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Positron annihilation spectroscopy is a materials characterization method especially applicable for studying vacancy
defects in solids. In typical crystal lattices positrons get trapped at vacancy-type defects. By measuring positron
lifetimes and momentum distributions of positron annihilation radiation one obtains information about the open
volumes and the chemical environments of the defects.

Computational tools can be used in the analysis of positron annihilation experiments. Calculated lifetimes and
momentum distributions of annihilating electron-positron pairs can be directly compared with experiment. Momentum
spectra calculated for model defects can be used to determine, for example, characteristic effects of impurity atoms
around vacancies. This information can be used when identifying the microscopic defect structures behind the
measured spectra.

In this thesis momentum distributions of annihilating electron-positron pairs are calculated using quantum-mechanical
electronic-structure methods based on the so-called density-functional theory. A numerical implementation is created
based on the so-called projector augmented-wave method which enables the construction of accurate valence electron
wave functions for the calculation of momentum densities. When studying positrons localized at vacancy defects their
ionic structures are determined taking into account also the forces on ions due to the localized positron. First the
computational scheme is validated by comparing computational results with ones measured by Compton scattering and
positron annihilation spectroscopies for well-characterized samples (defect-free samples annealed at high
temperatures, electron-irradiated samples containing vacancies).

The new methods are applied to the analysis of experimental positron data and resulting chemical identification of
defects in different kinds of materials. Elemental (Si) andcompound (GaN) semiconductors as well as metals and
alloys (Al and Al-based alloys) are studied. An approach forquantitative chemical analysis of Al-based is justified
using computations and the methods are also used to study theenergetics of positron trapping in various solids and to
show that the positron-induced lattice relaxations have animportant role in the trapping process.
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Positroniannihilaatiospektroskopia on materiaalien karakterisointimenetelmä, joka soveltuu erityisesti kiinteiden
aineiden kidevirheiden tutkimukseen. Kidehilassa positroni loukkuuntuu vakanssityyppisiin virheisiin. Mittaamalla
positronin elinaikoja ja annihilaatiosäteilyn liikemääräjakaumia saadaan tietoa hilavirheiden avoimista tilavuuksista ja
kemiallisista ympäristöistä.

Laskennalliset menetelmät ovat hyödyllisiä positroniannihilaatiokoetulosten analyysissä. Laskennallisia positronin
elinaikoja ja annihiloituvien elektroni-positroniparien liikemääräjakaumia voidaan suoraan verrata kokeellisiin
spektreihin. Mallirakenteille laskettujen liikemääräjakaumien avulla voidaan mm. selvittää vakanssia ympäröivien
epäpuhtausatomeiden luonteenomainen signaali. Tätä tietoa voidaan käyttää mitatun signaalin aiheuttaneiden
hilavirheiden mikroskooppisen rakenteen selvittämiseen.

Tässä väitöskirjassa annihiloituvien elektroni-positroniparien liikemääräjakaumia mallinnetaan kvanttimekaniikkaan ja
ns. tiheysfunktionaaliteoriaan perustuvien elektronirakennelaskumenetelmien avulla. Uusi numeerinen toteutus
perustuu ns. projector augmented-wave -menetelmään, jokamahdollistaa tarkkojen valenssielektroniaaltofunktioiden
muodostamisen liikemääräjakaumien laskemista varten. Tutkittaessa vakanssivirheisiin loukkuuntuneita positronitiloja
virheiden ionirakenne määritetään ottaen huomioon myös positronin lähinaapuri-ioneihin kohdistamat voimat.
Mallinnusmenetelmän käyttökelpoisuus osoitetaan vertaamalla laskettuja tuloksia Compton-sirontakokeiden ja
positroniannihilaatiomittausten tulosten kanssa hyvin karakterisoiduissa tapauksissa (virheettömät korkeassa
lämpötilassa käsitellyt näytteet, vakansseja sisältävätelektronisäteilytetyt näytteet).

Uutta laskentamenetelmää sovelletaan työssä useisiin erimateriaaleihin, erityisesti kokeellisen positronidatan
analyysiin ja vakanssivirheiden kemialliseen tunnistukseen. Tutkitaan puolijohteita kuten Si ja GaN sekä metallejaja
erityisesti Al-pohjaisia metalliseoksia. Laskuja käyttäen myös osoitetaan mm. metalliseosten kemialliseen analyysiin
käytetyn menetelmän käyttökelpoisuus, tutkitaan positronin loukkuuntumisen energetiikkaa eri materiaaleissa ja
osoitetaan positronin aiheuttamien hilarelaksaatioidenolevan olennainen osa positronin loukkuuntumisprosessia.
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1 Introduction

Point defects can affect or even determine many macroscopic properties of
crystalline solids even though their size is only of the order of a few atoms
and even if their concentrations are only of the order of ppm. For example,
in metals and alloys vacancies mediate diffusion and thereby directly affect
their mechanical properties. In semiconductor materials atomic defects are
electically active and consequently affect the electrical and optical properties
of the material. The open volume at vacancy defects enables one to probe
them using positrons because the repulsion of the positive nuclei is reduced
at vacancies enabling effective positron trapping. By measuring the positron
annihilation radiation which gives information on the positron lifetime in the
sample and carries the net momentum of the annihilating electron-positron
pairs, one gains information on the electronic structure of defects in the
sample [1, 2]. Positron annihilation spectroscopy has been widely used in
the research of defects in materials which is also its application in this thesis.
Another important application of positrons in the studies of solids materials
has since the beginning been the study of the topologies of Fermi surfaces of
metals (for recent work see Refs. [3, 4]) and high-Tc superconductors [5, 6].
Recent progresses and future prospects in the studies of nanocrystals are
reviewed in Ref. [7]. The experimental and theoretical basis of positron
annihilation was developed in the 1960’s and in the 1970’s [8, 9]. The study
of vacancy-defects began from vacancies in metals and then widened to
semiconductors on a larger scale in the beginning of the 1980’s.

Since the measured positron lifetime correlates with the magnitude of
electronic density at the annihilation site positron lifetime measurements
give information on the open volumes at the vacancy defects. The measured
momentum distribution of annihilation radiation gives chemical information
on the annihilation sites, for example, reveals impurity atoms next to va-
cancies. The momentum density of the annihilating electron-positron pairs
is sometimes referred to as the electron momentum density “as seen by the
positron” because the momentum of the positron is usually considerably
smaller than that of the electron. Furthermore, a positron localized at a
vacancy defect is a local probe of the electronic structure of the defect. The
reduced overlap of the positron state with high-momentum core electrons
compared to that in the perfect bulk can be seen in measurements. The
chemical identification of defects is very much based on differences in core
electron structures between the impurity atoms and the host lattice atoms.
Thus, there are impurity-induced differences at high momenta in the mo-
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mentum spectra.
Computational tools can be used in the analysis of the results of positron

annihilation experiments [9]. One can create an atomic-scale model for a
given defect and calculate from first principles the corresponding annihila-
tion characteristics such as the positron lifetime and the momentum dis-
tribution of the annihilating electron-positron pairs. The results can then
directly be compared with the experiment and the agreement in experimen-
tally well-characterized cases validates the computational scheme. Then
it can be used in the analysis of experimental results. In this thesis the
focus is on the development of accurate and practical calculation meth-
ods for describing positron annihilation with valence electrons and espe-
cially for the description of momentum distributions of annihilating valence
electron-positron pairs. In practice, a commonly used electronic-structure
code and the so-called projector augmented-wave (PAW) method [10] are
applied to these purposes. The PAW method is band-structure method
that enables all-electron accuracy with the efficiency of the pseudopoten-
tial method. This is especially important when studying vacancy defects in
semiconductors for which large supercells are needed. It also enables one
to efficiently study first-row elements, transition metals and rare-earth el-
ements. Furthermore, it does not suffer from transferability problems and
enables a full-potential treatment. From the point of view of momentum
density calculations the important aspect is that it enables the construction
of all-electron wave functions that contain accurate information on the high
momentum Fourier components.

The methods developed in the thesis are applied to the interpretation
of positron annihilation experiments, predicting properties of defects and
the behavior of positrons in solids, and trying to solve problems and test
hypotheses which can not be approached using experiments only. The ulti-
mate goal in the defect modeling has been treating the defects (their ionic
and electronic structures) as well as the positron state at the vacancy fully
on the first-principles basis, to obtain the annihilation characteristics with
as few assumptions and artificial constraints as possible. The main interest
in the thesis is on the modeling of the positron annihilation characteris-
tics but also Compton profile (electron momentum density) calculations are
made as a first step in the testing of the method.

There are two primary classes of crystalline materials to which the com-
putational methods developed in the thesis are applied. First of all, semicon-
ductors and, secondly, metals and metallic alloys, especially Al-based alloys.
By applying the same methods to a variety of different materials we have
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also gained a better understanding of the limitations of the computational
methods.

Vacancies are important is semiconductors because they can have a role
in doping and electrical compensation. Native vacancies have been observed
at high concentrations in many compound semiconductors. Low-energy
positron beams [8] can be used in defect studies of epitaxial layers and
surface regions. Reviews of positron annihilation studies made for semicon-
ductors can be found in Refs. [1, 2].

In metallic alloys solute-vacancy association is one of the basic processes
controlling the precipitation phenomenon. Vacancies mediate transport of
solute atoms and contribute to the stability of precipitates by reducing mis-
fit stresses between them and the matrix material [11]. Precipitation is
technologically important since it improves a number of light alloys used,
for example, in the vehicle and aircraft industry. In addition to the va-
cancy solute association and kinetics of precipitation, processes such as age-
hardening, severe plastic deformation, fatigue and fracture can be studied
using positron annihilation. A review on the achievements of positron an-
nihilation techniques in the study of light alloys can be found in Ref. [12].

