
Helsinki University of Technology
Dissertations in Computer and Information Science
Espoo 2007 Report D21

LANGUAGE MODELS FOR
AUTOMATIC SPEECH RECOGNITION:

CONSTRUCTION AND COMPLEXITY CONTROL

Vesa Siivola

Dissertation for the degree of Doctor of Science in Technology to be presented with due permis-
sion of the Department of Computer Science and Engineering for public examination and debate
in Auditorium T2 at Helsinki University of Technology (Espoo, Finland) on the third of Septem-
ber, 2007, at 12 o’clock noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science



Distribution:
Helsinki University of Technology
Laboratory of Computer and Information Science
P.O. Box 5400
FI-02015 TKK
FINLAND
Tel. +358 9 451 3272
Fax +358 9 451 3277
http://www.cis.hut.fi

Available in pdf format at http://lib.hut.fi/Diss/2007/isbn9789512288946/

c© Vesa Siivola

ISBN 978-951-22-8893-9 (printed version)
ISBN 978-951-22-8894-6 (electronic version)
ISSN 1459-7020

Multiprint Oy/Otamedia
Espoo 2007



Siivola, V. (2007):Language models for automatic speech recognition: construction
and complexity control. Doctoral thesis, Helsinki University of Technology, Disserta-
tions in Computer and Information Science, Report D21, Espoo, Finland.
Keywords: language model, speech recognition, subword unit, morpheme segmenta-
tion, variable order n-gram model, pruning, growing, state-space language model

ABSTRACT

The language model is one of the key components of a large vocabulary continuous
speech recognition system. Huge text corpora can be used fortraining the language
models. In this thesis, methods for extracting the essential information from the training
data and expressing the information as a compact model are studied.

The thesis is divided in three main parts. In the first part, the issue of choosing the
best base modeling unit for the prevalent language modelingmethod, n-gram language
modeling, is examined. The experiments are focused on morpheme-like subword units,
although syllables are also tried. Rule-based grammaticalmethods and unsupervised
statistical methods for finding morphemes are compared withthe baseline word model.
The Finnish cross-entropy and speech recognition experiments show that significantly
more efficient models can be created using automatically induced morpheme-like sub-
word units as the basis of the language model.

In the second part, methods for choosing the n-grams that have explicit probability esti-
mates in the n-gram model are studied. Two new methods specialized on selecting the
n-grams for Kneser-Ney smoothed n-gram models are presented, one for pruning and
one for growing the model. The methods are compared with entropy-based pruning and
Kneser pruning. Experiments on Finnish and English text corpora show that the pro-
posed pruning method gives considerable improvements overthe previous pruning al-
gorithms for Kneser-Ney smoothed models and also is better than entropy pruned Good-
Turing smoothed model. Using the growing algorithm for creating a starting point for
the pruning algorithm further improves the results. The improvements in Finnish speech
recognition over the other Kneser-Ney smoothed models weresignificant as well.

To extract more information from the training corpus, wordsshould not be treated as in-
dependent tokens. The syntactic and semantic similaritiesof the words should be taken
into account in the language model. The last part of this thesis explores, how these sim-
ilarities can be modeled by mapping the words into continuous space representations. A
language model formulated in the state-space modeling framework is presented. The-
oretically, the state-space language model has several desirable properties. The state
dimension should determine, how much the model is forced to generalize. The need
to learn long-term dependencies should be automatically balanced with the need to re-
member the short-term dependencies in detail. The experiments show that training a
model that fulfills all the theoretical promises is hard: thetraining algorithm has high
computational complexity and it mainly finds local minima. These problems still need
further research.



Siivola, V. (2007):Kielimallit automaattisessa puheentunnistuksessa: luonti ja kom-
pleksisuuden hallinta.Tohtorin väitöskirja, Teknillinen Korkeakoulu, Dissertations in
Computer and Information Science, raportti D21, Espoo, Suomi.

Keywords: kielimalli, puheentunnistus, sanapala, morfeemeihin jako, vaihtelevanas-
teinen n-grammimalli, karsiminen, kasvattaminen, tila-avaruuskielimalli

TIIVISTELMÄ

Kielimalli on yksi avainosa suurisanastoisessa jatkuvan puheen tunnistusjärjestelmäs-
sä. Valtavia tekstiaineistoja on saatavilla kielimallienopettamiseen. Tässä väitöstyössä
tutkitaan, miten opetusainestosta löydetään oleelliset asiat ja miten ne voidaan esittää
tiiviisti mallissa.

Väitöstyö on jaettu kolmeen osaan. N-grammimallinnus on yleisimmin käytetty kielen-
mallinnustapa puheentunnistuksessa. Ensimmäisessä osassa tutkitaan, miten paras mal-
linnuksen perusyksikkö voidaan valita n-grammimalleille. Kokeet keskittyvät morfee-
mipohjaisten sanapalojen käyttöön, vaikkakin myös tavupohjaisia malleja kokeillaan.
Sekä sääntöpohjaisia että ohjaamattomaan oppimiseen perustuvia menetelmiä morfee-
mien löytämiseksi verrataan sanoihin perustuvaan perusmalliin. Suomenkieliset ristient-
ropiakokeet ja puheentunnistuskokeet osoittavat, että käyttämällä automaattisesti löy-
dettyjä morfeeminkaltaisia sanapaloja mallinnuksen perusyksikkönä voidaan tuottaa sel-
västi tehokkaampia kielimalleja.

Työn toisessa osassa tutkitaan, miten voidaan parhaiten valita ne n-grammit, joiden to-
dennäköisyydet estimoidaan malliin. Esitellään kaksi uutta algoritmia, joilla voidaan va-
lita n-grammit Kneser-Ney-menetelmällä siloitetuille malleille. Toinen algoritmi perus-
tuu mallin karsimiseen ja toinen mallin kasvattamiseen. Kokeet suomen- ja englannin-
kielisellä tekstiaineistolla osoittavat, että esitetyt menetelmät antavat huomattavat paran-
nukset verrattuna aikaisempiin Kneser-Ney-siloitettujen mallien karsintamenetelmiin ja
ovat myös parempia kuin entropiaan perustuva karsinta Good-Turing-menetelmällä si-
loitetulla mallilla. Käyttämällä kasvatettua mallia pohjana karsinnalle saadaan lisäpa-
rannuksia. Suomenkielisissä puheentunnistuskokeissa saavutetaan uusilla menetelmillä
merkittävät parannukset verrattuna muihin karsittuihin Kneser-Ney-siloitettuihin mal-
leihin.

Opetusaineistosta pystytään erottamaan enemmän tietoa, jos sanoja ei käsitellä riippu-
mattomina symboleina. Sanojen syntaktiset ja semanttisetsamankaltaisuudet tulisi ottaa
huomioon kieltä mallinnettaessa. Väitöksen viimeinen osatarkastelee, miten näitä sa-
mankaltaisuuksia voidaan hyödyntää, jos sanat kuvataan jatkuvaan avaruuteen. Esitel-
lään tila-avaruusmallinnukseen perustuva kielimalli. Teoriassa mallilla on lukuisia hy-
viä ominaisuuksia. Tilan koko määrää kuinka paljon malli yleistää. Tasapaino pitkän
aikavälin riippuvuuksien ja lyhyen aikavälin tapahtumienyksityiskohtaisen mallintami-
sen välillä saavutetaan automaattisesti. Kokeissa havaitaan että näiden teoreettisten lu-
pausten saavuttaminen on vaikeaa: opetusalgoritmi on laskennallisesti raskas ja löytää
pääasiassa paikallisia minimejä. Nämä ongelmat kaipaavatjatkotutkimusta.



v

Preface

The work leading to this thesis was conducted in the Laboratory of Computer and In-
formation Science at Helsinki University of Technology. The work was partly funded
by the Finnish Funding Agency for Technology and Innovationthrough the USIX and
FENIX technology programs. Also Helsinki University of Technology has financed part
of this work. The funding has been throughout supplemented by Adaptive Informatics
Research Centre (earlier called Neural Networks Research Centre). I thank these insti-
tutions for making this thesis possible. I would like to thank the Graduate School of
Language Technology in Finland for having me as a member and for financing some
travel expenses. I would also like to thank ISCA for giving free entry to one of its
conferences and also for providing free lodgings for the duration of the conference. Of
special encouragement have been the personal grants from the Nokia Foundation and
the Finnish Foundation for Economic and Technology Sciences - KAUTE. The KAUTE
grant was given from the Kaartokulma special fund.

Several people have played an important role in the work leading up to this thesis. I
would like to thank Prof. Teuvo Kohonen for initiating the research on speech recog-
nition systems. I would like to thank my supervisor Prof. Erkki Oja for making the
laboratory run smoothly and having me as part of the staff. I would like to thank my
instructor Docent Mikko Kurimo for his encouraging guidance. Under his leadership,
the speech group has a very open atmosphere, where ideas are freely presented and ap-
praised together. Also, the connections he created to otherlaboratories allowed to access
resources that were essential for the completion of this thesis. I am highly grateful for
the fact that he has also carried the main responsibility forarranging the funding for
this work. I would like to thank Prof. Hervé Bourlard and Docent Mikko Kurimo for
arranging a three-month visit to IDIAP, during which one publication of this thesis was
written.

It has been a pleasure to work with the people of our speech group. I thank Dr. Panu
Somervuo for writing the code for a simple phonetic recognizer, which was used as the
starting point for this work. I would especially like to thank Teemu Hirsimäki; long
discussions on all matters related to speech recognition and hours spent analyzing the
problems in our speech recognition system have deeply affected my understanding of
the matter. When Janne Pylkkönen joined our group, he almostby accident took over the
development of the acoustic part of the recognition system.This has allowed everyone
to better focus their research, for which I am grateful. BothTeemu and Janne have also
been excellent sources of information on software programming and algorithm design.



vi

I thank also the rest of the speech group, Dr. Kalle Palomäki,Ville Turunen, Matti
Varjokallio, Ulpu Remes and Antti Puurula for their contributions.

I thank the co-authors of the publications of this thesis, ofwhom some have not yet been
mentioned. Although technically not a member of the speech group, Dr. Mathias Creutz
has contributed significantly to our speech recognition system through his research on
unsupervised learning of language morphology. I thank Dr. Antti Honkela for introduc-
ing me to the idea of using state-space models for language modeling, an idea which
ended up as one publication of this thesis. Sami Virpioja’s work on two publications
of this thesis is gratefully acknowledged. Finally, duringDr. Bryan Pellom’s visit to
our laboratory, several improvements to the acoustic and decoding units of the speech
recognition system were implemented. I would like to thank him for running English
speech recognition tests on his system. These results endedup in one of the publications
of this thesis.

Mietta Lennes and Hanna Anttila have put considerable effort in arranging speech tracks
of audio books to match the original book manuscripts. The resulting audio files have
been used in several publications of this thesis. I am grateful to both of you. Nicholas
Volk kindly provided the software for making a phonetic transcription out of Finnish
text, for which I am thankful. The software was used in one publication of this thesis.

I have burdened several of my colleagues and friends with thetask of proofreading the
draft of this thesis, either partially or completely. I would like to thank Prof. Erkki Oja,
Dr. Mikko Kurimo, Teemu Hirsimäki, Dr. Antti Honkela, Dr. Mathias Creutz, David
Mason, and Marjaana Siivola for pointing out both the unclear passages and the occa-
sional mistakes. Dr. Krister Lindén and Dr. Imre Kiss have acted as the official pre-
examiners of the thesis, for which I am grateful. Their valuable comments have helped
to improve the thesis. Any remaining mistakes are naturallymine.

Finally, I thank Marjaana and Pieti Siivola for encouragement during the making of this
thesis.

Espoo, June 2007

Vesa Siivola



vii

Contents

Preface v

Publications ix

Abbreviations x

Some mathematical notations xi

1 Introduction 1
1.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . .. 3
1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Other language modeling methods used in speech recognition systems . 5

2 Language model in a speech recognition system 6
2.1 Overview of a typical speech recognition system . . . . . . .. . . . . 6
2.2 Details of our implementation . . . . . . . . . . . . . . . . . . . . . .7
2.3 Evaluating language models . . . . . . . . . . . . . . . . . . . . . . . 9

3 Introduction to n-gram language modeling 11
3.1 Smoothing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Methods for controlling the complexity of n-gram models. . . . . . . . 15

4 Selecting the token set for language modeling 16
4.1 Examples of subword units . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Practical issues with subword models . . . . . . . . . . . . . . . .. . 18
4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Introduction to the minimum description length principle . . . . . . . . 21
4.5 About the Morfessor algorithm . . . . . . . . . . . . . . . . . . . . . .22
4.6 Experiment I: Subword models vs. word models . . . . . . . . . .. . . 24
4.7 Experiment II: Morphs in n-gram models . . . . . . . . . . . . . . .. 26
4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Selecting the set of n-grams for the model 31
5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Algorithms for pruning and growing n-gram models . . . . . .. . . . . 34
5.3 Experiment III: Comparison of pruning and growing algorithms . . . . 40



viii Contents

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Continuous space language models 46
6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 From discrete symbols to continuous space . . . . . . . . . . . .. . . 49
6.3 Experiment IV: Comparison to hand-tagged data . . . . . . . .. . . . 50
6.4 Experiment V: Cluster-based language model . . . . . . . . . .. . . . 51
6.5 Language modeling with state-space models . . . . . . . . . . .. . . . 52
6.6 Experiment VI: Letter prediction using state-space models . . . . . . . 55
6.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusions 58

Appendices 60
A.1 Language model scaling . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 Kneser-Ney smoothing for pruned n-gram models . . . . . . . .. . . . 61
A.3 Cost criterion for pruning and growing . . . . . . . . . . . . . . .. . . 63

Bibliography 65



ix

Publications

The following publications are part of this thesis along with this introductory part:

Publication 1. Vesa Siivola, Teemu Hirsimäki, Mathias Creutz, and Mikko Kurimo.
Unlimited Vocabulary Speech Recognition Based on Morphs Discovered in an
Unsupervised Manner. InProceedings of the 8th European Conference on Speech
Communication and Technology (Eurospeech 2003), pages 2293–2296, Geneva,
Switzerland, September 2003.

Publication 2. Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko Kurimo, Sami
Virpioja, and Janne Pylkkönen. Unlimited vocabulary speech recognition with
morph language models applied to Finnish.Computer Speech and Language,
volume 20(4), pages 515–541, 2006.

Publication 3. Vesa Siivola and Bryan L. Pellom. Growing an n-gram model. InPro-
ceedings of the 9th European Conference on Speech Communication and Tech-
nology (Interspeech 2005), pages 1309–1312, Lisbon, Portugal, September 2005.

Publication 4. Vesa Siivola, Teemu Hirsimäki, and Sami Virpioja. On Growing and
Pruning Kneser-Ney Smoothed N-Gram Models.IEEE Transactions on Speech,
Audio and Language Processing, volume 15(5), pages 1617–1624, 2007.

Publication 5. Vesa Siivola. Language modeling based on neural clusteringof words.
Technical report IDIAP-COM 00-02, IDIAP, Martigny, Switzerland, 2000.

Publication 6. Vesa Siivola and Antti Honkela. A state-space method for language
modeling. InProceedings of IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 548–553, St. Thomas, U.S. Virgin Islands, November
2003.



x

Abbreviations

AD absolute discounting
EP entropy-based pruning
GTK Good-Turing smoothing with Katz backoff
HMM hidden Markov model
IV indicator vector
KN smoothing Kneser-Ney smoothing
KNG Kneser-Ney growing
KP Kneser pruning
MDL minimum description length
ML maximum likelihood
MLP multilayer perceptron
morph morpheme-like subword unit produced by the Morfessoralgorithm
OOV out-of-vocabulary
RKP revised Kneser pruning
WDP weighted difference pruning
WER word error rate



xi

Some mathematical notations

In this thesis, the following conventions for mathematicalsymbols are used. Scalar
values are denoted by lower case symbol, e.g.a. Matrices are denoted by upper case
boldface letters, e.g.A. Ordered sets of scalars are denoted by lower case boldface
symbols, e.g.i = (a, b). When the ordered set represents strings, the commas are
dropped, e.g.w = (w1w2 . . . w8). The ordered sets can be concatenated, e.g.(ww9) =
(w1 . . . w9). Vectors are defined in the same way as ordered sets where applicable. The
size of a set is denoted by vertical bars, e.g.|w| = 8.

The list of symbols used in this thesis follows.

α weighting of the precision in the KNG algorithm
γ interpolation coefficient
δ weighting of the importance of the model size in the KNG algorithm
θ parameters of the segmentation model
κ backoff coefficient
λ model parameters
A state transition matrix
B output mapping matrix
C projection matrix
C(w) count of n-gramw in the training corpus
C′(w) modified count of the n-gramw
C⋆(w) if the model includes the n-gramw, C⋆(w) = C(w), otherwise 0
C⋆

1+(•w) if the model includes the n-gramw, the number of unique words pre-
ceding the n-gramw in the training data, otherwise 0.

D discount parameter
D(M) description length ofM
f word feature vector
M model
m(t) process noise or process innovation
n(t) observation noise
o ordered set of observations
R(r) the countr modified by Good-Turing discounting
s ordered set of HMM states



xii Contents

s(t) state vector at timet
T test set
v a word in the vocabulary
v vocabulary
w word
w ordered set of words
x word indicator vector



1

Chapter 1

Introduction

1.1 Historical perspective

A lot of effort has been put into the research of automatic speech recognition systems
since the 1950’s. The focus of the early research was on the acoustic modeling of speech
and the recognition systems were able to recognize only a fewdifferent words. As the
technology progressed, the vocabularies of the recognizers increased and efforts were
made to move from recognizing isolated words to continuous speech recognition. It
became apparent that the acoustic modeling alone was not enough. The 1980’s saw the
breakthrough in statistical language modeling as the recognition systems were pushed to
recognize continuous speech. The available computationalpower continued to grow ex-
ponentially and the algorithms were improved to take advantage of the available compu-
tational resources. Consequently, more and more data was needed to train the complex
models. The end of 1980’s and the start of 1990’s saw the birthof the huge commonly
available data collections made for the express purpose of training the acoustic and lan-
guage models for the English language. The typical components of recognition systems
were highly similar to the typical modern speech recognitions systems: hidden Markov
models with Gaussian mixture emission distributions were used for acoustic models and
the language models were based on n-grams. Although there has been research on dif-
ferent methods of modeling acoustics and language, for example neural networks have
been used to model both, the traditional methods are efficient and seem to work well.
They are used in most of the state-of-the-art speech recognition systems. What has
changed is that the basic ideas have been refined and algorithms have been developed
that help to exploit the base framework more efficiently.

Today, speech recognition is increasingly used in practical applications. Flight tick-
ets can be reserved and lost luggage can be traced by telephone with computer as the
operator at the other end of the line. Radio broadcasts of a topic of interest can be
searched from the massive audio archives of some national radio stations. Simple user
interfaces based on speech are appearing on consumer devices. A machine translation
system, which helps American troops to communicate with Iraqis is being tested. Law
enforcement agencies in many countries would be delighted to have a device which



2 Chapter 1. Introduction

would tell, if any words from a predetermined set (e.g. “bomb”, “anthrax”) are spoken
in a given set of telephone calls. Direct transcripts of the uttered sentences would be
useful in many situations, for example automatic transcription of court sessions or tran-
scription of a dentist’s speech while he examines the patient’s mouth. Hearing-impaired
people would benefit from an instant speech-to-text gadget.Real-time subtitles for TV-
interviews could be generated by a computer system. All these applications would ben-
efit from the increased accuracy of the speech recognition component.

1.1.1 History of our speech recognition system

The research of speech recognition in our laboratory has long traditions. It was started
by Prof. Teuvo Kohonen already in the 1970’s and was inspiredby his original ideas.
For example, the thesis of Jalanko (1980) describes subspace methods for phonemic
speech recognition. In the thesis of Torkkola (1991), the focus moves to neural net-
works for learning phonetic recognition and also differentpostprocessing corrections to
the output of the recognizer are discussed. In the thesis of Kurimo (1997), the phonetic
recognizer is taken into a more mainstream direction with hidden Markov models and
Gaussian mixture emission distributions; the standard models are improved by neuro-
computational methods.

As the current author started his thesis work, the decision was made to move into large
vocabulary continuous speech recognition. In 1999 a corpusof continuous speech was
gathered by a group of researchers (including the author) from Helsinki University of
Technology and Helsinki University. The corpus was essential for the development of
the new speech recognition system, since it both provided data for training the acoustic
models and also could be used for evaluating the recognitionresults. A part of this
corpus, a Finnish audio book read by one speaker is used to measure the performance
of the speech recognition system in this chapter.

The main components of a large vocabulary speech recognition system are the acoustic
model, the language model and the decoder. The decoder performs the actual recog-
nition by combining the information from the models. As expected, using only the
acoustic models from the earlier work did not give satisfactory results. Augmenting
the best acoustic model with a fixed dictionary and simple decoder resulted in aword
error rate (WER) of 232%1. It was clear that in addition to scientific research a lot
of engineering work was needed to make the system perform well. The practical ex-
perience from the research on decoding algorithms (Hirsimäki, 2002) and modeling of
the Finnish language (Siivola et al., 2001) was combined to create a Finnish continuous
speech recognition system with the WER of 80% as reported by Siivola et al. (2002).
This work created a basis for further research and more people were hired to the research
team. The increased research and engineering work resultedin rapid improvements in
all components of the speech recognition system. Publication 1 of this thesis reports a
WER of 32% in this same task in 2003. In 2005, the WER was down to10% as reported
in Publication 3 of this thesis and the latest tests on this task were run in the 2006 with
a WER of 6%.

