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We describe a novel method for visualizing brain surface from

anatomical magnetic resonance images (MRIs). The method utilizes

standard 2D texture mapping capabilities of OpenGL graphics

language. It combines the benefits of volume rendering and triangle-

mesh rendering, allowing fast and realistic-looking brain surface

visualizations. Consequently, relatively low-resolution triangle meshes

can be used while the texture images provide the necessary details. The

mapping is optimized to provide good texture-image resolution for the

triangles with respect to their original sizes in the 3D MRI volume. The

actual 2D texture images are generated by depth integration from the

original MRI data. Our method adapts to anisotropic voxel sizes

without any need to interpolate the volume data into cubic voxels, and

it is very well suited for visualizing brain anatomy from standard T1-

weighted MR images. Furthermore, other OpenGL objects and

techniques can be easily combined, for example, to use cut planes, to

show other surfaces and objects, and to visualize functional data in

addition to the anatomical information.
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Introduction

Visualization of brain anatomy plays an important role for

interpretation of functional brain data. Both the surface and inside

structures of the brain need to be visualized. Nowadays, the most

common source of anatomical data is magnetic resonance

imaging (MRI) that provides good spatial resolution and is not

harmful to the subject. In clinical applications, other 3D-imaging

modalities, such as computed tomography (CT), are also

common.
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Brain surface visualization can be carried out with two

fundamentally different methods: volume rendering or surface-

based rendering, both of which have their benefits and draw-

backs. Volume rendering is performed using the volumetric 3D

data as such and it typically produces realistic-looking brain

surface images. It can be applied directly to the unprocessed

volumetric images so that volume element (voxel) opacity

depends on the voxel values. Preprocessing steps, such as

segmentation and tissue classification, can be also included.

Volume rendering is computationally a very intensive process and

it has been studied extensively with many different approaches.

The four most common basic techniques are ray-casting (Levoy,

1988), splatting (Westover, 1990), shear-warp factorization (Lac-

route and Levoy, 1994), and hardware-based 3D texture mapping

(Cabral et al., 1994). An evaluation and comparison of these

methods can be found in Meissner et al. (2000) and a more

general survey of volume visualization algorithms in Elvins

(1992). The 3D texture mapping capabilities and large on-board

memories even in modern consumer-level PC graphics boards

have made the 3D texture-mapping-based techniques very

attractive and widely available (Rezk-Salama et al., 2000).

Although volume rendering can be used for visualizing opaque

surfaces, its capabilities are best suited for visualizing transparent

volumes.

Surface-based rendering methods require segmentation of the

volume of interest to define the surface being visualized. Despite

several existing possibilities for surface representations, by far the

most common approach is to employ triangle meshes. The

segmented 3D surface is tessellated with triangles and the resulting

triangle mesh is rendered as a representation of the 3D object.

Meshes consisting of several thousands of triangles can be

rendered quickly with current display hardware, thereby allowing

interactive visualization. The drawback of this method for brain

visualization is the poor visual quality of solid colored surfaces

compared with the results achievable by volume rendering (see

Fig. 1). Furthermore, the segmentation and the surface tessellation

steps are difficult when the brain sulci need to be triangulated

(Fischl et al., 2001). For solid colored triangle surfaces of the brain,

order of 100,000 triangles are necessary to show surface details.



Fig. 1. Examples of different rendering methods showing the image quality and the refresh rates in frames-per-seconds (fps) for a window of 512 � 512 pixels

using 3.00-GHz Pentium 4 Linux platform with NVidia Quadro4 980 XGL graphics board. First two images use volume rendering: ray-casting with lighting

calculations and depth integration for surface colors (a) and hardware-based 3D texture mappingwithout lighting (b). Last two images use surface-based rendering

with triangles meshes: plain colored mesh with 95 879 triangles (c) and texture-mapped mesh of our method with 12 224 triangles (d), both with lighting.
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Fig. 1 shows example renderings of different methods along with

typical refresh rates.

Some hybrid methods have been proposed to mix volume data

with other rendering methods. Levoy (1990) studied a combination

of polygon rendering and ray-casting for volume data and methods

for combining hardware-accelerated volume and polygon render-

ing have been presented by Kreeger and Kaufman (1999). For

volume visualization methods based on 3D texture mapping

(Cabral et al., 1994), the rendering of polygon models can be

easily included with the help of depth buffer. Hybrid visualization

techniques, combining volume rendering and point rendering, have

been also reported (Ma et al., 2002; Wilson et al., 2002). These

methods reduce the rendered volume data resolution and fill-in

details with point rendering.

