enforcement agencies in many countries would be delightdthve a device which
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would tell, if any words from a predetermined set (e.g. “bdnianthrax”) are spoken
in a given set of telephone calls. Direct transcripts of ttierad sentences would be
useful in many situations, for example automatic transicnipof court sessions or tran-
scription of a dentist’s speech while he examines the pédierouth. Hearing-impaired
people would benefit from an instant speech-to-text gadRyel-time subtitles for TV-
interviews could be generated by a computer system. Aletapglications would ben-
efit from the increased accuracy of the speech recognitiorpooent.

1.1.1 History of our speech recognition system

The research of speech recognition in our laboratory hagti@ditions. It was started
by Prof. Teuvo Kohonen already in the 1970’s and was insgisetis original ideas.
For example, the thesis of Jalanko (1980) describes subspathods for phonemic
speech recognition. In the thesis of Torkkola (1991), thmufomoves to neural net-
works for learning phonetic recognition and also diffeneastprocessing corrections to
the output of the recognizer are discussed. In the thesisigf6 (1997), the phonetic
recognizer is taken into a more mainstream direction witldéh Markov models and
Gaussian mixture emission distributions; the standardeatscaie improved by neuro-
computational methods.

As the current author started his thesis work, the decisiasmmade to move into large
vocabulary continuous speech recognition. In 1999 a caspuentinuous speech was
gathered by a group of researchers (including the authom fdelsinki University of
Technology and Helsinki University. The corpus was esaéfii the development of
the new speech recognition system, since it both provid&dfdatraining the acoustic
models and also could be used for evaluating the recogniésults. A part of this
corpus, a Finnish audio book read by one speaker is used tsuneete performance
of the speech recognition system in this chapter.

The main components of a large vocabulary speech recogsijistem are the acoustic
model, the language model and the decoder. The decoderrpesrtbe actual recog-
nition by combining the information from the models. As es{ael, using only the
acoustic models from the earlier work did not give satisfactresults. Augmenting
the best acoustic model with a fixed dictionary and simpleodecresulted in aord
error rate (WER) of 2329%. It was clear that in addition to scientific research a lot
of engineering work was needed to make the system perforin Whe practical ex-
perience from the research on decoding algorithms (Hirkin2902) and modeling of
the Finnish language (Siivola et al., 2001) was combinedeate a Finnish continuous
speech recognition system with the WER of 80% as reportedibgl&et al. (2002).
This work created a basis for further research and more p&ggrie hired to the research
team. The increased research and engineering work resualtagid improvements in
all components of the speech recognition system. Puliicdtiof this thesis reports a
WER of 32% in this same task in 2003. In 2005, the WER was dov:0% as reported
in Publication 3 of this thesis and the latest tests on tlsk veere run in the 2006 with
a WER of 6%.

1For the definition of WER, see Section 2.3.2.
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1.2 Contributions of this thesis

This thesis is focused on improving the language modelingpmment of the speech
recognition system. Some algorithms presented here targiely languages with rich
morphology (e.g. Finnish), however, most methods shoufeéfieany language.

More specifically, this thesis covers the following topics.

e Methods for segmenting words into subword units are explared compared.
It is shown that an automatic speech recognition system easigmificantly im-
proved by using automatically induced morpheme-like suiowmits as the basis
of the n-gram language model.

e Methods for choosing, which n-grams to include in the lamguaodel are com-
pared. The experiments show that the current state-oéithgruning methods do
not work well with the best known n-gram smoothing methoddified Kneser-
Ney (KN) smoothing. An algorithm for pruning and another gpowing KN
smoothed models are presented and it is shown that the newithigs get con-
sistently better results than either entropy-based pguomKneser pruning for
KN smoothed models.

e Methods, which exploit the similarities of the words thrbugapping them in
continuous space, are explored. A language model basee atette-space mod-
eling framework is presented. It is shown that this kind oftieldheoretically has
several advantages over traditional n-gram modeling. Wewadt is also shown
that constructing a training algorithm that can exploit fhk capabilities of the
model is hard.

1.2.1 Contents of the individual publications with the auttor’s con-
tributions specified

Publication 1 presents how n-gram language models basedferedt subword units
work for Finnish speech recognition. Syllables and stiatiiy induced morpheme-like
subword unit§morphs)are compared with a 3-gram language model based on words.
The present author created the tool for splitting Finnisindsanto syllables and used

an early version of the Morfessor software (Creutz and LagQe65) for creating the
morphs. The present author was responsible for creating¢bastic and language
models. The present author designed and ran the experiarahtgas the main contrib-
utor to the writing of the publication.

Publication 2 extends the scope of Publication 1. The papempeares n-gram mod-
els based on morphs with their grammatically determineahtmparts and with word-
based n-gram models. The n-gram scope is extended fromn3sg@m7-grams for a
better comparison. The algorithm for creating morphs iidesd in detail and the
details of the acoustic models and decoder implementat®iacussed. The present
author took part in designing the experiments and analyriegesults. He also made
minor contributions to the writing of the publication.
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Publications 1 and 2 show how subword language modeling aait be used efficiently
in a recognition system. To the best of the author's knowdedge reported results
are the first large improvements obtained by subword-basgm models in large
vocabulary continuous speech recognition.

Publication 3 presents a method for growing an n-gram maagkeimentally. The
method helps to model slightly longer span dependencié®in{gram model. A grown
model is compared with a model created by entropy-basedmyuBoth models were
smoothed with KN smoothing, which was not the optimal smiattior the baseline
model. The present author developed and implemented theatalg, ran all the exper-
iments except the English speech recognition test and wmott of the publication.

Publication 4 expands the scope of Publication 3. The pagsepts the growing algo-
rithm for KN smoothed n-gram models in more detail and alsgppses a new pruning
method for KN smoothed n-gram models. The reasons why thstirgipruning algo-
rithms are suboptimal with KN smoothing are discussed. Thkéhods are compared
with Kneser pruning and entropy-based pruning. The premathior was the main de-
veloper of the new algorithms. The experiments were mossighed and run jointly
with Teemu Hirsimaki and the publication was jointly writtevith Teemu Hirsimaki.

Publications 3 and 4 show how huge text databases can beaséitiently train high
order n-gram dependencies. The newly introduced algositinngeneral work as well
or better than the other state-of-the-art pruning methodsteetter than any methods
for KN smoothed n-gram models. The software implementiegatesented algorithms
was released.

Publication 5 presents a method for grouping the words invibulary into hard
clusters. Words with similar contexts are mapped close th edher in continuous
space and the clustering is performed in the vector spaaefofimed clusters are shown
to be reasonably well correlated with clusters formed bydhdme clustering is used as
a basis for an n-gram model. The perplexity and speech ré@@myaexperiments show
that the proposed clustering is reasonable.

Publication 6 outlines how state-space models can be abfiéanguage modeling.
A simple proof-of-concept experiment with a state-spaceleh@redicting letter se-
guences is presented. The mathematical framework wadyjdormulated with Dr.
Antti Honkela. The present author implemented the algorjtdesigned and ran the
experiments, as well as wrote most of the publication.

1.3 Structure of this thesis

In this introductory part of the thesis, the subjects of théiidual publications are
rewritten to a single coherent presentation. This intrégiycpart presents the relevant
ideas and experiments, but some details are only discussth@ iindividual publica-
tions.

Chapter 2 presents a typical speech recognition system @amdamguage models are
applied in the recognizer. Details of our implementatiomlaiiefly presented. In Chap-
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ter 3, n-gram language models and three well-known mettwrdsrioothing the model

estimates are introduced. Chapter 4 compares languagdsizded on different sub-
word units. In Chapter 5, different methods for choosingriigrams to be included in
the language model are discussed. Chapter 6 presents tmnquaels that use con-
tinuous representations of the words. Chapter 7 concligemtroductory part of this

thesis.

1.4 Other language modeling methods used in speech
recognition systems

This thesis does not try to cover all language modeling tieghes used in automatic
speech recognition systems. Many methods are at leasytrgefipared with the meth-
ods that this thesis focuses on. However, some methods ittésénl common with the
subjects covered and thus are not discussed at all. Somegoia the other methods
are given to the reader below:

For language models exploiting the grammatical structéiteelanguage, a large body
of research is available (Jurafsky et al., 1995; Stolck&51Zhelba and Jelinek, 2000;
Charniak, 2001). Wang et al. (2004) show that using modedsda@an super abstract
role values (superARV) combine the advantages of the graimahdanguage models

with the simplicity of cluster-based n-gram models. Anothew development is to

interpolate multiple randomly generated decision treas¢huster similar histories. As

shown by Xu and Mangu (2005), these so-called random forestete can produce

excellent results.

Cache language models (Kuhn and De Mori, 1990) can be usedpimve the perfor-

mance of traditional n-gram models. The method is based @woliservation that if a
word is seen in a document, it is likely to be repeated latesimilar idea has been
presented in the maximum entropy language model framewRokdnfeld, 1994): in

trigger models, seeing a word increases the probabilityloséated words. In speech
recognition, there is the practical problem that the recaphhistory is not guaranteed
to be correct and cache models can possibly also degradasrspstrformance.

The models trained with data that match the test data welik Wwetter than models
trained on generic data. Usually the matching training dagafound manually, but
there also exist methods for automatic topic matching @er Ostendorf, 1996; Gildea
and Hofmann, 1999; Bellegarda, 2000; Klakow, 2000; Siidlal., 2001). There also
exist methods for adapting a generic model using a small atrafumatched data, see
e.g. the work by Klakow (2006).



Chapter 2

Language model in a speech
recognition system

This chapter is dedicated to introducing the recogniticsteay used in most of the ex-
periments conducted in this thesis. Different metrics f@leating the language models
are briefly discussed.

2.1 Overview of a typical speech recognition system

State-of-the-art continuous large vocabulary speechgrétion systems are formulated
in a probabilistic framework. The input of the system is a &febbservation®» =

(01,...,0n) from the acoustic waveform ordered in time. The observatime usu-
ally feature vectors based on the short-time spectrum ofidpeal. The task of the
recognizer is to find the most probable word sequewce: (ws,...,wy) given the

observation® and the model of speech The model of speech can be divided into
the acoustic model 4, and language model;, and the probability calculations for each
can be performed separately.

argmax P(w|o, A4, A1) = argmax P(o|w, As)P(w|AL) (2.1)

w

To find the best recognition hypothesis, the system shoulteiory try all possible tran-
scripts (practically an infinite set) and pick the one witk tlighest probability. This
is the work of the decoder. Modern decoders use complexitigms and heuristics to
restrict the search to a reasonably small subspace of abrsegs. Some systems use
simple models to produce a set of initial hypotheses. Thdtsesan be refined by using
more complex models to rescore the initial set. This is dalle-pass recognition and
the advantage of the method is that fewer hypothesis willdredled by the computa-
tionally expensive models. The disadvantages are thattimplexity of the recognition
system is increased and real-time recognition is not plessithe decoders used in the
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publications of this thesis are generally designed so tigatdrder n-gram modelsan
be efficiently used in the first pass of the recognition. Thiglipations of this thesis use
one-pass recognition.

The commonly used acoustic models basedhidden Markov model@HMM) contain
assumptions that make the scale of the estimated acousbelpilities incorrect. It is
common to use an exponential correction term to balancedbastic and language
model probabilities correctly. Interestingly, this cartien term is usually placed on
the language model probabilities and called language nexdding even though it is
correcting the problems of the acoustic model. The assomgptire examined in more
detail in Appendix A.1.

Finally, a few more terms should be introduced. The tokeroeetwhich the language
model operates is called ttvecabularyor thelexiconof the model. Apronunciation
dictionaryis used to map the lexicon on the acoustic models. For songeideyes (e.g.
Finnish, Estonian and Turkish) this mapping is straightimd, for others it can be
complex (e.g. English).

2.2 Details of our implementation

In this section, we examine the components of our speeclynégan system in more
detail. Later, when speech recognition experiments arsepted, we only note the
points that differ from the system discussed here.

2.2.1 Acoustic models

In our system, the methods for acoustic modeling are gdgeshbsen by selecting
the methods, which are widely used and have been shown tificagrly improve the
results. Rabiner (1989) describes how HMMs can be applietttaistic modeling in
speech recognition systems. In our system, the phonemesk®mn modeled using
three HMM states. The emission distributions are modele@ayssian mixture mod-
els We have used signal power and mel-cepstral features (¥3@4). In some experi-
ments, these static features are augmented with the conéisyy delta (first derivative)
and delta-delta (second derivative) features. Some axpets useepstral mean sub-
traction (Atal, 1974) to remove the effects of slowly varying coniola noise. The
subtraction can remove some effects of the signal chanmebso acts as a simple
unsupervised speaker adaptation method.

To make the model parameter estimation easier, we use @aggpudal covariances in the
Gaussians. In some experiments, we usedimum likelihood linear transformatido
reduce the impact of this approximation (Gales, 1999). Badures are transformed by
a matrix so that the correlations between feature vectonems are minimized for each
HMM state.

We have used both monophone (context insensitive) andotniplicontext sensitive)

IN-gram language models will be introduced in Chapter 3.
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phoneme models. For triphones, all models cannot be tralnedo data sparsity. We
have used two schemes for deciding, how the triphones sheuttiistered. The simpler
early method was to cluster triphones based on the amourataftdat could be used
for estimating the model. If there was insufficient data fardeling an individual tri-
phone state, all triphones sharing either the left or rigimtext were clustered together.
In case there still was insufficient data, the triphone wdlapsed to a corresponding
monophone model. The second triphone clustering scheméagesi on the work by
Odell (1995). The probability distributions of the indiual triphone states were mod-
eled by a single Gaussian and a decision tree-based chgt@gorithm was used to
merge the states with similar distributions. This allowsffoer control over the clus-
ters and also corresponds more closely to the mainstreaensysThese two methods
have not been formally compared, but it seems like the lajtstiem gives slightly better
models.

HMM-based models implicitly model the phone durations véithexponential distribu-
tion. Pylkkénen and Kurimo (2004) experiment with thredet&nt methods for mod-
eling the phone durations explicitly. Semi-Markov modeis the theoretically most
justified of these. It is also possible to divide a HMM states@veral states that share
the same emission distribution. The state transitionsriigte the distribution of the
duration model. Third, a gamma distribution was used to rhibdestate durations. The
recognition hypotheses were rescored according to the gaghmation distribution. In
their experiments they find that the simplest method, gamistalzlitions and rescor-
ing was the best compromise between efficiency and recograticuracy. This is the
approach used in most experiments of this thesis.

2.2.2 Decoder and language models

Aubert (2002) presents an overview of different approatbetecoding. Our first de-
coder was a so-called stack decoder. This approach wasrcfmsés simplicity. The
search process is divided to two parts: the local acoustiecckeand the hypothesis
search. The local acoustic search finds the acousticallyrbatching words starting
from a given time. The hypothesis search controls the localstic search. It also
applies the language model probabilities and keeps trattkedbest suggestions for the
recognition result. The main drawback of this approachas groperly modeling the
acoustic context between words, although possible, i<diff{(Schuster, 2000). More
details can be found in Publication 2.

The new decoder (Pylkkdnen, 2005) implements the searchighra static reentrant
lexical prefix tree. The decoder uses a separate low ordeam-tanguage model for
language model lookahed@rtmanns and Ney, 2000) that is for modeling the potential
effect of the future words on the probability of the ongoirttgrance. The main benefit
of this approach over the earlier one was that the acoustiegbbetween words could
be modeled. Both decoders were designed so that the maxinagi®led context length

of the language model was not restricted. The corresporgtingth of the search hy-
pothesis space was limited by combining the hypothesesenm@more thann last
words differed (andn is less than the maximum n-gram context length).

The language models used in our system are n-gram modelsndtiels are stored in
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a compressed tree structure based on the work by WhittakieRaj(2001b).

2.3 Evaluating language models

2.3.1 Perplexity and cross-entropy

As shown in Equation 2.1, the probability calculations rezkth a speech recognition
system can be separated into the computation of the acpusbability and the compu-
tation of the language model probability. This suggestsdifeerent language models
could be evaluated by simply calculating the probabilityegi by the language model
to some test sef. The cross-entropyl between the model and the test dat@ gives
us the number of bits needed for encoding the test data watitten model (Chen and
Goodman, 1998). Usually, to remove the effect of the siz&éetést set, the entropy is
normalized. It is customary to normalize with the numberhef wordsiV of the test
set.

H(T|\) = —%TlogQ P(T|A) 2.2)

Another commonly used measure, calfgetplexity is defined as follows (Bahl et al.,
1983):

PerT|\) = P(T|\) Wr. (2.3)

It is easy to see that these measures are related{ Pevp= 271}, Some language
models like subword n-gram models are not using words asabe imodeling unit. The
normalization should still be done over the number of thedsadn the data, not over the
number of the subword units. This way, the results are coafparover the different
model families.

The language model vocabulary does not in general coveratigettlanguage com-
pletely. This is modeled by setting some probability magseafor any unknown word.
Calculating the cross-entropy or perplexity for an unknevemd is not straightforward.
The probability estimates of thesmit-of-vocabulary(OOV) words are generally re-
moved from the evaluation, although the “unknown word”ep& are used when mod-
eling the context of the other words. If the language modebbaolary does not cover
the full language, both OQV rate and cross-entropy (or i) should be reported
for model comparison.

Perplexity or cross-entropy values are not directly corapkr across different lan-
guages, since different languages will use different artmohwords to express the
same information (see Chapter 4). Normalizing with the nendj sentences instead
of the number of words of the test set would make the scorepacablé, but then the
values would depend even more on the kind of the text in thectepus. Normalizing
with the number of letters is another option.

2In the experiments of Publication 4, the best Finnish andliEimganguage models gave comparable
sentence cross-entropies, even though the cross-erstropienalized by the number of words were quite
different.
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2.3.2 Speech recognition error rate

The ultimate test of the language model is to use it in theniiéel application, in our
case the speech recognition system. The most frequentlyausar measure for speech
recognition systems is theord error rate(WER) (Bahl and Jelinek, 1975; Morris et al.,
2004). For obtaining the WER, the minimum number of word iitisaes , deletionsD
and substitutions' for turning the recognizer output into the correct resuttasinted.
Let M denote the total number of words in the correct transcript.

WER = # -100% (2.4)

WER is not comparable across different languages for the saasons that perplexity
is not comparable.