1For the definition of WER, see Section 2.3.2.



1.2. Contributions of this thesis 3

1.2 Contributions of this thesis

This thesis is focused on improving the language modeling component of the speech
recognition system. Some algorithms presented here targetmainly languages with rich
morphology (e.g. Finnish), however, most methods should benefit any language.

More specifically, this thesis covers the following topics.

• Methods for segmenting words into subword units are explored and compared.
It is shown that an automatic speech recognition system can be significantly im-
proved by using automatically induced morpheme-like subword units as the basis
of the n-gram language model.

• Methods for choosing, which n-grams to include in the language model are com-
pared. The experiments show that the current state-of-the-art pruning methods do
not work well with the best known n-gram smoothing method, modified Kneser-
Ney (KN) smoothing. An algorithm for pruning and another forgrowing KN
smoothed models are presented and it is shown that the new algorithms get con-
sistently better results than either entropy-based pruning or Kneser pruning for
KN smoothed models.

• Methods, which exploit the similarities of the words through mapping them in
continuous space, are explored. A language model based on the state-space mod-
eling framework is presented. It is shown that this kind of model theoretically has
several advantages over traditional n-gram modeling. However, it is also shown
that constructing a training algorithm that can exploit thefull capabilities of the
model is hard.

1.2.1 Contents of the individual publications with the author’s con-
tributions specified

Publication 1 presents how n-gram language models based on different subword units
work for Finnish speech recognition. Syllables and statistically induced morpheme-like
subword units(morphs)are compared with a 3-gram language model based on words.
The present author created the tool for splitting Finnish words into syllables and used
an early version of the Morfessor software (Creutz and Lagus, 2005) for creating the
morphs. The present author was responsible for creating theacoustic and language
models. The present author designed and ran the experimentsand was the main contrib-
utor to the writing of the publication.

Publication 2 extends the scope of Publication 1. The paper compares n-gram mod-
els based on morphs with their grammatically determined counterparts and with word-
based n-gram models. The n-gram scope is extended from 3-grams to 7-grams for a
better comparison. The algorithm for creating morphs is described in detail and the
details of the acoustic models and decoder implementation are discussed. The present
author took part in designing the experiments and analyzingthe results. He also made
minor contributions to the writing of the publication.



4 Chapter 1. Introduction

Publications 1 and 2 show how subword language modeling units can be used efficiently
in a recognition system. To the best of the author’s knowledge, the reported results
are the first large improvements obtained by subword-based n-gram models in large
vocabulary continuous speech recognition.

Publication 3 presents a method for growing an n-gram model incrementally. The
method helps to model slightly longer span dependencies in the n-gram model. A grown
model is compared with a model created by entropy-based pruning. Both models were
smoothed with KN smoothing, which was not the optimal smoothing for the baseline
model. The present author developed and implemented the algorithm, ran all the exper-
iments except the English speech recognition test and wrotemost of the publication.

Publication 4 expands the scope of Publication 3. The paper presents the growing algo-
rithm for KN smoothed n-gram models in more detail and also proposes a new pruning
method for KN smoothed n-gram models. The reasons why the existing pruning algo-
rithms are suboptimal with KN smoothing are discussed. The methods are compared
with Kneser pruning and entropy-based pruning. The presentauthor was the main de-
veloper of the new algorithms. The experiments were mostly designed and run jointly
with Teemu Hirsimäki and the publication was jointly written with Teemu Hirsimäki.

Publications 3 and 4 show how huge text databases can be used to efficiently train high
order n-gram dependencies. The newly introduced algorithms in general work as well
or better than the other state-of-the-art pruning methods and better than any methods
for KN smoothed n-gram models. The software implementing the presented algorithms
was released.

Publication 5 presents a method for grouping the words in thevocabulary into hard
clusters. Words with similar contexts are mapped close to each other in continuous
space and the clustering is performed in the vector space. The formed clusters are shown
to be reasonably well correlated with clusters formed by hand. The clustering is used as
a basis for an n-gram model. The perplexity and speech recognition experiments show
that the proposed clustering is reasonable.

Publication 6 outlines how state-space models can be applied to language modeling.
A simple proof-of-concept experiment with a state-space model predicting letter se-
quences is presented. The mathematical framework was jointly formulated with Dr.
Antti Honkela. The present author implemented the algorithm, designed and ran the
experiments, as well as wrote most of the publication.

1.3 Structure of this thesis

In this introductory part of the thesis, the subjects of the individual publications are
rewritten to a single coherent presentation. This introductory part presents the relevant
ideas and experiments, but some details are only discussed in the individual publica-
tions.

Chapter 2 presents a typical speech recognition system and how language models are
applied in the recognizer. Details of our implementation are briefly presented. In Chap-



1.4. Other language modeling methods used in speech recognition systems 5

ter 3, n-gram language models and three well-known methods for smoothing the model
estimates are introduced. Chapter 4 compares language models based on different sub-
word units. In Chapter 5, different methods for choosing then-grams to be included in
the language model are discussed. Chapter 6 presents language models that use con-
tinuous representations of the words. Chapter 7 concludes the introductory part of this
thesis.

1.4 Other language modeling methods used in speech
recognition systems

This thesis does not try to cover all language modeling techniques used in automatic
speech recognition systems. Many methods are at least briefly compared with the meth-
ods that this thesis focuses on. However, some methods have little in common with the
subjects covered and thus are not discussed at all. Some pointers to the other methods
are given to the reader below:

For language models exploiting the grammatical structure of the language, a large body
of research is available (Jurafsky et al., 1995; Stolcke, 1995; Chelba and Jelinek, 2000;
Charniak, 2001). Wang et al. (2004) show that using models based on super abstract
role values (superARV) combine the advantages of the grammatical language models
with the simplicity of cluster-based n-gram models. Another new development is to
interpolate multiple randomly generated decision trees that cluster similar histories. As
shown by Xu and Mangu (2005), these so-called random forest models can produce
excellent results.

Cache language models (Kuhn and De Mori, 1990) can be used to improve the perfor-
mance of traditional n-gram models. The method is based on the observation that if a
word is seen in a document, it is likely to be repeated later. Asimilar idea has been
presented in the maximum entropy language model framework (Rosenfeld, 1994): in
trigger models, seeing a word increases the probability of all related words. In speech
recognition, there is the practical problem that the recognized history is not guaranteed
to be correct and cache models can possibly also degrade system performance.

The models trained with data that match the test data well, work better than models
trained on generic data. Usually the matching training dataare found manually, but
there also exist methods for automatic topic matching (Iyerand Ostendorf, 1996; Gildea
and Hofmann, 1999; Bellegarda, 2000; Klakow, 2000; Siivolaet al., 2001). There also
exist methods for adapting a generic model using a small amount of matched data, see
e.g. the work by Klakow (2006).



6

Chapter 2

Language model in a speech
recognition system

This chapter is dedicated to introducing the recognition system used in most of the ex-
periments conducted in this thesis. Different metrics for evaluating the language models
are briefly discussed.

2.1 Overview of a typical speech recognition system

State-of-the-art continuous large vocabulary speech recognition systems are formulated
in a probabilistic framework. The input of the system is a setof observationso =
(o1, . . . , oM ) from the acoustic waveform ordered in time. The observations are usu-
ally feature vectors based on the short-time spectrum of thesignal. The task of the
recognizer is to find the most probable word sequencew = (w1, . . . , wN ) given the
observationso and the model of speechλ. The model of speechλ can be divided into
the acoustic modelλA and language modelλL and the probability calculations for each
can be performed separately.

argmax
w

P (w|o, λA, λL) = arg max
w

P (o|w, λA)P (w|λL) (2.1)

To find the best recognition hypothesis, the system should intheory try all possible tran-
scripts (practically an infinite set) and pick the one with the highest probability. This
is the work of the decoder. Modern decoders use complex algorithms and heuristics to
restrict the search to a reasonably small subspace of all sentences. Some systems use
simple models to produce a set of initial hypotheses. The results can be refined by using
more complex models to rescore the initial set. This is called two-pass recognition and
the advantage of the method is that fewer hypothesis will be handled by the computa-
tionally expensive models. The disadvantages are that the complexity of the recognition
system is increased and real-time recognition is not possible. The decoders used in the



2.2. Details of our implementation 7

publications of this thesis are generally designed so that high order n-gram models1 can
be efficiently used in the first pass of the recognition. The publications of this thesis use
one-pass recognition.

The commonly used acoustic models based onhidden Markov models(HMM) contain
assumptions that make the scale of the estimated acoustic probabilities incorrect. It is
common to use an exponential correction term to balance the acoustic and language
model probabilities correctly. Interestingly, this correction term is usually placed on
the language model probabilities and called language modelscaling even though it is
correcting the problems of the acoustic model. The assumptions are examined in more
detail in Appendix A.1.

Finally, a few more terms should be introduced. The token seton which the language
model operates is called thevocabularyor the lexiconof the model. Apronunciation
dictionary is used to map the lexicon on the acoustic models. For some languages (e.g.
Finnish, Estonian and Turkish) this mapping is straightforward, for others it can be
complex (e.g. English).

2.2 Details of our implementation

In this section, we examine the components of our speech recognition system in more
detail. Later, when speech recognition experiments are presented, we only note the
points that differ from the system discussed here.

2.2.1 Acoustic models

In our system, the methods for acoustic modeling are generally chosen by selecting
the methods, which are widely used and have been shown to significantly improve the
results. Rabiner (1989) describes how HMMs can be applied toacoustic modeling in
speech recognition systems. In our system, the phonemes have been modeled using
three HMM states. The emission distributions are modeled byGaussian mixture mod-
els. We have used signal power and mel-cepstral features (Atal,1974). In some experi-
ments, these static features are augmented with the corresponding delta (first derivative)
and delta-delta (second derivative) features. Some experiments usecepstral mean sub-
traction (Atal, 1974) to remove the effects of slowly varying convolutive noise. The
subtraction can remove some effects of the signal channel and also acts as a simple
unsupervised speaker adaptation method.

To make the model parameter estimation easier, we use only diagonal covariances in the
Gaussians. In some experiments, we usedmaximum likelihood linear transformationto
reduce the impact of this approximation (Gales, 1999). The features are transformed by
a matrix so that the correlations between feature vector elements are minimized for each
HMM state.

We have used both monophone (context insensitive) and triphone (context sensitive)

1N-gram language models will be introduced in Chapter 3.



8 Chapter 2. Language model in a speech recognition system

phoneme models. For triphones, all models cannot be traineddue to data sparsity. We
have used two schemes for deciding, how the triphones shouldbe clustered. The simpler
early method was to cluster triphones based on the amount of data that could be used
for estimating the model. If there was insufficient data for modeling an individual tri-
phone state, all triphones sharing either the left or right context were clustered together.
In case there still was insufficient data, the triphone was collapsed to a corresponding
monophone model. The second triphone clustering scheme wasbased on the work by
Odell (1995). The probability distributions of the individual triphone states were mod-
eled by a single Gaussian and a decision tree-based clustering algorithm was used to
merge the states with similar distributions. This allows for finer control over the clus-
ters and also corresponds more closely to the mainstream systems. These two methods
have not been formally compared, but it seems like the lattersystem gives slightly better
models.

HMM-based models implicitly model the phone durations withan exponential distribu-
tion. Pylkkönen and Kurimo (2004) experiment with three different methods for mod-
eling the phone durations explicitly. Semi-Markov models are the theoretically most
justified of these. It is also possible to divide a HMM state inseveral states that share
the same emission distribution. The state transitions determine the distribution of the
duration model. Third, a gamma distribution was used to model the state durations. The
recognition hypotheses were rescored according to the gamma duration distribution. In
their experiments they find that the simplest method, gamma distributions and rescor-
ing was the best compromise between efficiency and recognition accuracy. This is the
approach used in most experiments of this thesis.

2.2.2 Decoder and language models

Aubert (2002) presents an overview of different approachesto decoding. Our first de-
coder was a so-called stack decoder. This approach was chosen for its simplicity. The
search process is divided to two parts: the local acoustic search and the hypothesis
search. The local acoustic search finds the acoustically best matching words starting
from a given time. The hypothesis search controls the local acoustic search. It also
applies the language model probabilities and keeps track ofthe best suggestions for the
recognition result. The main drawback of this approach is that properly modeling the
acoustic context between words, although possible, is difficult (Schuster, 2000). More
details can be found in Publication 2.

The new decoder (Pylkkönen, 2005) implements the search through a static reentrant
lexical prefix tree. The decoder uses a separate low order n-gram language model for
language model lookahead(Ortmanns and Ney, 2000) that is for modeling the potential
effect of the future words on the probability of the ongoing utterance. The main benefit
of this approach over the earlier one was that the acoustic context between words could
be modeled. Both decoders were designed so that the maximum modeled context length
of the language model was not restricted. The correspondinggrowth of the search hy-
pothesis space was limited by combining the hypotheses where no more thanm last
words differed (andm is less than the maximum n-gram context length).

The language models used in our system are n-gram models. Themodels are stored in



2.3. Evaluating language models 9

a compressed tree structure based on the work by Whittaker and Raj (2001b).

2.3 Evaluating language models

2.3.1 Perplexity and cross-entropy

As shown in Equation 2.1, the probability calculations needed in a speech recognition
system can be separated into the computation of the acousticprobability and the compu-
tation of the language model probability. This suggests that different language models
could be evaluated by simply calculating the probability given by the language modelλ
to some test setT . The cross-entropyH between the modelλ and the test dataT gives
us the number of bits needed for encoding the test data with the given model (Chen and
Goodman, 1998). Usually, to remove the effect of the size of the test set, the entropy is
normalized. It is customary to normalize with the number of the wordsWT of the test
set.

H(T |λ) = −
1

W T
log2 P (T |λ) (2.2)

Another commonly used measure, calledperplexity, is defined as follows (Bahl et al.,
1983):

Perp(T |λ) = P (T |λ)
− 1

WT . (2.3)

It is easy to see that these measures are related: Perp(T |λ) = 2H(T |λ). Some language
models like subword n-gram models are not using words as the base modeling unit. The
normalization should still be done over the number of the words in the data, not over the
number of the subword units. This way, the results are comparable over the different
model families.

The language model vocabulary does not in general cover the target language com-
pletely. This is modeled by setting some probability mass aside for any unknown word.
Calculating the cross-entropy or perplexity for an unknownword is not straightforward.
The probability estimates of theseout-of-vocabulary(OOV) words are generally re-
moved from the evaluation, although the “unknown word”-tokens are used when mod-
eling the context of the other words. If the language model vocabulary does not cover
the full language, both OOV rate and cross-entropy (or perplexity) should be reported
for model comparison.

Perplexity or cross-entropy values are not directly comparable across different lan-
guages, since different languages will use different amounts of words to express the
same information (see Chapter 4). Normalizing with the number of sentences instead
of the number of words of the test set would make the scores comparable2, but then the
values would depend even more on the kind of the text in the test corpus. Normalizing
with the number of letters is another option.

2In the experiments of Publication 4, the best Finnish and English language models gave comparable
sentence cross-entropies, even though the cross-entropies normalized by the number of words were quite
different.



10 Chapter 2. Language model in a speech recognition system

2.3.2 Speech recognition error rate

The ultimate test of the language model is to use it in the intended application, in our
case the speech recognition system. The most frequently used error measure for speech
recognition systems is theword error rate(WER) (Bahl and Jelinek, 1975; Morris et al.,
2004). For obtaining the WER, the minimum number of word insertionsI, deletionsD
and substitutionsS for turning the recognizer output into the correct result iscounted.
Let M denote the total number of words in the correct transcript.

WER =
I + D + S

M
· 100% (2.4)

WER is not comparable across different languages for the same reasons that perplexity
is not comparable.

Other error measures can be defined in the same way.Letter error ratecounts the errors
over the letters of the transcript andsentence error rateover the sentences. The best
measure depends on the intended application of the speech recognition system. For ex-
ample, if the object is to transcribe a given audio segment, letter error rate would reflect
the number of keystrokes needed to manually correct the recognized transcript. For an
application, where speech understanding is necessary, morpheme error rate would be
more appropriate. It all depends on the application. WER is the most commonly used
error measure.

2.3.3 About the relation between word error rate and perplexity

As discussed by Ney et al. (1994), the only reliable test for language model performance
in speech recognition is to run the recognition experiments. The cross-entropy and
perplexity only measure the average contribution of each test set word to the total log
likelihood. They do not take into account how this probability is distributed over the
different words. Furthermore, the acoustic similarity of different words is not taken into
account either. The problem with speech recognition tests is that they can consume a lot
of time and processing power.

The relation between WER and perplexity has been studied by Klakow and Peters
(2002). In their experiments WER and perplexity are usuallycorrelated by a power
law. It seems that in practice, perplexity (and cross-entropy) can give an approximate
evaluation of the language model fast. The current author’simpression, based on obser-
vations made while working on this thesis, is that the closerthe compared models are
related to each other, the more reliably they can be comparedby perplexity.



11

Chapter 3

Introduction to n-gram language
modeling

N-gram modeling is the most widely used method for modeling language in speech
recognition systems. N-grams have been used in all publications of this thesis. This
chapter describes the basic ideas behind n-gram modeling and describes some smooth-
ing methods in more detail. The presented information is good background knowledge
for the matters discussed later. In particular, detailed knowledge of the n-gram smooth-
ing methods and the associated notation is required for understanding Chapter 5 .

The probability of sentencew1 . . . wN can be factored into conditional probabilities.

P (w1 . . . wN ) = P (w1)P (w2|w1)P (w3|w1w2) . . . P (wN |w1 . . . wN−1) (3.1)

An n-gram model of ordern approximates that the dependencies are only significant
up to the predetermined context lengthn. For example, the 3-gram model probability
estimate is given by

P (w1 . . . wN ) ≈ P (w1)P (w2|w1)

N∏

i=3

P (wi|wi−2wi−1) (3.2)

The estimates for these probabilities can be obtained by taking a training corpus and
simply estimating the probabilities based on the countsC of the training set. For the
3-gramw1w2w3 themaximum likelihood(ML) estimate for the conditional probability
is

P (w3|w1w2) =
C(w1w2w3)

∑

w3
C(w1w2w3)

. (3.3)

The ML estimate assigns zero probability to any unseen n-grams. There is also a huge
number of parameters to be estimated1. Several methods for coping with these problems
have been researched.

1E.g. 3-gram model having a vocabulary of 50 000 words in theory has1014 parameters to be estimated.



12 Chapter 3. Introduction to n-gram language modeling

3.1 Smoothing methods

The ML estimates for n-gram probabilities overlearn the training data. Too high proba-
bilities are given to the n-grams found in the training data and other n-gram probabilities
are underestimated to zero. Many methods for transferring the probability mass from the
overestimated n-grams to the underestimated ones have beenproposed. In general, the
higher the n-gram order the more the probabilities of n-grams seen in the training set are
overestimated. The most successful smoothing methods remove some probability mass
from higher order estimates and use this probability mass either for interpolation with
lower order n-grams or for backing off to lower order n-grams.

Chen and Goodman (1998) have described and tested the most common smoothing
methods extensively. They show that for any smoothing method, interpolation gen-
erally works better than backing off. Three of the smoothingalgorithms are briefly
reintroduced here. Good-Turing smoothing with Katz backoff is used in Publication 1,
4 and 6. Absolute discounting forms the basis of Kneser-Ney smoothing, which is used
in Publication 2, 3 and 4 of this thesis.

Through the rest of the thesis the following notation is used. Let w be the current word
andh the history of words precedingw. ĥ is obtained by removing the first word ofh.
For example, let us define a three-word historyh = abc and a wordw = d. Now, the
following definitions hold:hw = abcd andĥw = bcd. The size of the set|hw| = 4
is called the n-gram order. LetC(hw) be the number of times the n-gramhw occurs
in the training data. The notation

∑

w C(hw) can now be used to denote the sum of
the |hw|-gram counts beginning with the words in the historyh in the training data.
The chosen notation is slightly ambiguous, but the simplicity helps the legibility of the
equations.

3.1.1 Good-Turing smoothing with Katz backoff (GTK)

In Good-Turing smoothing some probability mass is moved from the observed n-grams
to the unseen n-grams according to the Good-Turing formula (Good, 1953). Instead of
using the actual countr = C(w) of the n-gramw we use the discounted versionR(r).

R(r) = (r + 1)
mr+1

mr
(3.4)

mr is the number of n-grams that occur exactlyr times in the training corpus. Although
the original counts of counts statisticsmr should be smoothed at least for largerr when
estimating the discounted countsR(r) (Gale, 1994), the smoothing can be avoided when
using Katz backoff. This estimator gives the probability ofm1

S to unseen n-grams, where
S is the total number of n-grams in the training set.

Good-Turing smoothing is practically never used alone in n-gram modeling, since it
gives the same probability to all unseen n-grams. Katz (1987) shows how the probabil-
ity mass reserved for the unseen n-grams can be distributed according to a lower order
n-gram probability distribution. Let us consider the ML estimates for the n-gram seen
more thanc times reliable.c is chosen so that there is no need to smooth themr for



3.1. Smoothing methods 13

r > c. The n-grams seenc times or fewer are discounted so, that their relative contribu-
tions to the estimate of unseen n-gramsm1

S remains the same as with the Good-Turing
estimate. The process can be applied recursively to the nextn-gram order.