The method described in this paper uses normal 2D texture

mapping techniques (Blinn and Newell, 1976; Heckbert, 1986) to

add surface details on the rendered brain triangle mesh. Conse-

quently, we can achieve visual quality of volume-rendered brain

surface while maintaining the speed of triangle-mesh rendering. The

need to segment and triangulate the brain surface into sulci is avoided

as well. Furthermore, the triangle size can be increased reducing the

number of triangles even further while the visible surface details are

preserved with texture images. Only about 10,000–20,000 triangles

are needed for the textured brain surface model.
Fig. 2. Flow diagram of the procedure. The gray box, segmentation and

triangulation of MRI data, is a pre-requisite for the method and the white

boxes show the actual method steps.
Methods

In this section, we present ourmethod of creating texture-mapped

triangle meshes from theMRI data. Although none of the basic ideas

here is strictly new, the combination of these already known steps

produces an efficient and very practical visualization solution. To

our knowledge, the idea of relating directly the 3D volume data

resolution and 2D texture image resolution and optimizing the

mapping on the basis of this (Eq. (2)) is also novel. Depth

integration (Bomans et al., 1990) method has been previously used

for volume rendering of T1-weighted brain MRI data by ray-

casting. However, its potential for creating texture map images for

brain surface triangle meshes has not been reported before.

The starting point for our method is a triangle mesh of the brain

surface and the corresponding MR volumetric image. As the

method does not place any special requirements for the triangle

mesh or for the MRI volume, the segmentation and triangulation
steps are only briefly explained. The rest of the procedure consists

of four fundamental steps shown in Fig. 2. In the subsections

below, we first explain the basic idea of our method followed by

the description of the procedure steps in detail. The last two

subsections focus on the adjustment of method parameters.

For visualization, we use the industry-standard OpenGL

graphics library, which provides fast rendering of triangle meshes

as compatible display hardware is readily available nowadays for

different platforms, ranging from high-end workstations to low-end

PCs and laptops. OpenGL is also operating system (OS)

independent, unlike some other graphic libraries provided by

hardware or OS manufacturers. Please note that the method

described in this paper is not limited to OpenGL alone but can

be used with any graphics applications programming interface

(API) supporting texture-mapped triangles.

Basic idea

The basic idea of our approach is to take a triangle mesh with

relatively few triangles and to map 2D texture (raster) images onto
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it. The layouts of the texture images are optimized and the image

data generated individually for each mesh. The visualization of

such texture-mapped meshes provides better surface details while

still benefiting from fast triangle mesh rendition.

The way how the images are wrapped onto the triangle mesh

can be alternatively thought as how the 3D mesh is opened onto

2D texture images. Hence, the wrapping is closely related to

techniques used for unfolding the brain and creating flat maps

(Fischl et al., 1999), with the difference that the 2D images in

our method are not visualized as such. Thus, the mesh surface

can be divided into several parts and basically each triangle

could be even mapped onto its own texture image. However, in

texture mapping, the seams of the parts are potential sources for

texture discontinuities and thus their number should be kept at

minimum. On the other hand, the larger are the pieces, the larger

is the average distortion when a curved surface is mapped onto a

plane.

We decided to divide the triangle mesh into three parts that are

separately mapped onto three texture map images. One of these

parts resembles the surface of a cylinder and wraps around the

mesh. The wrapping leads to fewer seams, allows more efficient

use of the texture-map image area, and facilitates faster rendering

as there are less discontinuities for OpenGL primitive optimization.

Other two parts are the top and bottom caps attached to this

imaginary cylinder.

The mesh is mapped onto 2D texture images in two stages.

First, a preliminary mapping is created by distributing the

original triangles evenly onto a unit sphere and dividing it then

into three parts. This results in a rather even division with

smooth borders and also produces a preliminary mapping where

triangle overlap is already at minimum. Next, these mappings are

optimized to provide texture image resolution that is comparable

to the resolution of details that can be extracted from the

volumetric data. After that, texture-map raster images are

generated by depth integration from the original MRI data. The

last step is optimization of OpenGL primitives that creates

triangle strips and triangle fans for the mesh, speeding up per-

vertex processing.

Surface triangulation

As mentioned before, our method does not pose any special

requirements for the triangle mesh or for the MRI volume.

Specifically, the voxel size can be different along different axes.

Thus, the slice separation can differ from the in-slice resolution

without the need for re-slicing the volume. The triangles of the

mesh do not need to be closely equilateral, although our

triangulation method produces such triangles. Furthermore, only

the surface of the brain is needed where the sulci are closed (see

the texture-less images of Fig. 7). Thus, the difficulty of

segmentation and triangulation of cortical mantle into sulci is

avoided. As the exact implementations of the segmentation and

triangulation steps are not crucial for the method, we explain our

tools only briefly.