Publications I and II of the thesis present our computational methods
in the context of Compton profile calculations and the calculations of mo-
mentum distributions of annihilating electron-positron pairs, respectively.
Publications III and IV deal with semiconductor materials and are for the
most part based on experiments. In them our computations are used to ana-
lyze the measured data. The materials in Publications V and VI are Al and
Al-based alloys, respectively, and the calculations are used to demonstrate
the effects of positron localization on the measured Doppler broadening
spectrum and to justify a method for chemical analysis of vacancy-solute
association in alloys. Publication VII is an entirely computational study
examining in more detail the energetics of the positron trapping process
and the importance of positron-induced ionic relaxations.

This overview is organized as follows. Section 2 discusses the behavior of
positrons in solids and describes the basic principles of the main experimen-
tal methods based on positron annihilation in the context of defect studies.
Section 3 presents the basics of electronic structure theory, the modeling of
positron annihilation characteristics and the actual implementation of the
methods used in the thesis. Section 4 discusses the applications presented in
the thesis in more detail, especially those in Publications III–VII. Finally,
Sec. 5 summarizes and concludes the overview and the thesis.
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2 Positrons in solids and positron annihila-

tion spectroscopy

This section briefly describes the behavior of positrons in solids and the
principles of positron annihilation experiments. More information can be
found in Refs. [1, 2, 8, 9].

In positron annihilation experiments the positron source is typically a
β+-active 22Na source. A 1.27 MeV photon is emitted simultaneously with
the positron. In positron lifetime studies the detection of this gamma is
used to signal the birth of a positron. In conventional lifetime studies fast
(unmoderated) positrons having kinetic energies of the order of 1 MeV (for
a 22Na source Emax = 0.54 MeV) are used. When entering the sample
the positron very rapidly loses its kinetic energy. At high kinetic energies
the dominating processes are ionization and core electron excitations. At
lower energies the most important processes are electron-hole excitations.
Phonon processes become important at around 1 eV. In semiconductors the
electron energy band gap prevents electron-hole excitations with a smaller
energy than the gap. The phonon processes, however, are so effective that
the positron thermalization times in semiconductors are comparable to those
in metals. The positron thermalization times are of the order of 1–3 ps only
which is much less than typical positron lifetimes in solids (100–300 ps).
The thermalization phase of the positrons can be modeled, for example,
with Monte Carlo simulations or with the Boltzmann equation including
annihilation and trapping terms [9]. In a wide-gap insulator a positron with
kinetic energy less than the band gap can also lose energy in positronium
(Ps) formation. The excitation of an electron from a valence band is possible
because in the final state the Ps binding energy (6.8 eV in vacuum) is gained.

After the thermalization phase the positron momentum distribution has
reached the time-independent form and its spatial distribution continues
to evolve. Its behavior can be described using the so-called diffusion-anni-
hilation equation [9] in which there are terms describing also the positron
annihilation and trapping. In the band picture the thermalized positron
is thought to be at the Γ (k = 0) point at the bottom of the parabolic
free-electron-like positron energy band. If there is even a small concen-
tration (around 1016 cm−3 in the case of neutral defects in semiconduc-
tors [2]) of neutral or negatively charged vacancy-type defects in the sample
the positron very effectively gets trapped at a vacancy defect because the
Coulomb repulsion of the nuclei is lower at the vacancy. Figure 1 shows
calculated positron densities of localized and delocalized positron states in
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Figure 1: Positron densities in monovacancies (left, contour spacing
0.01 Å−3) in Al, Fe and Si and in corresponding perfect lattices (right,
contour spacing one tenth of the maximum value). The dots in the figures
denote the locations of the nuclei on the figure plane. From Publication VII.
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different materials. The process taking care of the energy and momentum
transfer is in the case of metals electron-hole excitation. In semiconductors
and insulators the positron binding energy to the defect can be smaller than
the energy band gap. In this case electron-hole excitations from the valence
band to the conduction band are not possible. The present picture is that
the electron excitation from a localized defect state to the conduction band
can account for the energy loss at vacancy-defects in semiconductors [13]. A
mechanism that further increases the trapping rate in semiconductors is the
fact that defects can have a net charge and negative defects trap positrons
more effectively than neutral ones. Positive defects are not considered to
trap positrons [13]. The positron can get trapped into weakly localized Ry-
dberg states at negative defects [13]. This can be followed by a transition
into a localized ground state via the electron-hole excitation process. The
trapping models in the literature have always assumed a fixed defect geom-
etry. The effect of the localized positron on the defect geometry and the
energetics of positron trapping is analyzed in Publication VII of this thesis
(see Sec. 4.6).

In positron annihilation experiments one obtains information on the
sample and the defects it contains by measuring the photons emitted when
positron annihilates with an electron. For a review on experimental meth-
ods utilizing positron annihilation see Ref. [1]. Typically, one monitors the
two-gamma annihilation in which the mass of the electron-positron pair is
transformed into energy in the form of two 511-keV γ-quanta. The positron
lifetime can be measured as the time difference between the 1.27 MeV birth
γ-quantum and the 511-keV annihilation γ. The measured lifetime spectra
are sums of exponentially decaying components,

−dn(t)

dt
=

∑

i

Iiλi exp(−λit). (1)

Above, n(t) is the probability for the positron to be alive at time t. The
spectrum is determined by the relative intensities, Ii, and the annihilation
rates, λi, of different annihilation states. For a ground state at a vacancy the
annihilation rate λi is the inverse of the corresponding lifetime component
τi (assuming that there is no detrapping) whereas for the delocalized bulk
state the measured λi is an effective quantity affected also by the positron
trapping rate. The trapping in a homogeneous solid is described by kinetic
equations [14] (a nice review including discussion on trapping models can
be found in Ref. [15]). The lifetime components τi associated with vacancy
defects are correlated with the open volume of the defect. At vacancies,
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voids and dislocations (with kinks or jogs) the electron density is lowered
compared to the value in the perfect bulk. This results in the lowering of
the annihilation rate and increase in the corresponding lifetime component.

The differences in the electronic structures of the positron annihilation
sites in the sample are reflected also in the momenta of the 511-keV anni-
hilation photons which carry the net momenta of the annihilating electron-
positron pairs. Measuring their momentum distribution enables one to gain
chemical information on the annihilation sites in the sample. This can
in practice be done by the so-called Doppler broadening spectroscopy in
which the broadening of the 511-keV annihilation line is measured. The
coincidence technique [16] in which the simultaneous detection of both an-
nihilation gammas is required improves the peak-to-background ratio con-
siderably and enables chemical analysis of vacancy defects on the basis of
differing core-electron structures of impurity and host lattice atoms. The
peak-to-background ratio can be further improved by measuring the energy
of both annihilation gammas with two Ge detectors and requiring the energy
conservation. This also improves the energy resolution of the setup by the
factor of

√
2. Figure 2 shows an example of measured Doppler broadening

spectra. Another way to measure the net momentum of the annihilating pair
is to measure the angular correlation (deflection from the 180◦ angle) of the
two γ-quanta using one- or two-dimensional detectors (1D- or 2D-ACAR;
ACAR stands for Angular Correlation of Annihilation Radiation).

When studying defects in semiconductors one is often interested in near-
surface regions. Fast positrons have so high kinetic energy that they, in prac-
tice, only probe the bulk of the material. Therefore, the positrons have to
be moderated first and then accelerated to the kinetic energy corresponding
to the desired mean stopping depth (usually the kinetic energy is between
0–40 keV). Due to the moderation process the birth gamma does not give
the time when the positron enters the sample. Therefore, the conventional
low-energy positron beams can only be used for Doppler broadening mea-
surements. The problem can be circumvented by using pulsed positron
beams in which the time the positron enters the sample is obtained from
the pulsing electronics.

Most of the experiments in the publications of this thesis have been
made with fast positrons (positron lifetime and coincidence Doppler broad-
ening measurements). A conventional low-energy positron beam was used
in Publication III.
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3 Theory and models

3.1 Electronic-structure calculations and

density-functional theory

This section deals with the methods used in electronic structure calculations
of the thesis. A recent review on the basic electronic-structure theory can
be found in the book by Martin [19]. All the equations shown are in Hartree
atomic units (h̄ = me = e = 4π/ǫ0 = 1) so that, for example, the units of
length and energy are 1 a0 = 0.529 Å and 1 Ha = 27.2 eV, respectively.

The Hamiltonian of a system of interacting electrons at sites ri and
nuclei with charges ZI and masses MI at sites RI can be written as

H(r) = −1

2

∑

i

∇2
i −

∑

i,I

ZI

|ri −RI |
+

1

2

∑

i6=j

1

|ri − rj|

−
∑

i

1

2MI

∇2
I +

1

2

∑

I 6=J

ZIZJ

|RI − RJ |
. (2)

As the inverse masses of the nuclei, 1/MI , are very small one usually first
assumes that the kinetic energy of the nuclei is zero and then later treats
the degrees of freedom of the nuclei (RI) classically. This is the so-called
Born-Oppenheimer (or adiabatic) approximation.

In all systems of any interest to solid-state physicists there are more than
two electrons. In the case of the Hamiltonian of Eq. (2) the many-body
Schrödinger equation is not separable and solving or even approximating
is becomes a very difficult and impractical approach. The most practical
approach in most cases is the density-functional theory (DFT), which is
based on the theorem by Hohenberg and Kohn [20]. It states that a universal
functional for the energy in terms of the electron density n(r) can be defined,
valid for any external potential Vext(r),

EHK[n] = T [n] + Eint[n] +
∫

dr Vext(r)n(r) + EII . (3)

For any particular Vext(r), the exact ground-state energy of the system is
the global minimum of this functional and the density n(r) that minimizes
the functional is the exact ground-state density. Above, T [n] is the kinetic
energy functional, Eint[n] the interaction energy of electrons, and EII is the
interaction energy of the nuclei. In practice, the functional of Eq. (3) is
unknown and it is not clear what would be the best way to minimize it. In
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principle, there is a way to reformulate the functional and determine it but
for this one also needs information on the lowest energy many-body wave
function corresponding to a given electron density n [21, 22].