Let C(hw) be the number of times the n-gramhw is seen in the training set. Let us
define auxiliary functionC′(hw) that gives the training set n-gram counts limited to the
highest modeled orderN .

C′(hw) =

{

C(hw), if |hw| ≤ N

0, otherwise
(3.5)

For clarity, the normalization termS is will be written asS(h) from now on.

S(h) =
∑

v

C′(hv) (3.6)

Now, the recursive procedure for backing off to lower order n-gram estimates can be
expressed as

P (w|h) =

{
R(C′(hw))

S(h) if C′(hw) > 0

κ(h)P (w|ĥ), otherwise.
(3.7)

The backoff coefficientκ(h) can be easily solved, when the constraint that all proba-
bilities should sum to 1 is taken into account. This procedure distributes the discounted
probability mass to the n-grams, for which there is no higherorder estimate available. If
we chose to distribute the probability mass among all lower order n-grams instead, we
would have an interpolated model instead of a backoff model.

3.1.2 Absolute Discounting (AD)

AD (Ney et al., 1994) has also been called nonlinear discounting since it removes a
constant discount0 ≤ D|h| ≤ 1 from all other observed counts of a given order. Here,
an interpolated version of the AD method is presented: the reserved probability mass is
divided proportionally among the lower order n-gram estimates.

P (w|h) =
max{0, C′(hw) −D|h|}

S(h)
+ γ(h)P (w|ĥ) (3.8)

The interpolation coefficient is denoted byγ(h). Solving the value ofγ(h) using the
constraint that all probabilities should sum to 1 yields

γ(h) =

∣
∣{v : C′(hv) > 0}

∣
∣D|h|

S(h)
. (3.9)

The discount parametersD can be solved in a closed form through deleted estimation
(Ney et al., 1994) or a numerical search on a held-out data setcan be used to optimize
the discount parameters (Goodman, 2001).

Chen and Goodman (1998) note that the optimal discountD seems to be approximately
constant for n-grams seen 3 or more times. To improve the AD model, it is possible to



14 Chapter 3. Introduction to n-gram language modeling

use separate discount coefficients for n-grams seen once0 ≤ D1 ≤ 1, twice0 ≤ D2 ≤
2 or three or more times0 ≤ D3+ ≤ 3. This is called modified absolute discounting.
The estimate for the probability of an n-gram is only slightly changed (alsoγ should be
modified accordingly).

P (w|h) =
max{0, C′(hw) −D

C′(hw)
|h| }

S(h)
+ γ(h)P (w|ĥ) (3.10)

3.1.3 Kneser-Ney smoothing (KN smoothing)

One problem with GTK and AD is that the distributions of the models do not behave
according to the basic probability theory. The following marginalization does not hold
for these models. ∑

v

P (vhw) = P (hw) (3.11)

Goodman (2001) shows that any optimal language model smoothing algorithms should
preserve known marginal distributions.

KN smoothing (Kneser and Ney, 1995) is based on AD. The motivation behind the
method is the preservation of the marginal distributions. The derivation of the algorithm
is presented in Appendix A.2. If we approximate (as traditionally is done), that the
method can be used recursively for all model orders, the onlymathematical difference
between AD and KN smoothing is in the definition of the modifiedtraining set counts
C′ (See Equation 3.5 for the original definition).

C′(hw) =







0, if |hw| > N

C(hw), if |hw| = N
∣
∣{v : C(vhw) > 0}

∣
∣, otherwise

(3.12)

In practice, this means that for highest order n-grams, we use the same probability
estimate as in AD. For lower orders, the estimates are based on the number of new
contexts, where an n-gram was seen. As shown by Chen and Goodman (1998), KN
smoothing seems to outperform the other well known smoothing methods in practically
all circumstances. The superior performance of this algorithm seems to be due to fact
that the probability estimates for the lower order n-grams take into account, what has
already been modeled by the estimates of the higher order n-grams.

Modified KN smoothing(Chen and Goodman, 1998) can be defined similarly as mod-
ified AD. Also, the discount coefficients can be optimized either by the leave-one-out
method or by performing a numerical search on a held-out dataset. James (2000) de-
scribes several other ways of defining and estimating versions of KN smoothing that
utilize several discount coefficients.

To keep the marginal constraint of Equation 3.11 exactly, wecan usemaximum entropy
modeling (Rosenfeld, 1994). In practice, there are problems with the computational
cost of maximum entropy algorithms and some approximationsmust be made. Also,
it seems like the maximum entropy methods and modified KN smoothing give similar
results in practice (Chen and Rosenfeld, 2000; Goodman, 2004).



3.2. Methods for controlling the complexity of n-gram models 15

3.2 Methods for controlling the complexity of n-gram
models

The naive solution to the problem of having too many parameters to estimate is to get
more training data. In practice, it is often preferable to use other methods to control
the complexity of the estimated model and use the additionaldata for improving the
model in some other manner, like for example increasing the modeled context length.
Goodman (2001) compares several methods for making a betteruse of the available
training data. One possible solution is to develop more sophisticated methods for choos-
ing which n-grams to include in the model. Among these methods are the pruning and
growing methods studied in Chapter 5. If the semantic similarity of the words can be
modeled, the number of parameters in the language model can actually be reduced. For
example, clustering similar words and estimating the n-grams over the clusters can sig-
nificantly reduce the model size. These issues are discussedin more detail in Chapter
6, where clustering is examined from the viewpoint of continuous space language mod-
els. The efficiency of the n-gram language model can also be affected by selection of
the modeling unit, on which the model is based. In this chapter, the n-gram models
and methods were defined for word-based models, but other choices such as letters or
morphemes are possible. Different modeling units is discussed in Chapter 4.



16

Chapter 4

Selecting the token set for
language modeling

The selection of words as the base units for our language model seems natural. Natural
languages seem to be structured so that they contain a small amount of very frequently
used words and a huge number of seldom used words. Heaps’ law (Heaps, 1978, page
206) is an empirical law that ties number of unique wordsV in a text to the number of
the wordsm in the text.

V (m) = kmβ (4.1)

β and k are parameters that should be empirically set according to the type of the text
and the language. The vocabulary growth rates are quite different for different languages
depending on the structure of language. Creutz et al. (2007)have calculated the number
of unique words in a corpus of a given size for several languages (see Figure 4.1).
It seems clear that even using all the unique words appearingin the training set as
the vocabulary of the language model, there is no guarantee for all languages that an
unseen data set would not contain a significant amount of out-of-vocabulary words.
The differences between languages can be explained by theirdifferent morphologies.
Languages with simple morphology like English can be covered reasonably well by a
clearly smaller vocabulary. Finnish, on the other hand, is ahighly inflecting language.
It also makes use of agglutination and compounding. Thus onesentence in Finnish
tends to contain fewer words than a corresponding English sentence, and conversely,
one Finnish word contains more information than one Englishword1. Consequently,
the vocabulary growth rate for Finnish is higher.

Let us consider splitting words and using the produced subword units as the basis of
our n-gram model. The shorter units we choose, the smaller lexicon we need to achieve
a given level of coverage of the language (e.g. if we select a lexicon that contains all
characters used for writing the words of the target language, fewer than 100 characters
suffice for many languages). A data set split to subword unitscontains more tokens than
the original word-based data. Consequently, the n-gram estimates of any given order are

1For example, Finnish word “Ymmärtä-isi-mme-kö-hän” is translated as “would we really understand”



4.1. Examples of subword units 17

0 4 8 12 16 20 24 28 32 36 40 44
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Corpus size [million words]

U
ni

qu
e 

w
or

ds
 [m

ill
io

n 
w

or
ds

]

Finnish

Estonian

Turkish

English

Figure 4.1: Vocabulary growth with respect to the corpus size. Taken with permission
from a paper by Creutz et al. (2007).

more accurate, as on average there is more data for each n-gram. On the other hand, the
context modeled by an n-gram of a given order is effectively shorter, since on average
the subword-based n-gram spans a shorter length of the text than a corresponding word-
based n-gram of the same order. This can be compensated by increasing the order of the
n-gram model, but then more n-grams must be estimated.

4.1 Examples of subword units

Letters form the smallest symbol set, which can represent the words of the language,
thus making the required lexicon very small. On the other hand, in order to model a
reasonable amount of n-gram context, very high order n-grams are needed. Also a high
number of n-grams is needed, as each letter of a word needs a separate n-gram to model
it.

For splitting words intosyllables, a hand crafted rule set is often needed. For Finnish,
an adequate rule set can be created fairly easily. Using the syllables as the lexicon, we
can fully cover the Finnish language except for some foreignnames and words. From
the viewpoint of the application using the speech recognition system, the individual
syllables cannot be associated with any meaning.

According to standard linguistic theory,morphemesare the minimal meaningful lan-
guage units; they cannot be divided to smaller meaningful units (Bloomfield, 1935). The
systems for splitting words into morphemes are usually fairly complex rule sets, with a
lot of embedded expert information, see for example the workby Koskenniemi (1983).
The morphemes tend to be somewhat longer than syllables so a reasonable n-gram con-



18 Chapter 4. Selecting the token set for language modeling

text can be covered with a relatively low model order. The fact that the recognition
units each have their own meaning can help when developing applications on top of the
recognition system.“Left+hand+ed” and“vasen+kät+inen” are examples of a word
segmented in morphemes, in English and in Finnish.

There are several heuristic methods forautomatic segmentationof subword units from
words. The advantage of automatic segmentation is that no expert knowledge of the
target language is required. Some automatic segmentation systems can be shown to
produce units that resemble well-known linguistic constructs like morphemes or sylla-
bles.

4.2 Practical issues with subword models

Building a speech recognition system using a language modelbased on subword units
requires attention to a few practical points. First, the handling of word breaks merits
some consideration. In word-based n-gram models, each language model unit is implic-
itly assumed to be followed by a word break. For subword units, such an assumption
cannot be made. We have decided to add an extra word break token to the vocabulary,
which is handled as any other token in the language model. Another way would be to
have two versions of each subword token: one that can occur within a word and an-
other that always ends the word. However, this approach would double the size of the
lexicon. Acoustically, we have had a few different solutions which all seem to work
equally well. The word break can be modeled to have no acoustic counterpart. In this
case, the decoder must separately try all hypotheses with and without the word break.
We have also modeled the word break acoustically by one HMM state, which seems to
work. It should be noted that in continuous speech the word break can generally not
really be determined from acoustic information and the decision of whether the word
break should be placed or not mostly comes from the language model. Sentence breaks
may be treated as usual for word-based models: special symbols marking the start and
end of sentence can be used and the n-gram contexts are not modeled past these tokens.

For some languages (e.g. Finnish, Estonian, Turkish) mapping from orthography to pho-
netics is simple. In some Finnish experiments, we preventedany of the algorithms from
splitting the words in certain locations: long phonemes (encoded with a double letter,
e.g. “aa”) were not split and the letter combination “ng” that maps into one phoneme
was not split. When our decoder was improved to model the acoustic context over the
borders of the language model units, these restrictions became unnecessary as the con-
text sensitive acoustic models were able to learn the variations. For languages with more
complex pronunciation rules, more elaborate schemes may need to be considered. For
example, Seneff (2004) presents a system for segmenting words so that the phonetic
structure can be reconstructed for English.

The decoder design of our system was affected by the decisionto use subword models.
The first decoder described in Publication 2 of this thesis and the second decoder design
by Pylkkönen (2005) both can use high order n-grams in the first recognition pass.
Using subword units gives us finer control over pruning the recognition hypotheses, as
the language model contributions are taken into account in smaller steps. Instead of



4.3. Related work 19

rescoring each hypothesis when a new word is started, the language model probability
is added each time a new subword unit is started. On the other hand, the effective
language model lookahead range is reduced, unless higher order models are used for
the lookahead. If the language model units allow a word to be built from different
combinations of tokens, the different combinations may appear as rival hypothesis. In
practice, we have not found this to be a problem, since the worse segmentations seem to
be practically always pruned out by the decoder beam pruning.

4.3 Related work

Deligne and Bimbot (1995) have presented a method for findingvariable length units
for language modeling. They build an n-gram model over the found units and demon-
strate that the new model outperforms a word-based model. However, it seems that
the baseline word model is not well optimized, as the best baseline result was achieved
with 2-grams and the results seriously deteriorate when longer context is used. In the
follow-up work Deligne and Bimbot (1997) show that their method is capable of finding
morpheme-like units from text. They also generalize the method so that it can be used
for finding reasonable speech segments from audio data.

Geutner et al. (1998) decompose Serbo-Croatian words to stems and suffixes. In their
experiments, 3-gram models of the subwords performed clearly worse than the baseline
word model. They also tested a two-pass algorithm, where thefirst recognition pass
on a standard word n-gram model is used to produce a word lattice. The stems of the
words found in the lattice are searched in the database and the lattice is expanded with all
words of the database starting with the stems. This approachgives relative improvement
of 16% on the recognition WER.

Whittaker and Woodland (2000) use both a hand crafted rule set and heuristic algorithms
for splitting words to subword units. They note that the heuristic algorithms seem to be
producing morpheme-like units. Using 6-gram subword models interpolated with the
baseline 3-gram word model they get relative perplexity improvements around 5% com-
pared with baseline models for both English and Russian. In English speech recognition
experiments, the corresponding relative improvement was 2%. They speculate that the
improvement could have been larger in Russian speech recognition, but they did not
have a Russian recognition system for experiments. Kneissler and Klakow (2001) use a
similar setup for Finnish and German experiments. Heuristic algorithms with language
expert intervention are used for splitting the words. They make no comparison to word-
based models. Ordelman et al. (2003) split only the less common compound words of
Dutch and achieve 2% of relative improvement in WER.

Byrne et al. (2001) use morphological rules for decomposingthe Czech words into stems
and endings. A straight n-gram model over the subword units degrades the recognition
performance significantly. Tweaking the n-gram model so that the stems are predicted
using the knowledge of previous stems and discarding the endings in between brings
the recognition rates back to the level of word n-grams. Kwonand Park (2003) uses a
combination of morphological and heuristic rules for Korean speech recognition.



20 Chapter 4. Selecting the token set for language modeling

Szarvas and Furui (2003) use a morphological analyzer for splitting Hungarian words.
They also use a morphosyntactic analyzer for deciding whichcombinations of mor-
phemes are allowed. These are combined into a weighted finitestate machine used as
the language model. In their experiments, they get 2% relative reduction in WER. Er-
doğan et al. (2005) use a similar approach for Turkish, except instead of morphemes
they use half-words. For 2-gram language models they get a relative improvement of
15%. Increasing the model order reduces the gains, as the morphosyntactic information
is already represented in the longer context n-grams.

Arısoy et al. (2006) try splitting to syllables, morphemes,stems and endings. They
also have a model combining all of the units. They report slight improvements on the
recognition letter error rate and no improvements on WER. They used 2-gram models in
the recognition experiments. Using higher order models would probably have affected
the results.

Kirchhoff et al. (2006) compare several different morphologically motivated modes in
Arabic speech recognition experiments. They use similar morpheme-based models that
are used here (they call these models particle-based), morphological stream models,
cluster-based language models and factored language models. In factored language
models (Bilmes and Kirchhoff, 2003), each word correspondsto k features or factors.
The n-gram model is built over the factor vectors. The main benefit is that the backoff
can be specified through a selected subset of the factors. In the experiments, no models
give large improvements over the baseline word models. The morphology of Arabic
relies on templates, where the consonant template is fixed and determines the basic
meaning of the word and the choice of vowels determines the exact meaning of the
word. Thus, models that rely on splitting words to smaller units do not match the non-
contiguous morphology of Arabic particularly well.

Alumäe (2004) also uses morphological analyzer for splitting Estonian. The n-gram
morpheme-based model gets a 17% relative improvement over the baseline model in
WER. If the morphemes are clustered to 1000 classes and this class model is interpo-
lated with the baseline word model, relative improvement increases to 27%. The thesis
of Alumäe (2006) reports extensive experiments with several different models and pa-
rameterizations in Estonian. It is noted that relative improvement due to clustering is
reduced when training corpus size is increased. Using a factored language model where
the word features were augmented with part-of-speech classes and rescoring the n-best
list of recognition hypotheses gave 3% relative improvement in WER in the experi-
ments. Further using statistically found word classes as factors did not help.

Bisani and Ney (2005) advocate using subword n-gram language models for English.
They show that when the recognition data contains a high number of OOV words, the
subword model significantly outperforms the word-based model. Even with test data
containing a small amount of OOV words, they report improvedrecognition rates. The
subword units try to model single phonemes or graphemes so that the conversions be-
tween the two remain simple.

Hagen and Pellom (2005) propose using a modified text compression algorithm for
finding syllable-like units in an unsupervised manner. Their application, an interactive
literacy tutor, should also recognize partially pronounced words. In an English test, their
units perform similarly to grammatically generated syllables and outperform statistically



4.4. Introduction to the minimum description length principle 21

generated morpheme-like units. This result is not surprising, since the average length of
a syllable-like unit was shorter than the average length of amorpheme-like unit. Thus,
the syllable-like units are able to recognize shorter partially uttered words.

The research presented in this paragraph is based on the methods presented in Publi-
cations 1 and 2, where automatically induced morpheme-likesubword units have been
shown to work well for Finnish. Hacioglu et al. (2003) compare the baseline word mod-
els with morphemes and automatically induced morpheme-like units in Turkish. The
morpheme-based model is worse than the baseline word model and the automatically
induced subword units achieve 21% relative improvement of WER. Arısoy and Saraçlar
(2006) use automatically induced subword units and get 6% relative improvement in
WER over the baseline word model for Turkish. Using lattice expansion (as by Geutner
et al. (1998)) increases the performance of both word and subword unit based models
slightly. Kurimo et al. (2006) test the same approach for Finnish, Estonian and Turk-
ish and get significant gains over word models in all tests. Puurula and Kurimo (2007)
compare words with morphemes and automatically induced morpheme-like units in Es-
tonian. Morphemes give relative improvement of 27% in speech recognition tests which
was practically equal to the improvement gained by the automatic units (26%).

It should be noted that the error rates and relative improvements for the different meth-
ods should not be directly compared across different languages. The different mor-
phologies of the languages affect the performances of the methods.

4.4 Introduction to the minimum description length prin-
ciple

Before introducing the automatic splitting method used in the experiments, a mathe-
matical tool used by the method is briefly presented. The minimum description length
(MDL) principle states, that the shorter code we can use to describe our data, the better
the code models the data (Rissanen, 1989). The MDL algorithms come in many flavors,
as discussed by Creutz (2006). Of these, the so-called two-part coding scheme is simple
and intuitively fits the problems at hand. In this thesis, allreferences to MDL refer to this
version (also called crude MDL). A problem formulated in thetwo-part coding scheme
can be mapped to an equivalent problem under the maximum a posteriori framework by
choosing suitable prior distributions (Creutz, 2006).

The two-part coding scheme has been used in the context of language modeling be-
fore. Rissanen (1994) outlines how the MDL principle can be used for learning metri-
cal phonology (the organization speech segments into groups of relative prominence).
Ristad and Thomas (1995) use the MDL principle for determining the optimal n-gram
context lengths in a letter prediction task. In Publications 3 and 4 of this thesis, it is
applied to essentially the same problem, that is to determine which n-grams should be
included in the language model. Creutz and Lagus (2002) haveintroduced an MDL-
based algorithm for acquiring morpheme-like subword unitsfrom a text corpus. We use
the subword units generated by their algorithm as the base unit of our n-gram model in
Publications 1, 2, 3 and 4. Also Goldsmith (2001, 2006) has presented an MDL-based
algorithm for finding morphemes.



22 Chapter 4. Selecting the token set for language modeling

The two-part coding scheme can be explained in the followinghypothetical setting:
we have two parties and one of the parties wants to transmit data to the other party.
Parties are assumed to share some common knowledge, so that they can understand the
communication. The data could be transmitted directly, buta more efficient way of
sending the data is to transmit first a model describing the data and then the actual data.
This assumes that the regularities in the data are captured in the model and the actual
data can be described more compactly when this information is taken into account.
Thus, we are trying to minimize a two part cost functionD consisting of the cost of
encoding the model parametersθ and the cost of encoding the datax. The model family
λ is assumed to be known by both parties.

arg min
θ

D = arg min(Dmodel(θ|λ) + Ddata(x|θ, λ) (4.2)

A problem with the two-part coding scheme is that the optimalcost of encoding the
model is not self-evident (this corresponds to choosing theprior distributions in maxi-
mum a posteriori estimation). How much prior information should the two communi-
cating parties have about the model family and the model structure? What is the optimal
coding for the model given this shared information? In this thesis, the problem is ap-
proached in two quite different ways. In the word splitting algorithm (Creutz and Lagus,
2002) the cost function is carefully crafted using combinatorics and elaborate mathemat-
ical tools like the universal prior for integers. However, when creating the cost function
for encoding an n-gram model (Publications 3 and 4), the costis directly based on how
much memory the model actually takes when loaded into the speech recognition system.

4.5 About the Morfessor algorithm

In this work, the Morfessor system by Creutz and Lagus (2002,2005) is used for
automatic word splitting. The method is based on the minimumdescription length
(MDL) principle. The algorithm has few different versions.Here, we describe and use
the simplest formulation referred to as the Morfessor baseline method by the original
authors. The Morfessor software is available online at http://morfessor.forge.pascal-
network.org/.