Subject’s T1-weighted MR images are segmented for brain

surface. We use 3D region-growing operation (Fuchs et al., 1993)

with thresholding followed by morphological operations that

close the sulci and smooth the surface. In our software, these and

several other 3D image processing commands can be interactively

applied to the volumetric data. Manual adjustment of segmenta-

tion mask is also possible. For a comprehensive review of MRI
brain segmentation techniques, see for example Suri et al.

(2002a,b).

Next, the brain surface is triangulated. Our algorithm is derived

from a patching process of Wagner et al. (1995). The patch centers

become vertices of the mesh and the neighboring patches are

connected which creates edges and triangles. This method

produces almost equilateral triangles with a side length close to a

specified value (patch size). This procedure is implemented as one

3D image processing operator in our software. As mentioned, any

other triangulation method can be employed, as long as it produces

connected and oriented triangles (with normals pointing out) that

represent a closed surface.

Importantly, with this new visualization method, the triangle

sizes can be increased while the texture mapping still provides

accurate surface details. This way, the number of triangles used

can be reduced. As will be noted in the Results section, excess

number of triangles slows down the rendering speed without any

benefit in the visual accuracy. Thus, some common triangulation

methods producing large number of small triangles, such as the

marching-cubes algorithm (Lorensen and Cline, 1987), would need

triangle mesh decimation to produce efficient meshes for our

method.

Preliminary mapping

In the first phase of our method, we create a preliminary

mapping where the 3D triangle mesh is divided into parts that are

opened on top of 2D texture images. This step is performed by

mapping the mesh first onto a sphere that is then partitioned. The

spherical parametrization of meshes has many uses, such as

compression (Schrfder and Sweldens, 1995), morphing (Alexa,

2002), re-meshing (Praun and Hoppe, 2003), and shape analysis

(Funkhouser et al., 2003). Different parametrization methods have

been developed that employ for example conformal approxima-

tions (Haker et al., 2000), spring-like relaxation processes (Alexa,

2002), spectral graph theory (Gotsman et al., 2003), and

minimization of stretch metrics (Praun and Hoppe, 2003).

For our method, the spherical parametrization is an intermediate

step that helps mesh division into parts and provides a preliminary

mapping. The important properties are good areal distribution of

triangles, minimal amount of overlapping triangles, and speed.

Thus, we ended up using an iterative process that optimizes an

error function based on triangles’ areas on the sphere. It starts by

projecting the vertices of the 3D mesh onto a unit sphere whose

origin is inside the mesh. The origin is used as the projection center

and its exact location is not of great concern for the method as the

locations of the projected vertices are optimized next. We select the

origin of the largest sphere that can be fully enclosed inside the

mesh.

Next, the projected vertices are moved on the unit sphere to

minimize the error function

Esphere ¼
XN
i ¼ 1

wi � 4p a
ai

A
þ 1� að Þ 1

N

�� �2"
ð1Þ

where wi is the solid angle subtended by the ith triangle on the unit

sphere at the origin, ai is the area of that triangle in the original 3D

mesh, A =
P

ai is the total surface area of the original mesh, N is

the number of triangles, and a is a parameter determining the

optimal target. Using this error function, the optimal target can be

selected linearly between equal area (equal solid angle) for each



Fig. 4. Spherized sample mesh and preliminary mapping for it. The added

border triangles are shown with gray shading.
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triangle (a = 0) and area proportional to the triangle’s original size

(a = 1). We use signed values for wi so that triangles whose surface

normal points inwards on the sphere have negative solid angles. As

the target term of the error function is always positive, those

triangles produce large errors which helps to straighten out the

projected mapping on the unit sphere and to reduce overlaps

associated with flipped triangles.

In the minimization, we employ the Levenberg–Marquardt

method (Marquardt, 1963) and use several hierarchy levels for the

mesh (multi-resolution technique). This way, the spatial distribu-

tion of error across the mesh is smoothed faster. Higher-level

meshes are constructed from the lower-level meshes by the half-

edge-collapse technique (Hormann et al., 1999).

Next, the mesh on the sphere is divided into three parts (see Fig.

3) by determining where the center point of a triangle (mean of its

vertices) falls. If the center is above the 45 degree of latitude, the

triangle belongs to the top cap. If it is below the �45 degree of

latitude, the triangle goes to the bottom cap. Otherwise, it belongs

to the middle band. Afterwards, triangles that have only one

neighbor out of three in the same part are transferred to the

neighboring part. This smoothes the edges of the mesh parts.

The top and bottom caps are preliminarily mapped onto square

texture images and the middle band onto a texture image whose

width is four times its height. This initial size is selected, because

the height of that part on the sphere is 908 and the width 3608. This
texture map is repeated in horizontal direction so that the

coordinates of the texture map wrap around. To each part, one

layer of border triangles is added (see Fig. 4). These triangles are

marked to be special border triangles and they are handled

differently from normal triangles in several steps. Their function

is to prevent border overlap and also to help the generation of

texture map data.