The ansatz suggested by Kohn and Sham [23] is based on an analogy
between the true interacting many-body system and a noninteracting system
with the same density n. The energy functional is written as

EKS[n] = Ts[n]+
1

2

∫

dr dr′
n(r)n(r′)

|r− r′| +
∫

dr Vext(r)n(r)+EII +Exc[n], (4)

where Ts[n] is the kinetic energy of a system of noninteracting electrons with
density n and Exc[n] is the so-called exchange-correlation energy functional.
By comparing Eqs. (3) and (4) one sees that Exc[n] represents the difference
in kinetic energies and internal interaction energies between the true in-
teracting many-body system and the fictitious independent-particle system
with the electron-electron interactions replaced by the Hartree energy,

Exc[n] = T [n] − Ts[n] + Eint[n] − 1

2

∫

dr dr′
n(r)n(r′)

|r− r′| . (5)

The exchange-correlation energy functional is unknown and thus has to be
approximated.

With the analogy to the system of noninteracting electrons in the ex-
ternal potential Vext(r) the minimization of the energy functional of Eq. (4)
leads to the following set of single-particle equations which are solved in a
self-consistent manner,

−1

2
∇2ψi(r) + Veff(r)ψi(r) = εiψi(r), (6)

where the effective potential is written as

Veff(r) =
∫

dr′
n(r′)

|r − r′| + Vext(r) +
δExc[n]

δn(r)
. (7)

Above, the last term is called the exchange-correlation potential. The elec-
tron density is obtained by summing over occupied states,

n(r) =
N∑

i=1

|ψi(r)|2. (8)

Equations (6)–(8) are termed the Kohn-Sham equations and they together
with approximations for Exc[n] form the basis of practical electronic-struc-
ture calculations within DFT.
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The most common approximation for the exchange-correlation energy is
the local-density approximation [23] (LDA) in which the exchange-correla-
tion energy density at point r, εxc(r), is assumed to be the same as the
exchange-correlation energy per electron in a homogeneous electron gas with
density n(r),

Exc[n] =
∫

dr εhom
xc (n(r))n(r). (9)

Moreover, there are semi-local functionals which depend also on the gradient
of the electron density. These are termed generalized-gradient approxima-
tions (GGA), and nonlocal orbital-dependent functionals such as so-called
hybrid functionals in which part of the exchange energy is replaced by the
Hartree-Fock exchange (for reviews see Refs. [24, 19]). However, only the
LDA is used in this thesis. We use the LDA parametrization by Perdew and
Zunger [25] based on the quantum Monte Carlo calculations by Ceperley
and Alder [26].

3.2 Positron state and annihilation calculations

The first detailed theoretical studies on positron annihilation in a homoge-
neous interacting electron gas taking into account electron-positron correla-
tions were performed by Kahana [27] and by Carbotte and Kahana [28] in
the 1960’s. In the case of homogeneous systems it is natural to operate in
momentum space and define a momentum-dependent enhancement factor as
γ(p) = ρ(p)/ρ0(p), where ρ0(p) is the non-interacting electron gas momen-
tum density and ρ(p) is that at the positron’s site in the interacting system.
The enhancement factor describes the increase in the positron annihilation
probability due to many-body interactions (screening of the positron by
electrons). Kahana and coworkers found that as one approaches the Fermi
momentum the annihilation probability increases. Above the Fermi mo-
mentum the momentum density is effectively zero in contrast to the case
of homogeneous interacting electron gas that has a high-momentum tail
above the Fermi momentum [29]. The lifetimes predicted by the many-
body theories are substantially shorter than the ones expected according
to the noninteracting Sommerfeld model due to increased annihilation rate
and thus they are in much better agreement with the experiment.

Later, Salvadori and Carbotte [30] studied the enhancement in the case
of tightly bound core electrons. The total enhancement was found substan-
tial but less than that for free electrons and the momentum-dependence is
weak suggesting that the independent-particle model prediction (see below)
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works for core electrons.
The case of periodic solids was studied by Hede and Carbotte [31] us-

ing a nearly-free-electron model. The periodic potential introduces high-
momentum (Umklapp) components to wave functions. Their enhancement
factor was found to be approximately constant and somewhat lower than
for the central free-electron parabola.

The many-body calculations behind the approximations used in this
thesis for describing the electron-positron correlation effects are the ones by
Arponen and Pajanne [32] and Lantto [33]. The background of the practical
methods used in this thesis for solving the positron state and annihilation
characteristics is, however, elsewhere. The computational methods applied
are based on the extension of the DFT for a many-electron system to the
case of finite electron and positron densities. The extension is called the
two-component DFT [34]. In a density-functional approach it is natural to
use as far as possible instead of the electron and positron wave functions
the corresponding densities and write the enhancement factors as function-
als of the real-space densities instead of as a function of the momentum.
In the DFT there is no simple connection between the real-space electronic
charge density and the electron momentum density [35] and although the
Kohn-Sham single-particle wave functions are used in practice in momen-
tum density calculations they have no well-defined physical meaning. The
electron-positron correlation energy functionals and enhancement factors
appearing in the two-component DFT are parametrized with the help of
many-body calculations made for homogeneous electron-positron plasmas
with varying electron and positron densities. Most practical calculations
done for realistic solids and defects in solids in the past 20 years are in prac-
tice based on the two-component DFT or most often on some simplification
of it as in the case of the present thesis.

In the so-called two-component density-functional theory [34] the usual
DFT is generalized to the case in which there are two density components
of mutually distinguishable particles, namely the electron density n− and
the positron density n+. The Kohn-Sham ansatz is in this case written as

E[n−, n+] = F [n−] + F [n+] − 1

2

∫

dr dr′
n−(r)n+(r′)

|r − r′|
+

∫

dr Vext(r)[n−(r) − n+(r)] + EII + Ee−p
c [n−, n+] (10)
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where F [n] is the familiar single-component functional

F [n] = Ts[n] +
1

2

∫

dr dr′
n(r)n(r′)

|r− r′| + Exc[n], (11)

and Ee−p
c [n−, n+] is the so-called electron-positron correlation energy func-

tional taking into account electron-positron correlations beyond the elec-
tron-positron Hartree term. Minimization of the energy functional of Eq.
(10) leads to the following set of modified Kohn-Sham equations for elec-
trons and positrons, respectively,

−1

2
∇2ψi(r)+

[

δExc[n−
]

δn
−

(r)
− φ(r) + δE

e−p
c [n+,n

−
]

δn
−

(r)

]

ψi(r) = εiψi(r), (12)

−1

2
∇2ψ+

i (r)+
[

δExc[n+]
δn+(r)

+ φ(r) + δE
e−p
c [n+,n

−
]

δn+(r)

]

ψ+
i (r) = ε+

i ψ
+
i (r), (13)

where the sum of the total Hartree potential and the external potential due
to nuclei is written as

φ(r) =
∫

dr′
−n−(r′) + n+(r′)

|r − r′| − Vext(r). (14)

The density components are obtained by summing over occupied Kohn-
Sham orbitals,

n−(r) =
N

−∑

i=1

|ψi(r)|2, n+(r) =
N+∑

i=1

|ψ+
i (r)|2, (15)

where N− and N+ are the numbers of electrons and positrons in the system,
respectively.

In practice the electron-positron correlation energy is evaluated within
the LDA and the parametrizations are based on many-body calculations of
homogeneous electron-positron plasmas with varying electron and positron
densities. Only the zero-positron-density limit is well known. Still, some
fully self-consistent two-component DFT studies for positrons localized at
vacancies have been made [36, 37, 38, 39, 40]. In this thesis we use a sim-
pler scheme (sometimes called the “conventional scheme”) in which we make
the following approximations even if we are modeling a localized positron
state. First of all, the positron does not affect the average electron den-
sity n−(r). (The positron and its screening electron cloud are considered
to form a neutral quasiparticle.) Secondly, the positron state and annihila-
tion characteristics are calculated at the zero-positron density limit of the
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two-component DFT. The effects of these two approximations are shown
to largely cancel each other and the approach produces results that agree
with self-consistent calculations made within the Boroński-Nieminen two-
component formalism [37]. In practice, our calculations are done as follows:
first the electronic structure is calculated without the effect of the positron.
Then the positron state is solved in potential

V+(r) = φ′(r) + Vcorr(r), (16)

where the Hartree potential φ′(r) is now due to electrons and nuclei only
and Vcorr(n−(r)) is the zero-positron-density limit of the electron-positron
correlation potential δEe−p

c [n−, n+]/δn+(r). We are interested in the case of
only one positron in the lattice. In Eq. (16) the self-interaction correction
is made; i.e., the self-direct Hartree potential of the positron is canceled by
the self-exchange-correlation potential.

Publications II, VI and VII of this thesis include calculations in which
the ionic structures of vacancy defects are optimized taking into account
also the forces on ions due to the localized positron. In our approach the
energy of the system comprising one positron and a lattice can be written as
a sum of the positron energy eigenvalue and the energy of the defect super-
cell (electron-ion system). The force on ions due to the localized positron
can be calculated using the Hellman-Feynman theorem when the positron
Hamiltonian and the positron state are known. The force on ion j reads

F+
j = −∇jε+ = −∇j〈ψ+|H(r)|ψ+〉

= −〈ψ+|∇jH(r)|ψ+〉 − ε+∇j 〈ψ+|ψ+〉
︸ ︷︷ ︸

≡1

= −〈ψ+|∇jH(r)|ψ+〉, (17)

where the gradient is taken with respect to Rj, the coordinates of the ion j.
For the Hamiltonian H(r) we use an approximate expression of the so-called
atomic superposition method [9, 41] in which the positron annihilation char-
acteristics are calculated using superimposed charge densities and potentials
of free atoms,

H(r) = −1

2
∇2 + V+(r), (18)

where

V+(r) =
∑

j

V at,j
Coul(|r − Rj|) + Vcorr

(
∑

j

nat,j
− (|r− Rj|)

)

. (19)

Above, V at,j
Coul(r) and nat,j

− (r) are the Coulomb potential and the charge den-
sity of the free atom j, respectively. The force calculations are discussed fur-
ther in Publication II. One must note that within the conventional scheme
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one has to approximately take into account also the position-dependence
of valence electron states because if the total energy functional is writ-
ten in the practical way as a sum of Kohn-Sham eigenvalues minus double
counting corrections there are no such double counting corrections for the
electron-positron interactions as there are for the electron-electron interac-
tions. Therefore, in contrast to the plain electronic-structure calculations
there is no such error cancellation in the force calculation which enables one
to limit the summation only to the core electron states (see Refs. [42, 43]).