4.5.1 MDL modeling in the Morfessor algorithm

Let us define the two parts of the MDL cost function (see Equation 4.2). First, the cost
of encoding the modelDmodel can be divided into two parts: the cost of encoding the
segment dictionary or lexicon of the modelDmodel(lexicon) and the cost of encoding
the probabilities of the segmentsDmodel(segment frequencies). The probabilities of the
segments will be needed for the second part of the MDL cost function, that is the cost
of encoding the training corpus (Equation 4.6).

Let us assume that the probability of each characterP (α) of the language is known. The
code length of each characterα is derived from the probability. To spell out a segment
w in the lexicon we need to sum over all characters of the segment. Each segment is



4.5. About the Morfessor algorithm 23

assumed to be terminated with a special character marking the end of the segment. Let
W be the number of words in the lexicon and length(wi) the number of characters in
the segmenti including the end of segment character. The cost of encodingthe lexicon
is then

Dmodel(lexicon) =

W∑

j=1

length(wj)∑

k=1

− log P (αjk). (4.3)

To encode the segment probabilities, we first send the total number of segmentsN seen
in the training data.N can be encoded using the universal prior for non-negative integers
by Rissanen (1989, page 34)

U(N) ≈ log c + log N + log log N + log log log N + . . . , (4.4)

wherec is a constant (c ≈ 2.865). As there are

(
N − 1
W − 1

)

ways of choosingW

positive integers that sum up toN , the segment frequencies can be encoded efficiently
(Rissanen, 1989, pages 35–37).

Dmodel(segment frequencies) ≈ U(N) + log

(
N − 1
W − 1

)

(4.5)

As the frequencies of the segments are now encoded, the ML estimates for the segment
probabilities can be obtained based on the counts. Having encoded the parametersθ of
the segmentation modelλ, we can now encode the corpus with the cost of

Ddata=

N∑

i=1

− log P (wi|θ, λ). (4.6)

4.5.2 The search for a good model

The MDL-based cost function measures how good a given model is. An algorithm for
finding the good models is also needed. The Morfessor algorithm uses a greedy search
to find the best model. Initially, all words in the training set are put in the lexicon of the
model. Each word is then examined separately. All possible ways of splitting the word
into two parts are tried. If the best split gives a lower cost than no split, the word is split
and the process is recursively applied to the two newly created segments. The algorithm
is iterated until convergence. A possible splitting procedure is shown in Figure 4.2. A
more formal presentation of the search is given in Publication 2.

The described algorithm is used for learning the model. For splitting the actual training
corpus of the language model, Viterbi search is used. The Viterbi search can find the
segmentations of words not originally used for learning thesplitting model. Viterbi
search was not used while training the splitting model, since it appears to be more prone
to get stuck in local minima of the search space.



24 Chapter 4. Selecting the token set for language modeling

reopen+ed open+minded

re+open mind+ed

re open mind ed

Figure 4.2: Hypothetical splitting trees for English lexicon consisting of two words.

4.5.3 Morfessor as morphological analysis tool

For measuring how well the automatic segmentation tool performs for morphological
analysis, the segments produced by the algorithm should be compared with the actual
morphemes of the given text. Creutz and Lagus (2007) performexperiments comparing
the segments of the Morfessor algorithm to those produced bya morphological anal-
ysis tool with rule sets built by experts. They also compare their system with another
system for learning morphology in an unsupervised manner, the Linguistica system by
Goldsmith (2001, 2006). In their tests, all tested versionsof the Morfessor algorithm
outperform the Linguistica for Finnish. For English, the methods give roughly similar
performance. The best algorithms give an F-measure of approximately0.7 for both lan-
guages. They also note that it is better to use the unique wordtypes of the training data
instead of using the actual word counts, if morphologicallymotivated segmentation is
desired. The size of the produced segmentation lexicon can be controlled for example
by removing the least frequent words from the training set. From now on, we will refer
to the subword units produced by the Morfessor algorithm asmorphs.

4.6 Experiment I: Subword models vs. word models

This experiment was set up to find out, whether using subword n-gram models could
significantly improve the speech recognition results. The experiment was originally
performed inPublication 1. Both syllable-based and morph-based n-gram models were
compared with word-based n-gram models in Finnish perplexity and speech recognition
experiments.

4.6.1 Data

The text corpus for training the morph segmentation and all the n-gram language models
was taken from two sources. Short newswires from the FinnishNews Agency (STT) and
an early version of the Kielipankki-corpus (CSC, 2007) containing books, magazines
and newspapers were used2. This amounted to 30 million words with 1.6 million unique
word forms. For testing, the transcript of the audio data containing 49 000 words was
used.

2Finnish IT center for science has used several names for thiscorpus during the past years. It has been
known as Kielipankki, Suomen kielen tekstipankki, parole-fi corpus and Finnish text collection. Here we will
use the original name Kielipankki throughout for clarity.



4.6. Experiment I: Subword models vs. word models 25

The speech data was an audio book read by one speaker. 12 hourswere used for training,
8 minutes was used as the development set for tuning the decoder parameters and half
an hour was used for testing.

4.6.2 Recognition system setup

The reader is referred to Section 2.2 for an overview of our speech recognition sys-
tem. In this experiment, we used power, mel-cepstral features and their deltas. No
feature transformations were used. Triphone models were constructed using the clus-
tering scheme based on the amount of available training data. The acoustic models did
not discern between the long and short variants of Finnish phonemes and no explicit
duration modeling was used. Deciding which variant to use was left to the language
models.

The stack decoder was used, so modeling the acoustic contextover language model unit
boundaries was not possible. When training the acoustic models, the language model
units were taken into account: the acoustic context was truncated at the language model
unit boundaries. Ignoring the language model unit boundaries during training of the
triphones resulted in significantly worse results. During decoding, each hypothesis was
created with and without a trailing word boundary regardless of the acoustics, although
the acoustic model of silence was forced to produce a word break. Otherwise, the place-
ment of word boundaries was left to the language model.

4.6.3 Language models

All language models were 3-gram models with GTK smoothing. The models were
trained with the CMU-Cambridge statistical language modeling toolkit by Clarkson and
Rosenfeld (1997). For the word-based model, the 64 000 most common words of the
training set were used. For subword models, the word splitting was prevented in the
middle of letters that map to one phoneme. The lexicon of our syllable-based n-gram
model contained 37 000 unique units. This high number is due to the restriction on
possible splitting points and due to the fact that Finnish rules were also used to segment
foreign words.

The early version of the Morfessor algorithm (Creutz and Lagus, 2002) used for seg-
menting the words did not take into account the coding cost ofthe morph frequencies
(Equation 4.5). In practice, omitting this term in the cost function does not affect the
segmentation much. The algorithm produced 300 000 unique morphs from our training
set. This number was reduced to 65 000 different morphs by pruning the least frequently
seen ones from the lexicon. The training data was resegmented using the pruned lexicon
resulting in effective 0% OOV rate.



26 Chapter 4. Selecting the token set for language modeling

Table 4.1: Perplexity results.

lexical number OOV 3-gram word
unit of units words hits perplexity

word 64000 20.2% 18.2% 4 300
syllable 36850 0.02% 98.9% 65 800
morph 64684 0.00% 77.6% 28 500

Table 4.2: Speech recognition results. LER stands for letter error rate.

lexical unit WER LER

word 56.4% 13.8%
syllable 43.9% 10.9%
morph 31.7% 7.3%

4.6.4 Experimental results

The models were first tested on the transcript of the audio data. The results for the
3-gram models are given in Table 4.1. Although the lowest perplexity is by the word-
based model, the low value is achieved by not modeling every fifth word at all (20%
OOV rate). The other models have significantly higher perplexity, but model practically
all words, also the rarest ones. This comparison does not take into account that if the
n-gram order is chosen to be the same for all of the models, themodels based on longer
units can model longer contexts. This can be seen, when we examine the percentage
of the highest order models used for modeling the test data. Word-based models only
need the highest order context occasionally, whereas the syllable models rely on the
highest order models practically always. Increasing the n-gram order would probably
not benefit the word-based model nearly as much as it would improve the syllable-based
model.

Corresponding speech recognition results are given in Table 4.2. The word-based model
does not achieve good recognition scores due to the high OOV rate. The syllable-based
model still suffers from the shortness of the modeled context. The morph-based model
appears to give the best results. Note that the decoder cannot model acoustic contexts
over the language model unit boundary, but the inter-unit dependencies are modeled.
Thus speech recognition experiment is slightly biased in favor of the models based on
longer units, since using them results in fewer language model unit boundaries. Based
on this experiment, it was decided to conduct further research on the use of subword
units for modeling languages like Finnish.

4.7 Experiment II: Morphs in n-gram models

This experiment was conducted to show that morph-based models are at least as good as
models based on words or morphemes generated by grammaticalrules. This experiment
was originally conducted inPublication 2.



4.7. Experiment II: Morphs in n-gram models 27

4.7.1 Data

The data used on the experiments was mostly the same as in Experiment I (Chapter
4.6.1). As slightly newer version of Kielipankki corpus wasused, the combined word
count of the Kielipankki corpus and STT newswires was now 40 million words. The
text data was converted to corresponding phonetic transcript.3 It is easy to transform
this transcript back to text for Finnish words, as the corresponding rules are simple.
For foreign names, the mapping from phonemes to text is ambiguous. The language
models were trained on the phonetic transcripts. We used thesame audio book as in
the first experiment with 20 minutes of data set aside for development and 30 minutes
for evaluation. This task is here referred to as the book task. Furthermore, we used 5
hours of news read by one speaker. 3.5 hours of data were used for training, 30 minutes
for development and 49 minutes for evaluation. This is referred to as the news task. In
addition to training acoustic models, the reference transcripts of the training portions of
the audio data was used for evaluation of the language models.

4.7.2 Recognition system setup

Compared with the recognition system used in the previous experiment (see Section
4.6.2), some changes were made. We still use the older decoder design, but now we de-
cided to use monophones, so that models with longer units would not gain advantage on
the recognition experiments. The phoneme state durations were modeled and the emis-
sion probability distributions for the long and short phonemes were modeled separately.
A maximum likelihood linear feature transform was applied as described in Section 2.2.

4.7.3 Language models

We constructed three different word-based models for our baseline models. First, we
trained a model using 410 000 most common words of the training set. The rest of the
words were tagged with the “unknown word” symbol. Second, wetrained a similar
model, except that all unknown words were split to phonemes and the n-gram model
was thus using a mixture of words and phonemes, resulting in 0% OOV rate. Two
variants of phonemes were used, a phoneme at a word boundary and a regular phoneme.
This provides unambiguous word boundaries. Third, a word model using 69 000 most
common words with unknown words split to phonemes was trained.

We also trained an n-gram model based on morphemes generatedby a morphologi-
cal analyzer4 utilizing a sophisticated rule set based on the two-level morphology of
Koskenniemi (1983). The analysis produced 79 000 differentmorphemes.

Finally, the Morfessor algorithm using the full cost function presented in Section 4.5.1
was used. Using the word types found in the training set as theinput for Morfessor, we
obtained 66 000 different morphs. Removing the word forms seen fewer than three times

3We are grateful to Nicholas Volk from Helsinki University for kindly providing the software.
http://www.ling.helsinki.fi/suopuhe/lavennin/.

4Licensed from Lingsoft, Inc.: http://www.lingsoft.fi



28 Chapter 4. Selecting the token set for language modeling

0 100 200 300 400 500 600

13

14

15

16

17

18

19

Size (MB)

E
nt

ro
py

 (
bi

ts
)

Book

 

 
Words 69k
Words 410k
Grammatical 79k
Statistical 66k
Statistical 26k

0 100 200 300 400 500 600

13

14

15

16

17

18

19

Size (MB)

E
nt

ro
py

 (
bi

ts
)

News

 

 
Words 69k
Words 410k
Grammatical 79k
Statistical 66k
Statistical 26k

Figure 4.3: The cross-entropy of the different models on the test data versus the cor-
responding model sizes. The six points along each curve are the orders
2–7 of the n-gram models.

in the corpus resulted in 26 000 different morphs. Both models were used in the tests.
Running the Morfessor algorithm on the word counts of the training data, where words
seen fewer than 20 times were removed, results in 35 000 morphs. It seems like these
morphs did not correspond as well to the morphological segmentation as the morphs
generated by the other means, so this splitting was not further tested.

We created n-gram models of orders from 2 to 7 using the SRILM toolkit with the de-
fault cutoffs (Stolcke, 2002). The models were smoothed with modified KN smoothing.

4.7.4 Experimental results

The results of the cross-entropy experiments with the phonemic transcripts of the text
data are given in Figure 4.3. We did not run the experiments onthe word model con-
taining OOV words, since that comparison would have been meaningless (7.3% OOV
rate for the book task and 5.0% for the news task). It is clear from the results that the
subword units are clearly more efficient with smaller models, but for larger models the
performances seem roughly equal. We can observe one weakness of the rule-based mor-
phological analysis: the rule set does not contain rules forsegmenting foreign words or
names. The statistical approach can produce some kind of segmentation for these words
and seems to get better results in the news task, where the foreign names and words are
more frequent.



4.7. Experiment II: Morphs in n-gram models 29

0 100 200 300 400

4

5

6

7

8

9

10

11

12

Model size (MB)

P
ho

ne
m

e 
er

ro
r 

(%
)

Book

 

 

3
4 5

3

4 5

3

4

5

3 4
5

34 5

Words 69k
Words−OOV 410k
Words 410k
Grammatical 79k
Statistical 26k
Statistical 66k

0 100 200 300 400

4

5

6

7

8

9

10

11

12

Model size (MB)

P
ho

ne
m

e 
er

ro
r 

(%
)

News

 

 

3
4 5

3
4 5

3
4

5

3 4 5
34 5

Words 69k
Grammatical 79k
Words 410k
Words−OOV 410k
Statistical 26k
Statistical 66k

Figure 4.4: Phoneme error rates and model sizes for different n-gram orders.

The speech recognition experiments were run for the model orders 3, 4 and 5 and the
results are shown in Figure 4.4. We have chosen to report the phoneme error rates,
as this measure is more sensitive to small errors. Also, the language models output
phonetic transcription so this error measure was the most straightforward to evaluate.
The phoneme error rate correlates very well with the letter error rate as there is a one-
to-one mapping between the phonetic and written form of the Finnish words.

In the book task, the models based on morpheme-like units give clearly better results
than the word-based models. The results on the news task are surprisingly different. It
seems like the word-based models are more sensitive to the differences in the training
and testing set domain: in the news task, the word-based models are much closer to
the morph-based models. This improvement of the word modelsis probably accounted
by the fact that the vocabulary of the word-based models cover the news set better and
the models do not need to use the phoneme-based part of the n-grams that much. The
phoneme-based n-grams are not a big problem in the evaluation of text entropy, but they
seem to make the hypothesis search in the decoder harder.

On the other hand, the rule-based morpheme models perform significantly worse in the
news task. The reason seems to be that the task contains a higher number of foreign
words, for which no rules have been written. For these words,the rule-based model has
to fall back on phoneme-by-phoneme decomposition.

The statistical significance of the results was tested with the Wilcoxon signed-rank test
(see Publication 2 for details). The most important resultswere that the models based
on morpheme-like units were significantly better in the booktask and that the morphs



30 Chapter 4. Selecting the token set for language modeling

were significantly better than the other models in the news task. These would seem to
be the interesting and practically significant differences, as well.

4.8 Concluding remarks

In this chapter, the problem of modeling a highly inflecting language using subword-
based n-gram models was examined. Some problems with the baseline word-based
approach were observed. A high OOV rate for unseen data was reported, even for
models with a very large vocabulary. It seems that the OOV words also reduce the model
performance for other words, as the context of the words is recognized incorrectly.

It has been demonstrated that the subword-based n-gram models work well for Finnish.
Of the tested models, the ones based on automatically induced morphs seem to work
best in our experiments. The morphemes generated by a rule set work well, when the
data is well covered by the rules. However, the automatic method can be applied to new
languages without expert knowledge and seems to give superior results. The morphs
have been used for Turkish and Estonian speech recognition systems as discussed in
Section 4.3 and seem to work well for these languages also.

The n-grams to be included in the model were chosen simply by taking all n-grams of the
training set that were at most as long as the maximum model order and then removing
the most infrequently seen n-grams. It seems likely that especially the models based on
short subword units would benefit from a more elaborate method for choosing the n-
grams to be included. Preliminary experiments using the methods presented in the next
chapter indicate that the syllable-based models are almostas good as the morph-based
models, when the n-grams of the model are selected with care.Letter-based models
however do not seem to give that good performance with respect to the model size.



31

Chapter 5

Selecting the set of n-grams for
the model

Let us examine an interpolated n-gram model, in which all n-grams from the training
corpus up to a given order are included. It is obvious that notall n-grams of the model
give equal contributions to the predictive power of the model. Let us start from the
2-gram probability estimate with the known one-word history “Tarja” . Increasing the
model to 3-grams with the words“president Tarja” should improve the modeling ac-
curacy considerably.1 Further increasing the modeled context to“with president Tarja”
on the other hand does not bring much additional informationto the model and the
corresponding n-gram could be removed. The modeling accuracy of n-gram models
is usually limited by the amount of memory available. Thus, reducing the size of the
model without degrading the predictive power of the model isimportant. The methods
for size reduction can be roughly divided in three categories: lossless compression of
the model, compression by quantization and compression by choosing only the most
relevant n-grams for the model. In this chapter, the last issue is chosen for examina-
tion. The interaction between pruning and quantization hasbeen studied for example by
Whittaker and Raj (2001a).

5.1 Related work

The simplest way of choosing the n-grams to be included in thelanguage model is
to include all n-grams found in the training set up to the desired highest order. This
so-called full model can be reduced in size by two complementary methods: frequency-
based pruning removes the n-grams that have been seen so few times that their estimates
are considered inaccurate. Likelihood-based pruning removes the n-grams that do not
increase the modeling power significantly.

When dealing with large data sets, it may be impossible to construct a full model which

1The current president of Finland is Tarja Halonen.



32 Chapter 5. Selecting the set of n-grams for the model

includes all the relevant n-grams due to memory constraints. Growing methods use
greedy search algorithms for adding the useful n-grams to the model and discarding the
less useful ones. This allows to add also the relevant high-order n-grams to the model.
Also the grown models can often be refined by pruning the resulting model. In this
section, we will examine work related to these issues.

5.1.1 Pruning n-gram models

The simplest frequency-based pruning method is the count cutoff method. The n-grams
seen fewer thanmn times are removed from the model, where the cutoff limit is usually
specified separately for each model ordern. A related idea is to remove the n-grams
hw, for which the contexth has been seen fewer thanm|h| times.

Seymore and Rosenfeld (1996) have presented a simple likelihood-based pruning method
calledweighted difference pruning(WDP) which operates as follows. An n-gram is
chosen from the model. The log-likelihood of the n-gram given by the current model
is compared with the log-likelihood given by a model, where the current n-gram has
been removed. The difference is weighted by a Good-Turing smoothed estimate of the
frequency of the n-gram. If the weighted likelihood does notexceed a given threshold,
the n-gram is removed from the model. The procedure is repeated once for all n-grams
in the model. In the experiments, the model size reduction bydecreasing the amount
of training data is compared with model size reduction by WDPand the conclusion is
that WDP gives better results. WDP is also compared with count cutoffs: for the WDP
model, a small count cutoff is applied first and then the pruning is performed. When
this is compared with a model of equal size, where more severecutoffs have been used,
the WDP model consistently gets better perplexities. No comparison included a WDP
model with no count cutoffs.

The WDP criterion does not take into account that removing ann-gramhw from the
model also changes the probabilities of other n-grams. Since the backoff coefficient
κ(h) is modified, estimates for all n-grams that utilize the back-off coefficient are mod-
ified. Stolcke (1998) presents theentropy-based pruning(EP) method and shows how all
changes in the probability can be efficiently estimated. In the experiments, EP slightly
outperforms WDP. A more detailed description of EP is given in Section 5.2.1.

Kneser (1996) has also presented a likelihood-based pruning method calledKneser
pruning (KP). In KP, an AD model is used for determining the cost of removing n-
grams from the model. The cost is determined similarly as forWDP. When the set of
n-grams to be included in the model has been decided, the model is estimated using
similar principles as in KN smoothing. KP is described in detail in Section 5.2.2.

Goodman and Gao (2000) show that count cutoffs work well whenonly slight pruning is
required. However, for more severe pruning both WDP and EP are shown to work better.
Also the experimental results by Bonafonte and Mariño (1996) with a very small training
set show that the combining frequency-based and likelihood-based methods gives the
best results. Niesler and Woodland (1999) experiment with pruning cluster-based n-
gram models. They observe that their likelihood-based pruning criterion consistently
outperforms the combination of count and context cutoffs.



5.1. Related work 33

In this work, the likelihood-based methods are further studied. It will be shown that the
existing pruning methods do now work well with the state-of-the-art KN smoothing. A
new pruning method for KN smoothed models calledrevised Kneser pruning(RKP) is
presented and the method is discussed in detail in Section 5.2.3. The method uses a
few different approximations than the other methods and it is shown in the experiments
(Section 5.3) that the method gives excellent results.