Optimization of the mapping

After the preliminary phase, the triangles mapped onto the 2D

texture images are optimized for size and shape. The original mesh

is first converted into voxel coordinates so that all measured

distances will be in voxels. Analogously, the mapped mesh uses

pixels as coordinates. When converting the original triangle mesh

to voxel coordinates, we introduce a scaling factor b. The optimal

size of a mapped triangle would be such that its side lengths in

pixels are equal to the side lengths of the scaled original triangle in

voxels. The rationale for the use of these units is that the resolution

of the original MR image determines the details that can be

visualized on the texture images. The effect of the scaling factor b
is discussed in a later subsection.

We want to emphasize again that the voxels of the MRI data do

not need to be cubic. In particular, the inter-slice distance can be

different from the pixel dimensions in slice without any need to re-
Fig. 3. Dividing and opening the unit sphere for preliminary mapping.
slice the set to cubic voxels. By using the voxels and pixels as units

of measurement, we make sure that the resolution a triangle obtains

from texture-map image is comparable to the resolution of

information we can extract from the MR images.

Low-distortion parametrization of triangulated surfaces is

widely studied in computer graphics. In addition to texture

mapping, it has applications in operations such as multi-resolution

analysis and re-meshing (Alliez et al., 2003; Eck et al., 1995; Lee

et al., 1998), surface fitting (Floater, 1997), digital geometry

processing (Guskov et al., 1999), texture synthesis (Turk, 2001),

and mesh compression (Gu et al., 2002). Many popular para-

metrization methods are based on assigning spring-like forces to

triangles’ edges in the mesh (Eck et al., 1995; Floater, 1997;

Maillot et al., 1993) and finding an equilibrium. Furthermore, use

of conformal maps have been investigated (Gu and Yau, 2003;

Haker et al., 2000; Hurdal et al., 1999; Lévy et al., 2002) in

applications where minimization of angle distortion is important.

A very useful and intuitive base for the triangle’s distortion cost

function is the Jacobian Ji of the affine transformation from 2D

texture coordinates to the 3D coordinates of the original triangle Ti
(Sander et al., 2001). Specifically, the two singular values si,max z
si,min of the matrix Ji express the triangle’s deformation as scalings

in two orthogonal directions. Sander et al. (2001) also introduce the

distortion norms L2 Tið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2i;max þ s2i;minÞ=2

r
and Ll Tið Þ ¼ si;max.

Other proposed distortion measures are si,max/si,min (Hormann and

Greiner, 2000), max{si,max, 1/si,min} (Sorkine et al., 2002), and

si,maxsi,min (Khodakovsky et al., 2003).

These distortion measures are typically used for filling an area

of predetermined size with triangles. The boundary vertices are

either assumed fixed or normalization is used for the global scale.

We, however, want the mapping to evolve freely and to find an

optimal size for the texture images with respect to the 3D data

resolution. Thus, both triangle stretching and compression has to

be penalized and the distortion measure should obtain minimum

with si ,max = si ,min = 1. Only one of the above measures

(max{si ,max, 1/si ,min}) fulfills these requirements.

We furthermore require that scaling in one direction has no

effect on the orthogonal direction. The optimum value 1 and the

error induced by a deviation from this optimum should be

independent of the other singular value. This is important to us

as resolution lost or gained in one direction cannot be compensated

by changing the resolution in the orthogonal direction. Since none
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of the above distortion measures has this property, we ended up

using the following novel measure:

Etx Tið Þ ¼ si;max þ 1=si;max þ si;min þ 1=si;min � 4 ð2Þ

where Etx(Ti) is the distortion error (on the texture map) for

triangle Ti and constant 4 is subtracted for convenience to make

Etx(Ti) = 0 for the optimal case. This measure fulfills the

requirements mentioned.

For each mesh part, we iteratively minimize the total error

Etot =
P

kiEtx(Ti) where ki is the weighting factor for triangle

Ti. The special border triangles added in the preliminary

mapping phase have ki = 1/4 weight while other triangles have

ki = 1. For vertex pk
(S ) of the mesh part (kth vertex, iteration step S ),

the gradient vector Gk
(S ) and Hessian matrix Hk

(S ) of Etot are

calculated considering other vertices constant (i.e., only triangles

adjacent to pk
(S ) contribute). We evaluate a Levenberg–Marquardt-

type (Marquardt, 1963) iteration step

p
S þ1ð Þ
k ¼ p

Sð Þ
k � H

Sð Þ
k þ rI

	 
�1

G
Sð Þ
k ð3Þ

where I is the identity matrix and r z 0 the dampening factor.