Once the ionic and electronic structure and the positron state are solved
one is ready to calculate the positron annihilation characteristics such as
the positron lifetime τ which is the inverse of the positron annihilation rate
λ, [34]

λ =
1

τ
= πr2

ec
∫

drn+(r)n−(r)g(0;n+;n−), (20)

where re is the classical radius of electron and c the speed of light. In
principle, the annihilation rate is proportional to the overlap of electron and
positron densities but as in the DFT the densities n−(r) and n+(r) are only
average ones and do not take into account the local pileup of electron density
at the positron, the pair-correlation function of electron-positron densities,
g(0;n+;n−), evaluated at the positron (also called the “contact density”)
is included in Eq. (20). In practice, also Eq. (20) is evaluated using the
LDA and the contact density is derived from many-body calculations for
homogeneous electron-positron plasmas. As we use in our calculations the
zero-positron-density limits of functionals, Eq. (20) is written in the form

λ = πr2
ec

∫

drn+(r)n−(r)γ(n−(r)), (21)

where γ(n−(r)) = g(0;n+ = 0;n−) is termed the enhancement factor and is
the zero-positron-density limit of g. The calculation of momentum densities
of annihilating electron-positron pairs is discussed later in this Section.

In practice we use for the correlation potential Vcorr(n−) and enhance-
ment factor γ(n−) the parametrizations by Boroński and Nieminen [34].
Their zero-positron-density parametrizations for the electron-positron cor-
relation energy are consistent with the calculations by Arponen and Pa-
janne [32] and the Boroński-Nieminen enhancement factor is parametrized
according to the calculations by Lantto [33]. The use of these functionals
implies assuming a metallic screening. Still, we use them also for semi-
conductors. There are semi-empiric models taking into account dielectric
properties of the solid [44] but we prefer not to use them because of their
semi-empiric nature.
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What also has to be noted here is that there exists also a GGA para-
metrization for the enhancement factor and correlation potential [45, 46].
In Publication II we have tested using the state-dependent enhancement
scheme (see below) its applicability to momentum density calculations and
compared its results to results calculated with the Boroński-Nieminen LDA.
The GGA describes in general better the intensity of Doppler spectra at
high momenta than the Boroński-Nieminen LDA. However, in the case of
ratio spectra it fails in some cases. Furthermore, the GGA parametrization
involves one semi-empiric parameter. For these reasons we prefer to use the
Boroński-Nieminen LDA.

The main drawback of the LDA enhancement factor is that it overes-
timates annihilation with core and d-electrons. Instead of comparing the
absolute values of lifetimes with experiment we compare in the case of va-
cancy defects the increase in the lifetime compared to the value in bulk.
In the case of momentum distributions we use a ratio representation (see
below) in which the overestimated intensity at high momenta is canceled.
A systematic study in which positron lifetimes are calculated for most of
the elements of the Periodic Table using different enhancement factors can
be found in Ref. [47].

The momentum density of electrons is written in the independent-par-
ticle model (IPM) as [48]

ρ(p) =
1

(2π)3

∑

j

∣
∣
∣
∣

∫

dr exp(−ip · r)ψj(r)

∣
∣
∣
∣

2

, (22)

where the summation goes over occupied single-particle states. Equation
(22) is based on the Hartree-Fock theory but it is conventionally used within
the DFT as well [49]. Within the DFT the electron momentum density
(EMD) ρ(p) of Eq. (22) is not, as opposed to the charge density n(r), exact
even if the exchange and correlation functionals were exact. In the DFT
the correlation effects beyond the independent-particle model are usually
modeled by the so-called Lam-Platzman (LP) correlation correction [50]
which is isotropic within the LDA. In this thesis the LP correction is not used
for simplicity and because it does not affect the anisotropy plots we have
used in Publication I. In order to get an anisotropic correlation correction
one has to go beyond the DFT and LDA.

The quantity measured in Compton scattering experiments, the Comp-
ton profile J(pz), is related to the EMD via

J(pz) =
∫ ∫

dpx dpy ρ(p), (23)
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where the one integrates over the planes perpendicular to the scattering
vector. The above equation is based on the impulse approximation [51]
which is valid if the energies transferred in scattering processes are much
larger than the binding energies of the electronic states involved.

For annihilating electron-positron pairs the independent-particle model
[the counterpart of Eq. (22)] reads [52]

ρ(p) = πr2
ec

∑

j

∣
∣
∣
∣

∫

dr exp(−ip · r)ψ+(r)ψj(r)
∣
∣
∣
∣

2

, (24)

where re is the classical radius of electron and c the speed of light. The
independent-particle model lacks the short-range electron-positron correla-
tions that increase the annihilation rate compared to one calculated using
the average electron and positron densities n−(r) and n+(r) only [γ ≡ 1
in Eq. (21)]. To overcome this, several models utilizing the enhancement
factor such as the one in Eq. (21) have been developed in the past. The
first requirement the models have to fulfill is that the momentum density
of the annihilating electron-positron pairs is consistent with the positron
annihilation rate λ, i.e.,

λ =
∫

dp ρ(p). (25)

The most commonly used model in practical calculations is what we call
the state-independent LDA scheme [53, 54]

ρ(p) = πr2
ec

∑

j

∣
∣
∣
∣

∫

dr exp(−ip · r)ψ+(r)ψj(r)
√

γ(n−(r))
∣
∣
∣
∣

2

, (26)

in which a position-dependent enhancement factor is introduced in the IPM
expression. In practice we use the square root of the enhancement factor

for the densities,
√

γ(n−(r)), in the spirit of Eq. (21). The screening cloud
is in a sense averaged over the electronic states j. There are also simi-
lar models in which the enhancement factor is not only position- but also
k- (a Kahana-type momentum dependence) and possibly state-dependent
meaning that the enhancement factor describes the distortion of individual
electron-positron wave functions (see, for example, Ref. [55] and references
therein). For d-electron transition metals with non-parabolic bands the
enhancement is often written in terms of the energy instead of the momen-

tum [56, 57, 58] by equating p/pF =
√

Ejk/EF , where Ejk is the one-particle
energy of an electron in the jth band at Bloch vector k measured from the
bottom of the conduction band, pF and EF are the Fermi momentum and
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Fermi energy, respectively, and p = |k| ≤ pF . A recent review on various
electron-positron interaction theories can be found in Ref. [59].

Another model which is the one primarily used in this thesis is the so-
called state-dependent scheme [60]

ρ(p) = πr2
ec

∑

j

γj

∣
∣
∣
∣

∫

dr exp(−ip · r)ψ+(r)ψj(r)

∣
∣
∣
∣

2

. (27)

Above, γj = λLDA
j /λIPM

j , where

λLDA
j = πr2

ec
∫

drn+(r)nj(r)γ(n−(r)) (28)

is the annihilation rate of state j within the LDA or GGA and λIPM
j is the

corresponding IPM (γ ≡ 1) annihilation rate. Above, nj(r) is the density
corresponding to electron state j. In the state-dependent model the momen-
tum dependence of term j in the sum is the same as in the IPM and for a
homogeneous system there is no Kahana-type momentum dependence [61].
The energy dependence of the state-dependent enhancement factors in the
case of Cu is discussed in Ref. [61]. One possible way to view Eq. (27) is
to think it as a sum of normalized IPM momentum densities weighted with
respective partial annihilation rates λLDA

j .
The two models [Eqs. (26) and (27)] mentioned above are critically

benchmarked in Publication II using experimental Doppler spectra mea-
sured for well-annealed bulk samples as references. We have used two kinds
of representations. We either (i) plot the absolute value of the Doppler
spectrum (either using linear or logarithmic scale) or (ii) we plot the spec-
tra as a ratio to a reference spectrum (typically bulk Al). In the latter case
the systematic errors in the theoretical (and those possibly in experimental
spectra) are for the most part canceled. When comparing the results with
the experiment we make the following two observations.

1. The absolute intensities of Doppler spectra at high momenta are over-
estimated in the state-dependent model whereas the intensities are
well reproduced in the state-independent LDA scheme. Especially
strong the overestimation is in the case of materials with d electrons.
However, the state-independent LDA results oscillate about the exper-
imental spectrum whereas the behavior of the spectra calculated using
the state-dependent scheme is very similar to that of the experimental
one (see also Ref. [60]).
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Figure 3: Calculated and experimental Doppler broadening spectra of bulk
Cu and bulk Al (above) and the Cu/Al ratio spectrum (below). The compu-
tational results are calculated using both the state-independent LDA scheme
and the state-dependent scheme for momentum densities. The experimental
data is from Ref. [62]. From Publication II.

2. When using the ratio representation the results calculated using the
state-dependent scheme are in excellent agreement with experiment
no matter which two spectra are chosen. Especially at high momenta
they are in much better agreement than the state-independent LDA
results.

Figure 3 shows theory-experiment comparisons for bulk Cu and bulk
Al. Also the Cu/Al ratio spectrum is shown. The state-independent LDA
model reproduces the absolute intensities at high momenta better but the
spectra oscillate around the experimental ones. In the ratio spectrum the
oscillations lead to a qualitatively wrong behavior at high momenta whereas
in the result calculated using the state-dependent model the systematic
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errors are completely canceled.
The state-independent LDA model of Eq. (26) enhances the Umklapp

components of the Bloch states in a very non-trivial way because of the
position-dependence of the enhancement factor. This leads to oscillations
in the ratio spectra. The smaller intensity at high momenta results from the

fact that ψ+(r)ψj(r)
√

γ(n−(r)) is broader in the real space than ψ+(r)ψj(r)

(near the nuclei where the electron density is higher γ(n−) decreases towards
unity while in the interstitial regions it is of the order of 4) and hence the
corresponding momentum distribution is narrower than in the IPM leading
to a lower intensity at high momenta.