Other error measures can be defined in the samelvedier error ratecounts the errors
over the letters of the transcript asdntence error rat@ver the sentences. The best
measure depends on the intended application of the spesmiiion system. For ex-
ample, if the object is to transcribe a given audio segmetigr error rate would reflect
the number of keystrokes needed to manually correct thegrézed transcript. For an
application, where speech understanding is necessarph®aiore error rate would be
more appropriate. It all depends on the application. WEReésnhost commonly used
error measure.

2.3.3 About the relation between word error rate and perplexty

As discussed by Ney et al. (1994), the only reliable testdfnglage model performance
in speech recognition is to run the recognition experimerftke cross-entropy and
perplexity only measure the average contribution of eashdet word to the total log
likelihood. They do not take into account how this probapiis distributed over the
different words. Furthermore, the acoustic similarity dfetent words is not taken into
account either. The problem with speech recognition tedtsit they can consume a lot
of time and processing power.

The relation between WER and perplexity has been studied laioy and Peters
(2002). In their experiments WER and perplexity are usuedlgrelated by a power
law. It seems that in practice, perplexity (and cross-gyfy@an give an approximate
evaluation of the language model fast. The current autiropsession, based on obser-
vations made while working on this thesis, is that the clasercompared models are
related to each other, the more reliably they can be compmreeérplexity.
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Chapter 3

Introduction to n-gram language
modeling

N-gram modeling is the most widely used method for modelanggliage in speech
recognition systems. N-grams have been used in all pulditaDf this thesis. This

chapter describes the basic ideas behind n-gram modelathdestribes some smooth-
ing methods in more detail. The presented information isdgmackground knowledge
for the matters discussed later. In particular, detailemkadge of the n-gram smooth-
ing methods and the associated notation is required forrstedeling Chapter 5 .

The probability of sentence; . .. wy can be factored into conditional probabilities.
P(wy ... wn) = P(wy) P(wa|wy) P(ws|lwrws) ... P(wn|wy ... wn—1) (3.1)

An n-gram model of orden approximates that the dependencies are only significant
up to the predetermined context length For example, the 3-gram model probability
estimate is given by

N
P(w1 e wN) ~ P(’w1)P(’LU2|’LU1> H P(w¢|wi_2wi_1) (32)
=3

The estimates for these probabilities can be obtained kbgdak training corpus and
simply estimating the probabilities based on the coudntsf the training set. For the
3-gramw; wews themaximum likelihoodML) estimate for the conditional probability

IS
- C’(wlwgwg)
P(w3|w1w2) - ZwS C(U}leU}g) : (33)

The ML estimate assigns zero probability to any unseen mgrahere is also a huge
number of parameters to be estimateSleveral methods for coping with these problems
have been researched.

1E.g. 3-gram model having a vocabulary of 50 000 words in heas10'4 parameters to be estimated.



12 Chapter 3. Introduction to n-gram language modeling

3.1 Smoothing methods

The ML estimates for n-gram probabilities overlearn thentrey data. Too high proba-
bilities are given to the n-grams found in the training datd ather n-gram probabilities
are underestimated to zero. Many methods for transfern@gtobability mass from the
overestimated n-grams to the underestimated ones havegbagosed. In general, the
higher the n-gram order the more the probabilities of n-graeen in the training set are
overestimated. The most successful smoothing methods/eesumne probability mass
from higher order estimates and use this probability mabeefor interpolation with
lower order n-grams or for backing off to lower order n-grams

Chen and Goodman (1998) have described and tested the mmstaosmoothing
methods extensively. They show that for any smoothing ntktiderpolation gen-
erally works better than backing off. Three of the smoothafgprithms are briefly
reintroduced here. Good-Turing smoothing with Katz batisfised in Publication 1,
4 and 6. Absolute discounting forms the basis of Kneser-Meyathing, which is used
in Publication 2, 3 and 4 of this thesis.

Through the rest of the thesis the following notation is udest w be the current word
andh the history of words preceding. h is obtained by removing the first word bf
For example, let us define a three-word histary- abc and a wordw = d. Now, the
following definitions hold:hw = abed andhw = bed. The size of the séhw| = 4

is called the n-gram order. Lé&t(hw) be the number of times the n-grdmw occurs

in the training data. The notation, , C'(hw) can now be used to denote the sum of
the |hw|-gram counts beginning with the words in the histdryn the training data.
The chosen notation is slightly ambiguous, but the simiglicelps the legibility of the
equations.

3.1.1 Good-Turing smoothing with Katz backoff (GTK)

In Good-Turing smoothing some probability mass is movethftbe observed n-grams
to the unseen n-grams according to the Good-Turing fornéd, 1953). Instead of
using the actual count= C(w) of the n-gramw we use the discounted versi@{r).

R(r) = (r+1)2ett (3.4)
my
m,- IS the number of n-grams that occur exaetlymes in the training corpus. Although
the original counts of counts statisties. should be smoothed at least for largevhen
estimating the discounted courit$r) (Gale, 1994), the smoothing can be avoided when
using Katz backoff. This estimator gives the probability’gfto unseen n-grams, where
S'is the total number of n-grams in the training set.

Good-Turing smoothing is practically never used alone igraan modeling, since it
gives the same probability to all unseen n-grams. Katz (198@ws how the probabil-
ity mass reserved for the unseen n-grams can be distribatexiding to a lower order
n-gram probability distribution. Let us consider the MLigsites for the n-gram seen
more thanc times reliable.c is chosen so that there is no need to smoothitheor
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r > c¢. The n-grams seentimes or fewer are discounted so, that their relative cbatri
tions to the estimate of unseen n-graf¥sremains the same as with the Good-Turing
estimate. The process can be applied recursively to thenagsdm order.

Let C'(hw) be the number of times the n-gramw is seen in the training set. Let us
define auxiliary functioC” (hw) that gives the training set n-gram counts limited to the
highest modeled ordey .

h if |hw| < N
O () = § CBw) 1 [ho] < (3.5)
0, otherwise

For clarity, the normalization terrfi is will be written asS(h) from now on.
S(h) = C'(hv) (3.6)

Now, the recursive procedure for backing off to lower ordegram estimates can be
expressed as

R(C’(hw)) P
Plwh) =] B if C'(hw) >0 (3.7)
k(h)P(wlh), otherwise

The backoff coefficient(h) can be easily solved, when the constraint that all proba-
bilities should sum to 1 is taken into account. This procedilistributes the discounted
probability mass to the n-grams, for which there is no higitder estimate available. If
we chose to distribute the probability mass among all lowdeon-grams instead, we
would have an interpolated model instead of a backoff model.

3.1.2 Absolute Discounting (AD)

AD (Ney et al., 1994) has also been called nonlinear diséogrdince it removes a
constant discourtt < Dy, < 1 from all other observed counts of a given order. Here,
an interpolated version of the AD method is presented: therved probability mass is
divided proportionally among the lower order n-gram estesa

max{0, C'(hw) — Dp|}

S + v(h)P(w|h) (3.8)

P(w|h) =

The interpolation coefficient is denoted hyh). Solving the value ofy(h) using the
constraint that all probabilities should sum to 1 yields

_ ’{1} : Cl(hﬂ) > O}|D‘h‘ .

7(h) = (3.9)

The discount parametef3 can be solved in a closed form through deleted estimation
(Ney et al., 1994) or a numerical search on a held-out dateasebe used to optimize
the discount parameters (Goodman, 2001).

Chen and Goodman (1998) note that the optimal dischusgéems to be approximately
constant for n-grams seen 3 or more times. To improve the ADehd is possible to



14 Chapter 3. Introduction to n-gram language modeling

use separate discount coefficients for n-grams seenrac®! < 1, twice0 < D? <
2 or three or more time8 < D3+ < 3. This is called modified absolute discounting.
The estimate for the probability of an n-gram is only sligldhanged (alse should be
modified accordingly).
C' (hw)
max{0, C'(hw) — D), ~}

P(w|h) = Sm) + y(h) P(w|h) (3.10)

3.1.3 Kneser-Ney smoothing (KN smoothing)

One problem with GTK and AD is that the distributions of thedats do not behave
according to the basic probability theory. The followingngiaalization does not hold
for these models.

> P(vhw) = P(hw) (3.11)

Goodman (2001) shows that any optimal language model srimgoaitgorithms should
preserve known marginal distributions.

KN smoothing (Kneser and Ney, 1995) is based on AD. The midinebehind the
method is the preservation of the marginal distributiortse @erivation of the algorithm
is presented in Appendix A.2. If we approximate (as tradiity is done), that the
method can be used recursively for all model orders, the mrathematical difference
between AD and KN smoothing is in the definition of the modifiedning set counts
C' (See Equation 3.5 for the original definition).

0, if hw| > N
C'(hw) = { C(hw), if |hw| =N (3.12)
[{v: C(vhw) > 0}|, otherwise

In practice, this means that for highest order n-grams, veethis same probability
estimate as in AD. For lower orders, the estimates are basadeonumber of new
contexts, where an n-gram was seen. As shown by Chen and Goo@d@98), KN
smoothing seems to outperform the other well known smogtiiathods in practically
all circumstances. The superior performance of this algoriseems to be due to fact
that the probability estimates for the lower order n-graaketinto account, what has
already been modeled by the estimates of the higher ordeamsy

Modified KN smoothingChen and Goodman, 1998) can be defined similarly as mod-
ified AD. Also, the discount coefficients can be optimizedheitby the leave-one-out
method or by performing a numerical search on a held-outskfttaJames (2000) de-
scribes several other ways of defining and estimating vessid KN smoothing that
utilize several discount coefficients.

To keep the marginal constraint of Equation 3.11 exactlycarusemaximum entropy
modeling (Rosenfeld, 1994). In practice, there are problerith the computational
cost of maximum entropy algorithms and some approximatiouast be made. Also,
it seems like the maximum entropy methods and modified KN shiog give similar
results in practice (Chen and Rosenfeld, 2000; Goodmar)200
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3.2 Methods for controlling the complexity of n-gram
models

The naive solution to the problem of having too many pararsdteestimate is to get
more training data. In practice, it is often preferable te nther methods to control
the complexity of the estimated model and use the additidatd for improving the
model in some other manner, like for example increasing thdeted context length.
Goodman (2001) compares several methods for making a hetteof the available
training data. One possible solution is to develop more stipated methods for choos-
ing which n-grams to include in the model. Among these mettard the pruning and
growing methods studied in Chapter 5. If the semantic shitylaf the words can be
modeled, the number of parameters in the language modebtaallg be reduced. For
example, clustering similar words and estimating the nvgraver the clusters can sig-
nificantly reduce the model size. These issues are discussedre detail in Chapter
6, where clustering is examined from the viewpoint of combias space language mod-
els. The efficiency of the n-gram language model can alsofeetafl by selection of
the modeling unit, on which the model is based. In this chapbe n-gram models
and methods were defined for word-based models, but othéceshsuch as letters or
morphemes are possible. Different modeling units is dised$n Chapter 4.
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Chapter 4

Selecting the token set for
language modeling

The selection of words as the base units for our language Insedms natural. Natural
languages seem to be structured so that they contain a smalird of very frequently
used words and a huge number of seldom used words. HeapsHieap$, 1978, page
206) is an empirical law that ties number of unique wordm a text to the number of
the wordsm in the text.

V(m) = km? (4.1)

0 and k are parameters that should be empirically set acaptdithe type of the text
and the language. The vocabulary growth rates are quitrdift for different languages
depending on the structure of language. Creutz et al. (20@v@ calculated the number
of unigque words in a corpus of a given size for several langaggee Figure 4.1).
It seems clear that even using all the unique words appearitige training set as
the vocabulary of the language model, there is no guaraoteallflanguages that an
unseen data set would not contain a significant amount obbubtcabulary words.
The differences between languages can be explained bydiffeirent morphologies.
Languages with simple morphology like English can be cadeeasonably well by a
clearly smaller vocabulary. Finnish, on the other hand,hgaly inflecting language.
It also makes use of agglutination and compounding. Thussenéence in Finnish
tends to contain fewer words than a corresponding Englistesee, and conversely,
one Finnish word contains more information than one Enghishd®. Consequently,
the vocabulary growth rate for Finnish is higher.

Let us consider splitting words and using the produced suthwaits as the basis of
our n-gram model. The shorter units we choose, the smaki&de we need to achieve
a given level of coverage of the language (e.g. if we seleek@dn that contains all

characters used for writing the words of the target langufeyeer than 100 characters
suffice for many languages). A data set split to subword woitgéains more tokens than
the original word-based data. Consequently, the n-graimatgs of any given order are

1For example, Finnish word “Ymmaérta-isi-mme-k6-han” iswtated as “would we really understand”
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Figure 4.1: Vocabulary growth with respect to the corpus size. Takeh pérmission
from a paper by Creutz et al. (2007).

more accurate, as on average there is more data for eaciim-@rathe other hand, the
context modeled by an n-gram of a given order is effectivalyrter, since on average
the subword-based n-gram spans a shorter length of thégxstcorresponding word-
based n-gram of the same order. This can be compensated bgsirg the order of the
n-gram model, but then more n-grams must be estimated.

4.1 Examples of subword units

Letters form the smallest symbol set, which can represent the wdrtleedanguage,
thus making the required lexicon very small. On the otherdham order to model a
reasonable amount of n-gram context, very high order n-gra@ needed. Also a high
number of n-grams is needed, as each letter of a word neeg@a@tzn-gram to model
it.

For splitting words intesyllables a hand crafted rule set is often needed. For Finnish,
an adequate rule set can be created fairly easily. Usingytlabdkes as the lexicon, we
can fully cover the Finnish language except for some foreigmes and words. From
the viewpoint of the application using the speech recogmisystem, the individual
syllables cannot be associated with any meaning.

According to standard linguistic theomyorphemesare the minimal meaningful lan-
guage units; they cannot be divided to smaller meaningfitd (Bloomfield, 1935). The
systems for splitting words into morphemes are usuallyyf@omplex rule sets, with a
lot of embedded expert information, see for example the vbgrKoskenniemi (1983).
The morphemes tend to be somewhat longer than syllablesessanable n-gram con-
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text can be covered with a relatively low model order. The faat the recognition
units each have their own meaning can help when developipigcafions on top of the
recognition system:Left+hand+ed” and“vasen+kéat+inen” are examples of a word
segmented in morphemes, in English and in Finnish.

There are several heuristic methodsdatomatic segmentatiorof subword units from

words. The advantage of automatic segmentation is that pereknowledge of the
target language is required. Some automatic segmentatgianss can be shown to
produce units that resemble well-known linguistic consslike morphemes or sylla-
bles.

4.2 Practical issues with subword models

Building a speech recognition system using a language nimed on subword units
requires attention to a few practical points. First, thediiag of word breaks merits
some consideration. In word-based n-gram models, eachadaggmodel unit is implic-
itly assumed to be followed by a word break. For subword ysiig€h an assumption
cannot be made. We have decided to add an extra word break timkiee vocabulary,
which is handled as any other token in the language modelth&navay would be to
have two versions of each subword token: one that can ocdbimaa word and an-
other that always ends the word. However, this approachdwdaolible the size of the
lexicon. Acoustically, we have had a few different solusomhich all seem to work
equally well. The word break can be modeled to have no aaastinterpart. In this
case, the decoder must separately try all hypotheses withviahout the word break.
We have also modeled the word break acoustically by one HMité stvhich seems to
work. It should be noted that in continuous speech the woedlcan generally not
really be determined from acoustic information and the sleni of whether the word
break should be placed or not mostly comes from the languagieimSentence breaks
may be treated as usual for word-based models: special dgmmaoking the start and
end of sentence can be used and the n-gram contexts are neletpadst these tokens.

For some languages (e.g. Finnish, Estonian, Turkish) nngg@pdm orthography to pho-
netics is simple. In some Finnish experiments, we prevesgaf the algorithms from
splitting the words in certain locations: long phonemes¢eled with a double letter,
e.g. “aa”) were not split and the letter combination “ng”tth@aps into one phoneme
was not split. When our decoder was improved to model thestitocontext over the
borders of the language model units, these restrictionarbeainnecessary as the con-
text sensitive acoustic models were able to learn the vanmigit For languages with more
complex pronunciation rules, more elaborate schemes mey teebe considered. For
example, Seneff (2004) presents a system for segmentingsvear that the phonetic
structure can be reconstructed for English.

The decoder design of our system was affected by the dedisiose subword models.
The first decoder described in Publication 2 of this thesistha second decoder design
by Pylkkdnen (2005) both can use high order n-grams in the rognition pass.
Using subword units gives us finer control over pruning tregaition hypotheses, as
the language model contributions are taken into accountialler steps. Instead of
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rescoring each hypothesis when a new word is started, tigeidéeye model probability
is added each time a new subword unit is started. On the otad, lthe effective
language model lookahead range is reduced, unless higtler models are used for
the lookahead. If the language model units allow a word to Un# fyom different
combinations of tokens, the different combinations mayeaps rival hypothesis. In
practice, we have not found this to be a problem, since theevwwegmentations seem to
be practically always pruned out by the decoder beam pruning

4.3 Related work

Deligne and Bimbot (1995) have presented a method for findan@ble length units

for language modeling. They build an n-gram model over thumdbunits and demon-
strate that the new model outperforms a word-based modeleker, it seems that
the baseline word model is not well optimized, as the bestlrasresult was achieved
with 2-grams and the results seriously deteriorate whegdorontext is used. In the
follow-up work Deligne and Bimbot (1997) show that their imed is capable of finding

morpheme-like units from text. They also generalize thehmetso that it can be used
for finding reasonable speech segments from audio data.

Geutner et al. (1998) decompose Serbo-Croatian words itsst@d suffixes. In their
experiments, 3-gram models of the subwords performedlglearse than the baseline
word model. They also tested a two-pass algorithm, wherdittsterecognition pass
on a standard word n-gram model is used to produce a worddatlihe stems of the
words found in the lattice are searched in the database anattite is expanded with all
words of the database starting with the stems. This appm@igeh relative improvement
of 16% on the recognition WER.

Whittaker and Woodland (2000) use both a hand crafted rabegeheuristic algorithms
for splitting words to subword units. They note that the eigalgorithms seem to be
producing morpheme-like units. Using 6-gram subword medwkerpolated with the
baseline 3-gram word model they get relative perplexityriompments around 5% com-
pared with baseline models for both English and Russianntyligh speech recognition
experiments, the corresponding relative improvement was Phey speculate that the
improvement could have been larger in Russian speech riimogrbut they did not
have a Russian recognition system for experiments. Kre¢iasld Klakow (2001) use a
similar setup for Finnish and German experiments. Hearatgorithms with language
expert intervention are used for splitting the words. Thekeno comparison to word-
based models. Ordelman et al. (2003) split only the less comeompound words of
Dutch and achieve 2% of relative improvement in WER.