With r = 0, we jump to the minimum of the local second-degree

Taylor expansion of the error function and with increasing values

of r the step approaches deepest descent method with decreasing

step length. The dampening factor r is modified like in the

Levenberg–Marquardt method, depending whether the considered

step decreased the error or not.

The triangles are stored as ordered sets of three vertices which

allows us to determine the direction they are facing. Overlapping

triangles in the interior of the mesh necessarily produce flipped

triangles. The optimization algorithm counts the number of

triangles facing the opposite way than the majority and prefers

this count over the actual error Etot. Thus, the error is allowed to

increase if that makes the number of flipped triangles to decrease.

Furthermore, the count is never allowed to increase even if this

would result in a lower total error.

To speed up the propagation of error and thus to reduce the

number of iterations needed, we again used different hierarchy

levels for the mesh (Hormann et al., 1999). The optimization starts

for a simplified mesh and progresses back to more accurate levels

and finally to the full original mesh part. The optimization ends
Fig. 5. Optimized mapping and the generated texture images for the sample mesh.
when the relative change in the error drops below a predetermined

level and all triangles are facing the same way.

The vertex positions are not limited to be within the texture

boundaries while they are being optimized. The texture sizes are

adjusted at the end so that all vertices fall inside the boundaries.

Furthermore, a simple one-dimensional search is accomplished for

the two cap parts to find out whether a smaller texture map size

could be used if the mapping was rotated. For the wrapped texture

map direction, all the vertices moved out of one side come in from

the opposite side. The width of that texture image is adjusted

during the optimization as it affects the outcome. We periodically

test to increase and decrease the width to find the optimal value.

All texture sizes are limited to powers of two due to OpenGL

texture size restrictions. Fig. 5 shows the result of the optimization

for the sample mesh overlaid on the texture images. The special

border triangles are not shown although they have been used for

texture generation.

Generation of texture-map images

After the optimization, the actual 2D texture images are

generated. The color of a pixel is determined in the following

way. First, a triangle is found on the texture image into which the

center of the pixel belongs to. Next, the barycentric coordinates

inside that triangle are calculated for the point. By using these

coordinates, the corresponding location is found from the original

triangle in 3D and a normal vector is interpolated from the normal

vectors of the triangle’s vertices. The gray-scale color assigned for

the pixel is obtained by depth integration (Bomans et al., 1990)

from the T1-weighted MR images. The integration starts from the

inverse mapped location and proceeds inwards, anti-parallel to the

interpolated normal vector. The width, height, and depth of the

integration volume are adjustable parameters whose effects are

discussed in a later subsection. We use uniform weighting for

integration and thus the result is simply a gray-scale average inside

the integration volume.

A pixel whose center is outside a particular triangle (but close

to its edge) can still affect the color that is rendered into this

triangle. This is especially apparent if linear interpolation and

mip-mapping (Woo et al., 1997) are used for rendering the

triangles. The continuous mapping in the texture-map images

makes sure that the local neighborhood of a pixel contains the
Edge lines for the added border triangles are not shown for clarity reasons.
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true neighborhood for the original data. Furthermore, the extra

border triangles are used for generating texture map data to avoid

any edge effects and to prevent the seams to become visible when

the mesh parts are joined. The extra border triangle replaces the

missing edge triangle that belongs to the neighboring part. Thus,

the mapping and the texture image is continuous to even outside

of the actual triangle mesh part. Pixels not inside any of the

triangles can be given a color that is an average of the other

pixels. Fig. 5 shows texture-map images for our sample mesh

with the optimized mesh overlaid (extra border triangle edges are

not shown). The aspects of aliasing and texture seams are

considered further with the adjustment of texture generation

parameters.

Optimization of the OpenGL primitives

As a final step for fast rendering, the triangles in the three

separate parts are arranged into triangle strips and triangle fans to

reduce the amount of per-vertex data that are transferred to

OpenGL and preprocessed (Evans et al., 1996). Our simple method

minimizes the number of separate triangles (Akeley et al., 1990)

and results in more than 50% savings in the amount of transferred

vertex data.

Adjustment of voxel–pixel correspondence ratio

The voxel–pixel correspondence ratio is determined by the

parameter b used for scaling the original triangle mesh when

converting it to voxel units. This parameter defines how many

pixels, in the optimal case, should be dedicated for a unit voxel

distance. The value for the optimal correspondence ratio depends

on the texture generation method (depth integration in our case)

and the method parameters.

For a moment, let us consider simple point-like re-sampling

(zero integration volume). Then, the b parameter can be thought to

effectively define the sampling rate for the texture map image with

respect to the sampling rate of the MRI set. The original sampling

of the MR images defines the highest possible spatial frequency

present in the data. If the original signal is fully reconstructed and

then re-sampled, the new sampling frequency can be the same

without any loss of information. The full reconstruction can be

done with sinc interpolation as sinc function is the Fourier

transform of the ideal low-pass filter (Gonzalez and Woods,

1992). Any other interpolation will have a non-ideal frequency

response.