In our applications the chemical identification of, for example, impurity
atoms around vacancies is very much based on the annihilation signal from
core electrons and on the Umklapp components due to the valence electrons.
The computed and measured spectra are compared up to momenta as high
as 40×10−3 m0c. Therefore, the momentum dependence of the enhancement
inside the first Brillouin zone is not of utmost importance. More important
is how the enhancement of the Umklapp components is described. In the
state-dependent model [Eq. (27)] they are enhanced with the same factor as
the G = 0 component as in the IPM. The state-dependent scheme enables
one to treat all electronic states in a similar fashion while still getting a
reasonable agreement with the experiment. This is also in the spirit of
DFT because in general all the electronic states are treated similarly as
the total densities are the fundamental quantities. The problem with the
too high intensity in the state-dependent model at high momenta can be
circumvented by plotting ratio spectra.

In order to be able to compare the three-dimensional momentum density
of annihilating electron-positron pairs, ρ(p), with experiments it has to be
projected to one or two dimensions,

ρ(pz) =
∫ ∫

dpxdpy ρ(p), (29)

ρ(px, py) =
∫

dpz ρ(p). (30)

Depending on the method the experimental spectrum is measured with the
spectrum of Eq. (29) is termed either the Doppler broadening spectrum
or the 1D-ACAR spectrum. Equation (30) corresponds to the 2D-ACAR
spectrum. The computational momentum distributions have to be convo-
luted with the experimental resolution function before comparing them with
experimental ones.
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In practice most of the theory-experiment comparisons in the thesis
are done by plotting ratios of two Doppler spectra or the so-called ratio-
difference spectrum (relative difference to the corresponding bulk spectrum).
In this representation the non-saturation trapping seen in experiments af-
fects only the scaling of the spectrum and not its shape (for further moti-
vation see Publication V).

The experimentally measured line shapes of the Doppler-broadened 511-
keV line are conventionally described using so-called S andW parameters [1]
which are presented graphically in Fig. 2. The S (central) parameter is the
integral over the low-momentum region of the Doppler spectrum. In the case
of theW (wing) parameter the integration is made over the high-momentum
part. The counts in the central region are mainly due to annihilation with
low-momentum valence electrons. At high momenta the intensity is mainly
due to core electrons. Therefore, the S and W parameters can directly be
associated with valence and core electrons, respectively.

3.3 Implementation: Projector augmented-wave

method

The pseudopotential approximation is a commonly used method in DFT cal-
culations. The idea is to replace one problem with another which is easier
to solve but still contains the essential physics. The strong Coulomb po-
tential of the nucleus and the effects of the tightly bound core electrons are
replaced by an effective ionic potential acting on the valence electrons. This
is necessary because the wave functions are orthogonal against one another
and around the nuclei this requirement manifests itself by rapid oscillations
in wave functions. These oscillations can not be described using a reason-
able number of basis functions. The resulting pseudo wave functions in
the pseudopotential method are soft and approximate the all-electron wave
functions (the accurate Kohn-Sham wave functions) in an indefinite way
meaning in practice that the information on the high-momentum Fourier
components (Umklapp components) of the wave functions is lost. A method
combining the accuracy of all-electron methods with the efficiency and flex-
ibility of pseudopotential methods is the projector augmented-wave method
by Blöchl [10]. It enables one to perform electronic-structure calculations
using soft pseudo wave functions which can be represented with a modest
number of plane waves. The information on the accurate all-electron wave
functions is, however, also conserved because they can be reconstructed
from the pseudo wave functions within the PAW method. In this thesis the
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PAW method is for the first time applied to Compton profile calculations
(Publication I) and to calculation of momentum densities of annihilating
electron-positron pairs in defects in solids. The implementation is described
in Publication II. Ishibashi [63] had already applied the PAW method to
the calculation of coincidence Doppler spectra for bulk materials and later
Uedono et al. have used the code by Ishibashi to study vacancy-type defects
in SiGe [64] and in polycrystalline Si [65].

The idea behind the PAW method is to define a linear transformation
between all electron (AE) wave functions (the accurate Kohn-Sham wave
functions) and fictitious soft pseudo (PS) wave functions that can be repre-
sented using a plane-wave basis. The AE wave function is written as

|Ψ〉 = |Ψ̃〉 +
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|Ψ̃〉. (31)

Above, |Ψ̃〉 is the PS wave function corresponding to the AE wave function
|Ψ〉, and |φi〉 and |φ̃i〉 are so called AE and PS partial waves, respectively,
represented in radial grids around each ion and used to expand the AE and
PS wave functions |Ψ〉 and |Ψ̃〉 locally around each nucleus

|Ψ〉 =
∑

i

|φi〉ci, and |Ψ̃〉 =
∑

i

|φ̃i〉ci, within ΩR, (32)

where ΩR is the augmentation region (sphere) centered at site R. Above
in Eq. (31), |p̃i〉’s are localized projector functions which determine the
expansion coefficients ci as described below.

There is exactly one PS partial wave for each AE partial wave and the
sets of expansion coefficients ci are chosen to be identical for |Ψ〉 and |Ψ̃〉.
The choice of the PS partial waves determines the softness of the resulting
PS wave functions in the linear transformation [Eq. (31)]. The AE partial
waves |φi〉 are essentially atomic states and the PS partial waves |φ̃i〉 a
set of soft functions that form a complete basis set in the space of the PS
wave functions. The index i is a composite index consisting of the site
index R, angular momentum indices l and m and an additional index k
referring to the reference energy εkl. The partial waves are chosen so that
the corresponding AE and PS waves match outside the augmentation region
ΩR (outside some radius rl

c around the nucleus R).
The idea behind the transformation of Eq. (31) is represented in Fig. 4.

The first term in the AE wave function is the corresponding PS wave func-
tion. The last term in Eq. (31) represents the difference between the AE and
PS wave functions. Namely, the local expansions [Eq. (32)] are used to rep-
resent the AE and PS wave functions locally around each nucleus. In order
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Figure 4: Division of the AE wave function into a PS term represented in a
three-dimensional grid, and one-center PS and AE terms. [See Eq. (31).]

to arrive at a linear transformation between the AE and PS wave functions
the expansion coefficients, ci, have to be defined to be linear functionals of
the PS wave functions, i.e., they can be written as inner products

ci = 〈p̃i|Ψ̃〉, (33)

with suitable localized projector functions |p̃i〉 that probe the local character
of the PS wave function |Ψ̃〉. There is exactly one projector function per
partial wave. The partial waves have to fulfill the duality condition 〈p̃i|φ̃j〉 =
δij so that the PS partial wave expansion of the PS wave function is complete
in each augmentation region.

In practice the partial waves and projector functions are constructed
as follows. The AE partial waves |φi〉 are obtained from an all-electron
calculation for a spherical reference atom and orthogonalized against core
states. The PS partial waves |φ̃i〉 are represented using a set of soft basis
functions (such as spherical Bessel functions as in Ref. [42]). The choice
of the PS partial waves is not unambiguous. The transformation between
the AE and PS wave functions and the softness of the resulting PS wave
functions depend on it. The last step is to construct the projector functions
|p̃i〉. Soft preliminary functions are orthogonalized to the PS partial waves
using a Gram-Schmidt-like scheme.

The power and accuracy of the PAW method in practical calculations
is based on Eq. (31) which enables one to directly express the total energy
functional in terms of the PS wave functions |Ψ̃〉. The PS wave functions
are then used as variational quantities and one obtains modified Kohn-Sham
equations which can easily be solved using plane-wave expansions. In the
pseudopotential method there is no similar correspondence between the PS
wave functions used in the computation and the accurate Kohn-Sham wave
functions as in the PAW method.
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As there is no built-in norm conservation requirement for the PS wave
functions, so-called compensation (or augmentation) charges are used. They
are localized charges placed at the sites of the nuclei. Their shapes and
magnitudes are chosen so that the sum of the PS and compensation charge
densities, ñ + n̂, has inside the augmentation region the same multipole
moments as the exact all-electron charge density n. Due to this trick also
the interactions of one-center parts between different sites vanish and the
total energy functional is of the form

E = Ẽ + E1 − Ẽ1. (34)

The one-center terms E1 and Ẽ1 are evaluated on radial grids centered
around each ion whereas the term Ẽ is evaluated in the plane-wave grid. The
expressions of all functionals, expectation values etc. in the PAW method
are always similar to those of Eqs. (31) and (34) in the sense that first there
is a PS term evaluated in plane-wave grid and then one-center terms related
to AE and PS wave functions with plus and minus signs, respectively.

The compensation charges are utilized also in the positron calculations
of this thesis. Since evaluating the AE valence charge density is difficult
even with the help of the PAW method the Coulomb potential due to the
AE charge density is approximated with the Coulomb potential due to the
sum of the PS charge density and the compensation charges (see Publi-
cation II). The resulting potential matches the AE potential everywhere
except inside the compensation charges. There the potential is so repulsive
for the positron that this approximation has, in practice, no effect on the
accuracy of the positron state.

In the momentum density calculations we first perform a standard PAW
calculation from which we get the PS wave functions |Ψ̃〉. The AE wave
functions |Ψ〉 are then reconstructed using the transformation of Eq. (31).
This is in practice done in reciprocal space (see Publication I). This way
no additional FFT’s (fast Fourier transformations) have to be performed
in Compton profile calculations. We control the convergence of results by
setting a momentum cutoff for the AE wave functions. Finally, the AE wave
functions are used to construct the three-dimensional momentum density
ρ(p) according to one of Eqs. (22), (26) or (27).