Byrne et al. (2001) use morphological rules for decompotfirgCzech words into stems
and endings. A straight n-gram model over the subword ueigsaties the recognition
performance significantly. Tweaking the n-gram model so e stems are predicted
using the knowledge of previous stems and discarding thengadn between brings
the recognition rates back to the level of word n-grams. Kaod Park (2003) uses a
combination of morphological and heuristic rules for Karepeech recognition.
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Szarvas and Furui (2003) use a morphological analyzer 1itisg Hungarian words.
They also use a morphosyntactic analyzer for deciding whahbinations of mor-
phemes are allowed. These are combined into a weighted $iaite machine used as
the language model. In their experiments, they get 2% velagduction in WER. Er-
dogan et al. (2005) use a similar approach for Turkish, exaegtead of morphemes
they use half-words. For 2-gram language models they gdatvieeimprovement of
15%. Increasing the model order reduces the gains, as thghosyntactic information
is already represented in the longer context n-grams.

Arisoy et al. (2006) try splitting to syllables, morphemstems and endings. They
also have a model combining all of the units. They reportsligjmyprovements on the
recognition letter error rate and no improvements on WERYTUsed 2-gram models in
the recognition experiments. Using higher order modelslevptobably have affected
the results.

Kirchhoff et al. (2006) compare several different morphystally motivated modes in
Arabic speech recognition experiments. They use similapimeme-based models that
are used here (they call these models particle-based),hological stream models,
cluster-based language models and factored language snotteffactored language
models (Bilmes and Kirchhoff, 2003), each word correspdondsfeatures or factors.
The n-gram model is built over the factor vectors. The maindfieis that the backoff
can be specified through a selected subset of the factonise kexperiments, no models
give large improvements over the baseline word models. Toghology of Arabic
relies on templates, where the consonant template is fixdddatermines the basic
meaning of the word and the choice of vowels determines tlaetaxeaning of the
word. Thus, models that rely on splitting words to smalleitaido not match the non-
contiguous morphology of Arabic particularly well.

Alumée (2004) also uses morphological analyzer for spijttestonian. The n-gram
morpheme-based model gets a 17% relative improvement bedrdseline model in
WER. If the morphemes are clustered to 1000 classes andldsis model is interpo-
lated with the baseline word model, relative improvemeateases to 27%. The thesis
of Aluméae (2006) reports extensive experiments with séwbfferent models and pa-
rameterizations in Estonian. It is noted that relative iovement due to clustering is
reduced when training corpus size is increased. Using ardttanguage model where
the word features were augmented with part-of-speechedamsd rescoring the n-best
list of recognition hypotheses gave 3% relative improvemerWWER in the experi-
ments. Further using statistically found word classes et®ffa did not help.

Bisani and Ney (2005) advocate using subword n-gram larguaadels for English.

They show that when the recognition data contains a high eombOOV words, the

subword model significantly outperforms the word-based eho&ven with test data
containing a small amount of OOV words, they report improrazbgnition rates. The
subword units try to model single phonemes or graphemesatdta conversions be-
tween the two remain simple.

Hagen and Pellom (2005) propose using a modified text comsipresigorithm for

finding syllable-like units in an unsupervised manner. Theplication, an interactive
literacy tutor, should also recognize partially pronouha@rds. In an English test, their
units perform similarly to grammatically generated sylésand outperform statistically
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generated morpheme-like units. This result is not sumgissince the average length of
a syllable-like unit was shorter than the average lengthrabgpheme-like unit. Thus,
the syllable-like units are able to recognize shorter plytuttered words.

The research presented in this paragraph is based on thedsgihesented in Publi-
cations 1 and 2, where automatically induced morphemeslikevord units have been
shown to work well for Finnish. Hacioglu et al. (2003) comgptre baseline word mod-
els with morphemes and automatically induced morphemeetlikits in Turkish. The

morpheme-based model is worse than the baseline word mndeha automatically

induced subword units achieve 21% relative improvement BRNArisoy and Saraclar
(2006) use automatically induced subword units and get G&tive improvement in

WER over the baseline word model for Turkish. Using lattigpansion (as by Geutner
et al. (1998)) increases the performance of both word and/eubunit based models
slightly. Kurimo et al. (2006) test the same approach fonksh, Estonian and Turk-
ish and get significant gains over word models in all testairéda and Kurimo (2007)

compare words with morphemes and automatically inducegh®mne-like units in Es-

tonian. Morphemes give relative improvement of 27% in sheecognition tests which
was practically equal to the improvement gained by the aatimnits (26%).

It should be noted that the error rates and relative imprareatfor the different meth-
ods should not be directly compared across different laggsia The different mor-
phologies of the languages affect the performances of tlikrads.

4.4 Introduction to the minimum description length prin-
ciple

Before introducing the automatic splitting method usedhi@ éxperiments, a mathe-
matical tool used by the method is briefly presented. Themim description length
(MDL) principle states, that the shorter code we can use $onilge our data, the better
the code models the data (Rissanen, 1989). The MDL algositame in many flavors,
as discussed by Creutz (2006). Of these, the so-called &staepding scheme is simple
and intuitively fits the problems at hand. In this thesistefiérences to MDL refer to this
version (also called crude MDL). A problem formulated in the-part coding scheme
can be mapped to an equivalent problem under the maximunterjposframework by
choosing suitable prior distributions (Creutz, 2006).

The two-part coding scheme has been used in the context glidaye modeling be-
fore. Rissanen (1994) outlines how the MDL principle can sedufor learning metri-
cal phonology (the organization speech segments into grotipelative prominence).
Ristad and Thomas (1995) use the MDL principle for deterngrthe optimal n-gram
context lengths in a letter prediction task. In Publicasi@and 4 of this thesis, it is
applied to essentially the same problem, that is to determimch n-grams should be
included in the language model. Creutz and Lagus (2002) imaxeduced an MDL-
based algorithm for acquiring morpheme-like subword uinitsn a text corpus. We use
the subword units generated by their algorithm as the basefusur n-gram model in
Publications 1, 2, 3 and 4. Also Goldsmith (2001, 2006) hasgmted an MDL-based
algorithm for finding morphemes.
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The two-part coding scheme can be explained in the follovwripgothetical setting:
we have two parties and one of the parties wants to transrtattdethe other party.
Parties are assumed to share some common knowledge, sbapatin understand the
communication. The data could be transmitted directly, utore efficient way of
sending the data is to transmit first a model describing tie alad then the actual data.
This assumes that the regularities in the data are captaréaimodel and the actual
data can be described more compactly when this informatidakien into account.
Thus, we are trying to minimize a two part cost functibnconsisting of the cost of
encoding the model paramet@rand the cost of encoding the dataThe model family
A is assumed to be known by both parties.

arg min D = arg min(Dmodel(0|\) + Dgatd 2|60, \) 4.2)
0

A problem with the two-part coding scheme is that the optiowdt of encoding the
model is not self-evident (this corresponds to choosingtir distributions in maxi-
mum a posteriori estimation). How much prior informatioroshd the two communi-
cating parties have about the model family and the modetstra? What is the optimal
coding for the model given this shared information? In thissis, the problem is ap-
proached in two quite different ways. In the word splittingaithm (Creutz and Lagus,
2002) the cost function is carefully crafted using comhonias and elaborate mathemat-
ical tools like the universal prior for integers. Howevehemn creating the cost function
for encoding an n-gram model (Publications 3 and 4), theisatitectly based on how
much memory the model actually takes when loaded into thectpeecognition system.

4.5 About the Morfessor algorithm

In this work, the Morfessor system by Creutz and Lagus (2@@®5) is used for
automatic word splitting. The method is based on the minindascription length
(MDL) principle. The algorithm has few different versiortdere, we describe and use
the simplest formulation referred to as the Morfessor iasehethod by the original
authors. The Morfessor software is available online at:Mttrfessor.forge.pascal-
network.org/.

4.5.1 MDL modeling in the Morfessor algorithm

Let us define the two parts of the MDL cost function (see Equedi.2). First, the cost
of encoding the modeDo4el can be divided into two parts: the cost of encoding the
segment dictionary or lexicon of the modBly.qe(lexicon) and the cost of encoding
the probabilities of the segmentnqgel(Segment frequencigsThe probabilities of the
segments will be needed for the second part of the MDL costtiom, that is the cost
of encoding the training corpus (Equation 4.6).

Let us assume that the probability of each chara@ter) of the language is known. The
code length of each characteiis derived from the probability. To spell out a segment
w in the lexicon we need to sum over all characters of the segntgach segment is
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assumed to be terminated with a special character markéngritl of the segment. Let
W be the number of words in the lexicon and ler{gth the number of characters in
the segmentincluding the end of segment character. The cost of encatimexicon
is then

W length(w;)
Dioge(lexicon) = >~ >~ —log P(ayy). (4.3)
=1 k=1

To encode the segment probabilities, we first send the tataber of segmentd seen
in the training datalV can be encoded using the universal prior for non-negatiegers
by Rissanen (1989, page 34)

U(N) =logc+log N +loglog N +logloglog N + ..., (4.4)

wherec is a constant{ ~ 2.865). As there are( -1 ) ways of choosingV’

wW—1
positive integers that sum up 18, the segment frequencies can be encoded efficiently
(Rissanen, 1989, pages 35-37).

Diogel(Segment frequencigs: U (N) + log ( I]/IV/ :11 ) (4.5)

As the frequencies of the segments are now encoded, the Nthagss for the segment
probabilities can be obtained based on the counts. Havicgden the parametefof
the segmentation modg&| we can now encode the corpus with the cost of

N
Dgata= Y _ —log P(w;[0, \). (4.6)

i=1

4.5.2 The search for a good model

The MDL-based cost function measures how good a given medéln algorithm for
finding the good models is also needed. The Morfessor algoritses a greedy search
to find the best model. Initially, all words in the training see put in the lexicon of the
model. Each word is then examined separately. All possilalgsvof splitting the word
into two parts are tried. If the best split gives a lower cbsintno split, the word is split
and the process is recursively applied to the two newly ecksggments. The algorithm
is iterated until convergence. A possible splitting prageds shown in Figure 4.2. A
more formal presentation of the search is given in Pubboa?i.

The described algorithm is used for learning the model. phitting the actual training
corpus of the language model, Viterbi search is used. Therhiisearch can find the
segmentations of words not originally used for learning $pétting model. Viterbi
search was not used while training the splitting model,esihappears to be more prone
to get stuck in local minima of the search space.
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| reopen+ed | open+mindfc

Figure 4.2: Hypothetical splitting trees for English lexicon congistiof two words.

4.5.3 Morfessor as morphological analysis tool

For measuring how well the automatic segmentation toolgper$ for morphological
analysis, the segments produced by the algorithm shouldimpared with the actual
morphemes of the given text. Creutz and Lagus (2007) peréogpariments comparing
the segments of the Morfessor algorithm to those produceal tmprphological anal-
ysis tool with rule sets built by experts. They also comphgartsystem with another
system for learning morphology in an unsupervised manher_inguistica system by
Goldsmith (2001, 2006). In their tests, all tested versioithe Morfessor algorithm
outperform the Linguistica for Finnish. For English, thethwals give roughly similar
performance. The best algorithms give an F-measure of appately0.7 for both lan-
guages. They also note that it is better to use the unique types of the training data
instead of using the actual word counts, if morphologicailytivated segmentation is
desired. The size of the produced segmentation lexicon earobtrolled for example
by removing the least frequent words from the training seantnow on, we will refer
to the subword units produced by the Morfessor algorithmagphs

4.6 Experiment |: Subword models vs. word models

This experiment was set up to find out, whether using subwegdam models could
significantly improve the speech recognition results. Theeement was originally
performed inPublication 1. Both syllable-based and morph-based n-gram models were
compared with word-based n-gram models in Finnish perglexid speech recognition
experiments.

46.1 Data

The text corpus for training the morph segmentation andhalhtgram language models
was taken from two sources. Short newswires from the Findeshs Agency (STT) and
an early version of the Kielipankki-corpus (CSC, 2007) edmihg books, magazines
and newspapers were usedlhis amounted to 30 million words with 1.6 million unique
word forms. For testing, the transcript of the audio datat@ioing 49 000 words was
used.

2Finnish IT center for science has used several names focdhgis during the past years. It has been
known as Kielipankki, Suomen kielen tekstipankki, parflesrpus and Finnish text collection. Here we will
use the original name Kielipankki throughout for clarity.
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The speech data was an audio book read by one speaker. 12\wvanssed for training,
8 minutes was used as the development set for tuning the depadameters and half
an hour was used for testing.

4.6.2 Recognition system setup

The reader is referred to Section 2.2 for an overview of ogesp recognition sys-
tem. In this experiment, we used power, mel-cepstral featand their deltas. No
feature transformations were used. Triphone models warstected using the clus-
tering scheme based on the amount of available training d&ta acoustic models did
not discern between the long and short variants of Finniginpines and no explicit
duration modeling was used. Deciding which variant to use & to the language
models.

The stack decoder was used, so modeling the acoustic cavexanguage model unit
boundaries was not possible. When training the acousticelpthe language model
units were taken into account: the acoustic context wasated at the language model
unit boundaries. Ignoring the language model unit bouredadiuring training of the
triphones resulted in significantly worse results. Duriegatling, each hypothesis was
created with and without a trailing word boundary regarsliefthe acoustics, although
the acoustic model of silence was forced to produce a worakbi@therwise, the place-
ment of word boundaries was left to the language model.

4.6.3 Language models

All language models were 3-gram models with GTK smoothindie Thodels were
trained with the CMU-Cambridge statistical language mimggtioolkit by Clarkson and
Rosenfeld (1997). For the word-based model, the 64 000 nomshmn words of the
training set were used. For subword models, the word sglittvas prevented in the
middle of letters that map to one phoneme. The lexicon of gliatde-based n-gram
model contained 37 000 unique units. This high number is duie restriction on
possible splitting points and due to the fact that Finnidbswere also used to segment
foreign words.

The early version of the Morfessor algorithm (Creutz andusas@002) used for seg-
menting the words did not take into account the coding cosh@fmorph frequencies
(Equation 4.5). In practice, omitting this term in the cashdtion does not affect the
segmentation much. The algorithm produced 300 000 uniqupmsdrom our training
set. This number was reduced to 65 000 different morphs hyipguhe least frequently
seen ones from the lexicon. The training data was reseguhasiieg the pruned lexicon
resulting in effective 0% OQV rate.
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Table 4.1: Perplexity results.

lexical | number| OOV | 3-gram word
unit of units | words | hits perplexity
word 64000 | 20.2% | 18.2% 4300
syllable | 36850 | 0.02% | 98.9% | 65800
morph | 64684 | 0.00% | 77.6% | 28500

Table 4.2: Speech recognition results. LER stands for letter errex. rat

| lexical unit| WER [ LER |

word 56.4% | 13.8%
syllable 43.9% | 10.9%
morph 31.7% | 7.3%

4.6.4 Experimental results

The models were first tested on the transcript of the audia.d@he results for the
3-gram models are given in Table 4.1. Although the lowespleaity is by the word-
based model, the low value is achieved by not modeling evethyviiord at all (20%
OOQV rate). The other models have significantly higher pediplebut model practically
all words, also the rarest ones. This comparison does netitdft account that if the
n-gram order is chosen to be the same for all of the modelsnttels based on longer
units can model longer contexts. This can be seen, when waiegahe percentage
of the highest order models used for modeling the test datad\Wased models only
need the highest order context occasionally, whereas tlebey models rely on the
highest order models practically always. Increasing tlggam order would probably
not benefit the word-based model nearly as much as it woulcoweghe syllable-based
model.

Corresponding speech recognition results are given irefal. The word-based model
does not achieve good recognition scores due to the high @@V The syllable-based
model still suffers from the shortness of the modeled cdnfEite morph-based model
appears to give the best results. Note that the decoder tarottel acoustic contexts
over the language model unit boundary, but the inter-uniedeencies are modeled.
Thus speech recognition experiment is slightly biasednrfaf the models based on
longer units, since using them results in fewer languageainaadit boundaries. Based
on this experiment, it was decided to conduct further redean the use of subword
units for modeling languages like Finnish.

4.7 Experiment II: Morphs in n-gram models

This experiment was conducted to show that morph-basedIsadeat least as good as
models based on words or morphemes generated by grammnaté&sal This experiment
was originally conducted iRublication 2.
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4.7.1 Data

The data used on the experiments was mostly the same as imifagpe | (Chapter
4.6.1). As slightly newer version of Kielipankki corpus wased, the combined word
count of the Kielipankki corpus and STT newswires was now 4ilan words. The
text data was converted to corresponding phonetic traptsciit is easy to transform
this transcript back to text for Finnish words, as the cqroesling rules are simple.
For foreign names, the mapping from phonemes to text is amobigg The language
models were trained on the phonetic transcripts. We usedahmee audio book as in
the first experiment with 20 minutes of data set aside for ld@wveent and 30 minutes
for evaluation. This task is here referred to as the book t&skthermore, we used 5
hours of news read by one speaker. 3.5 hours of data were arsedifing, 30 minutes
for development and 49 minutes for evaluation. This is refito as the news task. In
addition to training acoustic models, the reference trapiscof the training portions of
the audio data was used for evaluation of the language models

4.7.2 Recognition system setup

Compared with the recognition system used in the previopgrxent (see Section
4.6.2), some changes were made. We still use the older dedesign, but now we de-
cided to use monophones, so that models with longer unitédvmi gain advantage on
the recognition experiments. The phoneme state duratiens modeled and the emis-
sion probability distributions for the long and short phores were modeled separately.
A maximum likelihood linear feature transform was applisdalascribed in Section 2.2.

4.7.3 Language models

We constructed three different word-based models for ogelibde models. First, we
trained a model using 410000 most common words of the trgisét. The rest of the
words were tagged with the “unknown word” symbol. Second,tra@ed a similar
model, except that all unknown words were split to phonenmeistae n-gram model
was thus using a mixture of words and phonemes, resulting4nODV rate. Two
variants of phonemes were used, a phoneme at a word boundhayragular phoneme.
This provides unambiguous word boundaries. Third, a wordehasing 69 000 most
common words with unknown words split to phonemes was tchine

We also trained an n-gram model based on morphemes genésaizanorphologi-
cal analyzef utilizing a sophisticated rule set based on the two-levetphology of
Koskenniemi (1983). The analysis produced 79 000 diffemsphemes.