Sinc interpolation is not widely used because the calculation is

very time consuming. Instead, the most common method is linear

interpolation which is fast to compute. For a comparison of other
Fig. 6. Comparison for the effect of the b parameter values. Arrows point out som

loss of detail with b = 1 but are gone with higher values.
widely used interpolators, see for example Lehmann et al. (1999,

2001). As OpenGL uses linear (or alternatively nearest neighbor)

interpolation when it rasterizes texture-mapped triangles onto

screen, sinc interpolation cannot be used throughout the whole

texturing process and the ideal b = 1 correspondence ratio is not

necessarily enough. Although the frequency characteristics of the

volume integration are difficult to estimate, the procedure

basically takes an average through the integration volume and

thus has a smoothening (i.e., low-pass filtering) effect. On the

other hand, volume integration also has potential to generate

more details (i.e., higher frequencies) as the direction of depth

integration might change very rapidly if local surface curvature is

high.

Because the frequency response of linear interpolation goes first

time to zero at two times the frequency compared with that for sinc

interpolation, value b = 2 seems reasonable. Smaller values might

cause visible aliasing as the frequency response of the linear

interpolation is still at 40% level for the cut-off frequency of the

ideal low-pass filter. On the other hand, we could use even higher

values for b to avoid aliasing from the first few side lopes that have

peak values of 4.7% and 1.6% (1st and 2nd side lope,

respectively). However, the consumption of texture-map memory

grows as a function of b2.

Due to the considerations above, we decided to use value b = 2.

This should produce only minimal amount of aliasing provided that

the optimized mapping does not stretch texture image excessively

and that the local surface curvature is low. Both of these

assumptions hold for the brain surface in general, and only

cylindrical structures (i.e., spine) cause larger optimization errors

(see Results section). For the brain surface used for our method

(sulci closed), the spine is also the only location where surface

curvature is high compared with the texture-map pixel size.

Our experiments (see Fig. 6) confirm the above considerations.

With b = 1, clear telltale traces of linear interpolation (performed

by OpenGL) can be seen on closeups: saw-like edges in diagonal

lines (upper arrow) and loss of detail (smearing of a vein, lower

arrow). With b = 2, such artifacts are mostly gone and b = 3 does

not seem to provide any further details.

Adjustment of texture generation parameters

As described previously, our texture images are created by

depth integration from the original T1-weighted MRI data. The

parameter affecting the outcome most is the integration depth, as is

illustrated in Fig. 7. Shallow integration depths produce higher

accuracy of surface details but the images are also noisy and they

can be affected by small errors in surface segmentation and

triangulation. Larger integration depths smooth out the information
e structures that show the linear interpolation artifacts (saw-like edges) and



Fig. 7. Effect of the integration depth on generation of texture maps. Image pair on the left shows the triangle mesh without texture maps to give an idea of the

surface details that the mesh follows. Rest of the images show the same mesh with texture maps applied. Only the integration depth is changed between

different images.
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through larger volume and show less details. Thus, the selection for

integration depth depends on the application and all depths from 1

to 6 mm seem to be usable. We suggest 3 mm as a reasonable

default value.

Selection for the base of the integration volume also affects the

outcome. Two different approaches, absolute and relative, are

possible, both with their own benefits. An absolute base fixes the

base size to be constant in absolute units. The size can be

determined from voxel dimensions but after that it is the same for

every texture-map pixel generated. Benefit of this approach is that
every pixel uses the same integration volume, no matter how the

respective mapped triangle is deformed. Thus, pixels close to the

seam of one part have necessarily similar colors as those at the

respective position of another texture-map part. The added extra

border triangles help here to generate texture images across the

seams in a continuous manner. In different mesh parts, exactly the

same data are re-sampled for the edges but possibly with slightly

different resolution as the stretch along the edge is not necessarily

the same. In practice, this still guarantees that no visible seams are

produced when the mesh parts are joined. The drawback of this



Fig. 8. Preprocessing times for different mesh sizes. Curve (a) shows the

time for preliminary mapping and optimization together, curve (b) the time

for OpenGL primitive optimization, and curve (c) the time for texture map

generation.
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approach is that fixed base size cannot compensate for the

compression or stretching of the triangles. Thus, aliasing and

possibly loss of details may occur if the integration base size is

smaller than the separation of adjacent pixels. On the other hand,

increasing base size causes integration over larger volume and thus

smoothes the details.