5.1.2 Growing n-gram models

Ristad and Thomas (1995) present a MDL-based method for growing an n-gram model.
When deciding whether an n-gram should be inserted into the current model, the benefit
of the increased modeling accuracy is weighted against the amount of bits needed for
storing the n-gram. The greedy search tries to insert all n-gramshw for which the prefix
h already exist in the model. In the experiments, a text containing 900 000 letters is used
for training letter-based n-gram models. They report significant improvements over the
baseline full n-gram model. However, it seems that the baseline model is not very good
as the performance of the model degrades rapidly when higherorder n-grams are used.
Also Ron et al. (1996) have presented a similar growing algorithm, which is formulated
in the framework of probabilistic finite automata. The n-gram selection is based on a
combination of frequency and likelihood-based criteria. Niesler and Woodland (1999)
present a word clustering algorithm. The cluster n-gram model is grown by an algo-
rithm, where new n-grams are added by a greedy algorithm similar to the one by Ristad
and Thomas (1995). The cost criterion is based on leave-one-out cross validation.

Siu and Ostendorf (2000) present the n-gram model in a tree structure. They show,
how operations for modifying the tree correspond to pruningthe n-gram model, word
skipping and context-dependent word clustering. They alsoshow how the tree can be
grown. In their experiments, the most significant improvements were gained through
finding the optimal model context length. The tree is grown one distribution at a time
and contrary to the other methods, the search algorithm proceeds by growing the n-
grams towards the past.

A new algorithm for growing KN smoothed n-gram models calledKneser-Ney growing
(KNG) is described in Section 5.2.5. The growing algorithm is similar to the one by
Niesler and Woodland (1999). The selection criteria is based on the MDL principle.
Whereas Ristad and Thomas (1995) use an elaborate theoretical MDL cost, a simpler
and more practically oriented MDL cost function is used in KNG. In the experiments
described in Section 5.3, the growing method is shown to improve the results obtained
by RKP.

5.1.3 Other related work

There are other ways for controlling the context modeled by the n-gram model. Several
adjacent words can be merged and used as one token in the language model, as shown
for example in the paper about word clustering by Yamamoto etal. (2003). Deligne and
Bimbot (1997) have also studied combining several observations into one underlying



34 Chapter 5. Selecting the set of n-grams for the model

token. The related idea of splitting words into subword units was studied in Chapter 4
of this thesis.

Seneviratne and Young (2005) present a language model with ahidden vector state. The
state of the model is a simple stack of a push down automaton. Based on the state, the
next word can be predicted. In practice, the probability estimation is decomposed so
that the model can choose which words of the history the estimate for the probability of
the next word is based on. In the experiments, a cluster-based model with around 100
clusters is estimated using both n-gram and hidden vector state methods. For this re-
stricted task, the hidden vector state models are shown to give consistent improvements
in perplexity, around 10%.

Virpioja and Kurimo (2006) present a method for growing variable order n-gram mod-
els, where the context can be clustered. In experiments, their method is compared with
the earlier version of KNG (Publication 3 of this thesis) with a fairly small training set
of around 10 million words. In the experiments the clusteredmodels give somewhat
better results. Publication 4 describes, how using a more efficient pruning algorithm
can improve the results. Virpioja has performed preliminary experiments and the results
indicate that applying similar changes to their algorithm provides comparable improve-
ments.

It is possible to select only some word positions of the givencontext that will be taken
into account. These so-called skip n-gram models have been introduced in the context
of both traditional n-grams (Huang et al., 1993; Martin et al., 1999) and maximum en-
tropy models (Rosenfeld, 1994). The extensive tests of Goodman (2001) also included
skip n-gram models. His conclusion is that skip n-grams are reasonable for small and
intermediate amounts of data, especially if high order n-grams cannot be used for some
reason. One motivation for using these methods is to avoid adding a full new order to
the n-gram model. The pruning and growing methods presentedin this chapter produce
a similar effect.

5.2 Algorithms for pruning and growing n-gram models

Let us start by defining a few terms. Anon-leaf n-gramhw of a model is an n-gram,
which is a prefix of some other n-gramhwv found in the model. Correspondingly, aleaf
n-gramhw is an n-gram, which is not a prefix to any other n-gram. This terminology
stems from the presentation of the language model as an n-gram prefix tree.

The mathematical notations and the smoothing methods relevant to this section were
presented in Chapter 3.



5.2. Algorithms for pruning and growing n-gram models 35

5.2.1 Entropy-based pruning (EP)

EP for backoff models was presented by Stolcke (1998). The costd of removing n-gram
hw form the modelM is defined as

d(hw) =
∑

v

PM (hv) log
PM (v|h)

PM ′(v|h)
(5.1)

PM denotes the probability estimate of the original model andPM ′ is the estimate of a
model, where the n-gramhw has been removed. The summation over wordsv reflects
the fact that the probability estimates of other n-grams change as well when the backoff
weights are recalculated for the pruned model. This change can be efficiently computed.
When the cost of removal has been calculated for all n-grams of the model, the n-grams
for which the cost does not exceed a given threshold are removed from the model.

EP has some approximations. The pruning of one n-gram is assumed to be independent
of the pruning of any other n-gram. It is assumed thatPM (c|b) is a good estimate for
PM (c|ab). This is a valid approximation when the smoothing of the model does not
optimize the lower order probability distributions based on higher order distributions
(e.g. for AD and GTK). The same approximation is used for the weightingPM (hv).
Also, it is assumed that the weighting can be approximated from the n-grams of the
model.

P (abc) ≈ PM (a)PM (b|a)PM (c|ab) (5.2)

EP has the advantage that besides the original model, no additional information is re-
quired for performing the pruning. Some other methods require that the counts of the
n-grams from the training data should be also known. On the other hand, some of the
approximations of EP do not work well with KN smoothing.

5.2.2 Kneser pruning (KP)

In KP (Kneser, 1996), an auxiliary model using AD is built first. Using the AD model,
the set of n-grams to be removed from the model is determined.The cost of removing a
leaf n-gramd1(hw) is defined as

d1(hw) = P (hw) log
P (w|h)

γM (h)P (w|ĥ)
. (5.3)

The cost of removing a non-leaf noded2(hw) is the average of the costs of removing
all the n-grams, which havehw as prefix.

When all the n-grams of the model have been tested for removal, a new model is built
using only the remaining n-grams. The new model tries to preserve the marginal distri-
butions (Equation 3.11) similarly to KN smoothing. Appendix A.2 shows the associated



36 Chapter 5. Selecting the set of n-grams for the model

approximations. The resulting probability estimate is2

P (w|h) =

max

{

0,
∑

vhw/∈λ

C(vhw) + D|hw|

∑

vhw∈λ

1−D|h|

}

∑

w′

(
∑

vhw′ /∈λ

C(vhw′) + D|hw′|

∑

vhw′∈λ

1

) +γ(h)P (w|ĥ), (5.4)

where the notationvhw ∈ λ refers to the n-grams included in the modelλ andvhw /∈ λ
to the n-grams not in the model. The value of the the interpolation coefficientγ can be
easily solved.

The method uses several approximations. The removal of an n-gram is assumed to only
change the probability of that n-gram and the changes due to changing interpolation
coefficientsγ are ignored. The selection criterion is based on a differentkind of model
than the final model. Like in EP, the removal of an n-gram is assumed to be independent
of the removal of any other n-gram. Also like EP, for the purpose of weighting the cost
criterion the model probabilityP (c|ab) is assumed to be a good estimate forP (c|b).
Since the model selection is made using an AD model, this estimate is reasonable. In
preliminary experiments we noticed that different approximations have a significant im-
pact on the performance of the method.

5.2.3 Revised Kneser pruning (RKP)

In this section, an algorithm for pruning KN smoothed n-grammodels is presented. The
algorithm is related to both KP and EP, but some approximations are different. The
RKP does not assume that the pruning of different n-grams is independent. Instead,
an n-gram is removed immediately after the pruning decisionhas been made, resulting
in a simple greedy search for the best model. For the pruning criterion, the WDP cost
criterion is used, except instead of using the Good-Turing discounted n-gram count for
the weighting, we use the n-gram count in the training set. This is simpler, but probably
slightly less accurate.

When an n-gram is pruned, the lower order distributions of the model are modified.
The modification relies on a simple observation: in the original KN smoothing for full
models (see Equation 3.12), the probability estimates for the highest order n-grams (leaf
n-grams) are based on the number of n-grams in the training set. For the non-leaf n-
grams, the estimates are based on the number of different words that can precede the
n-gram. It turns out that when an n-gram is removed from the model, the model can be
easily modified to reflect this behavior.

Let us initialize the variables with the values of a full KN smoothed model.3 Addi-
tionally for each pruned n-gramhw, the sum of pruned countsL(h) for the prefixh

2The original paper presents the estimate for a backoff model(Kneser, 1996, Equation 9) and there are
parentheses missing aroundN(v, hk, w) − d in the numerator and denominator. Despite the different ap-
pearances, the equations are otherwise equivalent.

3C(hw) andS(h) were defined in Section 3.1.1.D|h| was defined in Section 3.1.2 andC′(hw) was
defined in Section 3.1.3.



5.2. Algorithms for pruning and growing n-gram models 37

PRUNEORDER(k, ǫ)
1 for {hw : |hw| = k ∧C′(hw) > 0} do
2 logprob0 ← C(hw) log2 PKN(w|h)
3 PRUNEGRAM(hw)
4 logprob1 ← C(hw) log2 PKN(w|h)
5 if logprob1 < logprob0 − ǫ
6 undo previous PRUNEGRAM

PRUNEGRAM(hw)
1 L(h)← L(h) + C′(hw)
2 if C′(ĥw) > 0
3 C′(ĥw)← C′(ĥw) + C′(hw) − 1
4 S(ĥ)← S(ĥ) + C′(hw) − 1
5 C′(hw)← 0

Figure 5.1: The pruning algorithm.k is the order to be pruned andǫ is the pruning
threshold. Note that lines 3 and 6 in PRUNEORDER modify the counts
C′(·), which also alters the estimatePKN(w|h). PRUNEORDER is called
for each order of the model starting from the highest order.

is updated. The RKP algorithm is shown in Figure 5.1. The algorithm is allowed to
prune non-leaf nodes even though this may not be theoretically justified. Preliminary
experiments indicate that pruning the non-leaf nodes improves the performance of the
method.

The probability estimates of the model are similar as for KN smoothing (Equation 3.8),
but now the pruned probability mass has to be taken into account.

P (w|h) =
max{0, C′(hw) −D|h|}

S(h) + L(h)
+ γ(h)P (w|ĥ) (5.5)

The interpolation coefficientγ is

γ(h) =

∣
∣{v : C′(hv) > 0}

∣
∣D|h| + L(h)

S(h) + L(h)
. (5.6)

For efficiency, a separate variable for
∣
∣{v : C′(hv) > 0}

∣
∣ can also be maintained.

Also, C(hw) may be replaced byC′(hw) in lines 2 and 4 of PRUNEORDER for a
slightly lower memory consumption and slightly faster computation. In preliminary
experiments, this did not affect the performance of the produced models.

5.2.4 Comparison of the approximations of EP, KP and RKP

EP and KP assume that pruning an n-gram is independent of the other pruning operations
while in RKP, the model is modified immediately after the pruning decision has been
made. This results in a simple greedy search for the best model. Also, KP uses different
model to decide, which n-grams to remove, than the final KN smoothed model. The
selected set of n-grams is probably quite different from theset that would be chosen



38 Chapter 5. Selecting the set of n-grams for the model

using the correct model. After the set of n-grams to be prunedhas been decided, KP and
RKP are almost equivalent. Indeed, the estimates of the RKP model (Equations 5.5 and
5.6) are identical to the estimates of the KP model (Equation5.4) except that KP term
D|hw| is approximated to be 1. The approximation allows for a more efficient search,
when the discount parameters are optimized on held-out dataafter pruning. Also, in the
given form RKP can easily be generalized to use three discounts, similarly to modified
KN smoothing. The main difference between KP and RKP is in theselection of the
n-grams to be pruned. As will be seen in the experiments (Section 5.3), RKP seems to
give clearly superior results.

EP takes into account, how the probability of all n-grams change when the current n-
gram is removed, whereas KP and RKP only calculate the difference for the current
n-gram. In practice, the difference due to this should be small: WDP and EP perform
almost equally well (Stolcke, 1998). On the other hand, EP does not modify the lower
order distributions. Also, the weighting of the differenceof the log likelihoods is based
on an approximation that does not hold well for KN smoothed models (Equation 5.2).
In the experiments (Section 5.3), RKP is shown to outperformEP for KN smoothed
models.

5.2.5 Kneser-Ney growing (KNG)

It is also possible to construct a language model by startingfrom an empty (or a 1-gram)
model and searching for the n-grams that should be added to the model. In this section,
a growing algorithm based on the same principles as RKP is presented.

Let us initialize the model to a 1-gram KN smoothed model. As all possible combi-
nations of n-grams cannot be tried, greedy search is used. For each n-gramhw in the
model, the algorithm tries adding all n-gramshwv in the training set to the model. As
the n-grams are added, the model is modified according to the following principle: leaf
nodes should utilize the counts from the training data as thebasis for the probability es-
timates, whereas non-leaf nodes should use the number of words preceding the n-gram
in the training data. Figure 5.2 describes the growing algorithm in detail. The factorδ
is used for controlling the relative importance of the modeling accuracy with respect to
the model size. Increasingδ decreases the size of the resulting model. The probability
estimates of the model are the same as for RKP (Equations 5.5 and 5.6).

The purpose of the pruning algorithms presented earlier is to reduce the model size.
The presented algorithms implicitly assume that all n-grams have equal impact on the
model size. In KNG, we have chosen to use an explicit cost function for modeling the
cost of storing the n-gram. The cost function is defined in theMDL framework. The
derivation of the cost function is presented in Appendix A.3. The resulting cost function
consists of two parts: the well-known weighted difference of log likelihood and the cost
of encoding the n-gram in the model, which is given below.

∆Cost= α(Nnew −Nold) + Nnew log2 Nnew −Nold log2 Nold (5.7)

N is the number of n-grams in the model. The constantα is related to the number
of bits used for storing the probability estimates. A similar cost function can also be
used for RKP. The resulting cost function is quite close to the implicit cost used in the



5.2. Algorithms for pruning and growing n-gram models 39

GROWORDER(k, δ)
1 for {h : |h| = k − 1 ∧ C′(h) > 0} do
2 size0 ←

∣
∣{g : C′(g) > 0}

∣
∣

3 logprob0 ← 0
4 for w : C(hw) > 0 do
5 logprob0 ← logprob0 + C(hw) log2 PKN(w|h)
6 for w : C(hw) > 0 do
7 ADDGRAM(hw)
8 size1 ← |{g : C′(g) > 0}|
9 logprob1 ← 0

10 for w : C(hw) > 0 do
11 logprob1 ← logprob1 + C(hw) log2 PKN(w|h)
12 logscost= size1 log2(size1)− size0 log2(size0)
13 sizecost← (size1 − size0)α + logscost
14 if logprob1 − logprob0 − δ · sizecost≤ 0
15 undo previous ADDGRAM(hw) for eachw
16 re-estimate all discount parametersDi

ADDGRAM(hw)
1 C′(hw)← C(hw)
2 S(h)← S(h) + C(hw)
3 if C′(ĥw) > 0
4 C′(ĥw)← C′(ĥw) − C(hw) + 1
5 S(ĥ)← S(ĥ)− C(hw) + 1

Figure 5.2: The growing algorithm.k is the order to be grown andδ controls the
relative importance of the model compactness in comparisonto the model
accuracy.



40 Chapter 5. Selecting the set of n-grams for the model

pruning algorithms, where∆Cost = α(Nnew − Nold). A theoretically more accurate
cost function, like the one used by Ristad and Thomas (1995) can be defined. Since we
are trying to optimize the performance of the model with respect to the model size in a
real speech recognition system, the proposed cost functionshould give better values.

Since KNG grows the model one distribution at time, there will still be individual n-
grams in the model that do not contribute much to the overall modeling accuracy. These
can be pruned with RKP. Also, to improve the search for the best model, it would be
possible to make the search less greedy and alternate between the growing and prun-
ing phases. The resulting search algorithm would be akin to simulated annealing and
could possibly avoid some local minima. However, this wouldsignificantly increase the
computational burden of the algorithm.

5.3 Experiment III: Comparison of pruning and grow-
ing algorithms

In this section, the EP, KP, RKP and KNG algorithms are compared. The experiment
was originally presented inPublication 4.

5.3.1 Data

For training the Finnish language models, we used 150 million words from the Kieli-
pankki corpus (CSC, 2007). Simple preprocessing for cleaning up the data and spelling
out any number sequences was performed. Then the data was split to 8428 unique
morphs using the Morfessor algorithm (Creutz and Lagus, 2005) with no restrictions
to where a word could be split. This resulted in corpus of 460 million morphs. For
the methods that require a held-out data set, 110 000 morphs were set aside. 510 000
morphs were left to the test set.

The audio data for the Finnish speech recognition tests was taken from the SPEECON
corpus (Iskra et al., 2002). Only adult speakers in clean recording conditions were used.
The training set consisted of 26 hours of material by 207 speakers. The development
set was 1 hour of material by 20 different speakers and the evaluation set 1.5 hours
by 31 new speakers. Only full sentences without mispronunciations were used in the
development and evaluation sets.

The English text corpus was taken from the second edition of the English LDC Giga-
word corpus (Graff et al., 2005). 930 million words from the New York Times were
used. The last segments were excluded from the training set:200 000 words for the
development set (if needed by the method) and 2 million wordsfor the test set. 50 000
most common words were modeled and the rest were mapped to an unknown word
token.



5.3. Experiment III: Comparison of pruning and growing algorithms 41

5.3.2 Recognition system setup

The reader is referred to Section 2.2 for an overview of our speech recognition system.
In this experiment, power and mel-cepstral features with deltas and delta-deltas were
used. Maximum likelihood linear feature transform and cepstral mean subtraction were
used. Triphones were clustered using the decision-tree-based algorithm. No special pro-
cessing was made to convert the text to phonemes and the system relied on the triphone
models (actually triletter models) to find the correct pronunciation for each letter based
on the context. For modeling the context of triphones, shortsilences between words
were removed and the adjacent letters were used instead. Theword boundaries were
modeled by a one-state model of a short silence. The simple postprocessing approach
was used for modeling the phoneme durations. For this experiment, the new decoder
was used.

5.3.3 Language models

For the Finnish experiments, full 5-gram models were constructed using KN smoothing,
modified KN smoothing and GTK smoothing. The SRILM toolkit (Stolcke, 2002) was
used to perform EP on the modified KN smoothed and GTK smoothedmodels. KP was
used for KN smoothed models. RKP was used on the modified KN smoothed model.
KNG was used to grow a model to similar size as the full unpruned 5-gram model and
the resulting model was pruned with RKP.

For the English experiments, full 4-gram models were built using KN smoothing and
modified KN smoothing. A KNG model was grown to the largest size that was practical
with our implementation. KP was used for the KN smoothed model. RKP was used for
the modified KN smoothed model and the KNG model. Also, GTK andKN smoothed
4-gram models, where all 3-grams seen once and all 4-grams seen 3 or fewer times were
removed, were built. Both models were pruned by EP. The cutoffs were used to reduce
the memory consumption of the SRILM tools so that the models could be estimated and
pruned.

5.3.4 Results and discussion

The results of the Finnish and English cross-entropy experiments are shown in Fig-
ures 5.3 and 5.4. The reader should remember that the cross-entropies (or perplexities)
are not comparable across languages. The sentence cross-entropy for the best model of
each language was around 160 bits. An English sentence contained on average 20 words
and a Finnish sentence 11 words. This means that the Finnish cross-entropies are almost
double the English cross-entropies and the Finnish perplexities are almost the English
perplexities squared. A Finnish sentence had on average 34 morphs (word break tokens
included).

The results confirm that KN smoothing outperforms GTK smoothing for full models.
The differences between KN smoothing and modified KN smoothing are small. It can
be seen that the older pruning methods (EP, KP) do not work well for KN smoothing.



42 Chapter 5. Selecting the set of n-grams for the model

8192

11585

16384

23170

32768

46341

W
or

d 
pe

rp
le

xi
ty

10
6

10
7

10
8

13

13.5

14

14.5

15

15.5

C
ro

ss
−

en
tr

op
y 

(b
its

 / 
w

or
d)

Model size (number of n−grams)

small

medium
large full

 

 
5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

Figure 5.3: Cross-entropy results on the Finnish text corpus. Note thatthe reported
cross-entropy and perplexity values are normalizedper word.

181

194

208

223

239

256

274

294

W
or

d 
pe

rp
le

xi
ty

10
7

10
8

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

C
ro

ss
−

en
tr

op
y 

(b
its

 / 
w

or
d)

Model size (number of n−grams)

small

medium

large full

 

 
4g EP+cutoff (KN)
4g KP
4g EP+cutoff (GT)
4g RKP
KNG

Figure 5.4: Cross-entropy results on the English text corpus.



5.3. Experiment III: Comparison of pruning and growing algorithms 43

1 5 10
0

10

20

30

40

50

60

70
small

order

n−
gr

am
s 

(%
)

 

 

1 5 10
0

10

20

30

40

50

60

70
medium

order

n−
gr

am
s 

(%
)

 

 

1 5 10
0

10

20

30

40

50

60

70
large

order

n−
gr

am
s 

(%
)

 

 

1 5 10
0

10

20

30

40

50

60

70
full

order

n−
gr

am
s 

(%
)

 

 

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

all 5g full
KNG

Figure 5.5: Distribution of n-grams of different orders for Finnish. Orders up to 10
are shown. The highest order in the KNG model was 16.