Finally, the Morfessor algorithm using the full cost furaetipresented in Section 4.5.1
was used. Using the word types found in the training set amthé for Morfessor, we
obtained 66 000 different morphs. Removing the word fornes$ewer than three times

SWe are grateful to Nicholas Volk from Helsinki University rfckindly providing the software.
http://www.ling.helsinki.fi/suopuhe/lavennin/.
4Licensed from Lingsoft, Inc.: http://www.lingsoft.fi
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Figure 4.3: The cross-entropy of the different models on the test datsugethe cor-
responding model sizes. The six points along each curveharerters
2-7 of the n-gram models.

in the corpus resulted in 26 000 different morphs. Both mededre used in the tests.
Running the Morfessor algorithm on the word counts of thming data, where words
seen fewer than 20 times were removed, results in 35000 rmotpkeems like these
morphs did not correspond as well to the morphological segatien as the morphs
generated by the other means, so this splitting was notdutédsted.

We created n-gram models of orders from 2 to 7 using the SRIadkit with the de-
fault cutoffs (Stolcke, 2002). The models were smoothet wibdified KN smoothing.

4.7.4 Experimental results

The results of the cross-entropy experiments with the pmimé&anscripts of the text
data are given in Figure 4.3. We did not run the experiment$erword model con-
taining OOV words, since that comparison would have beemingkess (7.3% OOV
rate for the book task and 5.0% for the news task). It is clemnfthe results that the
subword units are clearly more efficient with smaller modeld for larger models the
performances seem roughly equal. We can observe one weadfitbe rule-based mor-
phological analysis: the rule set does not contain ruleségmenting foreign words or
names. The statistical approach can produce some kind wfesggtion for these words
and seems to get better results in the news task, where igrfiorames and words are
more frequent.
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Figure 4.4: Phoneme error rates and model sizes for different n-graersrd

The speech recognition experiments were run for the modigrer3, 4 and 5 and the
results are shown in Figure 4.4. We have chosen to reporthibagme error rates,
as this measure is more sensitive to small errors. Also,ahguage models output
phonetic transcription so this error measure was the moaghktforward to evaluate.
The phoneme error rate correlates very well with the letteareate as there is a one-
to-one mapping between the phonetic and written form of thaish words.

In the book task, the models based on morpheme-like units gearly better results
than the word-based models. The results on the news taskigméssgly different. It
seems like the word-based models are more sensitive to fiieeetices in the training
and testing set domain: in the news task, the word-based Imnade much closer to
the morph-based models. This improvement of the word masl@iobably accounted
by the fact that the vocabulary of the word-based modelsratvenews set better and
the models do not need to use the phoneme-based part of teems-that much. The
phoneme-based n-grams are not a big problem in the evaluztiext entropy, but they
seem to make the hypothesis search in the decoder harder.

On the other hand, the rule-based morpheme models perfgmifisantly worse in the
news task. The reason seems to be that the task containsex higimber of foreign
words, for which no rules have been written. For these wdhastule-based model has
to fall back on phoneme-by-phoneme decomposition.

The statistical significance of the results was tested ighwilcoxon signed-rank test
(see Publication 2 for details). The most important resuéige that the models based
on morpheme-like units were significantly better in the btadk and that the morphs
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were significantly better than the other models in the newafs. tdhese would seem to
be the interesting and practically significant differenesswell.

4.8 Concluding remarks

In this chapter, the problem of modeling a highly inflectisgdguage using subword-
based n-gram models was examined. Some problems with tledinsasvord-based
approach were observed. A high OOV rate for unseen data pesteel, even for
models with a very large vocabulary. It seems that the OO\&atso reduce the model
performance for other words, as the context of the wordscisgeized incorrectly.

It has been demonstrated that the subword-based n-granisweatd well for Finnish.
Of the tested models, the ones based on automatically idduoephs seem to work
best in our experiments. The morphemes generated by a tuese well, when the
data is well covered by the rules. However, the automatit©iotetan be applied to new
languages without expert knowledge and seems to give supesults. The morphs
have been used for Turkish and Estonian speech recognitgiarss as discussed in
Section 4.3 and seem to work well for these languages also.

The n-grams to be included in the model were chosen simplgiigg all n-grams of the
training set that were at most as long as the maximum model @t then removing
the most infrequently seen n-grams. It seems likely thag@afly the models based on
short subword units would benefit from a more elaborate ntetbochoosing the n-
grams to be included. Preliminary experiments using thdnotst presented in the next
chapter indicate that the syllable-based models are alasogbod as the morph-based
models, when the n-grams of the model are selected with dagder-based models
however do not seem to give that good performance with réspéice model size.
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Chapter 5

Selecting the set of n-grams for
the model

Let us examine an interpolated n-gram model, in which altamgs from the training
corpus up to a given order are included. It is obvious thatafat-grams of the model
give equal contributions to the predictive power of the modeet us start from the
2-gram probability estimate with the known one-word higtérarja” . Increasing the
model to 3-grams with the wordpresident Tarja” should improve the modeling ac-
curacy considerablyFurther increasing the modeled contextuath president Tarja”
on the other hand does not bring much additional informatiothe model and the
corresponding n-gram could be removed. The modeling acgwhn-gram models
is usually limited by the amount of memory available. Thiegjucing the size of the
model without degrading the predictive power of the modéhigortant. The methods
for size reduction can be roughly divided in three categoriessless compression of
the model, compression by quantization and compressiorhbgsing only the most
relevant n-grams for the model. In this chapter, the lasteiss chosen for examina-
tion. The interaction between pruning and quantizatioridess studied for example by
Whittaker and Raj (2001a).

5.1 Related work

The simplest way of choosing the n-grams to be included inldhguage model is

to include all n-grams found in the training set up to the ekhighest order. This

so-called full model can be reduced in size by two compleargmhethods: frequency-
based pruning removes the n-grams that have been seen smésnthat their estimates
are considered inaccurate. Likelihood-based pruning vesithe n-grams that do not
increase the modeling power significantly.

When dealing with large data sets, it may be impossible tstroat a full model which

1The current president of Finland is Tarja Halonen.
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includes all the relevant n-grams due to memory constrai@swing methods use
greedy search algorithms for adding the useful n-gramsgtonthdel and discarding the
less useful ones. This allows to add also the relevant highra-grams to the model.
Also the grown models can often be refined by pruning the tiegumodel. In this
section, we will examine work related to these issues.

5.1.1 Pruning n-gram models

The simplest frequency-based pruning method is the couaffenethod. The n-grams
seen fewer tham,, times are removed from the model, where the cutoff limit isally
specified separately for each model orderA related idea is to remove the n-grams
hw, for which the contexh has been seen fewer thany, times.

Seymore and Rosenfeld (1996) have presented a simplélikelibased pruning method
calledweighted difference prunin@VDP) which operates as follows. An n-gram is
chosen from the model. The log-likelihood of the n-gram gibg the current model
is compared with the log-likelihood given by a model, whdre turrent n-gram has
been removed. The difference is weighted by a Good-Turingoshed estimate of the
frequency of the n-gram. If the weighted likelihood does@ateed a given threshold,
the n-gram is removed from the model. The procedure is redeatce for all n-grams
in the model. In the experiments, the model size reductioddmnreasing the amount
of training data is compared with model size reduction by W4DE the conclusion is
that WDP gives better results. WDP is also compared with toutoffs: for the WDP
model, a small count cutoff is applied first and then the prgns performed. When
this is compared with a model of equal size, where more sexgodfs have been used,
the WDP model consistently gets better perplexities. Nomamson included a WDP
model with no count cutoffs.

The WDP criterion does not take into account that removing-gmamhw from the
model also changes the probabilities of other n-grams. eSihe backoff coefficient
x(h) is modified, estimates for all n-grams that utilize the bafficoefficient are mod-
ified. Stolcke (1998) presents thetropy-based prunin@EP) method and shows how all
changes in the probability can be efficiently estimated hinéxperiments, EP slightly
outperforms WDP. A more detailed description of EP is giveSéction 5.2.1.

Kneser (1996) has also presented a likelihood-based pyunigthod calledKneser

pruning (KP). In KP, an AD model is used for determining the cost of o®ng n-

grams from the model. The cost is determined similarly adN@rP. When the set of
n-grams to be included in the model has been decided, thelrsdstimated using
similar principles as in KN smoothing. KP is described inadleéh Section 5.2.2.

Goodman and Gao (2000) show that count cutoffs work well wdréyslight pruning is
required. However, for more severe pruning both WDP and EBlawwn to work better.
Also the experimental results by Bonafonte and Marifio ()98th a very small training
set show that the combining frequency-based and likeliHmaxbd methods gives the
best results. Niesler and Woodland (1999) experiment witmipg cluster-based n-
gram models. They observe that their likelihood-basedipguariterion consistently
outperforms the combination of count and context cutoffs.
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In this work, the likelihood-based methods are further gddit will be shown that the
existing pruning methods do now work well with the statettod-art KN smoothing. A
new pruning method for KN smoothed models caltedised Kneser pruninfRKP) is
presented and the method is discussed in detail in Sectib8.5The method uses a
few different approximations than the other methods arglshiown in the experiments
(Section 5.3) that the method gives excellent results.

5.1.2 Growing n-gram models

Ristad and Thomas (1995) present a MDL-based method foriggaan n-gram model.
When deciding whether an n-gram should be inserted intoutreist model, the benefit
of the increased modeling accuracy is weighted againstrii@iat of bits needed for
storing the n-gram. The greedy search tries to insert atbhmghw for which the prefix
h already exist in the model. In the experiments, a text camgi900 000 letters is used
for training letter-based n-gram models. They report $igant improvements over the
baseline full n-gram model. However, it seems that the @sehodel is not very good
as the performance of the model degrades rapidly when hayder n-grams are used.
Also Ron et al. (1996) have presented a similar growing #lgar, which is formulated
in the framework of probabilistic finite automata. The n+graelection is based on a
combination of frequency and likelihood-based criteriaedier and Woodland (1999)
present a word clustering algorithm. The cluster n-gram eh@dgrown by an algo-
rithm, where new n-grams are added by a greedy algorithniegitoithe one by Ristad
and Thomas (1995). The cost criterion is based on leavesaheross validation.

Siu and Ostendorf (2000) present the n-gram model in a treetste. They show,
how operations for modifying the tree correspond to pruriregn-gram model, word
skipping and context-dependent word clustering. They st how the tree can be
grown. In their experiments, the most significant improvataavere gained through
finding the optimal model context length. The tree is growe distribution at a time
and contrary to the other methods, the search algorithmepiascby growing the n-
grams towards the past.

A new algorithm for growing KN smoothed n-gram models cakeakser-Ney growing
(KNG) is described in Section 5.2.5. The growing algorittevsimilar to the one by
Niesler and Woodland (1999). The selection criteria is dase the MDL principle.
Whereas Ristad and Thomas (1995) use an elaborate thabMidt cost, a simpler
and more practically oriented MDL cost function is used in®&Nn the experiments
described in Section 5.3, the growing method is shown to @avgthe results obtained
by RKP.

5.1.3 Other related work

There are other ways for controlling the context modelechieyrit-gram model. Several
adjacent words can be merged and used as one token in theatgemodel, as shown
for example in the paper about word clustering by Yamamotd.¢2003). Deligne and
Bimbot (1997) have also studied combining several obsemnvainto one underlying
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token. The related idea of splitting words into subword simiais studied in Chapter 4
of this thesis.

Seneviratne and Young (2005) present a language model \hitldan vector state. The
state of the model is a simple stack of a push down automatasedon the state, the
next word can be predicted. In practice, the probabilitynestion is decomposed so
that the model can choose which words of the history the estifior the probability of
the next word is based on. In the experiments, a clusterdbaselel with around 100
clusters is estimated using both n-gram and hidden vedate stethods. For this re-
stricted task, the hidden vector state models are showrvéocginsistent improvements
in perplexity, around 10%.

Virpioja and Kurimo (2006) present a method for growing &late order n-gram mod-
els, where the context can be clustered. In experiments ntethod is compared with
the earlier version of KNG (Publication 3 of this thesis)wit fairly small training set
of around 10 million words. In the experiments the clustareatiels give somewhat
better results. Publication 4 describes, how using a mdigezft pruning algorithm
can improve the results. Virpioja has performed prelimyrexperiments and the results
indicate that applying similar changes to their algorithtoMides comparable improve-
ments.

It is possible to select only some word positions of the giventext that will be taken
into account. These so-called skip n-gram models have mediuced in the context
of both traditional n-grams (Huang et al., 1993; Martin et #999) and maximum en-
tropy models (Rosenfeld, 1994). The extensive tests of Gaod(2001) also included
skip n-gram models. His conclusion is that skip n-grams easwonable for small and
intermediate amounts of data, especially if high orderamtg cannot be used for some
reason. One motivation for using these methods is to avaithgda full new order to
the n-gram model. The pruning and growing methods presémt&ds chapter produce
a similar effect.

5.2 Algorithms for pruning and growing n-gram models

Let us start by defining a few terms. #on-leaf n-gramhw of a model is an n-gram,
which is a prefix of some other n-gramwo found in the model. Correspondinglyieaf
n-gramhw is an n-gram, which is not a prefix to any other n-gram. Thimieology
stems from the presentation of the language model as anmgefix tree.

The mathematical notations and the smoothing methodsamtidu this section were
presented in Chapter 3.
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5.2.1 Entropy-based pruning (EP)

EP for backoff models was presented by Stolcke (1998). Thidaaf removing n-gram
hw form the modelM is defined as

d(hw) = Py (hv)log % (5.1)

Py denotes the probability estimate of the original model &gd is the estimate of a
model, where the n-gratmo has been removed. The summation over wardsflects
the fact that the probability estimates of other n-gramsigkas well when the backoff
weights are recalculated for the pruned model. This chaagée efficiently computed.
When the cost of removal has been calculated for all n-grditieonodel, the n-grams
for which the cost does not exceed a given threshold are redfogm the model.

EP has some approximations. The pruning of one n-gram isreegto be independent
of the pruning of any other n-gram. It is assumed thRat(c|b) is a good estimate for
Pps(clab). This is a valid approximation when the smoothing of the nhalies not
optimize the lower order probability distributions basedhigher order distributions
(e.g. for AD and GTK). The same approximation is used for tieégiting Py, (hv).
Also, it is assumed that the weighting can be approximateunh fthe n-grams of the
model.

P(abc) = Py(a) Py (bla)Pa(clad) (5.2)

EP has the advantage that besides the original model, nticaddiinformation is re-
quired for performing the pruning. Some other methods megthiat the counts of the
n-grams from the training data should be also known. On therdtand, some of the
approximations of EP do not work well with KN smoothing.

5.2.2 Kneser pruning (KP)

In KP (Kneser, 1996), an auxiliary model using AD is builtfirslsing the AD model,
the set of n-grams to be removed from the model is determifieel cost of removing a
leaf n-gramd; (hw) is defined as

P(w|h)

(5.3)

The cost of removing a non-leaf node(hw) is the average of the costs of removing
all the n-grams, which havew as prefix.

When all the n-grams of the model have been tested for remavaw model is built
using only the remaining n-grams. The new model tries togruesthe marginal distri-
butions (Equation 3.11) similarly to KN smoothing. Appexdi2 shows the associated
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approximations. The resulting probability estimate is

max{O, > Cwhw) + Dy Y 1—Dlh|}

vhwg\ vhwe

Ew’< Z C(th/)"_D\h’w’\ Z 1)

vhw/ ¢ vhw’eX

P(wlh) = +y(h)P(wlh), (5.4)

where the notationhw € A refersto the n-grams included in the modeindvhw ¢ A
to the n-grams not in the model. The value of the the intetfmacoefficienty can be
easily solved.

The method uses several approximations. The removal ofgram-is assumed to only
change the probability of that n-gram and the changes dubanging interpolation
coefficientsy are ignored. The selection criterion is based on a diffekamat of model
than the final model. Like in EP, the removal of an n-gram isiaesd to be independent
of the removal of any other n-gram. Also like EP, for the pugof weighting the cost
criterion the model probability?(c|ab) is assumed to be a good estimate fiic|b).
Since the model selection is made using an AD model, thimesti is reasonable. In
preliminary experiments we noticed that different appneeiions have a significant im-
pact on the performance of the method.

5.2.3 Revised Kneser pruning (RKP)

In this section, an algorithm for pruning KN smoothed n-graodels is presented. The
algorithm is related to both KP and EP, but some approximatare different. The
RKP does not assume that the pruning of different n-gramsdependent. Instead,
an n-gram is removed immediately after the pruning decikEmbeen made, resulting
in a simple greedy search for the best model. For the pruniteyion, the WDP cost
criterion is used, except instead of using the Good-Turiegalinted n-gram count for
the weighting, we use the n-gram count in the training seis iBlsimpler, but probably
slightly less accurate.

When an n-gram is pruned, the lower order distributions efriodel are modified.
The modification relies on a simple observation: in the oafkKN smoothing for full
models (see Equation 3.12), the probability estimatesi#highest order n-grams (leaf
n-grams) are based on the number of n-grams in the trainingrse the non-leaf n-
grams, the estimates are based on the number of differeniswbat can precede the
n-gram. It turns out that when an n-gram is removed from thdehdhe model can be
easily modified to reflect this behavior.

Let us initialize the variables with the values of a full KN sathed modef. Addi-
tionally for each pruned n-graiw, the sum of pruned counts(h) for the prefixh

2The original paper presents the estimate for a backoff m@tméser, 1996, Equation 9) and there are
parentheses missing around(v, hy, w) — d in the numerator and denominator. Despite the different ap-
pearances, the equations are otherwise equivalent.

3C(hw) and S(h) were defined in Section 3.1.1D)y| was defined in Section 3.1.2 add (hw) was
defined in Section 3.1.3.
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PRUNEORDER(K;, €)
1 for {hw: |hw| = k A C’'(hw) > 0} do

2 logproh, < C'(hw)logy Pun (w|h)
3 PRUNEGRAM (hw)

4 logprob, « C'(hw)logy Pun (w|h)
5 if logprob, < logproly, — ¢

6 undo previous RUNEGRAM
PRUNEGRAM (hw)

1 L(h)«— L(h )+C’(hw)

2 if C’( w) >

3 C'(hw) — C’(hw) + C’(hw) —1
4 S(h) « S(h)+C'(hw) — 1

5 C'(hw) <0

Figure 5.1: The pruning algorithmk is the order to be pruned ards the pruning
threshold. Note that lines 3 and 6 iRENEORDER modify the counts
C’(+), which also alters the estimatéy (w|h). PRUNEORDERIs called
for each order of the model starting from the highest order.

is updated. The RKP algorithm is shown in Figure 5.1. Theritlgm is allowed to
prune non-leaf nodes even though this may not be theotgtjcatified. Preliminary
experiments indicate that pruning the non-leaf nodes ingsadhe performance of the
method.