In the relative approach, the pixel size on the texture image is

inverse mapped back to the original mesh and MR images. Scaled

version of this inverse-mapped pixel is then used as the base for the

integration. This way, the compression or stretching of the triangle

in different directions is taken into account, and in general an

asymmetric integration base is produced. Thus, the integration

volume changes from triangle to triangle and no details are lost as

the integration volume adapts to the triangle scaling. Texture

aliasing can be also avoided with this adaptive re-sampling by

keeping the integration base size equal to or larger than the inverse

mapped pixel. As a drawback, the triangles generally have different

scalings on the edges of different parts and thus a slightly different

integration volumes are used for them. In principle, this could

produce visible seams in the texture-map colors when the mesh

parts are joined.

In practice, we have mostly used the relative approach with unit

scaling, meaning that the inverse-mapped pixel is used for the

integration base as such. We have not been able to observe the

seams in the texture-mapped brain surfaces even while knowing

their exact location. When we increased the scaling to three for test

purposes (integration base area nine times the inverse-mapped

pixel area), the borders were seen in some cases when high-

contrast surface details were present.

To calculate the volume integration result for each pixel, we

sample through the specific volume with a given resolution. At

these sample locations, the gray-scale value is calculated by

trilinear interpolation from the original MRI data. For the

integration resolution, we select half of the smallest dimension of

the MRI voxel.
Results

While developing and testing the method, we have used it

with several different T1-weighted MRI volumes with in-slice

resolution of about 1 mm and inter-slice distance varying between

1 mm and 1.4 mm. The volumes were segmented for the brain

and the surface was tessellated with triangle meshes of varying

sizes. These meshes along with the original MRI volumes were

used for creating texture-mapped meshes for our method. For the

numerical results provided here, we selected our highest

resolution T1-weighted MRI volume with 1 mm � 1 mm � 1

mm voxel size.

In the following subsections, we consider the preprocessing

times (i.e., generation of the texture-mapped meshes), the render-

ing speeds, the quality of the rendered surfaces, and the effect of

using anisotropic voxels.

Preprocessing times

Fig. 8 shows example preprocessing times for different mesh

sizes on a 3.00-GHz Intel Pentium 4 workstation. The preliminary

mapping, optimization, and texture generation are explored in more

detail below as they are the parts we have contributed to. The

OpenGL optimization uses a method directly from the literature.
Naturally, the time needed for the preliminary mapping and the

optimization increases with the number of triangles used (see Fig.

8). The computational costs for one evaluation of the error

functions in both cases are linearly dependent on the number of

triangles (i.e., O(N)). As the surface tessellation gets finer, the

sampled local surface curvature increases and unfolding to plane

inevitably produces larger errors, on average. Furthermore, the

propagation of error across the mesh slows down as the error from

one triangle mediates only to the neighboring ones. Thus, the

optimization needs more error function evaluations and the total

time is larger than expected from a simple linear dependency.

A crucial factor to speed up the preliminary mapping and the

optimization steps was the use of different hierarchy levels for the

meshes which speeded up the propagation of error and thus

reduced the number of error function evaluations. The effect grew

larger as the mesh size increased, and almost a ten-fold speed-up

was obtained for large meshes (N50,000 triangles).

Cylindrical structures proved to be difficult and very time

consuming to be flattened on a plane. Fig. 9 shows an example of

brain surface mesh where a long protrusion is created by

segmenting and tessellating also the brain stem and part of the

spine. The enlargement on the right shows this cylindrical structure

opened on a plane.

As the base of the structure is opened on the plane, all further

segments must map inside the region as we progress towards the

tip. This is the only way not to make the triangles overlap. As a

result, all further segments will have less and less area available.

The optimization algorithm progresses very slowly as only minute

changes in those vertex positions can be made without producing

flipped and overlapping triangles. The use of different hierarchy

levels does not speed up this portion as only triangles starting from

the tip of the thin protrusion can be removed between different

levels. Triangles are removed by vertex collapse operation

(Hormann et al., 1999) and on the side of a narrow structure that

would lead to a cut.

The computing time used for the preliminary mapping and

optimization depends on the size of the mesh and whether those

cylindrical structures are present or not. Tests on a 3.00-GHz Intel

Pentium 4 workstation gave times from 1 s (6000 triangles) up to



Fig. 9. Example of a cylindrical protrusion causing problems to open it onto

2D plane.
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5 s (18,000 triangles) for recommended mesh sizes (Fig. 8). With

a finer mesh and when also the brain stem and part of the spine

are tessellated, the computation can easily take 1–5 min to end up

with a satisfactory result.