Taking higher order counts into consideration with the KNG algorithm can clearly ben-
efit the model. The n-gram distribution over the n-gram orderfor the models is drawn in
Figure 5.5. The distributions become more similar as more pruning is applied. Figure
5.6 shows the relative portion of n-gram orders utilized when evaluating the test set.
From the figures it can be seen that both KP models and EP modelswith KN smooth-
ing produce notably different distributions compared withthe other methods. These
two methods were also the worst performers. It can also be seen that the grown model
utilizes a significant amount of the high order n-grams whichwere not included in the
other models.

In the English cross-entropy experiments we see that the 4-gram models pruned only
with count cutoffs work surprisingly well. The reason for using the cutoffs was to bring
down the memory consumption so that SRILM tools could be used. However, the results
seems to confirm that using slight cutoffs is beneficial. Later preliminary experiments
showed that cutoffs seem to give similar benefits for the RKP and KNG algorithms.
Pruning the KN smoothed models either with EP or KP degrades the model fast. Using
KNG seems to give relatively large improvements.

The results of the Finnish speech recognition experiments are shown in Figure 5.7. The



44 Chapter 5. Selecting the set of n-grams for the model

1 5 10
0

10

20

30

40

50

60

70
small

order

n−
gr

am
s 

(%
)

 

 

1 5 10
0

10

20

30

40

50

60

70
medium

order

n−
gr

am
 h

its
 (

%
)

 

 

1 5 10
0

10

20

30

40

50

60

70
large

order

n−
gr

am
 h

its
(%

)

 

 

1 5 10
0

10

20

30

40

50

60

70
full

order

n−
gr

am
 h

its
 (

%
)

 

 

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

all 5g full
KNG

Figure 5.6: Distribution of the order of n-grams that were used when evaluating the
test corpus. Orders up to 10 are shown.

10
6

10
7

10
8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Le
tte

r−
er

ro
r 

(%
)

Model size (number of n−grams)

small

medium

large full

 

 
5g EP (KN)
5g KP
5g EP (GT)
5g RKP
KNG

Figure 5.7: Results of the Finnish speech recognition task. Note that wereport the
letter error rate and not the language model token error rate.



5.4. Concluding remarks 45

results show that pruning a KN smoothed model with either EP or KP does not yield
good results. The entropy pruned GTK model, RKP and KNG models perform roughly
equally well. The significant differences among the performances of the models in
both cross-entropy and speech recognition tests have been highlighted in this chapter.
Furthermore, an explicit analysis of the statistical significances is given in Publication 4.

Increasing the size of the language model improves the results through the tested range
of model sizes. Thus, in an application, one should choose asbig a language model
as practical, taking into account the needs of the acoustic models as well as the cost of
the computer memory. In our recognizer, one n-grams consumes 16 B of memory. A
model of 1 GB corresponds to 60 million n-grams. It is possible to represent a language
model more compactly, depending on the demands of the application (random access
time, available processing power, etc.).

5.4 Concluding remarks

In the experiments, it was confirmed that KN smoothing gives better results than GTK.
It was shown that although EP works well for GTK models, it does not work well with
KN smoothed models. Also KP has some assumptions that seem todegrade the results
significantly.

A new pruning algorithm (RKP) was presented. It was shown that the algorithm per-
forms at least as well as the baseline methods in general and outperforms the other
methods for KN smoothed models. An algorithm for growing n-gram models based on
similar principles was also presented (KNG). It was shown that it is possible to take
useful high order n-gram dependencies into account with thealgorithm and the method
gave clear benefits in the cross-entropy experiments. The main benefit of the growing
algorithm is that a good initial model for the pruning algorithms can be constructed
using reasonable amounts of computing time and memory.

The older pruning methods (WDP, EP, KP) assume implicitly that pruning any n-gram
from the model is equally useful. It was presented, how an explicit cost function can be
constructed and taken into account during pruning and growing. The explicitly formed
cost function turned out to be highly similar to the implicitcost used by the older pruning
algorithms.

The software implementing the RKP and KNG methods is available at http://varikn.
forge.pascal-network.org/. A short description of the software is included in the paper
by Siivola et al. (2007).



46

Chapter 6

Continuous space language
models

The language models presented here so far are not taking any advantage of the syntactic
or semantic similarity of the words. Intuitively it seems clear, that we should be able to
use the information in the training set sentence“Monday evening was cloudy”for esti-
mating the probability of the sentence“Tuesday morning was sunny”. The traditional
way of exploiting the semantic similarity for n-gram modeling is to use some clustering
algorithm to group similar words together. In this section,we explore the continuous
space representation of the words for taking advantage of the semantic similarities.

6.1 Related work

6.1.1 Discrete clustering

Brown et al. (1992) present a method for clustering words so that each word belongs to
exactly one cluster (hard clustering). The method will be called Brown clusteringin this
work, although it has also been known as IBM clustering. The conditional probability
of a word is approximated by

P (wi|wi−1 . . . wi−n+1) = P (wi|G(wi))P
(
G(wi)|G(wi−1) . . .G(wi−N+1)

)
, (6.1)

whereG maps the word to the corresponding cluster. In general, there are significantly
fewer parameters in this kind of model than in a corresponding word-based model, as the
n-gram probabilities are only approximated for the clusters. The clustering is optimized
by a greedy search. The words are moved around the clusters until the likelihood of
the training data is no longer increased. In their perplexity experiments, a cluster-based
model was slightly worse than a word-based model. Interpolating the two models gave
slightly better results than the baseline word model.



6.1. Related work 47

Kneser and Ney (1993) formulate a similar clustering algorithm, where the order of the
cluster n-grams is limited to 2. Instead of predetermining the number of classes, they
use leave-one-out validation for choosing the number of clusters. They conducted ex-
periments on quite small data sets (100 000 words for German,1 million words for En-
glish). The cluster-based model gives clearly better perplexity than the baseline 2-gram
word model for both languages. Further improvements are obtained by interpolating
the cluster-based model with a part-of-speech-based cluster n-gram model and a word
based n-gram model. The models trained with the ML or leave-one-out criterion give
practically identical results.

Blasig (1999) uses Kneser pruning for producing the baseline n-gram model. Words are
clustered with the algorithm by Kneser and Ney (1993). Several ways of combining the
clustering with the baseline model are studied. The most effective method is to allow
words to be represented either by themselves or by their cluster and using the n-gram
estimates of all of the representations. Interpolating this kind of model with the baseline
yields 8% improvements in perplexity and 6% relative in speech recognition WER. Mori
and Kurata (2005) use clustering with a growing algorithm based on probabilistic finite
automata (Ron et al., 1996). Slight improvements in perplexity over the baseline word
3-gram model are reported.

Goodman and Gao (2000) use a slightly different approximation for their probabilities.

P (wi|wi−1 . . . wi−n+1) =P (wi|G1(wi), G2(wi−1) . . . G2(wi−n+1))

· P
(
G1(wi)|G2(wi−1) . . . G2(wi−N+1)

) (6.2)

Compared with Brown clustering (Equation 6.1), the left andright context of words are
separately clustered and the conditional probability of the word is not assumed to be
independent of the previous clusters. With this kind of approximation, the model size
can actually grow compared with the word-based model. They compare their model
with Brown clustering. They also train word-based models which have been pruned
by count cutoffs, entropy-based pruning (Stolcke, 1998) orweighted difference pruning
(Seymore and Rosenfeld, 1996). They use entropy-based pruning on the cluster models
as well, pruning the cluster models from large models all theway to very small sizes.
In the experiments, perplexity with respect to the size of the model is measured. Their
clustering outperforms the other models consistently for all model sizes.

Niesler and Woodland (1999) present a model, where the wordsdo not belong to single
clusters. Instead, a word has some probability of belongingto any cluster. This is called
soft clustering. The experiments show that a word-based model outperforms the cluster-
based models in all perplexity experiments. Analysis of theresults shows that 90% of
the improvement achieved by the word-based model for 3-grams is based on the esti-
mates of 35% of the distinct 3-grams. Motivated by this fact,they build models by first
pruning the word-based model and using the cluster-based model for the backoff proba-
bility estimates. For a small training set, this method achieves significant improvements
over the baseline for all model sizes. For large training sets, the proposed approach
can improve the smallest models significantly, but for largemodels the perplexities are
practically identical.



48 Chapter 6. Continuous space language models

6.1.2 Word context and continuous features

Finding semantic similarities for discrete symbols directly seems to lead to algorithms
which test a number of different clusterings and choose the one giving the best likeli-
hood. Often, there is huge number of different possible clusterings and even the greedy
search algorithms need to examine many of them to find a good clustering, leading to
a high computational burden. If we can transform the problemfrom clustering discrete
symbols to comparing distances in continuous space, we haveat our disposal several
methods developed for handling data with continuous values. The transformation to
continuous space should preserve the essential semanticalinformation by mapping sim-
ilar words close to each other.

Ritter and Kohonen (1989) show a method for using the contextof the words for gen-
erating a mapping function, which places similar words close to each other. They use
the self-organizing map (Kohonen, 1995) for visualizing the higher dimensional word
feature space. They perform proof-of-concept experimentson simple artificially gener-
ated data sets and show that the proposed method can find semantic similarities between
words. Honkela et al. (1995) run the corresponding experiment on real data. They show
using 200 tales by the Grimm brothers that similar words willend up close to each
other. The advantage of this method compared with the discrete space methods is that
finding a clustering is very fast and some local minima of the discrete method are pos-
sibly avoided. Also, the distance between any pair of words can be measured instead of
just stating that the words do belong or do not belong in the same cluster. The disad-
vantage for n-gram models is that the method is not directly optimizing the probability
estimates for the n-grams. This method is further explored in Section 6.2. In a similar
vein, Miikkulainen and Dyer (1991) show thatmultilayer perceptron(MLP) networks
can learn to assign case roles to sentence constituents.

Yamamoto et al. (2003) have presented a model, where the probability calculations are
similar to Equation 6.2 in spirit. The clustering of the wordis determined by its position
in the n-gram.

P (wi|wi−1wi−2) = P (wi|G1(wi))P
(
G1(wi)|G2(wi−1)G3(wi−2)

)
(6.3)

The 2-gram and 3-gram probability distributions are used for forming the continuous
valued feature vectors in their model. The hard clustering functionsG1, G2, G3 are
determined based on the distances of the vectors. The modelsare trained on a small
data set of 1.4 million words. In comparison to the baseline 3-gram model, their 3-gram
multi-class n-gram model obtained relative improvement ofaround 3% in perplexity
and relative reduction of 8% in speech recognition error. Combining some words into a
single token in the language model gives an equally large additional improvement.

6.1.3 Language modeling using multilayer perceptron networks

MLP networks can be used to jointly optimize the mapping of the words and the con-
ditional probability estimates of the words. Schmidhuber and Heil (1996) use a MLP
network for predicting the characters of a text and show thatin a task of data compres-
sion, the neural algorithm achieves excellent results. However, the high computational



6.2. From discrete symbols to continuous space 49

burden of the algorithm is reported as a weak point of the method.

Schwenk and Gauvain (2002), later Schwenk (2007), use essentially the same method
for building word-based language models. The problem with this approach too is that
the computational burden of the method is high. The trainingis optimized using several
methods. The biggest reductions of the training time are achieved by backpropagating
several examples at once through the network. It is noted that improving the n-gram
probability estimates of the rare words is hard and since thewords are rare, not that
useful. Using the probability estimates of the neural networks for around 2000 most
frequent words and backing off to the n-gram model for the other estimates is proposed.
Interpolating this kind of model with a regular backoff n-gram model produces further
improvements. Several types of data in a few languages are used in both the perplexity
and the speech recognition experiments. It is shown that consistent improvements in the
perplexity of about 10% are achieved. The estimates of the neural network are precal-
culated in a table to speed up speech recognition experiments. All experiments show
consistent gains in WER compared to a 4-gram model, on average about 4% relative.
This approach is closely related to maximum entropy modeling: the maximum entropy
model corresponds to a MLP network with no hidden units.

Also Bengio et al. (2003) have investigated using MLP networks for language modeling.
The MLP network is prevented from overlearning by using weight decay. They experi-
ment with two data sets (1.2 million words and 14 million words). The vocabulary of the
model is limited to around 18 000 words. The model is comparedwith a 5-gram word
model and also to a 5-gram cluster-based n-gram model by measuring the perplexity of
the models. The neural network outperforms the baseline models and interpolating the
estimates of the neural network and the n-gram model improveresults further. For the
smaller data set, they get a 19% improvement over the best baseline n-gram model and
for the larger set the improvement is 7%. Morin and Bengio (2005) propose using hier-
archical clustering to speed up the algorithm. The clustering is based on hand labeled
semantical similarities of the words. 200 fold speed-up is achieved and the resulting
model is only slightly worse than the one constructed with the original algorithm.

Emami et al. (2003) apply MLP networks to structured language models (SLM) (Chelba
and Jelinek, 2000). In their tests, they interpolate both standard and neural SLMs with
standard n-gram models. They show clear improvements in perplexity and achieve 1.6%
relative improvement in speech recognition error rate. An important contribution to the
improvements is the fact that the estimates of the neural SLMare less correlated with
the n-grams than the estimates of a standard SLM which makes the interpolated model
efficient.

Jointly optimizing the mapping of the words and the probability estimates of the model
is explored in the framework of state-space modeling in Section 6.5.

6.2 From discrete symbols to continuous space

A short description of the clustering method originally presented by Ritter and Kohonen
(1989) is given here. This method is used in Experiments IV and V (Chapters 6.3 and



50 Chapter 6. Continuous space language models

6.4).

Let us denote a predetermined vocabulary byv = (v1, . . . , vV ). A temporaryindicator
vector (IV) is assigned for each wordvi. The dimension of the vector isV , the ith
element of the vector is set to 1 and the other elements to 0. Now, for constructing
the feature vectorfi for the wordvi, the temporary IVs of the words that precedevi in
the training corpus are summed to the vectorf

p
i . Similarly, temporary IVs that follow

the wordvi are summed toff
i . The actual feature vectorfi is formed by concatenating

the two vectors. If it is desirable to take a longer context into account, corresponding
vectors for the words that occur two places before or after the wordvi can be created and
concatenated into the full feature vector as well. The feature vectors may be normalized
by the number of words used for building the vectors. This removes the dependency on
the frequency of the word in the training data.

If the size of the vocabulary is high, we will end up with very high dimensional repre-
sentations of the words. It is possible to reduce the dimensionality of the problem by
using random projection. The temporary IVs for each word areprojected to a smaller
dimensionY by matrixC. The size of matrixC is Y × V . The elements ofC are ran-
domly generated and each column of the matrix is normalized to sum to 1. Ritter and
Kohonen (1989) have shown, that random mapping approximately preserves the metric
relations of the original vectors.

In the works by Ritter and Kohonen (1989) and Honkela et al. (1995), the feature vectors
are fed to a self-organizing map. The map is used to visualizethe high-dimensional
space; the units that are close to each other on the map represent similar words. In the
present work, a lower-dimensional self-organizing map, which has significantly fewer
map nodes than words, is used. Thebest matching unitis the map node closest to
the given feature vector. The words can be hard clustered by placing the words with the
same best matching unit in the same cluster. Since the topology-preserving aspect of the
self-organizing map is not used, any other clustering method for continuous valued data
could have been used as well. The resulting language model isbased on Equation 6.1.
The main advantage of this method is speed: all the steps for producing the language
model are computationally cheap.

To cluster a new word that was not seen in the original training set, the word must be
observed in a few contexts. When there is enough training data for estimating the feature
vector reliably, the word is put into the same cluster as the other words sharing the same
best matching unit.

6.3 Experiment IV: Comparison to hand-tagged data

This experiment was set up to confirm that the clusters created by the method presented
in Section 6.2 are sensible. This experiment was originallyconducted inPublication 5.
The text corpus for this experiment consisted of 4300 Frenchfree form queries about
telephone numbers and addresses. In this corpus, 5500 unique words were found. All of
the names have been tagged by hand and the rest of the words hadbeen left untagged.
The tagged classes are shown in Table 6.1. Some words may belong to several groups



6.4. Experiment V: Cluster-based language model 51

Table 6.1: Comparison of hand tagged classes and statistically formedclusters

# hand tagged # correct % correct
First name 150 106 71
Family name 621 581 94
Street name 292 189 64
Town name 281 264 94
Name of institution 3 0 0
Out of hand tagged vocabulary 195 16 8

depending on the query. For these words, the most common tag was used.

The dimension of the temporary IVs was reduced from 5500 to 170 using random pro-
jection. Two words from the preceding and following contexts were used to construct
the feature vector of dimension 680. 4000 words were clustered in an unsupervised
manner to 21 clusters. Each cluster was tagged with the most frequent tag of the words
in the cluster. The clustering was performed using the SOM_PAK software package
(Kohonen et al., 1996). The remaining 1500 words were taggedwith the label of the
best matching map unit. Comparing the tags to hand-labeled tags, we find that the re-
sults agree surprisingly well. The results are shown in Table 6.1.

Similar clustering was performed for the training data of the next experiment. Since
hand tagged comparison was not available for this data, the results could only be evalu-
ated subjectively. The resulting clustering is shown in some detail in Publication 5. The
results were considered satisfactory for conducting further experiments with a speech
recognition system.

6.4 Experiment V: Cluster-based language model

This experiment was originally performed inPublication 5. For this experiment, data
from several sources was used. The correct transcripts of CNN news from TDT2 English
audio corpus (LDC, 1999) were used along with newswires fromNew York Times and
Associated Press Worldstream Services. The resulting 50 million words were used for
training the clusters and n-gram models. The language models were evaluated on a
news transcript from the HUB4 database (LDC, 2000). The corresponding HUB4 audio
segment was also used for evaluation in the recognition experiments. The vocabulary
of the models was restricted to 20 000 words. The sentence boundaries were ignored,
although they could be handled by marking the boundaries with a special symbol.

The Abbot speech recognition system (Robinson et al., 1996)was used. Abbot uses
neural networks instead of Gaussian mixture models to estimate the HMM emission
probabilities. The emission probabilities of the test set were provided by the IDIAP
institute. The decoder of the Abbot system is called Noway (Renals and Hochberg,
1996). Noway was modified to accept clustered language models.

The word-based 3-gram models was generated by the CMU-Cambridge statistical lan-
guage modeling toolkit (Clarkson and Rosenfeld, 1997). GTKwas used to smooth the



52 Chapter 6. Continuous space language models

10
0

10
1

10
2

10
3

10
4

0

200

400

600

800

1000

P
er

pl
ex

ity

Number of clusters

 

 

10
0

10
1

10
2

10
3

10
4

55

60

65

70

75

W
or

d 
er

ro
r 

ra
te

 (
%

)
Number of clusters

 

 

unigram
trigram
context 1
context 2

unigram
trigram
context 1
context 2

Figure 6.1: Experimental results.Context 1refers to a model, where one word of
context from both sides of the word was used to construct the feature
vector. In theContext 2model, two words from both sides were used.

probability estimates. Clusterings based on one or two adjacent words on each side of
the target word were tried with different numbers of clusters. No explicit smoothing was
used for the cluster models and the models relied only on the smoothing effect achieved
due to the reduced number of model parameters. To get meaningful perplexity results, a
minimum probability of10−7 was set to the unseen cluster n-grams. The cluster emis-
sion probabilities were obtained by a ML estimate. The results of the experiments are
shown in Figure 6.1.

The results show that the proposed approach is valid. The results degrade in a controlled
manner as the number of clusters is reduced. To accurately assess the performance of
the proposed approach, smoothing should be implemented also for the cluster models
and the method should be compared with the traditional discrete word clustering. In
this thesis, we decided first to improve the model further instead. The mapping of the
words and the predictions of the model should be jointly optimized. Also, it is unneces-
sary to transform the problem back to discrete clustering. In the next few sections, we
demonstrate how the problem can be recast to the state-spacemodeling framework.

6.5 Language modeling with state-space models

A simple linear dynamical system with a hidden state can be described by the following
equations.

s(t + 1) = As(t) + m(t) (6.4)

x(t) = Bs(t) + n(t), (6.5)

The state of the processs(t) changes through the transition matrixA. The state emits
observations through the mappingB. Inherent Gaussian process noisem(t) is assumed



6.5. Language modeling with state-space models 53

A

B

x(t)

s(t)s(t−1)s(t−2)

x(t+1)x(t−1)x(t−2)

s(t+1)

Figure 6.2: The state-space language model. The direct dependencies for states(t)
are shown with solid lines.

and the observations are assumed to contain Gaussian measurement noisen(t). The pro-
cess can be viewed as a generalization of HMM process to a continuous-state process
(Roweis and Ghahramani, 1999). Kalman filtering methods (Kalman, 1960) are tradi-
tionally used for modeling this kind of problems. The model of the process is shown in
Figure 6.2.

The model can be applied almost directly to language modeling. The vocabulary of
the model is denoted byv = (v1, . . . , vV ). Let us denote the wordvi seen at time
t by wi

t. The length of the observation vectorx(t) is V and theith element of the
vector corresponds to the estimated probability of the wordvi at timet. If the word is
known, the observation vector is an indicator vector, wheretheith element is set to one
and others to zero. The matrixB encodes implicitly both the similarities of the words
as well as their relative frequencies. The state of the models(t) should represent the
relevant information from the past words. The simple linearmodel does not guarantee
that the elements of the observation vector converge to probabilities of the words and
that the sum of the vector elements is one. In this work, the estimated observation vector
is normalized with the softmax function.

P
(
wi

t | s(t)
)

= x̂i(t) =
e(Bs(t))i

∑W
j=1 e(Bs(t))j

(6.6)

Here, (Bs(t))x refers to thexth element of the vector resulting from the multiplica-
tion. Unfortunately, adding nonlinearity to the model complicates the learning process
significantly.