The probability estimates of the model are similar as for Kihbsthing (Equation 3.8),

but now the pruned probability mass has to be taken into axtcou

max{0, C'(hw) — Djp| }
S(h) + L(h)

P(ulh) = +(h) P(w|R) (5.5)

The interpolation coefficient is

[{v: C'(hw) > 0}| Dy + L(h)
S(h) + L(h)

v(h) = (5.6)

For efficiency, a separate variable fdv : C’(hv) > 0}| can also be maintained.
Also, C'(hw) may be replaced by’ (hw) in lines 2 and 4 of RUNEORDER for a
slightly lower memory consumption and slightly faster cargtion. In preliminary
experiments, this did not affect the performance of the pced models.

5.2.4 Comparison of the approximations of EP, KP and RKP

EP and KP assume that pruning an n-gramis independent afiteeruning operations
while in RKP, the model is modified immediately after the pngndecision has been
made. This results in a simple greedy search for the bestimdlde, KP uses different
model to decide, which n-grams to remove, than the final KNathied model. The
selected set of n-grams is probably quite different fromgéethat would be chosen



38 Chapter 5. Selecting the set of n-grams for the model

using the correct model. After the set of n-grams to be prinaeteen decided, KP and
RKP are almost equivalent. Indeed, the estimates of the R&&eh{Equations 5.5 and
5.6) are identical to the estimates of the KP model (Equdiidh except that KP term
D) is approximated to be 1. The approximation allows for a mdiieient search,
when the discount parameters are optimized on held-outdi@iapruning. Also, in the
given form RKP can easily be generalized to use three digspsimilarly to modified
KN smoothing. The main difference between KP and RKP is insilection of the
n-grams to be pruned. As will be seen in the experiments i@ebt3), RKP seems to
give clearly superior results.

EP takes into account, how the probability of all n-gramsngfgawhen the current n-
gram is removed, whereas KP and RKP only calculate the diffe for the current
n-gram. In practice, the difference due to this should bellséDP and EP perform
almost equally well (Stolcke, 1998). On the other hand, E&sdwt modify the lower
order distributions. Also, the weighting of the differerafehe log likelihoods is based
on an approximation that does not hold well for KN smoothedlet® (Equation 5.2).
In the experiments (Section 5.3), RKP is shown to outperfafnfor KN smoothed
models.

5.2.5 Kneser-Ney growing (KNG)

Itis also possible to construct a language model by stafitorg an empty (or a 1-gram)
model and searching for the n-grams that should be addeeé tmdldel. In this section,
a growing algorithm based on the same principles as RKP septed.

Let us initialize the model to a 1-gram KN smoothed model. Agassible combi-
nations of n-grams cannot be tried, greedy search is usadedet n-granhw in the
model, the algorithm tries adding all n-graisv in the training set to the model. As
the n-grams are added, the model is modified according tatloeving principle: leaf
nodes should utilize the counts from the training data ab#sés for the probability es-
timates, whereas non-leaf nodes should use the number déwoeceding the n-gram

in the training data. Figure 5.2 describes the growing dtigorin detail. The factob

is used for controlling the relative importance of the matghccuracy with respect to
the model size. Increasingdecreases the size of the resulting model. The probability
estimates of the model are the same as for RKP (Equation®8.5.6).

The purpose of the pruning algorithms presented earlies i®duce the model size.
The presented algorithms implicitly assume that all n-gréaave equal impact on the
model size. In KNG, we have chosen to use an explicit costtfoméor modeling the
cost of storing the n-gram. The cost function is defined inNtigL framework. The
derivation of the cost function is presented in Appendix.A.Be resulting cost function
consists of two parts: the well-known weighted differentg likelihood and the cost
of encoding the n-gram in the model, which is given below.

ACost= a(Nnew - Nold) + Nnew 10g2 Nnew - Nold IOgQ Nold (57)

N is the number of n-grams in the model. The constar$ related to the number
of bits used for storing the probability estimates. A simiast function can also be
used for RKP. The resulting cost function is quite close ®ithplicit cost used in the
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GROWORDER(k;, 9)
1 for{h:|h|=%k—-1AC'(h) >0} do

2 size) «— |{g: C"(g) > 0}
3 logprok, — 0
4 for w: C'(hw) > 0do
5 logproly, < logproly, + C'(hw) log, Pin (w|h)
6 for w : C'(hw) > 0do
7 ADDGRAM (hw)
8 sizg «— [{g: C'(g) > 0}|
9 logprob, — 0
10 for w: C'(hw) > 0do
11 logproby, « logprob, + C(hw)log, Pun (w|h)
12 logscost= sizg log,(siza ) — sizg log,(Size))
13 sizecost— (sizg — sizg)« + logscost
14 if logprob, — logproly, — § - sizecosK 0
15 undo previous ADGRAM (hw) for eachw
16 re-estimate all discount parametérs
ADDGRAM (hw)

1 C'(hw) < C(hw)

2 S) <« Sh)+ C(hw)

3 if ¢'(hw) >0

4  C'(hw) — C'(hw) — C(hw) + 1

5  S(h) — S(h) — C(hw) + 1

Figure 5.2: The growing algorithm.k is the order to be grown andl controls the

relative importance of the model compactness in compatistime model
accuracy.
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pruning algorithms, wherdCost= «(N,c., — Noq). A theoretically more accurate
cost function, like the one used by Ristad and Thomas (1989%pe defined. Since we
are trying to optimize the performance of the model with extio the model size in a
real speech recognition system, the proposed cost furstionld give better values.

Since KNG grows the model one distribution at time, therd still be individual n-
grams in the model that do not contribute much to the overatleting accuracy. These
can be pruned with RKP. Also, to improve the search for the tmeslel, it would be
possible to make the search less greedy and alternate ethwegrowing and prun-
ing phases. The resulting search algorithm would be akiimntalated annealing and
could possibly avoid some local minima. However, this waigghificantly increase the
computational burden of the algorithm.

5.3 Experiment Ill: Comparison of pruning and grow-
ing algorithms

In this section, the EP, KP, RKP and KNG algorithms are comgai he experiment
was originally presented iRublication 4.

5.3.1 Data

For training the Finnish language models, we used 150 milvords from the Kieli-
pankki corpus (CSC, 2007). Simple preprocessing for cteanp the data and spelling
out any number sequences was performed. Then the data watsp428 unique
morphs using the Morfessor algorithm (Creutz and Lagus52@8th no restrictions
to where a word could be split. This resulted in corpus of 46lian morphs. For
the methods that require a held-out data set, 110000 morples set aside. 510000
morphs were left to the test set.

The audio data for the Finnish speech recognition tests akentfrom the SPEECON
corpus (Iskra et al., 2002). Only adult speakers in cleaortieg conditions were used.
The training set consisted of 26 hours of material by 207 lsgrsa The development
set was 1 hour of material by 20 different speakers and thiiagian set 1.5 hours
by 31 new speakers. Only full sentences without misproratiweis were used in the
development and evaluation sets.

The English text corpus was taken from the second editiohefnglish LDC Giga-
word corpus (Graff et al., 2005). 930 million words from thewYork Times were
used. The last segments were excluded from the training2§€&t000 words for the
development set (if needed by the method) and 2 million wésdghe test set. 50 000
most common words were modeled and the rest were mapped tokaown word
token.
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5.3.2 Recognition system setup

The reader is referred to Section 2.2 for an overview of oeesp recognition system.
In this experiment, power and mel-cepstral features witkadeand delta-deltas were
used. Maximum likelihood linear feature transform and tephenean subtraction were
used. Triphones were clustered using the decision-treeekagorithm. No special pro-
cessing was made to convert the text to phonemes and thensyedted on the triphone

models (actually triletter models) to find the correct pnociation for each letter based
on the context. For modeling the context of triphones, shitehces between words
were removed and the adjacent letters were used insteadwditeboundaries were

modeled by a one-state model of a short silence. The sim@pmTessing approach
was used for modeling the phoneme durations. For this exgeeitt, the new decoder
was used.

5.3.3 Language models

For the Finnish experiments, full 5-gram models were caiesdd using KN smoothing,
modified KN smoothing and GTK smoothing. The SRILM toolkit¢eke, 2002) was
used to perform EP on the modified KN smoothed and GTK smoatiastkls. KP was
used for KN smoothed models. RKP was used on the modified KNo#ted model.
KNG was used to grow a model to similar size as the full unpdusigram model and
the resulting model was pruned with RKP.

For the English experiments, full 4-gram models were buslhg KN smoothing and
modified KN smoothing. A KNG model was grown to the largese sfmat was practical
with our implementation. KP was used for the KN smoothed rhdeKP was used for
the modified KN smoothed model and the KNG model. Also, GTK Ehtdsmoothed
4-gram models, where all 3-grams seen once and all 4-graans3ser fewer times were
removed, were built. Both models were pruned by EP. The faneodre used to reduce
the memory consumption of the SRILM tools so that the modmlddcbe estimated and
pruned.

5.3.4 Results and discussion

The results of the Finnish and English cross-entropy erpnts are shown in Fig-

ures 5.3 and 5.4. The reader should remember that the antrsgies (or perplexities)

are not comparable across languages. The sentence ctoggydor the best model of

each language was around 160 bits. An English sentenceedtn average 20 words
and a Finnish sentence 11 words. This means that the Finmiss-entropies are almost
double the English cross-entropies and the Finnish pdtjgs»are almost the English
perplexities squared. A Finnish sentence had on average8shs (word break tokens
included).

The results confirm that KN smoothing outperforms GTK smungtHor full models.
The differences between KN smoothing and modified KN smaoathire small. It can
be seen that the older pruning methods (EP, KP) do not workfareKN smoothing.
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Figure 5.5: Distribution of n-grams of different orders for Finnish. ders up to 10
are shown. The highest order in the KNG model was 16.

Taking higher order counts into consideration with the KN@oathm can clearly ben-
efit the model. The n-gram distribution over the n-gram ofdethe models is drawn in
Figure 5.5. The distributions become more similar as mouaipyg is applied. Figure
5.6 shows the relative portion of n-gram orders utilized wiegaluating the test set.
From the figures it can be seen that both KP models and EP medkI&N smooth-
ing produce notably different distributions compared wifte other methods. These
two methods were also the worst performers. It can also hetbe the grown model

utilizes a significant amount of the high order n-grams whigne not included in the
other models.

In the English cross-entropy experiments we see that theadrgnodels pruned only
with count cutoffs work surprisingly well. The reason foingsthe cutoffs was to bring
down the memory consumption so that SRILM tools could be ukesvever, the results
seems to confirm that using slight cutoffs is beneficial. Lateliminary experiments
showed that cutoffs seem to give similar benefits for the RK& KNG algorithms.
Pruning the KN smoothed models either with EP or KP degrauegiodel fast. Using
KNG seems to give relatively large improvements.

The results of the Finnish speech recognition experimerptstegown in Figure 5.7. The
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Figure 5.6: Distribution of the order of n-grams that were used whenwatailg the
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results show that pruning a KN smoothed model with either ERR® does not yield
good results. The entropy pruned GTK model, RKP and KNG nwopletform roughly
equally well. The significant differences among the perfanges of the models in
both cross-entropy and speech recognition tests have higlelighted in this chapter.
Furthermore, an explicit analysis of the statistical digances is given in Publication 4.

Increasing the size of the language model improves thetsetsubugh the tested range
of model sizes. Thus, in an application, one should choodsgaa language model
as practical, taking into account the needs of the acousiibets as well as the cost of
the computer memory. In our recognizer, one n-grams consi®d& of memory. A
model of 1 GB corresponds to 60 million n-grams. It is posstblrepresent a language
model more compactly, depending on the demands of the apiplic(random access
time, available processing power, etc.).

5.4 Concluding remarks

In the experiments, it was confirmed that KN smoothing givetsdn results than GTK.
It was shown that although EP works well for GTK models, itsloet work well with
KN smoothed models. Also KP has some assumptions that sedegtade the results
significantly.

A new pruning algorithm (RKP) was presented. It was shown ttia algorithm per-

forms at least as well as the baseline methods in general aipeéréorms the other
methods for KN smoothed models. An algorithm for growingrarg models based on
similar principles was also presented (KNG). It was showat this possible to take
useful high order n-gram dependencies into account witlaldperithm and the method
gave clear benefits in the cross-entropy experiments. Tlie lbeaefit of the growing

algorithm is that a good initial model for the pruning algoms can be constructed
using reasonable amounts of computing time and memory.

The older pruning methods (WDP, EP, KP) assume implicitit ffruning any n-gram
from the model is equally useful. It was presented, how ati@kpost function can be
constructed and taken into account during pruning and grgwi he explicitly formed
cost function turned out to be highly similar to the implioitst used by the older pruning
algorithms.

The software implementing the RKP and KNG methods is aviglab http://varikn.
forge.pascal-network.org/. A short description of thewafe is included in the paper
by Siivola et al. (2007).
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Chapter 6

Continuous space language
models

The language models presented here so far are not takinglaagitage of the syntactic
or semantic similarity of the words. Intuitively it seemeat, that we should be able to
use the information in the training set sentefidenday evening was cloudyfor esti-
mating the probability of the sententBuesday morning was sunny'The traditional
way of exploiting the semantic similarity for n-gram moahgiis to use some clustering
algorithm to group similar words together. In this sectiom explore the continuous
space representation of the words for taking advantagesafémantic similarities.

6.1 Related work

6.1.1 Discrete clustering

Brown et al. (1992) present a method for clustering word$iabe¢ach word belongs to
exactly one cluster (hard clustering). The method will bkedaBrown clusteringn this
work, although it has also been known as IBM clustering. Tdred@ional probability
of a word is approximated by

P(wi|wi_1 . .wi_n+1) = P(wl\G(wz))P(G(wl)\G(w,_l) P G(wi_N+1)), (61)

whereG maps the word to the corresponding cluster. In generalether significantly
fewer parameters in this kind of model than in a correspanaiord-based model, as the
n-gram probabilities are only approximated for the clustd@he clustering is optimized
by a greedy search. The words are moved around the clustgrshenlikelihood of
the training data is no longer increased. In their perpjextperiments, a cluster-based
model was slightly worse than a word-based model. Intetpgjahe two models gave
slightly better results than the baseline word model.
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Kneser and Ney (1993) formulate a similar clustering alfoni where the order of the
cluster n-grams is limited to 2. Instead of predeterminimgnumber of classes, they
use leave-one-out validation for choosing the number oftels. They conducted ex-
periments on quite small data sets (100 000 words for Gerfnanillion words for En-
glish). The cluster-based model gives clearly better paipl than the baseline 2-gram
word model for both languages. Further improvements araidd by interpolating
the cluster-based model with a part-of-speech-basecdeclnsgram model and a word
based n-gram model. The models trained with the ML or leawe-aut criterion give
practically identical results.

Blasig (1999) uses Kneser pruning for producing the baseligram model. Words are
clustered with the algorithm by Kneser and Ney (1993). Saweays of combining the
clustering with the baseline model are studied. The most#ffe method is to allow
words to be represented either by themselves or by theiteclasd using the n-gram
estimates of all of the representations. Interpolating kiid of model with the baseline
yields 8% improvements in perplexity and 6% relative in gieecognition WER. Mori
and Kurata (2005) use clustering with a growing algorithredabon probabilistic finite
automata (Ron et al., 1996). Slight improvements in peiplever the baseline word
3-gram model are reported.

Goodman and Gao (2000) use a slightly different approximndbr their probabilities.

P(wi|wi_1 e wi_n+1) :P(wi\Gl (U]Z), Gg(wi_l) e GQ (wi—71+1))

6.2
-P(Gl(wi)\Gg(wi_l)...Gg(wi_NH)) ( )

Compared with Brown clustering (Equation 6.1), the left aigtit context of words are

separately clustered and the conditional probability efword is not assumed to be
independent of the previous clusters. With this kind of agpnation, the model size

can actually grow compared with the word-based model. Theypare their model

with Brown clustering. They also train word-based modelsciwihave been pruned
by count cutoffs, entropy-based pruning (Stolcke, 1998)@ighted difference pruning
(Seymore and Rosenfeld, 1996). They use entropy-basedgran the cluster models
as well, pruning the cluster models from large models alivtlag to very small sizes.

In the experiments, perplexity with respect to the size efrtfodel is measured. Their
clustering outperforms the other models consistently lonadel sizes.

Niesler and Woodland (1999) present a model, where the wtwa®t belong to single
clusters. Instead, a word has some probability of belonggirzgny cluster. This is called
soft clustering. The experiments show that a word-basecehmadperforms the cluster-
based models in all perplexity experiments. Analysis ofrésilts shows that 90% of
the improvement achieved by the word-based model for 3-giiarhased on the esti-
mates of 35% of the distinct 3-grams. Motivated by this fwty build models by first
pruning the word-based model and using the cluster-baseéelfar the backoff proba-
bility estimates. For a small training set, this method eeés significant improvements
over the baseline for all model sizes. For large training,séte proposed approach
can improve the smallest models significantly, but for largedels the perplexities are
practically identical.
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6.1.2 Word context and continuous features

Finding semantic similarities for discrete symbols dieseems to lead to algorithms
which test a number of different clusterings and choose tteegiving the best likeli-
hood. Often, there is huge number of different possibletetirsys and even the greedy
search algorithms need to examine many of them to find a gamstering, leading to
a high computational burden. If we can transform the proltemm clustering discrete
symbols to comparing distances in continuous space, we dtawer disposal several
methods developed for handling data with continuous valldse transformation to
continuous space should preserve the essential semantarahation by mapping sim-
ilar words close to each other.

Ritter and Kohonen (1989) show a method for using the comtkttie words for gen-
erating a mapping function, which places similar words elttseach other. They use
the self-organizing map (Kohonen, 1995) for visualizing ttigher dimensional word
feature space. They perform proof-of-concept experimemtsimple artificially gener-
ated data sets and show that the proposed method can findtgesirailarities between
words. Honkela et al. (1995) run the corresponding experiroe real data. They show
using 200 tales by the Grimm brothers that similar words eiltl up close to each
other. The advantage of this method compared with the desspace methods is that
finding a clustering is very fast and some local minima of tlsemrtte method are pos-
sibly avoided. Also, the distance between any pair of woedslie measured instead of
just stating that the words do belong or do not belong in tieeseluster. The disad-
vantage for n-gram models is that the method is not diregitintizing the probability
estimates for the n-grams. This method is further explaneSidction 6.2. In a similar
vein, Miikkulainen and Dyer (1991) show thatultilayer perceptrolMLP) networks
can learn to assign case roles to sentence constituents.