The effect of the linear transformation of the PAW method is demon-
strated in Fig. 5 in the case of bulk Cu and especially the 3d states. The
PAW method enables the use of very soft PS wave functions thereby making
the calculations efficient and enabling one to study, for example, first-row
elements, transition metals and rare-earth elements. Once the AE wave
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Figure 5: Effect of the AE wave function reconstruction in the case bulk Cu.
(a) The Γ point AE and PS wave functions of a 3d state plotted in the real
space. The Cu nucleus is at the origin of the x-axis. (b) The effect of the
reconstruction on the Doppler spectrum (ratio to bulk Al). The theoretical
Doppler broadening data is from Publication II and the experimental data
from Ref. [62]

functions are reconstructed the information on the high-momentum Fourier
components of the wave functions is regained. Especially when studying
vacancy defects in semiconductors for which large supercells are needed
the benefits of the PAW method become obvious. It offers as good com-
putational efficiency and flexibility as the best pseudopotentials but with
all-electron accuracy. The good controllability of the basis is another good
property. Plane-waves are a natural basis for momentum density calcula-
tions. Also the fact that the PAW method enables a full-potential treatment
can be important for a wide variety of nonmetallic systems.

Our PAW momentum density implementation is based on the one in the
plane-wave code vasp (Vienna Ab-initio Simulation Package) [66, 67, 42]
and vasp is used in the electronic structure calculations throughout this the-
sis. The positron state and some of the positron annihilation characteristics
are calculated using the so-called Doppler package of the MIKA project [68].
The positron state is solved in the real space using the Rayleigh quotient
multigrid solver described in Ref. [69]. In the positron calculations we treat
the core electrons by an atom code based on DFT and LDA. In the cal-
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culation of core electron contribution to Doppler spectra the positron wave
functions are described by isotropic parametrized interpolation forms fitted
to the results of LMTO-ASA (linear-muffin-tin-orbital method within the
atomic-spheres approximation) calculations. We use a modified 4-parameter
expression [70] of the form by Alatalo et al. [60] (see also Publication II).
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4 Applications

This section presents a closer overview of the most important applications
in the thesis.

4.1 Compton profile calculations

Compton scattering is inelastic x-ray scattering at large energy and momen-
tum transfers. For a recent review see Ref. [71]. It can be used to probe the
ground-state electronic structures of solids. In the impulse approximation
the Compton-scattering cross-section is related to the one-particle electron
momentum density of the material. Modern crystal spectrometers and third
generation synchrotron sources enable momentum resolution high enough
for Fermi surface studies. The technique enables one also to study the local
structure and dynamics of liquids, for example, hydrogen-bonding in water
(see, for example, Ref. [72]). In Publication I of this thesis both experi-
mental and theoretical Compton scattering data were used as benchmarks
for the PAW momentum density implementation. This is the first logical
step because in Compton profile calculations one does not need to solve
the positron state and worry about the electron-positron correlations. Fur-
thermore, it is an important step because the PAW method can have many
applications also in Compton profile calculations.

We used the LDA with no correlation corrections. We found that the
method gives results comparable to other well-established all-electron ap-
proaches. The Compton profiles of Si, Li, Al and the water dimer (H2O)2

were calculated and compared to experimental results and other all-electron
results in the literature or in the case of the water dimer to a calculation
made with localized basis functions. For Si we get a nice agreement with
both experiment [73] and calculations [74] in which AE wave functions were
reconstructed from a calculation made using conventional norm-conserving
pseudopotentials. For Li we get a bad agreement with the experiment [75]
but a perfect match with an earlier LDA calculation [75] made using the
Korriga-Kohn-Rostoker (KKR) method. Li is a difficult system because of
either its strong correlation effects due to low electron density or its soft-
ness which makes the effects of thermal disorder important. For Al we get
a nice agreement with both experiment and previous LDA calculations [76].
Figure 6 shows the calculated directional Compton profiles and their deriva-
tives compared with the experiment. Water is an example of a disordered,
non-crystalline system to which the PAW method and the supercell approx-
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Figure 6: Valence Compton profiles of Al along different directions (the
first row). Also their first and second derivatives are shown (the second and
third rows). The experimental valence Compton profiles (Ref. [76]) have
been obtained by subtracting the KKR core profile [76] from the measured
ones. From Publication I.

imation can be applied. For the water dimer, the agreement with results we
calculate with a code based on a localized basis set is satisfactory.

In conclusion, the PAW method applied to Compton profile calculations
gives results that are comparable in numerical accuracy with results of other
all-electron calculations made within the LDA using methods such as KKR
or the full-potential linearized augmented plane wave method. The method
can be applied as well for calculating Compton profiles of molecular systems
as those of crystalline solids.

The first real application [77] of the PAW method in the field of Compton
scattering has recently been published. In that work the authors studied ex-
perimentally the isotope quantum effects in the electron momentum density
of water. Also an ab-initio model was applied in which deuterated water was
studied using a supercell approach and Car-Parrinello molecular dynamics
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simulations. Snapshots of the molecular dynamics simulations were used
when calculating the time-averaged Compton profile with the PAW method
and the vasp code.

4.2 Highly Sb-doped Si

Publication III deals with n-type doping of Si. In today’s semiconductor
components the required charge carrier concentrations are so high that the
dopant concentrations are already of the order of 1%. At this very high
doping level the free electron concentration in n-type Si has been found to
saturate at < 5 × 1020 cm−3 regardless of the doping density [78, 79]. In
Publication III highly Sb-doped Si samples grown using molecular beam
epitaxy (MBE) were studied with positrons in order to clarify the role of
vacancy defects in the electrical compensation. Our calculations were used
in the interpretation of experimental Doppler broadening data. Statistical
analysis of recent electron microscopy experiments [80] shows that the pri-
mary deactivating defects in highly Sb-doped Si contain 2 Sb atoms which
are second-nearest neighbors to each other. In a subsequent study [81]
the off-column displacements of Sb atoms measured with the annular dark-
field scanning transmission electron microscope (ADF-STEM) were com-
pared with structural models obtained using first-principles calculations.
The models included defects such as the complex formed by a vacancy (V )
and two substitutional Sb atoms, V -Sb2, and the donor-pair [82] [DP(i)] and
donor-pair vacancy interstitial [81] [DP(i)-V -I] defects. The DP(i) defects
consist of 2 substitutional donor atoms at second- or fourth-nearest-neighbor
sites (i = 2, 4). In the DP(i)-V -I defects there is also a displaced Si atom
that forms a Si vacancy and a Si interstitial, I. Of these defects only the V -
Sb2 complex contains a sufficiently large open volume for positron trapping.
Based on the measured off-column displacements and the ones calculated
for the model defects using DFT calculations the dominant deactivating de-
fect was argued to be the DP(2)-V -I defect. The other candidate defects
were rejected because of large calculated inward relaxations of Sb atoms
from their ideal lattice sites and their higher formation energies. Here one
must note that the ADF-STEM measurements can not detect the possible
vacancies in the vicinity of the Sb atoms.

In Publication III the same MBE-grown highly Sb-doped Si samples
as in Refs. [80, 81] were studied using positron annihilation spectroscopy
and a low-energy positron beam. Our theoretical calculations were used
to analyze measured Doppler broadening spectra. The first step before
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trying to identify the defects in the MBE grown samples under investigation
was to study reference samples with large concentrations of V -Sb1 and V -
Sb2 defects created by electron irradiation and annealing. The obtained
Doppler spectra were compared with the theoretical ones. Figure 7 shows
the comparison. The agreement between the experiment and the theory is
very good at all momentum regions. The peak at around 14 × 10−3 m0c
is due to 4d electrons of Sb and its height correlates with the number of
Sb atoms surrounding the vacancy. Much of the discrepancy is due to the
approximate geometries of the V -Sbi defects. Namely, in the modeling ideal
(unrelaxed) defect geometries were used. Actually, at least for V -Asi defects
this seems to be a good approximation (see Publication VII). The effect of
the position of the Sb atom is demonstrated for the V -Sb defect in Fig. 7.
The Sb atom is displaced +5% (−5%) of the Si nearest-neighbor distance
outward (inward).

Based on the comparison in Fig. 7 the calculations were found to reli-
ably describe the annihilation characteristics of the vacancy-Sb complexes.
Next, similar calculations were carried out for the DP(i)-V -I defects and
for divacancy-Sb complexes, V2-Sbi, because the S line-shape parameters
measured from the MBE-grown samples suggested that there are vacancy
defects present with a larger open volume than a monovacancy. These data
were used to interpret the experimental Doppler broadening data measured
for the MBE grown samples. It turns out that no single defect type is able to
explain the experimental Doppler broadening data. Our comparisons sug-
gest that the defects trapping positrons consist of mono- and divacancies
surrounded by one or two Sb atoms. After a heat treatment at 575 K the
contribution of Sb 4d electrons strongly increases suggesting that the num-
ber of Sb atoms neighboring vacancies also increases. Also the measured
S parameter increases with increasing annealing temperature suggesting
that the vacancy clusters grow in size. The highly Sb-doped MBE Si is
thus atomically metastable after the growth; the grown-in vacancies medi-
ate the formation of larger vacancy-Sb clusters by annealing already below
the growth temperature.

The vacancy concentrations determined in Publication III for the sam-
ples with various Sb concentrations show that the concentrations of the
open-volume defects with one or two neighboring Sb atoms are high enough
to be important for the compensation of Sb donors. The results are in
agreement with the electron microscopy studies, in which Sb impurities oc-
cur either in isolation or in pairs [80]. Also, the presence of defects like
V -Sb2 and V2-Sb2 is compatible with diffusion data. The V -Sb1 defect is
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induced V -Sb1 and V -Sb2 defects, as scaled to that of the vacancy-
phosphorous pair. The lines are obtained from theoretical calculations,
showing also the influence of lattice relaxation (fraction of the Si-Si bond
length, Sb atom relaxed only). From Publication III.

mobile at the growth temperature of 550 K. Its migration leads to formation
of more stable complexes such as V -Sb1 or V2-Sb2 when it encounters an
isolated Sb atom or another V -Sb1. Thus, no complexes with 3 Sb atoms
can form.