In theory, this kind of model has numerous advantages. Thereis no need to explicitly
set the length of the modeled context. The state of the model should keep track of the
important events in the past. The state dimension dictates,how much the state is forced
to generalize or how detailed information can be remembered. The balance between
remembering long-term dependencies as opposed to remembering the recent dependen-
cies in great detail should be automatically optimized by the learning algorithm. Seman-
tically similar words should affect the state similarly andgood generalization should be
achieved.



54 Chapter 6. Continuous space language models

A

C

C
B

s(t−2) s(t−1) s(t+1)s(t)

x(t+1)x(t−1)x(t−2) x(t)

Figure 6.3: The augmented state-space language model. The direct dependencies for
states(t) are shown with solid lines. The thick lines show the connections
of the original model. The thin lines represent the dependencies through
the mappingC that were added to enhance the learning of the model.

6.5.1 Learning the model parameters

The model is trained by an on-line algorithm maximizing the posteriori probability den-
sity of the state and the model’s parametersλ = {A,B} for the training data.

arg max
s(t), λ

P (s(t), λ | s(t− 1),x(t)) (6.7)

The maximization is performed in two phases, similarly to theexpectation maximization
algorithms (Dempster et al., 1977). First, the best states(t) is found while keeping the
models parametersλ constant. The best state cannot be easily analytically solved in
closed form, so numerical search has been used for finding it.Once the best state is
found, the matrices can be updated by gradient descent. The on-line training algorithm
goes through the training data one word at a time and updates the matrices accordingly.
The training is iterated until convergence. A simple batch version of the algorithm can
be formed by summing the matrix updates over the batch windowbefore updating the
matrices. This is not an exact solution: during batch training we should take into account
that both the future and the past words are known. Using this information, more accurate
estimates for the states could be obtained, leading to better estimates for the matrices.

Unfortunately, this simple algorithm seems to be unable to find the optimal parameter
values. In the preliminary experiments, we noticed that adding explicit mappings from
previous states can significantly enhance the learning of the model. The previous words
are mapped explicitly to the current state through a dimension reducing matrixC. These
connections are shown with solid thin lines in Figure 6.3. The matrixC can be opti-
mized along with the other matrices during the gradient descent phase of the training
algorithm. The construction of the estimateŝ(t), when the previous states(t − 1) and
the previous observationsx(0), . . . ,x(t − 1) are known is illustrated in Equation 6.8.
The internal state is projected from the previous state by the matrixA, which reduces
the dimension of the state fromNs to Nq. The mappingC reduces the dimension of the
word indicator vectors toNl. The estimate for the new state (when the new observation



6.6. Experiment VI: Letter prediction using state-space models 55

is unknown) is obtained by concatenating these vectors.

ŝ(t) =















Nq×Ns

︷︸︸︷

A

Ns×1
︷ ︸︸ ︷

s(t− 1)
Nl×W
︷︸︸︷

C

W×1
︷ ︸︸ ︷

x(t − 1)
Cx(t− 2)

...
Cx(t− n)





















Ns × 1 (6.8)

The details of the model training can be found in Publication6.

Comparing the state-space language model to the neural language model of Bengio et al.
(2003), similarities can be found. Setting the dimension ofinternal state dynamicsA
to zero and mapping as many words as in the context modeled by the neural network to
the current state through the mappingC, the models end up equivalent except that the
state-space model is mostly linear. Conversely, setting uprecursive connections in the
neural network and removing extra input mappings would leadto a nonlinear state-space
model.

6.6 Experiment VI: Letter prediction using state-space
models

In this section, a proof-of-concept experiment is set up. A state space language model is
compared with an n-gram language model in a simple task of letter prediction. We test
the models both with sparse and dense training data. This experiment was originally
presented inPublication 6.

6.6.1 Setup

The corpora for this experiment consisted of excerpts from abook in Finnish. The short
training corpus contained 1000 letters and the long one 100 000 letters. A separate set
of 5000 letters was set aside for finding the best parameters for the models. Yet another
corpus of 5000 letters was used for evaluating the best models.

The baseline n-gram model was trained using the CMU-Cambridge statistical language
modeling toolkit (Clarkson and Rosenfeld, 1997). GTK was used as the smoothing
method. The parameters of the smoothing were tuned by hand using the development
data, which improved the performance for the short trainingcorpus considerably.

Several different state-space models were trained. We use similar naming as is tradi-
tional for n-grams: the order 3 state-space model had explicit mappingsC to the cur-
rent state from 2 previous words. The tests were run for modelorders{1, 2, 3, 5} with
internal state dimensionsNq ∈ {0, 1, 3, 5, 10, 20, 40} and with the explicit mapping
dimensionNl ∈ {1, 3, 5, 10, 15, 25}.



56 Chapter 6. Continuous space language models

Table 6.2: Results for the development set. O stands for order, SS for the perplexity
of state-space models and NG for the perplexity of n-gram models.

Short training data Long training data
O N best

q N best
l SS NG N best

q N best
l SS NG

1 5 - 22.9 17.3
2 10 15 12.5 13.7 3 15 11.1 10.8
3 20 15 12.5 13.4 5 25 10.0 8.0
5 10 15 14.4 12.7 0 15 9.7 5.7

Table 6.3: The results on the evaluation set. The results are reported for the best mod-
els on the development set.

type training set best order perplexity
state-space short 2 12.3

n-gram short 5 11.8
state-space long 5 9.5

n-gram long 5 5.7

6.6.2 Results and discussion

The results for the development set are shown in Table 6.2. Only the best parameter
combinations for each order are reported for both the state space models and the n-gram
models. The best models were tested on the evaluation set andthe results are shown in
Table 6.3.

For the test set, the best results are obtained by the n-gram model. For models trained on
the short corpus, the difference is not large, but for modelstrained on the long corpus,
the difference is huge. Analyzing the development set results, we find that a simple
model with no direct mappings from previous words does not seem to learn the data
well.

Let us do further analysis and consider two different models: A) order 5 model with
Nq = 0 andNl = 5 and B) order 2 model withNq = 20 andNl = 5. We can explicitly
set the internal state transformation matrix of model B so that the probability estimates
of the model are equal to those of model A. It seems that our training procedure is unable
to find optimal parameter values for the models as model A gaveperplexity of10.0 and
model B11.1 in the experiments.

In theory, the proposed model has desirable properties thatare lacking in the n-gram
models (as described in Section 6.5). From the experimentalresults it is clear that the
training algorithm needs to be improved in order to be able totake advantage of these
properties. The training algorithm could be modified so thatall words of a sentence
are taken into account when estimating the best states. Thiswould lead to an algorithm
similar to the forward-backward algorithm for training HMMmodels. Also the speed
of the training algorithm is of concern as the current version will not be able to scale
reasonably to large vocabularies.

Since learning long-term dependencies with gradient descent can be difficult (Bengio



6.7. Concluding remarks 57

et al., 1994), other kind of learning algorithms should be examined. For example ex-
tended Kalman filtering algorithms (Maybeck, 1979, 1982) can be applied. However,
scaling these algorithms to larger vocabularies would require good approximations since
the algorithm requires the estimation of square matrices with dimensionsV × V . Fur-
thermore, also the expectation maximization training algorithm used in the extended
Kalman filtering can get stuck in a local minimum. Another possible approximation
would be to drop the softmax normalization and use unnormalized values during train-
ing.

6.7 Concluding remarks

In this chapter, experiments on mapping discrete symbols tocontinuous space are per-
formed. A simple algorithm based on the average contribution of the neighboring
words was utilized to learn word clusters in an unsupervisedmanner. It was shown that
the clusters correspond approximately to hand-tagged classes. The algorithm can per-
form clustering using computationally cheap continuous-space clustering algorithms,
whereas the traditional discrete clustering algorithms are more costly computationally.

The algorithm was further developed in the state-space modeling framework, where
the models should theoretically have several advantages over n-gram models. The ex-
perimental results show that the training algorithm needs to be faster and find better
solutions in order to obtain models that fulfill these promises.



58

Chapter 7

Conclusions

The language modeling component of an automatic speech recognition system plays an
increasingly important role, as the recognition tasks get more demanding. This thesis
explores three main paths for improving the performance of the language model. In
the first part of this thesis, it is shown that using n-gram language models based on
morpheme-like subword units can result in significant gainsover word-based language
models. The perplexity experiments show that the method improves the Finnish models,
which is confirmed in the Finnish speech recognition tests. Later experiments by others
show that the method also gives excellent results for Estonian and Turkish. The im-
proved performance seems to be due to several facts. The model covers the vocabulary
of the language better: instead of a fixed vocabulary, all combinations of the subword
units are possible. Furthermore, the estimates for the n-gram probabilities are more re-
liable, as there is more training data for each n-gram. The automatic splitting method
seems to outperform the grammatical rule-based method mainly, because it can handle
all words of the test set. For example, a corpus containing a lot of foreign names is
not handled gracefully by the rule-based method, since no rules have been written for
most of the foreign names. During decoding, bringing in the language model probabil-
ities gradually (after each morpheme-like unit) instead ofupdating the probabilities in
bigger increments (after each word) seems to interact beneficially with the hypothesis
search.

The modern smoothing and interpolation methods guarantee that overlearning the lan-
guage model is not a concern. Instead, there is the problem offinding an effective
and relatively compact language model using the huge training corpora available. The
second part of this thesis explores methods for choosing which n-grams should have
explicit probability estimates in the n-gram model. Two newmethods are presented: re-
vised Kneser pruning improves the existing pruning methodsfor Kneser-Ney smoothed
models, while Kneser-Ney growing starts from a small model and adds the most useful
n-grams to the model. It can produce high-order models usingreasonably little memory
and is capable of producing an excellent starting model for the pruning algorithms. In
the Finnish and English perplexity experiments and also in the Finnish speech recogni-
tion experiments, the proposed methods are shown to outperform the baseline entropy-



59

based pruning and Kneser pruning algorithms significantly.It is also shown that the
proposed methods are at least as good as the second baseline,entropy pruned Good-
Turing smoothed models with backoff.

The third portion of the thesis is devoted to finding and exploiting semantic and syn-
tactic similarities of words through mapping the words intocontinuous space. The
language modeling problem is formulated in the state-spacemodeling framework. The-
oretically, the state-space language model should have desirable properties, which an
n-gram model lacks: the state dimension would determine, how much the model is
forced to generalize; the algorithm should be able to learn,how much effort should be
put into modeling recent events in great detail as opposed tomodeling longer-term de-
pendencies. In practice, training a model that fulfills the theoretical promises is hard.
Problems with both computational requirements and local minima are encountered.

Three main problems were examined in this thesis: the selection of the base modeling
unit, finding the optimal modeling context, and exploiting the semantic and syntactic
similarities of the words. By closer inspection it can be seen that the problems are inter-
dependent. The interaction between the selection of the subword units and the variable
order n-gram model should be further studied; instead of deciding beforehand, what
kind of subword units should be learned, an algorithm which optimizes the subword
selection to maximize the predictive power of the variable order n-gram model should
be constructed.

The use of semantic and syntactic similarities of words is similarly connected to the
other problems. High-order n-grams over word clusters should benefit the language
model more than high-order n-grams over words. The higher order the n-gram is, the
less training data there will be for estimating the n-gram parameters. Using clustering
can effectively increase the training data for each n-gram,also making the n-gram more
likely to be used. The clusters can be chosen so, that the predictive power of the variable
order model is optimized. The subword units could be optimized so that they produce
good clusters for such a model.

The state-space method for language modeling provides a framework for combining
the optimization of the variable order modeling and the use of semantic and syntactic
similarities. Finding the optimal parameters for this kindof model turned out to be
hard. One could try using more complex algorithms for training the model or adding
nonlinearities for greater modeling power. However, theseefforts are constrained by the
available computational power. The methods must be able to use the huge databases
available to be competitive with the traditional n-grams. Also, the methods have to be
fast enough to be used at least for rescoring recognition lattices in reasonable time.

A future goal for research could be a framework, where all three aspects mentioned
above could be jointly optimized in a computationally effective way. The goal is moving
closer as the computers keep getting more powerful.



60

Appendices

A.1 Language model scaling

The acoustic probabilities should be scaled for the best speech recognition performance.
Traditionally, this scaling has been applied to language model, producing the same ef-
fect. In this section we illustrate, why the language model scaling is necessary and why
the exponential scaling is reasonable.

The recognizer tries to find the word sequence with the maximum probability. We de-
note a word sequence byw and the underlying HMM state segmentation bys. o refers
to the acoustic features andλ to the model parameters. Using Bayes rule and basic
probability calculus, we can factor the probabilities of the recognition task.

arg max
w

P (w|o, λ) = arg max
w

∑

s

P (w, s|o, λ) (A.1)

= arg max
w

∑

s

P (o|s,w, λ)P (w, s|λ) (A.2)

= arg max
w

P (w|λ)
∑

s

P (o|s, λ)P (s|λ,w) (A.3)

In the last line, we also used the fact that knowing the statess fully defines the cor-
responding word sequencew. The first factorP (w|λ) defines the language model
probability and the first factor inside the sumP (o|s, λ) defines the acoustic emission
probabilities. The third factorP (s|λ,w) describes the prior assumption on how proba-
ble a state sequence is given the words. The term could be further factored into several
components. The HMM state transition probabilities affectthe term. Also, any explicit
state duration models change this term. Finally, the term can be used to describe the
probabilities of different pronunciations of the words.

During the decoding, the Viterbi approximation is made (Viterbi, 1967; Rabiner, 1989).
For each word sequence, only the most probable segmentationis taken into account.

arg max
w

P (w|λ)max
s|w

P (o|s, λ)P (s|λ,w) (A.4)

In the HMM model, the emission distribution is only conditioned on the present state.



A.2. Kneser-Ney smoothing for pruned n-gram models 61

Thus, the possible correlations between observations are not modeled within the state.

arg max
w

P (w|λ)max
s|w

P (s|λ,w)
∏

i

P (oi|si, λ) (A.5)

If we assume that the approximations can be compensated by exponential weighting
terms for language model and state transition probabilities, the following equation re-
sults.

arg max
w

Pl(w|λ)α max
s|w

P (s|λ,w)β
∏

i

P (oi|si, λ) (A.6)

The weighting can be motivated by considering the weightingparameters just free
model parameters to be optimized on a held-out data set. However, a weak justification
for the exponential form can be seen from an artificial example: let us assume that the
observations within a state are always constant (fully correlated). The probability of the
sequence that is emitted by one state isP (o) = P (o1)

∏I
i=1 p(oi|oi−1 . . . o1) = P (o1).

If the model ignores the correlations, the model gives a probability of P (o1)
I . In this

highly artificial example the correction term should thus beof exponential form. In
practice, the exponential term is optimized on held-out data to give on average the best
balance between the acoustics and language model. The relation between feature cor-
relation within a state and the language model factor scaling could be further explored,
but that is outside the scope of this work.

A.2 Kneser-Ney smoothing for pruned n-gram models

This appendix was jointly formulated by the present author and Teemu Hirsimäki. In
this appendix, the mathematical foundations of Kneser-Neysmoothing are described.
The treatment here is based on the works by Kneser and Ney (1995), Kneser (1996),
and Chen and Goodman (1998).

KN smoothing tries to preserve the following marginal distribution.

∑

v

P (vhw) = P (hw) (A.7)

It will be shown that while the marginal distribution can be preserved for bigram models,
Kneser-Ney smoothing does not actually preserve the margins of higher order n-gram
models (unless severe approximations are accepted).

Let us examine an n-gram model of orderN = |vhw|. The model is interpolated with
a model of orderN − 1. The question is, what kind of probability estimates shouldthe
orderN−1 model contain so that the marginal constraints of Equation A.7 are satisfied.

Let us define a few auxiliary notations. LetC⋆(hw) contain the counts for n-grams that
exist in the current model. For pruned n-grams, the value is 0.

C⋆(hw) =

{

C(hw), if hw ∈ model

0, otherwise
(A.8)



62 Appendices

Let us define an auxiliary functionC⋆
1+, which counts how many different unique words

have been seen in the place of• in the n-grams included in the model. For example,

C⋆
1+(•hw) = |{v : C⋆(vhw) > 0}|. (A.9)

Similarly,L(h•) stores the sum of the pruned n-gram counts.

L(h•) =
∑

w

C(hw) − C⋆(hw) (A.10)

Manipulating Equation A.7 according to the basic probability calculus yields

P (w|h) =
∑

v

P (w|vh)P (v|h). (A.11)

Substituting ML estimates forP (w|h) andP (v|h) leads to

C(hw)
∑

w C(hw)
=

∑

v

C(vh)
∑

v C(vh)
P (w|vh) (A.12)

C(hw) =
∑

v

C(vh)P (w|vh) (A.13)

This is the form used by Kneser and Ney (1995). The equation could also be formed
directly based on joint distributionsP (vhw) andP (vh). Using ML estimates for the
joint distributions leads to the same solution as in Equation A.13.

Let us use interpolated absolute discounting for smoothingthe highest order n-gram es-
timates. Using the current notation and taking into accountthe pruned n-grams, absolute
discounting with discountD can be expressed as

P (w|vh) =
max{0, C⋆(vhw) −D}

∑

w C(vhw)
+

DC⋆
1+(vh•) + L(vh•)
∑

w C(vhw)
P (w|h). (A.14)

Let us substitute this in Equation A.13.

C(hw) =
∑

v

C(vh)

[
max{0, C⋆(vhw) −D}

C(vh)

+
DC⋆

1+(vh•) + L(vh•)

C(vh)
P (w|h)

]

(A.15)

=
∑

v

C⋆(vhw)−DC⋆
1+(•hw)

+P (w|h)

(

D
∑

v

C⋆
1+(vh•) +

∑

v

L(vh•)

)

(A.16)

= C(hw) − L(•hw)−DC⋆
1+(•hw)

+P (w|h)
(
DC⋆

1+(•h•) + L(•h•)
)

(A.17)

Now the equation can be solved forP (w|h).

P (w|h) =
DC⋆

1+(•hw) + L(•hw)

DC⋆
1+(•h•) + L(•h•)

(A.18)



A.3. Cost criterion for pruning and growing 63

This is equivalent to Equation 5.4, when no smoothing has been applied to the current
order N − 1. If no n-grams have been pruned, we end up with the traditional KN
smoothing.

P (w|h) =
C⋆

1+(•hw)

C⋆
1+(•h•)

(A.19)

The algorithm contains the some approximations. The margins to be preserved are ap-
proximated by the ML estimate, which is known to be an unsatisfactory estimate. We
assumed orderN model interpolated with unsmoothed orderN − 1 model. No provi-
sion has been made for the recursive use of the smoothing for the lower order models.
If we substitute ML estimates based on type counts in Equation A.12 we still need to
do further assumptions to be able to state that the recursiveuse can be seen as approx-
imately satisfying marginal constraints for estimates based on type counts. Although
the theoretical motivations for the traditional recursiveuse of KN smoothing are lack-
ing, the algorithm has been shown to give excellent results in practical situations, even
when compared with maximum entropy models (Chen and Rosenfeld, 2000; Goodman,
2004).

A.3 Cost criterion for pruning and growing

In this section, one possible cost function for pruning or growing algorithms is pre-
sented. The cost function is divided in two parts like the MDLtwo-part coding scheme
(see Section 4.4). The first part, training data log likelihood is taken into account by
most pruning algorithms. We assume that the exact likelihood or some reasonable ap-
proximation like WDP is used. For the second part of the cost function, most pruning
algorithms implicitly assume that removing any n-gram fromthe model is equally good
for reducing the size of the model. Here, a method for explicitly modeling the cost
of encoding an n-gram is presented. Unlike the cost functionpresented by Ristad and
Thomas (1995), where a highly theoretical bound is derived we have chosen to use the
practical cost of encoding the model for a speech recognizer. The encoding is a slightly
simplified version of the prefix tree scheme by (Whittaker andRaj, 2001b). However,
also more effective language model compression schemes (Raj and Whittaker, 2003;
Hirsimäki, 2007) could be used as the basis of the cost function.

Since we are comparing the encoding cost of two similar models, we can drop the terms
which take equal number of bits to encode in both models. For this reason, we can
drop the encoding of the vocabulary of the model. Let us enumerate the words of the
vocabularyV from zero upwards. Thus, we can encode any word as an integer in
log2 |V | bits.

The prefix tree structure for storing the n-grams is illustrated in Figure A.1. Let us
assume that encoding the number of n-gramsN takes approximately an equal amount
of bits in all models and the cost associated with this encoding can be ignored. The
prefix tree structure can be efficiently encoded in a vector. For each tree node we en-
code, where the first child node of the current node is located. This can be encoded
by an integer oflog2 N bits. The cost of encoding the full prefix tree structure is thus
N log2(N · |V |) bits.



64 Appendices

a0

γ(a)
P (a)

a

γ(ba)

2
P (a|a) P (a|b)

b3
P (b|a)

a4

b1

γ(b)
P (b)

5
P (a|ba)

a b6
P (b|ba)

0 a 2 P (a) γ(a)
1 b 4 P (b) γ(b)
2 a 0 P (a|a) 0
3 b 0 P (b|a) 0
4 a 5 P (a|b) γ(ba)
5 a 0 P (a|ba) 0
6 b 0 P (b|ba) 0

Figure A.1: The encoding of a simple two-symbol language. The box on the right
shows how the prefix tree structure can be encoded in a vector.The bold-
face words are actually encoded by integers corresponding to their order
in the vocabularyv. The node indices outside the box are marked for
clarity but need not to be actually encoded. The second field of the vector
tells, where the child nodes of the current node are located (0 for no child
nodes).