Yamamoto et al. (2003) have presented a model, where thealpitiiip calculations are
similar to Equation 6.2 in spirit. The clustering of the wisdletermined by its position
in the n-gram.

P(w7;|w7;_1wi_2) = P(wL\Gl (wﬂ)P(Gl (wi)\Gg(wi_l)Gg (wq;_g)) (63)

The 2-gram and 3-gram probability distributions are useddoming the continuous
valued feature vectors in their model. The hard clusteringcfionsG,, G2, G5 are
determined based on the distances of the vectors. The madetsained on a small
data set of 1.4 million words. In comparison to the baselkgee8n model, their 3-gram
multi-class n-gram model obtained relative improvemenamfund 3% in perplexity
and relative reduction of 8% in speech recognition erromBiming some words into a
single token in the language model gives an equally largéiaddl improvement.

6.1.3 Language modeling using multilayer perceptron netwds

MLP networks can be used to jointly optimize the mapping efwords and the con-
ditional probability estimates of the words. Schmidhubed &leil (1996) use a MLP
network for predicting the characters of a text and showithattask of data compres-
sion, the neural algorithm achieves excellent results. él@n the high computational
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burden of the algorithm is reported as a weak point of the otbth

Schwenk and Gauvain (2002), later Schwenk (2007), use tdethe same method
for building word-based language models. The problem with &approach too is that
the computational burden of the method is high. The traifsrgptimized using several
methods. The biggest reductions of the training time aréeseld by backpropagating
several examples at once through the network. It is notediriaroving the n-gram
probability estimates of the rare words is hard and sincentbiels are rare, not that
useful. Using the probability estimates of the neural nekswdor around 2000 most
frequent words and backing off to the n-gram model for theoéstimates is proposed.
Interpolating this kind of model with a regular backoff ragr model produces further
improvements. Several types of data in a few languages ackindoth the perplexity
and the speech recognition experiments. It is shown thatistamt improvements in the
perplexity of about 10% are achieved. The estimates of theaheetwork are precal-
culated in a table to speed up speech recognition experandiit experiments show
consistent gains in WER compared to a 4-gram model, on agexgut 4% relative.
This approach is closely related to maximum entropy modeline maximum entropy
model corresponds to a MLP network with no hidden units.

Also Bengio et al. (2003) have investigated using MLP neksdor language modeling.
The MLP network is prevented from overlearning by using Wwegcay. They experi-
ment with two data sets (1.2 million words and 14 million we)dT he vocabulary of the
model is limited to around 18 000 words. The model is comparigd a 5-gram word
model and also to a 5-gram cluster-based n-gram model byuriegghe perplexity of
the models. The neural network outperforms the baselinesta@d interpolating the
estimates of the neural network and the n-gram model impres@lts further. For the
smaller data set, they get a 19% improvement over the beslifias-gram model and
for the larger set the improvementis 7%. Morin and Bengid&@ropose using hier-
archical clustering to speed up the algorithm. The clusteis based on hand labeled
semantical similarities of the words. 200 fold speed-upcisi@ved and the resulting
model is only slightly worse than the one constructed withahiginal algorithm.

Emami et al. (2003) apply MLP networks to structured languagdels (SLM) (Chelba
and Jelinek, 2000). In their tests, they interpolate bahdtrd and neural SLMs with
standard n-gram models. They show clear improvements pigeéty and achieve 1.6%
relative improvement in speech recognition error rate. rapartant contribution to the
improvements is the fact that the estimates of the neural 8tdvless correlated with
the n-grams than the estimates of a standard SLM which mhkdaterpolated model
efficient.

Jointly optimizing the mapping of the words and the proligbéstimates of the model
is explored in the framework of state-space modeling iniBe@&.5.

6.2 From discrete symbols to continuous space

A short description of the clustering method originallygeated by Ritter and Kohonen
(1989) is given here. This method is used in Experiments ¥/ \ar{Chapters 6.3 and
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6.4).

Let us denote a predetermined vocabularwby (vy, ..., vy ). A temporaryindicator
vector (IV) is assigned for each word;. The dimension of the vector i, the ith
element of the vector is set to 1 and the other elements to Qv, Kw constructing
thefeature vectof; for the wordv;, the temporary Vs of the words that precagen
the training corpus are summed to the vedfar Similarly, temporary Vs that follow
the wordv; are summed ttﬁif . The actual feature vectdy is formed by concatenating
the two vectors. If it is desirable to take a longer contekt iaccount, corresponding
vectors for the words that occur two places before or afeewthrdy; can be created and
concatenated into the full feature vector as well. The featactors may be normalized
by the number of words used for building the vectors. Thisaees the dependency on
the frequency of the word in the training data.

If the size of the vocabulary is high, we will end up with verglh dimensional repre-
sentations of the words. It is possible to reduce the dinoeadity of the problem by
using random projection. The temporary IVs for each wordpaogected to a smaller
dimensionY” by matrixC. The size of matribxC isY x V. The elements o€ are ran-
domly generated and each column of the matrix is normaligesiitn to 1. Ritter and
Kohonen (1989) have shown, that random mapping approxiynateserves the metric
relations of the original vectors.

In the works by Ritter and Kohonen (1989) and Honkela et 819E), the feature vectors
are fed to a self-organizing map. The map is used to visu#tieenigh-dimensional

space; the units that are close to each other on the map eepsésiilar words. In the

present work, a lower-dimensional self-organizing mapictviinas significantly fewer

map nodes than words, is used. Tiest matching units the map node closest to
the given feature vector. The words can be hard clustereddoyng the words with the

same best matching unitin the same cluster. Since the tgpgreserving aspect of the
self-organizing map is not used, any other clustering nmettbocontinuous valued data
could have been used as well. The resulting language motekid on Equation 6.1.
The main advantage of this method is speed: all the stepséaiuping the language
model are computationally cheap.

To cluster a new word that was not seen in the original traisiet, the word must be
observed in a few contexts. When there is enough trainiryfdaestimating the feature
vector reliably, the word is put into the same cluster as theronvords sharing the same
best matching unit.

6.3 Experiment IV. Comparison to hand-tagged data

This experiment was set up to confirm that the clusters aldate¢he method presented
in Section 6.2 are sensible. This experiment was origiraiyducted ifPublication 5.
The text corpus for this experiment consisted of 4300 Frdresform queries about
telephone numbers and addresses. In this corpus, 5500eunayds were found. All of
the names have been tagged by hand and the rest of the wortiedadeft untagged.
The tagged classes are shown in Table 6.1. Some words maygtteleeveral groups
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Table 6.1: Comparison of hand tagged classes and statistically foahsters

#hand tagged # correct % correct

First name 150 106 71
Family name 621 581 94
Street name 292 189 64
Town name 281 264 94
Name of institution 3 0 0
Out of hand tagged vocabulary 195 16 8

depending on the query. For these words, the most commonaagised.

The dimension of the temporary IVs was reduced from 5500 fusing random pro-
jection. Two words from the preceding and following congewtere used to construct
the feature vector of dimension 680. 4000 words were cledtér an unsupervised
manner to 21 clusters. Each cluster was tagged with the mexpiént tag of the words
in the cluster. The clustering was performed using the SOAK Boftware package
(Kohonen et al., 1996). The remaining 1500 words were tagg#dthe label of the
best matching map unit. Comparing the tags to hand-labate tve find that the re-
sults agree surprisingly well. The results are shown ing@hl.

Similar clustering was performed for the training data & ttext experiment. Since
hand tagged comparison was not available for this datagthéts could only be evalu-

ated subjectively. The resulting clustering is shown in satetail in Publication 5. The

results were considered satisfactory for conducting &rréxperiments with a speech
recognition system.

6.4 Experiment V: Cluster-based language model

This experiment was originally performed Rublication 5. For this experiment, data
from several sources was used. The correct transcripts bifi@éWws from TDT2 English
audio corpus (LDC, 1999) were used along with newswires fiiew York Times and
Associated Press Worldstream Services. The resulting Bi@mivords were used for
training the clusters and n-gram models. The language maudete evaluated on a
news transcript from the HUB4 database (LDC, 2000). Thessponding HUB4 audio
segment was also used for evaluation in the recognitionrerpats. The vocabulary
of the models was restricted to 20 000 words. The sentencedaoies were ignored,
although they could be handled by marking the boundaridsaviipecial symbol.

The Abbot speech recognition system (Robinson et al., 1886)used. Abbot uses
neural networks instead of Gaussian mixture models to estithe HMM emission
probabilities. The emission probabilities of the test setevprovided by the IDIAP
institute. The decoder of the Abbot system is called Nowagn@@s and Hochberg,
1996). Noway was modified to accept clustered language raodel

The word-based 3-gram models was generated by the CMU-Gdgelstatistical lan-
guage modeling toolkit (Clarkson and Rosenfeld, 1997). G&s used to smooth the
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Figure 6.1: Experimental results.Context 1lrefers to a model, where one word of
context from both sides of the word was used to construct ¢a¢ufe
vector. In theContext 2model, two words from both sides were used.

probability estimates. Clusterings based on one or twocadjavords on each side of
the target word were tried with different numbers of clust®to explicit smoothing was
used for the cluster models and the models relied only onrttemthing effect achieved
due to the reduced number of model parameters. To get mdahiegplexity results, a
minimum probability ofl0~7 was set to the unseen cluster n-grams. The cluster emis-
sion probabilities were obtained by a ML estimate. The tesufl the experiments are
shown in Figure 6.1.

The results show that the proposed approach is valid. Thétsetegrade in a controlled
manner as the number of clusters is reduced. To accuratsdgashe performance of
the proposed approach, smoothing should be implementedalshe cluster models
and the method should be compared with the traditional eisovord clustering. In

this thesis, we decided first to improve the model furtheteiad. The mapping of the
words and the predictions of the model should be jointlyroted. Also, it is unneces-
sary to transform the problem back to discrete clusteringhé next few sections, we
demonstrate how the problem can be recast to the state-symatading framework.

6.5 Language modeling with state-space models

A simple linear dynamical system with a hidden state can lseritged by the following
equations.

s(t+1) = As(t) + m(t) (6.4)
x(t) = Bs(t) + n(¢), (6.5)

The state of the process$t) changes through the transition matdx The state emits
observations through the mappiBg Inherent Gaussian process naisét) is assumed
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X(t=2) X(t=1)
Figure 6.2: The state-space language model. The direct dependencistafes(t)
are shown with solid lines.

and the observations are assumed to contain Gaussian meesunoise(t). The pro-
cess can be viewed as a generalization of HMM process to inconis-state process
(Roweis and Ghahramani, 1999). Kalman filtering methoddnida, 1960) are tradi-
tionally used for modeling this kind of problems. The modithe process is shown in
Figure 6.2.

The model can be applied almost directly to language mogelifhe vocabulary of
the model is denoted by = (v1,...,vy). Let us denote the word; seen at time
t by wi. The length of the observation vecteft) is V and theith element of the
vector corresponds to the estimated probability of the woralt timet. If the word is
known, the observation vector is an indicator vector, whieeéth element is set to one
and others to zero. The mat& encodes implicitly both the similarities of the words
as well as their relative frequencies. The state of the me@elshould represent the
relevant information from the past words. The simple lineadel does not guarantee
that the elements of the observation vector converge togitties of the words and
that the sum of the vector elements is one. In this work, ttimaged observation vector
is normalized with the softmax function.

i ) o(Bs():
P(w |s(t)) = %i(t) = AT (6.6)

Here, (Bs(t)).. refers to therth element of the vector resulting from the multiplica-
tion. Unfortunately, adding nonlinearity to the model cditgtes the learning process
significantly.

In theory, this kind of model has numerous advantages. Tikare need to explicitly
set the length of the modeled context. The state of the mdaelld keep track of the
important events in the past. The state dimension dictates much the state is forced
to generalize or how detailed information can be remembefdt balance between
remembering long-term dependencies as opposed to remiegnties recent dependen-
cies in great detail should be automatically optimized gi¢arning algorithm. Seman-
tically similar words should affect the state similarly agmbd generalization should be
achieved.
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Figure 6.3: The augmented state-space language model. The directdisyses for
states(t) are shown with solid lines. The thick lines show the conmexti
of the original model. The thin lines represent the depecigsrthrough
the mappingC that were added to enhance the learning of the model.

6.5.1 Learning the model parameters

The model is trained by an on-line algorithm maximizing tlsteriori probability den-
sity of the state and the model’s parameters { A, B} for the training data.

argmax P (s(t), A | s(t — 1),x(t)) (6.7)
s(t), A

The maximization is performed in two phases, similarly ®dkpectation maximization
algorithms (Dempster et al., 1977). First, the best stateis found while keeping the
models parameters constant. The best state cannot be easily analyticallyedaiv
closed form, so numerical search has been used for findinQnte the best state is
found, the matrices can be updated by gradient descent. Hireotraining algorithm
goes through the training data one word at a time and updaesatrices accordingly.
The training is iterated until convergence. A simple batelsion of the algorithm can
be formed by summing the matrix updates over the batch winukfare updating the
matrices. Thisis not an exact solution: during batch tregnie should take into account
that both the future and the past words are known. Usingrfasration, more accurate
estimates for the states could be obtained, leading tortesttenates for the matrices.

Unfortunately, this simple algorithm seems to be unablertd the optimal parameter
values. In the preliminary experiments, we noticed thairagidxplicit mappings from
previous states can significantly enhance the learningeofibdel. The previous words
are mapped explicitly to the current state through a dineengducing matrixC. These
connections are shown with solid thin lines in Figure 6.3e Timatrix C can be opti-
mized along with the other matrices during the gradient elesphase of the training
algorithm. The construction of the estimétg), when the previous statét — 1) and
the previous observationg0),...,x(t — 1) are known is illustrated in Equation 6.8.
The internal state is projected from the previous state byntlatrix A, which reduces
the dimension of the state frofv, to /V,. The mappindC reduces the dimension of the
word indicator vectors t@V;. The estimate for the new state (when the new observation
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is unknown) is obtained by concatenating these vectors.

[ NyxN, Nyx1
N —
A s(t—-1)

Ny xW  Wx1

A~ ——
st)=| C xt—-1) | v, %1 (6.8)
Cx(t —2)

Cx(t. —n)

The details of the model training can be found in Publica@on

Comparing the state-space language model to the neuraldgegnodel of Bengio et al.
(2003), similarities can be found. Setting the dimensiomt#rnal state dynamicA

to zero and mapping as many words as in the context modeldtelyeural network to
the current state through the mappi@gthe models end up equivalent except that the
state-space model is mostly linear. Conversely, settingeaprsive connections in the
neural network and removing extra input mappings would teadhonlinear state-space
model.

6.6 Experiment VI. Letter prediction using state-space
models

In this section, a proof-of-concept experiment is set uptatesspace language model is
compared with an n-gram language model in a simple task tefr Iptediction. We test
the models both with sparse and dense training data. Thisriexgnt was originally
presented ifPublication 6.

6.6.1 Setup

The corpora for this experiment consisted of excerpts frdomoak in Finnish. The short

training corpus contained 1000 letters and the long one Q00dlters. A separate set
of 5000 letters was set aside for finding the best parameietbd models. Yet another
corpus of 5000 letters was used for evaluating the best rmodel

The baseline n-gram model was trained using the CMU-Cargbesthtistical language
modeling toolkit (Clarkson and Rosenfeld, 1997). GTK wasduas the smoothing
method. The parameters of the smoothing were tuned by hang thee development
data, which improved the performance for the short traigimigpus considerably.

Several different state-space models were trained. Weinskusnaming as is tradi-
tional for n-grams: the order 3 state-space model had eéxplappingsC to the cur-
rent state from 2 previous words. The tests were run for modkdrs{1, 2, 3,5} with
internal state dimension¥, < {0,1,3,5,10,20,40} and with the explicit mapping
dimensionN; € {1,3,5,10,15,25}.
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Table 6.2: Results for the development set. O stands for order, SS éopehplexity
of state-space models and NG for the perplexity of n-grameisod

Short training data Long training data
(e} Né}est Nlbest SS NG | Né;est Nlbest SS NG
1 5 - 229 173
2 10 15 125 137 3 15 11.1 10.8
3 20 15 125 13. 5 25 10.0 8.0
5 10 15 14.4 12. 0 15 9.7 57

Table 6.3: The results on the evaluation set. The results are repatatd best mod-
els on the development set.

type training set  best order perplexity
state-space short 2 12.3
n-gram short 5 11.8
state-space long 5 9.5
n-gram long 5 5.7

6.6.2 Results and discussion

The results for the development set are shown in Table 6.2y tha best parameter
combinations for each order are reported for both the speteesmodels and the n-gram
models. The best models were tested on the evaluation s¢hamesults are shown in
Table 6.3.

For the test set, the best results are obtained by the n-gadsalrFor models trained on
the short corpus, the difference is not large, but for mottaised on the long corpus,
the difference is huge. Analyzing the development set tgsule find that a simple
model with no direct mappings from previous words does netrs# learn the data
well.

Let us do further analysis and consider two different madalsorder 5 model with
N, = 0andN; = 5 and B) order 2 model wittV, = 20 andN; = 5. We can explicitly
set the internal state transformation matrix of model B s the probability estimates
of the model are equal to those of model A. It seems that oimitigaprocedure is unable
to find optimal parameter values for the models as model A pavglexity of10.0 and
model B11.1 in the experiments.

In theory, the proposed model has desirable propertiesatiealacking in the n-gram

models (as described in Section 6.5). From the experimesdalts it is clear that the

training algorithm needs to be improved in order to be abl@ke advantage of these
properties. The training algorithm could be modified so tatvords of a sentence
are taken into account when estimating the best stateswithikl lead to an algorithm

similar to the forward-backward algorithm for training HMModels. Also the speed
of the training algorithm is of concern as the current versidll not be able to scale

reasonably to large vocabularies.

Since learning long-term dependencies with gradient désmamn be difficult (Bengio
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et al., 1994), other kind of learning algorithms should bareied. For example ex-
tended Kalman filtering algorithms (Maybeck, 1979, 1982) ba applied. However,
scaling these algorithms to larger vocabularies wouldireggood approximations since
the algorithm requires the estimation of square matricéls dimensiond” x V. Fur-
thermore, also the expectation maximization training atgm used in the extended
Kalman filtering can get stuck in a local minimum. Another gibke approximation
would be to drop the softmax normalization and use unnomedlivalues during train-

ing.