4.3 Impurity decoration of Ga vacancies in GaN

Publication IV examines the possibility of distinguishing neighboring ele-
ments in the Periodic Table of elements using positron annihilation spec-
troscopy. The specific system is the Ga vacancy in GaN. The effect of O
atoms neighboring Ga vacancies on the Doppler broadening spectrum was
studied using O-doped n-type GaN samples grown by hydride vapor phase
epitaxy (HVPE). Annealing experiments show that a VGa formed in growth
is more stable than one formed in electron irradiation [83]. Therefore, a Ga
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vacancy in the O-doped HVPE samples is thought to be complexed with
an impurity atom. The positron lifetime is too insensitive to tell if the Ga
vacancy is isolated or complexed. The reference sample representing a clean
Ga vacancy was undoped HVPE GaN which was irradiated with electrons
in order to produce vacancies. Doppler broadening spectra were calculated
for the clean Ga vacancy, for a vacancy complexed with O, VGa-ON, and for
the divacancy VGa-VN. Figure 8 shows the experimental spectra (ratios to
bulk GaN) measured for the clean Ga vacancies and the Ga vacancies in
the O-doped HVPE samples. The theoretical data for the model defects is
shown below the experimental data. The PAW method and self consistent
relaxations are essential in this study because the effect of the ionic relax-
ations on the calculated Doppler spectrum can be comparable to that due
to the differences in the electronic structures of O and N atoms. Further-
more, since the electronic states derived from O and N 2s and 2p atomic
orbitals contribute the high-momentum part of the Doppler spectrum it is
important to describe them accurately.

The experimental data for the electron irradiated sample is reproduced
well at all momentum regions by the computation supporting the identifi-
cation of an isolated Ga vacancy. The effect of the O atom neighboring the
vacancy is to enhance the intensity at high momenta. The behavior of the
experimental HVPE data is similar.

We also studied the effect of possible H atoms at the Ga vacancies on
the Doppler broadening spectra by calculating the spectra for VGa-H and
VGa-2H. The atomic configurations were taken from Ref. [84]. In GaN grown
by metal-organic chemical vapor deposition (MOCVD) the concentrations
of residual O and H atoms are high. The experimental data from a MOCVD
sample is also shown in Fig. 8. The intensity at high momenta is even larger
than in the case of the HVPE data. The behavior is similar to that in the
computational data for the H-decorated Ga vacancies.

In conclusion, the comparison in Fig. 8 shows that the measurement
of momentum density is sensitive enough to distinguish between O and N
atoms neighboring the Ga vacancy. We identify the isolated Ga vacancy in
undoped electron irradiated GaN and show that in O-doped HVPE GaN
the the Ga vacancy is complexed with the O atom forming VGa-ON pairs.
In MOCVD material the Ga vacancy is likely be decorated by both oxygen
and hydrogen. In this case, however, the discrimination between O and N
is obscured by the stronger contribution of H atoms at high momenta.

32



1.1

1.0

0.9

0.8

0.7

0.6

0.5

E
xp

er
im

en
ta

l i
nt

en
si

ty
 r

at
io

302520151050

Momentum (10
-3

 m0c)

1.1

1.0

0.9

0.8

0.7

0.6

C
al

cu
la

te
d 

in
te

ns
ity

 r
at

io

Measured:
 O doped HVPE n-GaN
 MOCVD n-GaN
 Irradiated GaN

Theoretical:
 VGa

 VGa -VN 
 VGa - ON

 VGa - H
 VGa - 2H

Figure 8: Measured (above) and calculated (below) momentum distribution
curves for different types of GaN samples and defects. The spectra are
shown as rations to the data obtained for the defect-free GaN lattice. From
Publication IV.

4.4 Positron localization effects on the Doppler

broadening of the annihilation line

When a delocalized positron gets trapped at an open volume defect the
trapping has at least the following two well-known effects on the measured
Doppler broadening spectrum. First of all, the electron density sensed by the
positron is lowered compared to the value in perfect bulk and the positron
is mainly in contact with low-momentum valence electrons. This is seen in
the spectrum as increase in the hight of the peak at pz = 0. Secondly, the
overlap of the positron state with high-momentum core electron states is
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decreased leading to a decreased intensity at high momenta. Publication V
discusses in addition to these effects also a third effect which is visible only in
metals since its mechanism is related to the Fermi surface. When a positron
gets trapped at a vacancy defect its momentum distribution is broadened
according to the Heisenberg uncertainty principle ∆x∆p ≥ h̄/2. The ef-
fect of the quantum confinement is to smear the Fermi surface because the
increased positron momentum enhances the electron-positron momentum
density at momenta beyond the Fermi momentum. This effect in addition
to the others is demonstrated in Publication V both experimentally and
computationally using Al as an example. Previously, Saniz et al. [85] have
demonstrated the combined effect due to confinement of both electrons and
the positron in a quantum dot using a simple potential well model. Chiba
et al. [86] argue that they see with the 2D-ACAR technique a Fermi surface
broadening effect in bcc Cu nanoclusters embedded in Fe. Weber et al. [87]
have studied the energy-cap scaling in semiconducting CdSe quantum dots
as the function of quantum dot diameter. The annihilation line shape shows
a smearing at the boundary of the Jones zone. The broadening can be un-
derstood with the help of a one dimensional model [88] that predicts the
Jones zone broadening to be proportional to the energy band gap of the
material. In the case of the CdSe quantum dots the diameter of the dot
determines the band gap and thereby the smearing.

Figure 9 shows two experimental spectra measured from two different
Al samples. The sample corresponding to Fig. 9(a) contains quenched-in
thermal vacancies whereas the one of Fig. 9(b) has vacancies created by
sample deformation. The defect-related positron lifetimes of these sam-
ples are 235 and 225 ps, respectively. The vacancies in the latter sample
have a smaller volume because they are stabilized by strain fields of the
deformation-induced dislocations. The above-mentioned effects of positron
trapping are clearly visible. (i) The peak at pz = 0, (ii) the reduced core
annihilation reflected in the negative value of the curves at high momenta
and (iii) the peaks at around 8×10−3 m0c just above the Fermi momentum.
In the representation used in Fig. 9 the possible non-saturation trapping af-
fects only the scaling of the curve and not its shape (see the discussion in
Publication V). The shape of the curve is determined by the morphology of
the positron traps. The two experimental curves in Fig. 9 can not be scaled
to a common master curve indicating that the positron traps in the samples
are different.

The solids lines in Fig. 9 are computational results for monovacancies
in Al. The experimental data is fitted with computational data using the
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Figure 9: Coincidence Doppler broadening spectra for defected Al (relative
differences to annealed Al). The solid lines are the results of the calculations
(see the text). From Publication V.

(experimental) trapping fraction F (the fraction of positrons annihilating
at vacancies) and the (computational) volume of the vacancy as fitting pa-
rameters. The first one affects only the scaling of the curve and the latter
one determines the shape. The relaxations of the atoms neighboring the va-
cancy are (a) 0% and (b) 4% inward (compared to the Al nearest-neighbor
distance). The computed lifetimes are 234 and 211 ps, respectively. The
fitted trapping fractions are in excellent agreement with the ones obtained
with the standard trapping model from positron lifetime measurements.

In Publication V model calculations are used also to further demonstrate
the different effects positron localization has on the Doppler broadening
spectrum. The calculations enable one to determine annihilation param-
eters as a function of the relaxation of the vacancy and simultaneously
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separately monitor changes in the annihilation rates and momentum densi-
ties of annihilating electron-positron pairs due to valence and core electrons
and also the momentum-density of the positron itself. The Fermi surface
smearing effect can also be demonstrated separately from the other two ef-
fects by convoluting the momentum distribution for bulk Al with Gaussian
functions corresponding to different degrees of positron localization.

4.5 Quantitative chemical analysis of vacancy-solute

complexes in metallic solid solutions

The motivation for Publication VI is to study the possibility of quantitative
chemical analysis of vacancy-solute association in metallic solid solutions
using Doppler broadening spectroscopy. The specific systems are the tech-
nologically important Al-Cu, Al-Cu-Mg and Al-Cu-Mg-Ag alloys. A few
years ago Somoza et al. [89] proposed a method in which the signal due to
both Al and solute atoms, for example Cu, around vacancies in the alloys
is described using the spectra measured for vacancies in the corresponding
elemental metals. The relative concentrations of the solute atoms around
the vacancies are then obtained using a linear fitting procedure. We used
the modified procedure due to Ferragut [90] that also takes into account the
possibility of non-saturation trapping of positrons. The scheme is described
below.

The equation used to fit a spectrum measured for an Al-based alloy is
written as

ρfit(p) = (1 − F )ρAl + F
∑

i

Ciρ
vac
i (p), (35)

where ρAl is the bulk spectrum, ρvac
i (p) is the spectrum corresponding to

saturation trapping at monovacancies in the elemental metal i (for example
Al, Cu, Mg, or Ag), F is the trapping fraction, and Ci’s are the correspond-
ing relative concentrations fulfilling the normalization condition

∑

i Ci = 1.
The fitting parameters in Eq. (35) include F , and the Ci’s of which one
is linearly dependent on the others. The spectra used in Eq. (35) can be
either measured ones (see, for example, Refs. [91, 92, 93, 94]) as always in
the past or originate from theoretical calculations. What was not clear on
the basis of the original experimental construction was how well the spectra
measured for vacancies in elemental metals correspond to the signal due to
corresponding impurities around vacancies in Al-based alloys and how well
the relative concentrations of solute atoms neighboring vacancies, Ci, are
deduced from the spectra in the fitting. This problem arises mainly from
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the different lattice constants of the host and the solute metals and it can
only be addressed using theoretical calculations. In principle calculations
would enable one to use more realistic vacancy-solute complexes than the
systems used in the fitting. However, it turns out that this kind of fitting is
not stable due to linear dependencies in the fitting functions and the result
will depend on how they are chosen. Moreover, we find by simulations that
using Eq. (35) one obtains the relative concentrations of solute atoms with
reasonable accuracy.

The fitting procedure was tested by mimicking experimental spectra with
the ones computed for vacancy-solute complexes with specific numbers of
surrounding solute atoms. Also as fitting functions we used consistently the
calculated ones. Although we had a saturation trapping (F = 1) in our
model calculations we kept F as a free parameter in order to see how stable
the fitting really is.