The probabilities and interpolation/backoff coefficientsof the model remain to be en-
coded. Let us assume, these two floating point values will be quantized toθ bits. Now
the total cost of encoding the tree structure and the parameter values is

S = N(log2(N · |V |) + θ) = N(α + log2(N)), (A.20)

whereα is a constant. The difference of the coding length of modelsN1 andN2 is thus

∆S = α(N1 −N2) + N1 log2 N1 −N2 log2 N2 (A.21)



65

Bibliography

Alumäe, T. (2004). Large vocabulary continuous speech recognition for Estonian using
morpheme classes. InProceedings of the 8th International Conference on Spoken
Language Processing (ICSLP), pages 389–392.

Alumäe, T. (2006).Methods for Estonian Large Vocabulary Speech Recognition. PhD
thesis, Tallinn University of Technology.

Arısoy, E., Dutăgacı, H., and Arslan, L. M. (2006). A unified language model for large
vocabulary continuous speech recognition of turkish.Signal Processing, 86(10):2844–
2862.

Arısoy, E. and Saraçlar, M. (2006). Lattice extension and rescoring based approaches
for LVCSR of Turkish. InProceedings of the 9th International Conference on Spoken
Language Processing (INTERSPEECH - ICSLP), pages 1025–1028.

Atal, B. S. (1974). Effectiveness of linear prediction characteristics of the speech wave
for automatic speaker identification and verification.Journal of Acoustical Society of
America, 55(6):1304–1312.

Aubert, X. L. (2002). An overview of decoding techniques forlarge vocabulary con-
tinuous speech recognition.Computer Speech and Language, 16(1):89–114.

Bahl, L. R. and Jelinek, F. (1975). Decoding for channels with insertions, deletions,
and substitutions with applications to speech recognition. IEEE Transactions on Infor-
mation Theory, 21(4):404–411.

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum likelihood approach to
continuous speech recognition.IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-5(2):179–190.

Bellegarda, J. R. (2000). Exploiting latent semantic information in statistical language
modeling.Proceedings of the IEEE, 88(8):1279–1296.

Bengio, Y., Ducharme, R., Vincant, P., and Jauvin, C. (2003). A neural probabilistic
language model.Journal of Machine Learning Research, 3:1137–1155.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult.IEEE Transactions on Neural Networks, 5(2):157–166.



66 Bibliography

Bilmes, J. A. and Kirchhoff, K. (2003). Factored language models and generalized par-
allel backoff. InProceedings of the Human Language Technology conference / North
American chapter of the Association for Computational Linguistics annual meeting
(HLT-NAACL), pages 4–6.

Bisani, M. and Ney, H. (2005). Open vocabulary speech recognition with flat hybrid
models. InProceedings of the 9th European Conference on Speech Communication
and Technology (Interspeech), pages 725–728.

Blasig, R. (1999). Combination of words and word categoriesin varigram histories.
In Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 529–532.

Bloomfield, L. (1935).Language. George Allen & Unwin.

Bonafonte, A. and Mariño, J. B. (1996). Language modeling using x-grams. InPro-
ceedings of the 4th International Conference on Spoken Language Processing (ICSLP),
pages 394–397.

Brown, P., Della Pietra, V., deSouza, P., Lai, J., and Mercer, R. (1992). Class-based
n-gram models of natural language.Computational Linguistics, 18(4):467–479.

Byrne, W., Hajǐc, J., Ircing, P., Jelinek, F., Khudanpur, S., Krbec, P., andPsutka,
J. (2001). On large vocabulary continuous speech recognition of highly inflectional
language – Czech. InProceedings of the 7th European Conference on Speech Com-
munication and Technology (Eurospeech), pages 487–489.

Charniak, E. (2001). Immediate-head parsing for language models. InProceedings
of the 39th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 116–123.

Chelba, C. and Jelinek, F. (2000). Structured language modeling. Computer Speech
and Language, 14:283–332.

Chen, S. and Goodman, J. (1998). An empirical study of smoothing techniques for
language modeling. Technical Report TR-10-98, Harvard University.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothing techniques for maximum
entropy models.IEEE Transactions on Speech and Audio Processing, 8(1):37–50.

Clarkson, P. and Rosenfeld, R. (1997). Statistical language modeling using the CMU-
Cambridge toolkit. InProceedings of the 5th European Conference on Speech Com-
munication and Technology (Eurospeech), pages 799–802.

Creutz, M. (2006).Induction of the morphology of natural language: Unsupervised
morpheme segmentation with application to automatic speech recognition. PhD thesis,
Helsinki University of Technology.

Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Var-
jokallio, M., Arısoy, E., Saraçlar, M., and Stoclke, A. (2007). Morph-based speech
recognition and modeling of out-of-vocabulary words across languages.ACM Trans-
actions on Speech and Language Processing. Submitted for review.



Bibliography 67

Creutz, M. and Lagus, K. (2002). Unsupervised discovery of morphemes. InProceed-
ings of the Workshop on Morphological and Phonological Learning of ACL-02, pages
21–30.

Creutz, M. and Lagus, K. (2005). Unsupervised morpheme segmentation and mor-
phology induction from text corpora using Morfessor 1.0. Technical Report A81, Pub-
lications in Computer and Information Science, Helsinki University of Technology.

Creutz, M. and Lagus, K. (2007). Unsupervised models for morpheme segmentation
and morphology learning.ACM Transactions on Speech and Language Processing,
4(1):3.

CSC (2007). Kielipankki. Collection of Finnish text documents from years 1990–2000.
Compiled by Department of General Linguistics, Universityof Helsinki, Linguistics
and Language Technology Department, University of Joensuu, Research Institute for
the Languages of Finland, and CSC.

Deligne, S. and Bimbot, F. (1995). Language modeling by variable length sequences:
Theoretical formulation and evaluation of multigrams. InProceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
169–172.

Deligne, S. and Bimbot, F. (1997). Inference of variable-length linguistic and acoustic
units by multigrams.Speech Communication, 23(3):223–241.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm.Journal of the Royal Statistical Society, Series
B (Methodological), 39(1):1–38.

Emami, A., Xu, P., and Jelinek, F. (2003). Using a connectionist model in a syntactical
based language model. InProceedings of the 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pages 372–375.

Erdoğan, H., Büyük, O., and Oflazer, K. (2005). Incorporating language constraints in
sub-word based speech recognition. InProceedings of the IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU), pages 98–103.

Gale, W. (1994). Good-Turing smoothing without tears. Statistics Research Reports
from AT&T Laboratories 94.5, AT&T Bell Laboratories.

Gales, M. J. F. (1999). Semi-tied covariance matrices for hidden Markov models.IEEE
Transactions on Speech and Audio Processing, 7(3):272–281.

Geutner, P., Finke, M., and Scheytt, P. (1998). Adaptive vocabularies for transcribing
multilingual broadcast news. InProceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pages 925–928.

Gildea, D. and Hofmann, T. (1999). Topic-based language models using EM. InPro-
ceedings of the 6th European Conference on Speech Communication and Technology
(Eurospeech), pages 2167–2170.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language.
Computational Linguistics, 27(2):153–198.



68 Bibliography

Goldsmith, J. (2006). An algorithm for the unsupervised learning of morphology.
Natural Language Engineering, 12(4):353–371.

Good, I. J. (1953). The population frequencies of species and the estimation of popu-
lation parameters.Biometrika, 40(3/4):237–264.

Goodman, J. (2004). Exponential priors for maximum entropymodels. InProceedings
of the Human Language Technology conference / North American chapter of the Asso-
ciation for Computational Linguistics annual meeting (HLT-NAACL), pages 305–312.

Goodman, J. and Gao, J. (2000). Language model size reduction by pruning and
clustering. InProceedings of the 6th International Conference on Spoken Language
Processing (ICSLP), pages 16–20.

Goodman, J. T. (2001). A bit of progress in language modeling, extended version.
Technical Report MSR-TR-2001-72, Microsoft Research. Extended version of a paper
with the same title published in Computer Speech and Language 15:403–434.

Graff, D., Kong, J., Chen, K., and Maeda, K. (2005). English gigaword second edition.
Linguistic Data Consortium, Philadelphia.

Hacioglu, K., Pellom, B., Ciloglu, T., Ozturk, O., Kurimo, M., and Creutz, M. (2003).
On lexicon creation for Turkish LVCSR. InProceedings of the 8th European Confer-
ence on Speech Communication and Technology (Eurospeech), pages 1165–1168.

Hagen, A. and Pellom, B. L. (2005). Data driven subword unit modeling for speech
recognition and its application to interactive reading tutors. InProceedings of the 9th
European Conference on Speech Communication and Technology (Interspeech), pages
236–239.

Heaps, H. S. (1978).Information Retrieval - Computational and Theoretical Aspects.
Academic Press.

Hirsimäki, T. (2002). A decoder for large-vocabulary continuous speech recognition.
Master’s thesis, Helsinki University of Technology.

Hirsimäki, T. (2007). On compressing n-gram language models. In Proceedings of
the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages IV–949–952.

Honkela, T., Pulkki, V., and Kohonen, T. (1995). Contextualrelations of words in
Grimm tales analyzed by self-organizing map. InProceedings of the International
Conference on Artificial Neural Networks (ICANN), pages 3–7.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., and Rosenfeld, R. (1993). The
SPHINX-II speech recognition system: an overview.Computer Speech and Language,
7(2):137–148.

Iskra, D., Grosskopf, B., Marasek, K., van den Heuvel, H., Diehl, F., and Kiessling,
A. (2002). SPEECON - speech databases for consumer devices:Database specifica-
tion and validation. InProceedings of Third International Conference on Language
Resources and Evaluation (LREC’02), pages 329–333.



Bibliography 69

Iyer, R. and Ostendorf, M. (1996). Modeling long distance dependence in language:
topic mixtures vs. dynamic cache models. InProceedings of the 4th International
Conference on Spoken Language Processing (ICSLP), number 236-239.

Jalanko, M. (1980).Studies of learning projective methods in automatic speechrecog-
nition. PhD thesis, Helsinki University of Technology.

James, F. (2000). Modified Kneser-Ney smoothing of n-gram models. Technical Re-
port 00.07, Research Institute for Advanced Computer Science.

Jurafsky, D., Wooters, C., Segal, J., Fosler, E., Tajchman,G., and Morgan, N. (1995).
Using stochastic context-free grammar as a language model for speech recognition. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 189–192.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of ASME, Journal of Basic Engineering, 82:33–45.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model
component of a speech recognizer.IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 35(3):400–401.

Kirchhoff, K., Duh, D. V. K., Bilmes, J., and Stolcke, A. (2006). Morphology-based
language modeling for Arabic speech recognition.Computer Speech and Language,
20(4):589–608.

Klakow, D. (2000). Selecting articles from the language model training corpus. In
Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 1695–1698.

Klakow, D. (2006). Language model adaptation for tiny adaptation corpora. InPro-
ceedings of the 9th International Conference on Spoken Language Processing (INTER-
SPEECH - ICSLP), pages 2214–2217.

Klakow, D. and Peters, J. (2002). Testing the correlation ofword error rate and per-
plexity. Speech Communication, 38(1):19–28.

Kneissler, J. and Klakow, D. (2001). Speech recognition forhuge vocabularies by
using optimized sub-word units. InProceedings of the 7th European Conference on
Speech Communication and Technology (Eurospeech), pages 69–72.

Kneser, R. (1996). Statistical language modeling using a variable context length. In
Proceedings of the 4th International Conference on Spoken Language Processing (IC-
SLP), pages 494–497.

Kneser, R. and Ney, H. (1993). Improved clustering techniques for class-based statis-
tical language modelling. InProceedings of the 3rd European Conference on Speech
Communication and Technology (Eurospeech), pages 973–976.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 181–184.



70 Bibliography

Kohonen, T. (1995).Self-organizing maps. Springer.

Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J. (1996). SOM_PAK: The
self-organizing map program package. Technical Report A31, Helsinki University of
Technology, Laboratory of Computer and Information Science.

Koskenniemi, K. (1983).Two-level morphology: A general computational model for
word-form recognition and production. PhD thesis, University of Helsinki.

Kuhn, R. and De Mori, R. (1990). A cache-based natural language model for
speech recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(6):570–583.

Kurimo, M. (1997).Using self-organizing maps and learning vector quantization for
mixture density hidden Markov models. PhD thesis, Helsinki University of Technology.

Kurimo, M., Puurula, A., Arısoy, E., Siivola, V., Hirsimaki, T., Pylkkonen, J., Alumäe,
T., and Saraçlar, M. (2006). Unlimited vocabulary speech recognition for agglutinative
languages. InProceedings of the Human Language Technology conference - North
American chapter of the Association for Computational Linguistics annual meeting
(HLT-NAACL), pages 487–494.

Kwon, O.-W. and Park, J. (2003). Korean large vocabulary continuous speech recog-
nition with morpheme-based recognition units.Speech Communication, 39(3-4):287–
300.

LDC (1999). TDT2 English audio. Linguistic Data Consortium, Philadelphia.

LDC (2000). 1998 HUB4 broadcast news evaluation English test material. Linguistic
Data Consortium, Philadelphia.

Martin, S., Hamacher, C., Liermann, J., Wessel, F., and Ney,H. (1999). Assessment of
smoothing methods and complex stochastic language modeling. In Proceedings of the
6th European Conference on Speech Communication and Technology (Eurospeech),
pages 1939–1942.

Maybeck, P. S. (1979).Stochastic Models, Estimation and Control, Vol. 1. Academic
Press.

Maybeck, P. S. (1982).Stochastic Models, Estimation and Control, Vol. 2. Academic
Press.

Miikkulainen, R. and Dyer, M. G. (1991). Natural language processing with modular
neural networks and distributed lexicon.Cognitive Science, 15:343–399.

Mori, S. and Kurata, G. (2005). Class-based variable memorylength Markov model.
In Proceedings of the 9th European Conference on Speech Communication and Tech-
nology (Interspeech), pages 13–16.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. InProceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics, pages 246–252.



Bibliography 71

Morris, A. C., Maier, V., and Green, P. (2004). From WER and RIL to MER and WIL:
improved evaluation measures for connected speech recognition. InProceedings of the
8th International Conference on Spoken Language Processing (ICSLP), pages 2765–
2768.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring probabilistic dependences
in stochastic language modeling.Computer Speech and Language, 8(1):1–38.

Niesler, T. R. and Woodland, P. C. (1999). Variable-length category n-gram language
models.Computer Speech and Language, 13(1):99–124.

Odell, J. (1995).The use of context in large vocabulary speech recognition. PhD thesis,
Queen’s college.

Ordelman, R., van Hessen, A., and de Jong, F. (2003). Compound decomposition
in Dutch large vocabulary speech recognition. InProceedings of the 8th European
Conference on Speech Communication and Technology (Eurospeech), pages 225–228.

Ortmanns, S. and Ney, H. (2000). Look-ahead techniques for fast beam search.Com-
puter Speech and Language, 14:15–32.

Puurula, A. and Kurimo, M. (2007). Vocabulary decomposition for Estonian open
vocabulary speech recognition. InProceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL). Accepted for publication.

Pylkkönen, J. (2005). An efficient one-pass decoder for Finnish large vocabulary con-
tinuous speech recognition. InProceedings of Second Baltic Conference on Human
Language Technologies, pages 167–172.

Pylkkönen, J. and Kurimo, M. (2004). Duration modeling techniques for continuous
speech recognition. InProceedings of the 8th International Conference on Spoken
Language Processing (ICSLP), pages 385–388.

Rabiner, L. R. (1989). A tutorial on hidden Markov models andselected applications
in speech recognition.Proceedings of the IEEE, 77(2):257–286.

Raj, B. and Whittaker, E. W. D. (2003). Lossless compressionof language model struc-
ture and word identifiers. InProceedings of the 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 388–391.

Renals, S. and Hochberg, M. (1996). Efficient evaluation of the LVCSR search space
using the NOWAY decoder. InProceedings of the 1996 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 149–152.

Rissanen, J. (1989).Stochastic complexity in statistical inquiry theory. World Scien-
tific Publishing Co., Inc.

Rissanen, J. (1994).Language Computation, chapter Language Acquisition in the
MDL Framework. American Mathematical Society.

Ristad, E. S. and Thomas, R. G. (1995). New techniques for context modeling. InPro-
ceedings of the 33rd Annual Meeting of the Association for Computational Linguistic,
pages 220–227.



72 Bibliography

Ritter, H. and Kohonen, T. (1989). Self-organizing semantic maps.Biological Cyber-
netics, 61(4):241–254.

Robinson, T., Hochberg, M., and Renals, S. (1996).Automatic Speech and Speaker
Recognition – Advanced topics, chapter 10. Kluwer Academic Press.

Ron, D., Singer, Y., and Tishby, N. (1996). Learning probabilistic automata with
variable memory length.Machine Learning, 25:117–149.

Rosenfeld, R. (1994).Adaptive statistical language modeling: a maximum entropy
approach. PhD thesis, Carngie Mellon University.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear Gaussian models.
Neural Computation, 11(2):305–345.

Schmidhuber, J. and Heil, S. (1996). Sequential neural textcompression.IEEE Trans-
actions on Neural Networks, 7(1):142–146.

Schuster, M. (2000). Memory-efficient LVCSR search using a one-pass stack decoder.
Computer Speech and Language, 14(1):47–77.

Schwenk, H. (2007). Continuous space language models.Computer Speech and Lan-
guage, 21(3):492–518.

Schwenk, H. and Gauvain, J.-L. (2002). Connectionist language modeling for large
vocabulary continuous speech recognition. InProceedings of the 2002 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages
765–768.

Seneff, S. (2004). The use of subword linguistic modeling for multiple tasks in speech
recognition.Speech Communication, 42:373–390.

Seneviratne, V. and Young, S. (2005). The hidden vector state language model. InPro-
ceedings of the 9th European Conference on Speech Communication and Technology
(Interspeech), pages 9–12.

Seymore, K. and Rosenfeld, R. (1996). Scalable backoff language models. InProceed-
ings of the 4th International Conference on Spoken LanguageProcessing (ICSLP),
pages 232–235, Philadelphia, PA.

Siivola, V., Creutz, M., and Kurimo, M. (2007). Morfessor and VariKN machine learn-
ing tools for speech and language technology. InProceedings of the 8th International
Conference on Speech Communication and Technology (Interspeech). Accepted for
publication.

Siivola, V., Hirsimäki, T., and Kurimo, M. (2002). Äännemallien vertailua jatkuvassa
suuren sanaston puheentunnistuksessa. InFonetiikan päivät, pages 75–82.

Siivola, V., Kurimo, M., and Lagus, K. (2001). Large vocabulary statistical language
modeling for continuous speech recognition in Finnish. InProceedings of the 7th
European Conference on Speech Communication and Technology (Eurospeech), pages
737–740.



Bibliography 73

Siu, M. and Ostendorf, M. (2000). Variable n-grams and extensions for conversa-
tional speech language modeling.IEEE Transactions on Speech and Audio Processing,
8(1):63–75.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities.Computational Linguistics, 21(2):165–201.

Stolcke, A. (1998). Entropy-based pruning of backoff language models. InProceed-
ings of DARPA Broadcast News Transcription and Understanding Workshop, pages
270–274.

Stolcke, A. (2002). SRILM – an extensible language modelingtoolkit. In Proceedings
of the 7th International Conference on Spoken Language Processing (ICSLP), pages
901–904.

Szarvas, M. and Furui, S. (2003). Evaluation of the stochastic morphosyntactic lan-
guage model on a one million word Hungarian task. InProceedings of the 8th Eu-
ropean Conference on Speech Communication and Technology (Eurospeech), pages
2297–2300.

Torkkola, K. (1991). Short-time feature vector based phonemic speech recognition
with the aid of local context. PhD thesis, Helsinki University of Technology.

Virpioja, S. and Kurimo, M. (2006). Compact n-gram models byincremental growing
and clustering of histories. InProceedings of the 9th International Conference on
Spoken Language Processing (INTERSPEECH - ICSLP), pages 1037–1040.

Viterbi, A. J. (1967). Error bounds for convolutional codesand an asymptotically op-
timum decoding algorithm.IEEE Transactions on Information Theory, IT-13(2):260–
269.

Wang, W., Stolcke, A., and Harper, M. (2004). The use of a linguistically moti-
vated language model in conversational speech recognition. In Proceedings of the
2004 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 261–264.

Whittaker, E. and Raj, B. (2001a). Comparison of width-wiseand length-wise lan-
guage model compression. InProceedings of the 7th European Conference on Speech
Communication and Technology (Eurospeech), pages 733–736.

Whittaker, E. and Raj, B. (2001b). Quantization-based language model compression.
In Proceedings of the 7th European Conference on Speech Communication and Tech-
nology (Eurospeech), pages 33–36.

Whittaker, E. and Woodland, P. (2000). Particle-based language modelling. InPro-
ceedings of the 6th International Conference on Spoken Language Processing (ICSLP),
pages 170–173.

Xu, P. and Mangu, L. (2005). Using random forest language models in the IBM RT-04
CTS system. InProceedings of the 9th European Conference on Speech Communica-
tion and Technology (Interspeech), pages 741–744.



74 Bibliography

Yamamoto, H., Isogai, S., and Sagisaka, Y. (2003). Multi-class composite n-gram
language model.Speech Communication, 41(2-3):369–379.