6.7 Concluding remarks

In this chapter, experiments on mapping discrete symbademdinuous space are per-
formed. A simple algorithm based on the average contributibthe neighboring
words was utilized to learn word clusters in an unsupervisadner. It was shown that
the clusters correspond approximately to hand-taggededasrhe algorithm can per-
form clustering using computationally cheap continuopaeg clustering algorithms,
whereas the traditional discrete clustering algorithnesmaore costly computationally.

The algorithm was further developed in the state-space hmgdfamework, where
the models should theoretically have several advantagasmgram models. The ex-
perimental results show that the training algorithm needset faster and find better
solutions in order to obtain models that fulfill these prossis
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Chapter 7

Conclusions

The language modeling component of an automatic speechniiom system plays an

increasingly important role, as the recognition tasks getendemanding. This thesis
explores three main paths for improving the performancéeflanguage model. In

the first part of this thesis, it is shown that using n-granglsage models based on
morpheme-like subword units can result in significant gawver word-based language
models. The perplexity experiments show that the methodaxgs the Finnish models,
which is confirmed in the Finnish speech recognition testéet.experiments by others
show that the method also gives excellent results for Eatoand Turkish. The im-

proved performance seems to be due to several facts. Thd nmees the vocabulary

of the language better: instead of a fixed vocabulary, allloations of the subword

units are possible. Furthermore, the estimates for themgrobabilities are more re-
liable, as there is more training data for each n-gram. Thenaatic splitting method

seems to outperform the grammatical rule-based methodynbetause it can handle
all words of the test set. For example, a corpus containirg aflforeign names is

not handled gracefully by the rule-based method, since les heave been written for
most of the foreign names. During decoding, bringing in Hreguiage model probabil-
ities gradually (after each morpheme-like unit) insteadipdating the probabilities in

bigger increments (after each word) seems to interact lmalgfiwith the hypothesis

search.

The modern smoothing and interpolation methods guarahtgeverlearning the lan-
guage model is not a concern. Instead, there is the problefimdihg an effective
and relatively compact language model using the huge rgicorpora available. The
second part of this thesis explores methods for choosinghwiigrams should have
explicit probability estimates in the n-gram model. Two rmaethods are presented: re-
vised Kneser pruning improves the existing pruning mettiodkneser-Ney smoothed
models, while Kneser-Ney growing starts from a small model adds the most useful
n-grams to the model. It can produce high-order models usiagpnably little memory
and is capable of producing an excellent starting modelferpruning algorithms. In
the Finnish and English perplexity experiments and alsbéfRinnish speech recogni-
tion experiments, the proposed methods are shown to ootpethe baseline entropy-
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based pruning and Kneser pruning algorithms significantlys also shown that the
proposed methods are at least as good as the second basetiopy pruned Good-
Turing smoothed models with backoff.

The third portion of the thesis is devoted to finding and eitiplg semantic and syn-
tactic similarities of words through mapping the words ictintinuous space. The
language modeling problem is formulated in the state-spammeling framework. The-

oretically, the state-space language model should haveat&sproperties, which an
n-gram model lacks: the state dimension would determing; imoich the model is

forced to generalize; the algorithm should be able to Ielaom; much effort should be
put into modeling recent events in great detail as opposetbideling longer-term de-
pendencies. In practice, training a model that fulfills thearetical promises is hard.
Problems with both computational requirements and localmma are encountered.

Three main problems were examined in this thesis: the sefeaf the base modeling
unit, finding the optimal modeling context, and exploitifg tsemantic and syntactic
similarities of the words. By closer inspection it can berstat the problems are inter-
dependent. The interaction between the selection of the@bunits and the variable
order n-gram model should be further studied; instead ofditeg beforehand, what
kind of subword units should be learned, an algorithm whipltinsizes the subword
selection to maximize the predictive power of the variabieo n-gram model should
be constructed.

The use of semantic and syntactic similarities of wordsnsilarly connected to the
other problems. High-order n-grams over word clusters khbanefit the language
model more than high-order n-grams over words. The highggrahe n-gram is, the
less training data there will be for estimating the n-gramapeeters. Using clustering
can effectively increase the training data for each n-gedso, making the n-gram more
likely to be used. The clusters can be chosen so, that thécfivecpower of the variable
order model is optimized. The subword units could be optaigo that they produce
good clusters for such a model.

The state-space method for language modeling providesmaetvark for combining
the optimization of the variable order modeling and the ussemantic and syntactic
similarities. Finding the optimal parameters for this kiodmodel turned out to be
hard. One could try using more complex algorithms for tragnthe model or adding
nonlinearities for greater modeling power. However, trefferts are constrained by the
available computational power. The methods must be ablesdcthe huge databases
available to be competitive with the traditional n-gramdsd\ the methods have to be
fast enough to be used at least for rescoring recognititindatin reasonable time.

A future goal for research could be a framework, where akehaspects mentioned
above could be jointly optimized in a computationally effee way. The goal is moving
closer as the computers keep getting more powerful.
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Appendices

A.1 Language model scaling

The acoustic probabilities should be scaled for the begtdprecognition performance.
Traditionally, this scaling has been applied to languagédeh@roducing the same ef-
fect. In this section we illustrate, why the language modaliag is necessary and why
the exponential scaling is reasonable.

The recognizer tries to find the word sequence with the maxirprobability. We de-
note a word sequence by and the underlying HMM state segmentationsby refers

to the acoustic features andto the model parameters. Using Bayes rule and basic
probability calculus, we can factor the probabilities af tiecognition task.

argmax P(wlo,\) = argmaxZP(w,sb,/\) (A1)
= argmaxzP(o\s,w,/\)P(w,sM) (A.2)

= argmax P(w|)) Y P(o|s,\)P(s|]\,w) (A3)

In the last line, we also used the fact that knowing the statiedly defines the cor-
responding word sequence. The first factorP(w|)\) defines the language model
probability and the first factor inside the suR{ols, \) defines the acoustic emission
probabilities. The third factoP(s|\, w) describes the prior assumption on how proba-
ble a state sequence is given the words. The term could bdeefifeictored into several
components. The HMM state transition probabilities afteetterm. Also, any explicit
state duration models change this term. Finally, the termb&aused to describe the
probabilities of different pronunciations of the words.

During the decoding, the Viterbi approximation is made €¥kii, 1967; Rabiner, 1989).
For each word sequence, only the most probable segmenigteien into account.

arg max P(w|\) max P(o|s, \) P(s|\, w) (A.4)

w s|

In the HMM model, the emission distribution is only conditéd on the present state.
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Thus, the possible correlations between observationsamodeled within the state.

argmaxP(w\)\) maxP (s|]A,w HP 0|8, ) (A.5)

If we assume that the approximations can be compensateddonertial weighting
terms for language model and state transition probalsilitiee following equation re-
sults.

arg max P (w|\)“ m‘axP(s\/\,w)ﬁHP(oAsi,)\) (A.6)

The weighting can be motivated by considering the weighpagameters just free
model parameters to be optimized on a held-out data set. WHoywaeweak justification
for the exponential form can be seen from an artificial ex@amnigt us assume that the
observations within a state are always constant (fullyedated). The probability of the
sequence that is emitted by one statB{®) = P(01) Hle p(0i|0i=1 ...01) = P(01).

If the model ignores the correlations, the model gives a g@dlty of P(o;)!. In this
highly artificial example the correction term should thusdbeexponential form. In
practice, the exponential term is optimized on held-oua datgive on average the best
balance between the acoustics and language model. Thiemgb&tween feature cor-
relation within a state and the language model factor sgalguld be further explored,
but that is outside the scope of this work.

A.2 Kneser-Ney smoothing for pruned n-gram models

This appendix was jointly formulated by the present authat @eemu Hirsimaki. In
this appendix, the mathematical foundations of Kneser-diagothing are described.
The treatment here is based on the works by Kneser and Nep),1R8eser (1996),
and Chen and Goodman (1998).

KN smoothing tries to preserve the following marginal dizition.
> P(vhw) = P(hw) (A7)

It will be shown that while the marginal distribution can bregerved for bigram models,
Kneser-Ney smoothing does not actually preserve the magfihigher order n-gram
models (unless severe approximations are accepted).

Let us examine an n-gram model of ordér= |vhw|. The model is interpolated with
a model of orderV — 1. The question is, what kind of probability estimates shdhéd
orderN — 1 model contain so that the marginal constraints of Equatidrate satisfied.

Let us define a few auxiliary notations. L&t (hw) contain the counts for n-grams that
exist in the current model. For pruned n-grams, the value is 0

C(hw), if hw € model

. (A.8)
0, otherwise

C* (hw) = {
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Let us define an auxiliary functiafif, , which counts how many different unique words
have been seen in the placeedh the n-grams included in the model. For example,

Ci,(ehw) = [{v : C*(vhw) > 0}|. (A.9)
Similarly, L(he) stores the sum of the pruned n-gram counts.

ZC (hw) — C*(hw) (A.10)

Manipulating Equation A.7 according to the basic prob&pdalculus yields

P(w|h) = ZP w|vh)P(v|h). (A.11)

Substituting ML estimates faP (w|h) andP(v\h) leads to

C'(hw) B
S C) ZZ (w|vh) (A.12)
C(hw) = ZC’ (vh)P(w|vh) (A.13)

This is the form used by Kneser and Ney (1995). The equatiofdcaso be formed
directly based on joint distribution8(vhw) and P(vh). Using ML estimates for the
joint distributions leads to the same solution as in Equafid 3.

Let us use interpolated absolute discounting for smoottiiadnighest order n-gram es-

timates. Using the current notation and taking into accthepruned n-grams, absolute

discounting with discounb can be expressed as

max{0, C*(vhw) — D} ~ DCY (vhe) + L(vhe)
> C(vhw) > C(vhw)

P(w|vh) = P(wlh). (A.14)

Let us substitute this in Equation A.13.

Chw) = > C(vh) {maX{O,CC'*((;J;)w) — D}

DCY%, (vhe) + L(vhe)
+ C(oh) P(w|h)} (A.15)

> C*(vhw) — DC}, (shw)

P(w|h) (DZCﬁ(m-) + ZL@h-)) (A.16)

C(hw) — L(ehw) — DCT, (ehw)
+P(wlh) (DC} (she) + L(ehe)) (A.17)

Now the equation can be solved fBfw|h).

DCY, (ehw) + L(ehw)
DC’ﬁ_(oho) + L(ehe)

P(w|h) = (A.18)
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This is equivalent to Equation 5.4, when no smoothing has lagplied to the current
order N — 1. If no n-grams have been pruned, we end up with the traditisih&
smoothing.

Ct, (ehw)

P(wlh) = Cr(one) (A.19)

The algorithm contains the some approximations. The margife preserved are ap-
proximated by the ML estimate, which is known to be an unfatisry estimate. We
assumed ordeN model interpolated with unsmoothed ordér— 1 model. No provi-
sion has been made for the recursive use of the smoothingddotver order models.
If we substitute ML estimates based on type counts in Eqonaid2 we still need to
do further assumptions to be able to state that the recuusiv&an be seen as approx-
imately satisfying marginal constraints for estimateseldasn type counts. Although
the theoretical motivations for the traditional recursise of KN smoothing are lack-
ing, the algorithm has been shown to give excellent resualfgactical situations, even
when compared with maximum entropy models (Chen and Rose2@00; Goodman,
2004).

A.3 Cost criterion for pruning and growing

In this section, one possible cost function for pruning asvgng algorithms is pre-
sented. The cost function is divided in two parts like the Midlo-part coding scheme
(see Section 4.4). The first part, training data log likeitias taken into account by
most pruning algorithms. We assume that the exact likeihmosome reasonable ap-
proximation like WDP is used. For the second part of the amsttion, most pruning
algorithms implicitly assume that removing any n-gram fribv@ model is equally good
for reducing the size of the model. Here, a method for expficnodeling the cost
of encoding an n-gram is presented. Unlike the cost fungii@sented by Ristad and
Thomas (1995), where a highly theoretical bound is derivedhewve chosen to use the
practical cost of encoding the model for a speech recogriiter encoding is a slightly
simplified version of the prefix tree scheme by (Whittaker &aj, 2001b). However,
also more effective language model compression schemgsa(@aNhittaker, 2003;
Hirsimaki, 2007) could be used as the basis of the cost foncti

Since we are comparing the encoding cost of two similar ngyaed can drop the terms
which take equal number of bits to encode in both models. FRisrreason, we can
drop the encoding of the vocabulary of the model. Let us emateehe words of the
vocabularyV from zero upwards. Thus, we can encode any word as an intager i
log, |V bits.

The prefix tree structure for storing the n-grams is illuslain Figure A.1. Let us
assume that encoding the number of n-gravntakes approximately an equal amount
of bits in all models and the cost associated with this enmpdan be ignored. The
prefix tree structure can be efficiently encoded in a vector. &ach tree node we en-
code, where the first child node of the current node is loca@@us can be encoded
by an integer ofog, IV bits. The cost of encoding the full prefix tree structure issth
Nlog, (N - |V]) bits.
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]
P(a) P(b) 0la 2 Pl Aa)
(a) (b) 1|b 4 Pbh)  ~(b)
i e,‘—'3—|b ; a|1 2|la 0 PQla) 0
P(ala) P(bla) PEZ\”)) i 2 g JIZEZ'ﬁg v(ga)
y(ba
5(a 0 Paba) 0
- é—e'—'b 6|b 0 Pbba) 0
P(alba) P(blba)

Figure A.1: The encoding of a simple two-symbol language. The box onitit r
shows how the prefix tree structure can be encoded in a v8dierbold-
face words are actually encoded by integers correspondititetr order
in the vocabulary. The node indices outside the box are marked for
clarity but need not to be actually encoded. The second ffettkosector
tells, where the child nodes of the current node are locd&éar (no child
nodes).

The probabilities and interpolation/backoff coefficienfshe model remain to be en-
coded. Let us assume, these two floating point values willuzatized ta) bits. Now
the total cost of encoding the tree structure and the pammealues is

S = N(logy(N - [V]) +6) = N(a + logy(N)), (A.20)
wherea is a constant. The difference of the coding length of modglsand Vs is thus

AS:O((Nl —N2)+N1 10g2 Nl—NglogQ NQ (A21)



65

Bibliography

Alumae, T. (2004). Large vocabulary continuous speechgition for Estonian using
morpheme classes. IRroceedings of the 8th International Conference on Spoken
Language Processing (ICSLRages 389-392.

Aluméae, T. (2006)Methods for Estonian Large Vocabulary Speech RecognifD
thesis, Tallinn University of Technology.

Arisoy, E., Dut@acl, H., and Arslan, L. M. (2006). A unified language modeldoge
vocabulary continuous speech recognition of turkignal Processing36(10):2844—
2862.

Arisoy, E. and Saraglar, M. (2006). Lattice extension aisd¢oeng based approaches
for LVCSR of Turkish. InProceedings of the 9th International Conference on Spoken
Language Processing (INTERSPEECH - ICSl&)ges 1025-1028.

Atal, B. S. (1974). Effectiveness of linear prediction cmzeristics of the speech wave
for automatic speaker identification and verificatidournal of Acoustical Society of
Americag 55(6):1304-1312.

Aubert, X. L. (2002). An overview of decoding techniques finge vocabulary con-
tinuous speech recognitio@omputer Speech and Langua@é(1):89-114.

Bahl, L. R. and Jelinek, F. (1975). Decoding for channel$wisertions, deletions,
and substitutions with applications to speech recognitlBREE Transactions on Infor-
mation Theory21(4):404—-411.

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximukelihood approach to
continuous speech recognitiofEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-5(2):179-190.

Bellegarda, J. R. (2000). Exploiting latent semantic infation in statistical language
modeling.Proceedings of the IEEB8(8):1279-1296.

Bengio, Y., Ducharme, R., Vincant, P., and Jauvin, C. (20@8heural probabilistic
language modellournal of Machine Learning Researc311137-1155.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning{term dependencies with
gradient descent is difficultEEE Transactions on Neural Networkg(2):157—-166.



66 Bibliography

Bilmes, J. A. and Kirchhoff, K. (2003). Factored languagedels and generalized par-
allel backoff. InProceedings of the Human Language Technology conferenogli N

American chapter of the Association for Computational Listics annual meeting

(HLT-NAACL) pages 4-6.

Bisani, M. and Ney, H. (2005). Open vocabulary speech reitiogrwith flat hybrid
models. InProceedings of the 9th European Conference on Speech Capatian
and Technology (Interspeecipages 725-728.

Blasig, R. (1999). Combination of words and word categoinegrigram histories.
In Proceedings of the 1999 IEEE International Conference omuAtics, Speech, and
Signal Processing (ICASSR)ages 529-532.

Bloomfield, L. (1935).Language George Allen & Unwin.

Bonafonte, A. and Marifio, J. B. (1996). Language modeliriggig-grams. InPro-
ceedings of the 4th International Conference on SpokenulaggProcessing (ICSLP)
pages 394-397.

Brown, P., Della Pietra, V., deSouza, P., Lai, J., and MeiRef1992). Class-based
n-gram models of natural languagéomputational Linguisticsl8(4):467—-479.

Byrne, W., Hajt, J., Ircing, P., Jelinek, F., Khudanpur, S., Krbec, P., Bsdtka,

J. (2001). On large vocabulary continuous speech recognif highly inflectional
language — Czech. IRroceedings of the 7th European Conference on Speech Com-
munication and Technology (Eurospeegigges 487-489.

Charniak, E. (2001). Immediate-head parsing for languagéets. InProceedings
of the 39th Annual Meeting of the Association for Computetid.inguistics (ACL)
pages 116-123.

Chelba, C. and Jelinek, F. (2000). Structured language limgdeComputer Speech
and Languagel4:283-332.

Chen, S. and Goodman, J. (1998). An empirical study of sniogtiechniques for
language modeling. Technical Report TR-10-98, Harvard/ehsity.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothicigiigues for maximum
entropy modelslEEE Transactions on Speech and Audio Process(t):37-50.

Clarkson, P. and Rosenfeld, R. (1997). Statistical languagdeling using the CMU-
Cambridge toolkit. InProceedings of the 5th European Conference on Speech Com-
munication and Technology (Eurospeegigges 799-802.

Creutz, M. (2006).Induction of the morphology of natural language: Unsupsed
morpheme segmentation with application to automatic spesgognition PhD thesis,
Helsinki University of Technology.