We considered vacancy defects in binary Al-Cu, ternary Al-Cu-Mg and
quaternary Al-Cu-Mg-Ag alloys. Our findings can be summarized as follows.
Using the fitting procedure described above the accuracy is usually better
than 0.5–1 atoms of the 12 nearest-neighbor atoms of the vacancy in Al. In
some cases the fitting may lead to a slightly wrong value for F but because
of compensation effects the relative concentrations are still reproduced well.
However, adjacent atoms of the Periodic Table having similar core electron
structures (such as Mg and Al) cannot be distinguished reliably. Figure 10
shows a model spectrum for a vacancy in Al surrounded by 2 Cu, 2 Ag
and 1 Mg solute atoms and the corresponding fit with its components. The
concentrations obtained from the fit are in this case equivalent to 2.08, 2.63,
and 0.71 surrounding Cu, Ag, and Mg atoms, respectively, while the fitted
trapping fraction F is 0.963.

The fitting procedure is justified also in the sense that the characteristic
signal of different solute atoms seems to depend linearly on the number of
the atoms around vacancies and on the other hand the annihilation signals
of defects with given numbers of surrounding solute atoms are not depen-
dent on the atomic configuration. This enables one also to try to reproduce
the experimental annihilation signal with the spectrum computed for a sin-
gle model system. The number of neighboring solute atoms then directly
correspond to the average one in the sample.
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Figure 10: Spectrum for a model vacancy defect in an Al-Cu-Ag-Mg alloy
with 2 Cu, 2 Ag and 1 Mg nearest-neighbor solute atoms surrounding the
vacancy. The spectrum is fitted using the spectra for vacancies in Cu, Ag,
Al and Mg and that of bulk Al. The contributions of the different elements
as well as the resulting spectra are shown. The data is from Publication VI.

4.6 Energetics of trapped positron states

Publication VII studies in more detail the energetics of the positron trapping
process and the ionic relaxations taking place when a positron gets trapped
at a vacancy defect. A variety of different kinds of solids such as close-packed
and body-centered cubic metals, compound and elemental semiconductors
are considered. We discuss the positron trapping energies at monovacancies
in these materials (the energy released in the trapping process) and the effect
of the localized positron on their volumes, point symmetries and electronic
structures.

In the conventional scheme the total energy of a system of a positron
in an ionic lattice is the sum of the DFT total energy for the electron-
ion system and the positron energy eigenvalue. The trapping energy of a
positron to a defect is defined as the difference between the total energies
of the initial and final states,

Et = ∆Etot = (E+ε+
bulk)−(Ee+ +ε+

defect) = (ε+
bulk−ε+

defect)−(Ee+−E), (36)
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where ε+
bulk and ε+

defect are the positron energy eigenvalues in the delocalized
bulk and localized defect states, respectively, and E and Ee+ are the energies
of the defect supercell (electron-ion system) without and with a localized
positron at the vacancy. The last form in Eq. (36) shows that the trapping
energy consists of the decrease in the positron energy eigenvalue and the
increase in the strain energy stored in the ionic lattice.

The differences in the energetics are found to be large between different
materials. The extrema in the one end are elemental semiconductors such as
Si and the other end close-packed metals. In Si the lowering of the positron
energy eigenvalue is of the same order as the increase in the strain energy
of the lattice leading to a vanishingly small trapping energy. This is true
for a wide range of ionic positions which makes the energy landscape of the
Si vacancy-positron system extremely flat. Figure 11 shows a comparisons
between the energy landscapes of an Al vacancy and a neutral Si vacancy.
The energies of the electron-ion systems (the uppermost curves) and the
positron energy eigenvalues (the lowest curves) as well as their sums, the
total energies of the systems (the curves in the middle), are shown as a
function of the relaxation of the nearest neighbor ions. The relaxations
are constrained to symmetric breathing-mode relaxations. The energy zero
is chosen to be the total energy of the vacancy and the trapped positron
with ions relaxed without positron-induced forces. Then the uppermost
curves correspond also to the total energy of the vacancy and a delocalized
positron. The smallest relaxations correspond to the structures obtained
without the localized positron and the largest ones with a localized positron
at the vacancy. In fact, in the case of the Si vacancy the isolated vacancy
does not even trap the positron. Therefore, all the curves meet at the
strongest inward relaxation in Fig. 11(b).

In addition to trapping energies Publication VII presents information on
the positron-induced relaxations. The effect of the positron on the volume
of the vacancy is especially large in elemental semiconductors. Although the
positron-induced changes are smaller in the case of metal vacancies the effect
on the computed annihilation characteristics are still significant. In the case
of vacancies in semiconductors the localized positron effectively cancels all
the Jahn-Teller distortions observed without the localized positron. We
also examined the effect of the positron on computed ionization levels of
the vacancy defects in semiconductors. The effect was shown to be minor
although the positron-induced relaxations are large. Therefore, we do not
expect the localized positron to change the charge state of the defect prior
to its annihilation. In addition to the Si vacancy the vacancy in Ge as
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Figure 11: Configuration-coordinate diagram for (a) the monovacancy in Al
and (b) the neutral monovacancy in Si. The dotted lines show the positron
energy eigenvalue (relative to the one in perfect bulk), the dashed lines the
energy of the lattice and the delocalized positron and the solid line the total
energy of the defect-positron system as functions of the relaxation of the
vacancy. Positive (negative) sign denotes outward (inward) relaxation. The
points A, B and C denote different stages in the positron trapping process.
From Publication VII.
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well as the As vacancy in GaAs seem difficult to model because we found
the positron trapping to be energetically unfavorable and even a metastable
configuration with trapped positron state was not found. The N vacancy
in GaN does not seem to have a bound positron state at all. Although the
results may in some borderline cases as Si be even qualitatively incorrect
Publication VII demonstrates that there are some important trends in the
energetics of positron trapping between different kinds of materials.
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5 Summary and conclusions

In this thesis practical methods for modeling momentum distributions of
positron annihilation radiation in solids were developed and applied to the
interpretation of positron annihilation experiments, especially to chemical
identification of vacancy defects in semiconductors and in metallic alloys.
The same methods were applied also to Compton profile calculations which
in this thesis mostly served as benchmarks for the method. Future applica-
tions, however, are expected also in this field.

In Compton profile calculations the PAW method was shown to give
results comparable in numerical accuracy with other all-electron methods
(Publication I). The approach was further tested in the calculation of
momentum distributions of annihilating electron-positron pairs in Publi-
cation II. Also different approximations for the calculation momentum dis-
tribution of positron annihilation radiation. were compared in the case
of perfect bulk systems. The so-called state-dependent scheme turned out
to reproduce the experimental results when the data was represented by
plotting ratio spectra. When applied with the Boroński-Nieminen LDA for
electron-positron correlation effects the scheme suffers from overestimated
intensity at high momenta. The state-independent LDA scheme by Daniuk
et al. reproduces the absolute intensities well but the computational spectra
oscillate about the experimental one which leads to unphysical features in
the ratio spectra. When used with the state-independent scheme the GGA
by Barbiellini et al. describes both the absolute intensities and the shapes
of the ratio spectra well. However, in some cases it fails to predict the ratios
as successfully as the Boroński-Nieminen LDA and, furthermore, it has the
additional disadvantage that it involves one semi-empirical parameter.

The methods were applied to the identification of vacancy-impurity com-
plexes in semiconductors in Publications III and IV by interpreting experi-
mental Doppler broadening data. In Publication III we identified vacancy-
impurity complexes in n-type highly Sb-doped Si grown by molecular beam
epitaxy. In Publication IV calculations were used to demonstrate the effect
of oxygen and hydrogen on the Doppler broadening signal of Ga vacancy in
GaN.

In Publications V and VI the methods were applied to metallic sys-
tems, namely to Al and Al-based alloys. In Publication V calculations were
used to demonstrate the effect of quantum confinement of the positron at
a vacancy in a metal on the observed Doppler spectrum. Publication VI
discussed the possibility of quantitative chemical analysis of vacancy-solute
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association in Al-based alloys. Our results give support to a previously
used analysis method in which the relative concentrations of solute atoms
surrounding vacancies are fitted by describing their effect on the Doppler
broadening spectrum by the signal of the vacancy in the corresponding ele-
mental metal. The presence of up to three different types of impurity atoms
may be discriminated as long as their core electron structures are sufficiently
different.

In Publication VII especially the energetics of positron trapping and
the interaction between the localized positron state and the ionic lattice
were studied. We observed notable differences between metals, compound-
and elemental semiconductors. In metals the energy stored in the ionic
lattice is a minor contribution in the net energy balance whereas in the
case of elemental semiconductors like Si the calculations indicate that in
principle all the energy released in the trapping process could be stored in
the lattice. Although the energy considerations based on our calculations
are not fully in line with experiments the calculations clearly show that
the interplay between the positron and the lattice is important in positron
trapping especially in semiconductors.

In conclusion, plane-wave supercell calculations with the PAW method
enable a very good numerical accuracy in momentum density calculations
and are efficient enough for the study of small vacancy defects in semicon-
ductors with reasonably large supercells. Also the forces on ions due to a
localized positron can be taken into account which enables self-consistent
determination of positron and electron densities and the ionic structure.
There are numerous applications of the methods used in the thesis in defect
identification using positron annihilation spectroscopy.

In the present calculations the numerical accuracy is not a limiting issue
anymore. More important are the accuracies of the functionals of the DFT
and the two-component DFT and the accuracy of the model used for the cal-
culation of momentum distributions of annihilating electron-positron pairs.
Especially the localized positron states and defect structures call for a better
description. The novel DFT functionals may offer an improved description
of the energetics of the semiconductor defects. Recent improvements [95] in
trial wave functions used in variational quantum Monte Carlo calculations
of electron-positron systems remove the previously existing problem of anni-
hilation rates below the positronium value at low electron densities. In the
future quantum Monte Carlo methods could possibly be applied to describe
a localized positron in a model defect system with tens or even hundreds of
atoms.
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[56] M. Šob, in Proc. of the 8th Annual Int. Symp. on Electronic Structure
of Metals and Alloys, Gaussig, Germany, edited by P. Ziesche (Tech.
Universität Dresden, Dresden, 1978), p. 170.
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