Creutz, M., Hirsiméki, T., Kurimo, M., Puurula, A., Pylkkén, J., Siivola, V., Var-
jokallio, M., Arisoy, E., Saraglar, M., and Stoclke, A. (200 Morph-based speech
recognition and modeling of out-of-vocabulary words asriasguagesACM Trans-
actions on Speech and Language ProcessBighmitted for review.



Bibliography 67

Creutz, M. and Lagus, K. (2002). Unsupervised discovery afghemes. IiProceed-
ings of the Workshop on Morphological and Phonological Iréag of ACL-02 pages
21-30.

Creutz, M. and Lagus, K. (2005). Unsupervised morpheme satation and mor-
phology induction from text corpora using Morfessor 1.0cHcal Report A81, Pub-
lications in Computer and Information Science, Helsinkivénsity of Technology.

Creutz, M. and Lagus, K. (2007). Unsupervised models forpheme segmentation
and morphology learningACM Transactions on Speech and Language Processing
4(1):3.

CSC (2007). Kielipankki. Collection of Finnish text docum&from years 1990-2000.
Compiled by Department of General Linguistics, UniversifyHelsinki, Linguistics
and Language Technology Department, University of JognResearch Institute for
the Languages of Finland, and CSC.

Deligne, S. and Bimbot, F. (1995). Language modeling byalde length sequences:
Theoretical formulation and evaluation of multigrams. Rroceedings of the IEEE
International Conference on Acoustics, Speech and SigoakBsing (ICASSPpages
169-172.

Deligne, S. and Bimbot, F. (1997). Inference of variableglh linguistic and acoustic
units by multigramsSpeech Communicatip®3(3):223-241.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximlikelihood from
incomplete data via the EM algorithrdournal of the Royal Statistical Society, Series
B (Methodological)39(1):1-38.

Emami, A., Xu, P., and Jelinek, F. (2003). Using a connedtonodel in a syntactical
based language model. Rroceedings of the 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICAS&Res 372—-375.

Erdajan, H., Blyik, O., and Oflazer, K. (2005). Incorporatinglaage constraints in
sub-word based speech recognition.Pimceedings of the IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASR&bes 98-103.

Gale, W. (1994). Good-Turing smoothing without tears. iStias Research Reports
from AT&T Laboratories 94.5, AT&T Bell Laboratories.

Gales, M. J. F. (1999). Semi-tied covariance matrices fidémn Markov modeldEEE
Transactions on Speech and Audio Processti(g):272—281.

Geutner, P., Finke, M., and Scheytt, P. (1998). Adaptivelataries for transcribing
multilingual broadcast news. IIRroceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICAB&Rs 925-928.

Gildea, D. and Hofmann, T. (1999). Topic-based languageatsagsing EM. InPro-
ceedings of the 6th European Conference on Speech Comrtioniaad Technology
(Eurospeech)pages 2167-2170.

Goldsmith, J. (2001). Unsupervised learning of the morpgpbf a natural language.
Computational Linguistic27(2):153-198.



68 Bibliography

Goldsmith, J. (2006). An algorithm for the unsupervisedr@sy of morphology.
Natural Language Engineering2(4):353-371.

Good, I. J. (1953). The population frequencies of specidglam estimation of popu-
lation parameterBiometrikg 40(3/4):237-264.

Goodman, J. (2004). Exponential priors for maximum entmopylels. InProceedings
of the Human Language Technology conference / North Amedbapter of the Asso-
ciation for Computational Linguistics annual meeting (HNAACL) pages 305-312.

Goodman, J. and Gao, J. (2000). Language model size redunyigruning and
clustering. InProceedings of the 6th International Conference on Spokerguage
Processing (ICSLR)pages 16—20.

Goodman, J. T. (2001). A bit of progress in language modekx¢ended version.
Technical Report MSR-TR-2001-72, Microsoft ResearcheBded version of a paper
with the same title published in Computer Speech and Largyl&gl03—-434.

Graff, D., Kong, J., Chen, K., and Maeda, K. (2005). Engligfjag/ord second edition.
Linguistic Data Consortium, Philadelphia.

Hacioglu, K., Pellom, B., Ciloglu, T., Ozturk, O., Kurimo,.Mand Creutz, M. (2003).
On lexicon creation for Turkish LVCSR. IRroceedings of the 8th European Confer-
ence on Speech Communication and Technology (Eurospeec®s 1165-1168.

Hagen, A. and Pellom, B. L. (2005). Data driven subword uradeling for speech
recognition and its application to interactive readingtst InProceedings of the 9th
European Conference on Speech Communication and Techyndhbgrspeech)pages

236-239.

Heaps, H. S. (1978)nformation Retrieval - Computational and Theoretical Asfs
Academic Press.

Hirsimaki, T. (2002). A decoder for large-vocabulary contbus speech recognition.
Master’s thesis, Helsinki University of Technology.

Hirsimaki, T. (2007). On compressing n-gram language nsdéi Proceedings of
the 2007 IEEE International Conference on Acoustics, Spesaa Signal Processing
(ICASSP)pages IV-949-952.

Honkela, T., Pulkki, V., and Kohonen, T. (1995). Contextrelations of words in
Grimm tales analyzed by self-organizing map. Rroceedings of the International
Conference on Artificial Neural Networks (ICANNpgges 3-7.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., and RosddfeR. (1993). The
SPHINX-II speech recognition system: an overvi€@emputer Speech and Language
7(2):137-148.

Iskra, D., Grosskopf, B., Marasek, K., van den Heuvel, HeHDiF., and Kiessling,

A. (2002). SPEECON - speech databases for consumer delegtabase specifica-
tion and validation. IrProceedings of Third International Conference on Language
Resources and Evaluation (LREC'Q0pages 329-333.



Bibliography 69

lyer, R. and Ostendorf, M. (1996). Modeling long distancpeatelence in language:
topic mixtures vs. dynamic cache models. Rroceedings of the 4th International
Conference on Spoken Language Processing (ICSitPhber 236-239.

Jalanko, M. (1980)Studies of learning projective methods in automatic spesabg-
nition. PhD thesis, Helsinki University of Technology.

James, F. (2000). Modified Kneser-Ney smoothing of n-grardetso Technical Re-
port 00.07, Research Institute for Advanced Computer $eien

Jurafsky, D., Wooters, C., Segal, J., Fosler, E., Tajchr@anand Morgan, N. (1995).
Using stochastic context-free grammar as a language modgbéech recognition. In
Proceedings of the IEEE International Conference on AdosisGpeech and Signal
Processing (ICASSPpages 189-192.

Kalman, R. E. (1960). A new approach to linear filtering anddction problems.
Transactions of ASME, Journal of Basic Engineeridg:33-45.

Katz, S. (1987). Estimation of probabilities from sparseadar the language model
component of a speech recognizZfEE Transactions on Acoustics, Speech, and Sig-
nal Processing35(3):400—401.

Kirchhoff, K., Duh, D. V. K., Bilmes, J., and Stolcke, A. (260 Morphology-based
language modeling for Arabic speech recogniti@omputer Speech and Language
20(4):589-608.

Klakow, D. (2000). Selecting articles from the language giddaining corpus. In
Proceedings of the 2000 IEEE International Conference oouAtics, Speech, and
Signal Processing (ICASSRages 1695-1698.

Klakow, D. (2006). Language model adaptation for tiny adph corpora. IrPro-
ceedings of the 9th International Conference on SpokenuliagegProcessing (INTER-
SPEECH - ICSLR)pages 2214-2217.

Klakow, D. and Peters, J. (2002). Testing the correlatiowofd error rate and per-
plexity. Speech Communicatip&8(1):19-28.

Kneissler, J. and Klakow, D. (2001). Speech recognitionhfoege vocabularies by
using optimized sub-word units. Rroceedings of the 7th European Conference on
Speech Communication and Technology (Eurospepelges 69-72.

Kneser, R. (1996). Statistical language modeling usingreabk context length. In
Proceedings of the 4th International Conference on Spolkeglage Processing (IC-
SLP) pages 494-497.

Kneser, R. and Ney, H. (1993). Improved clustering techesdgor class-based statis-
tical language modelling. IRroceedings of the 3rd European Conference on Speech
Communication and Technology (Eurospeeplapes 973-976.

Kneser, R. and Ney, H. (1995). Improved backing-off for rargranguage modeling.
In Proceedings of the IEEE International Conference on AdosisBpeech and Signal
Processing (ICASSPpages 181-184.



70 Bibliography

Kohonen, T. (1995)Self-organizing mapsSpringer.

Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, 96§19SOM_PAK: The
self-organizing map program package. Technical Report A&lsinki University of
Technology, Laboratory of Computer and Information Sceenc

Koskenniemi, K. (1983).Two-level morphology: A general computational model for
word-form recognition and productioiPhD thesis, University of Helsinki.

Kuhn, R. and De Mori, R. (1990). A cache-based natural lagguaodel for
speech recognitionEEE Transactions on Pattern Analysis and Machine Inteltige
12(6):570-583.

Kurimo, M. (1997).Using self-organizing maps and learning vector quantafor
mixture density hidden Markov mode#hD thesis, Helsinki University of Technology.

Kurimo, M., Puurula, A., Arisoy, E., Siivola, V., Hirsimaki., Pylkkonen, J., Alumae,
T., and Saraclar, M. (2006). Unlimited vocabulary speecbgaition for agglutinative
languages. IrProceedings of the Human Language Technology conferenaath N
American chapter of the Association for Computational Listics annual meeting
(HLT-NAACL) pages 487-494.

Kwon, O.-W. and Park, J. (2003). Korean large vocabularytinaous speech recog-
nition with morpheme-based recognition uni&peech CommunicatipB9(3-4):287—
300.

LDC (1999). TDT2 English audio. Linguistic Data Consortiuihiladelphia.

LDC (2000). 1998 HUB4 broadcast news evaluation Englishrtegerial. Linguistic
Data Consortium, Philadelphia.

Martin, S., Hamacher, C., Liermann, J., Wessel, F., and Nef1999). Assessment of
smoothing methods and complex stochastic language modéfifProceedings of the
6th European Conference on Speech Communication and Tiegyn@urospeech)
pages 1939-1942.

Maybeck, P. S. (1979)Stochastic Models, Estimation and Control, Val. Academic
Press.

Maybeck, P. S. (1982)Stochastic Models, Estimation and Control, Val. Atademic
Press.

Miikkulainen, R. and Dyer, M. G. (1991). Natural languageg#ssing with modular
neural networks and distributed lexicd@ognitive Sciengel 5:343-399.

Mori, S. and Kurata, G. (2005). Class-based variable meneoryth Markov model.
In Proceedings of the 9th European Conference on Speech Cdoation and Tech-
nology (Interspeechpages 13-16.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistieural network language
model. InProceedings of the Tenth International Workshop on Aréfititelligence
and Statisticspages 246—252.



Bibliography 71

Morris, A. C., Maier, V., and Green, P. (2004). From WER antd ®IMER and WIL:
improved evaluation measures for connected speech ramgrin Proceedings of the
8th International Conference on Spoken Language Procgg$C5LP) pages 2765—
2768.

Ney, H., Essen, U., and Kneser, R. (1994). On structuringadvdistic dependences
in stochastic language modelingomputer Speech and Languagél):1-38.

Niesler, T. R. and Woodland, P. C. (1999). Variable-lengttegory n-gram language
models.Computer Speech and Langua@8(1):99-124.

Odell, J. (1995)The use of context in large vocabulary speech recognift thesis,
Queen’s college.

Ordelman, R., van Hessen, A., and de Jong, F. (2003). Contpbdecomposition
in Dutch large vocabulary speech recognition. Froceedings of the 8th European
Conference on Speech Communication and Technology (Feeokppages 225-228.

Ortmanns, S. and Ney, H. (2000). Look-ahead techniquesftibtfeam searctCom-
puter Speech and Languadiet}:15-32.

Puurula, A. and Kurimo, M. (2007). Vocabulary decompositfor Estonian open
vocabulary speech recognition. Rroceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (AClAccepted for publication.

Pylkkdnen, J. (2005). An efficient one-pass decoder foriBmlarge vocabulary con-
tinuous speech recognition. Froceedings of Second Baltic Conference on Human
Language Technologiepages 167-172.

Pylkkénen, J. and Kurimo, M. (2004). Duration modeling teiciues for continuous
speech recognition. IRroceedings of the 8th International Conference on Spoken
Language Processing (ICSLRages 385—-388.

Rabiner, L. R. (1989). A tutorial on hidden Markov models aetected applications
in speech recognitiorProceedings of the IEEE7(2):257-286.

Raj, B. and Whittaker, E. W. D. (2003). Lossless compressftenguage model struc-
ture and word identifiers. IRroceedings of the 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASBBEs 388—391.

Renals, S. and Hochberg, M. (1996). Efficient evaluatiorhefltVCSR search space
using the NOWAY decoder. IRroceedings of the 1996 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICAS8Bgs 149-152.

Rissanen, J. (1989%tochastic complexity in statistical inquiry theofyorld Scien-
tific Publishing Co., Inc.

Rissanen, J. (1994)Language Computatigrchapter Language Acquisition in the
MDL Framework. American Mathematical Society.

Ristad, E. S. and Thomas, R. G. (1995). New techniques faegbmodeling. InPro-
ceedings of the 33rd Annual Meeting of the Association fan@atational Linguistic
pages 220-227.



72 Bibliography

Ritter, H. and Kohonen, T. (1989). Self-organizing senantaps.Biological Cyber-
netics 61(4):241-254.

Robinson, T., Hochberg, M., and Renals, S. (1998)tomatic Speech and Speaker
Recognition — Advanced topiashapter 10. Kluwer Academic Press.

Ron, D., Singer, Y., and Tishby, N. (1996). Learning probsfi¢ automata with
variable memory lengthMachine Learning25:117-149.

Rosenfeld, R. (1994) Adaptive statistical language modeling: a maximum entropy
approach PhD thesis, Carngie Mellon University.

Roweis, S. and Ghahramani, Z. (1999). A unifying review péir Gaussian models.
Neural Computationl1(2):305-345.

Schmidhuber, J. and Heil, S. (1996). Sequential neurat@mxipressionlEEE Trans-
actions on Neural Networkg(1):142—-146.

Schuster, M. (2000). Memory-efficient LVCSR search usinge-pass stack decoder.
Computer Speech and Langua@é(1):47-77.

Schwenk, H. (2007). Continuous space language mo@emputer Speech and Lan-
guage 21(3):492-518.

Schwenk, H. and Gauvain, J.-L. (2002). Connectionist laggumodeling for large
vocabulary continuous speech recognition. Pilmceedings of the 2002 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Bsoug (ICASSR)pages
765-768.

Seneff, S. (2004). The use of subword linguistic modelingifialtiple tasks in speech
recognition.Speech Communicatip#2:373-390.

Seneviratne, V. and Young, S. (2005). The hidden vectoe aguage model. IRro-
ceedings of the 9th European Conference on Speech Comrtioniaad Technology
(Interspeech)pages 9-12.

Seymore, K. and Rosenfeld, R. (1996). Scalable backofilagg models. IRroceed-
ings of the 4th International Conference on Spoken Langurigeessing (ICSLR)
pages 232-235, Philadelphia, PA.

Siivola, V., Creutz, M., and Kurimo, M. (2007). MorfessoryariKN machine learn-
ing tools for speech and language technologyPloceedings of the 8th International
Conference on Speech Communication and Technology (beteck) Accepted for
publication.

Siivola, V., Hirsiméki, T., and Kurimo, M. (2002). Aannertiah vertailua jatkuvassa
suuren sanaston puheentunnistuksesseotetiikan paivatpages 75-82.

Siivola, V., Kurimo, M., and Lagus, K. (2001). Large vocadmyl statistical language
modeling for continuous speech recognition in Finnish. Pioceedings of the 7th
European Conference on Speech Communication and Teclhyn&agpspeech)ages

737-740.



Bibliography 73

Siu, M. and Ostendorf, M. (2000). Variable n-grams and esitars for conversa-
tional speech language modelilBEE Transactions on Speech and Audio Processing
8(1):63-75.

Stolcke, A. (1995). An efficient probabilistic context-&parsing algorithm that com-
putes prefix probabilitiesComputational Linguistic21(2):165-201.

Stolcke, A. (1998). Entropy-based pruning of backoff laagei models. IfProceed-
ings of DARPA Broadcast News Transcription and UnderstagdVorkshoppages
270-274.

Stolcke, A. (2002). SRILM — an extensible language modeiimdkit. In Proceedings
of the 7th International Conference on Spoken Languaged2sing (ICSLP)pages
901-904.

Szarvas, M. and Furui, S. (2003). Evaluation of the stoahasbrphosyntactic lan-
guage model on a one million word Hungarian task.Phoceedings of the 8th Eu-
ropean Conference on Speech Communication and Techndiaggspeech)pages

2297-2300.

Torkkola, K. (1991). Short-time feature vector based phonemic speech recogniti
with the aid of local contextPhD thesis, Helsinki University of Technology.

Virpioja, S. and Kurimo, M. (2006). Compact n-gram modelsrmremental growing
and clustering of histories. IRroceedings of the 9th International Conference on
Spoken Language Processing (INTERSPEECH - ICSid)es 1037-1040.

Viterbi, A. J. (1967). Error bounds for convolutional code®l an asymptotically op-
timum decoding algorithmlEEE Transactions on Information Thegiif-13(2):260—
269.

Wang, W., Stolcke, A., and Harper, M. (2004). The use of adistically moti-
vated language model in conversational speech recognitinrProceedings of the
2004 |IEEE International Conference on Acoustics, Speent, Signal Processing
(ICASSP)pages 261-264.

Whittaker, E. and Raj, B. (2001a). Comparison of width-wasel length-wise lan-
guage model compression. Rioceedings of the 7th European Conference on Speech
Communication and Technology (Eurospeeplapes 733-736.

Whittaker, E. and Raj, B. (2001b). Quantization-basedlagg model compression.
In Proceedings of the 7th European Conference on Speech Caoation and Tech-
nology (Eurospeechpages 33-36.

Whittaker, E. and Woodland, P. (2000). Particle-baseddagg modelling. IrPro-
ceedings of the 6th International Conference on SpokenlaggProcessing (ICSLP)
pages 170-173.

Xu, P. and Mangu, L. (2005). Using random forest languageetsdad the IBM RT-04
CTS system. IrProceedings of the 9th European Conference on Speech Cdoanun
tion and Technology (Interspeecippges 741-744.



74 Bibliography

Yamamoto, H., Isogai, S., and Sagisaka, Y. (2003). Mulisslcomposite n-gram
language modelSpeech Communicatipal(2-3):369-379.