The time needed for texture-map generation depends on the size

of the texture-map image, on the size of the integration volume,

and on the integration resolution. As can be seen from Fig. 8 (curve

c), the computing time is almost independent of the triangle mesh

size. Although all the triangles are traversed through, the time for

that is negligible compared with the time for volume integration. A

typical total computing time ranges from 1 to 10 s depending

mainly on depth integration parameters (and texture map sizes).

The sample times of Fig. 8 are 2–3 s, as run on a 3.00-GHz Intel

Pentium 4 platform with integration depth of 3 mm, integration

resolution of 0.5 mm, and using relative base size.

Rendering speed

The rendering speed of our method depends mainly on the

number of triangles in the texture-mapped mesh. The choice for the

triangle mesh size also affects the quality of the resulting image

which is explored in the next subsection. Using more triangles

produces more accurate surface representation but it also increases

the rendering time. The optimal trade-off between these two goals

depends on the application, viewport (window) size, and the

OpenGL hardware present.
Table 1

Rendering speed in frames-per-second (fps) for HP Visualize C3600 workstation (

Athlon-based Linux platform with NVidia GeForce4 MX 440-SE graphics board (

980 XGL graphics board (Quadro4)

Triangles Edge (mm) Viewport HP-fx4

Plain

5 542 5.2 512 � 512 420

1024 � 1024 250

12 990 3.5 512 � 512 190

1024 � 1024 160

25 134 2.5 512 � 512 100

1024 � 1024 98

65 892 1.6 512 � 512 38

1024 � 1024 38

217 733 1.5 512 � 512 10

1024 � 1024 10

For each platform, we give results for plain-colored mesh rendering (Plain) and for

average side length of the triangle mesh.
Table 1 shows rendering speeds for five different mesh sizes

(from 5542 to 217,733 triangles) run on three different platforms

using two viewport sizes. The view was set to barely enclose the

minimal bounding sphere of each mesh inside the viewport. The

times shown are averages of 360 renderings where the mesh was

rotated around its vertical axis with 18 steps. The tests were run both
for plain colored and textured meshes, except in the last case where

the rendering speed of larger amount of plain-colored triangles was

investigated. That mesh was created by segmenting and triangulat-

ing the cortex into sulci and no texture maps were created for it.

Rendering quality

Like mentioned above, the size of the triangle mesh affects also

the quality of the resulting renderings. Higher amount of triangles

allows finer surface tessellation and the geometry of the brain can

be reproduced more accurately. Which size produces bgoodQ
quality visualizations is always ultimately a subjective opinion. To

form a general idea of usable mesh sizes, we inspected several

texture-mapped meshes of different sizes created from different

MRI volumes. These meshes were rendered with many viewport

(window) sizes and the resulting visualizations were inspected

while interactively rotating them.

Our tests indicated that meshes with triangle side lengths of 10

mm down to 5 mm (1500–6000 triangles) are suitable for window

sizes up to 512� 512 pixels and possibly when no devoted OpenGL

hardware is available. Closer inspection, especially with interactive

rotation of the mesh, still reveals that the surface is fairly smooth

with texture images placed on top of it. Triangle side lengths of 5mm

down to 3 mm (6000–20,000 triangles) were suitable for full screen

(1280 � 1024 resolution) visualizations. Tests with stereo visual-

ization showed that 3 mm side length was necessary for those cases

because users were able to see the true 3D surface shape. Side

lengths smaller than 3 mm did not produce any particular visual

benefit but increased greatly the amount of triangles and thus also the

rendering time. For example, 1.5 mm side length produces about

70,000 triangles for the brain surface with sulci closed.

Non-cubic voxels

We also explored the visual difference for non-cubic versus

cubic voxels. In principle, that should not give any difference
552 MHz CPU) with Visualize-fx4 graphics accelerator (HP-fx4), 700-MHz

GeForce4), and 3.00-GHz Pentium 4 Linux platform with NVidia Quadro4

GeForce4 Quadro4

Tex. Plain Tex. Plain Tex.

240 480 440 2300 2000

130 160 150 680 640

120 370 350 1400 1300

90 140 140 610 580

63 270 250 820 780

56 130 120 510 480

24 130 130 340 320

23 88 84 290 280

– 45 – 110 –

– 38 – 100 –

texture-mapped mesh rendering (Tex.). Second column (Edge) provides the



Fig. 10. Comparison of optimized mappings, textures, and resulting visualizations. Left-side images (a) are for an MRI set with slice thickness twice the in-slice

pixel size. Right-side images (b) are for an MRI set interpolated to cubic voxels. Dashed line shows the saving in texture map area.
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because voxels and pixels are used as comparable units of

measurement. This leads to the optimization of the texture map

resolution in accordance to the volume data resolution. For the

images presented in Fig. 10, we took the example MRI set (voxel

size 1 mm � 1 mm � 1 mm) and re-sliced it to 2 mm slice

thickness by averaging every two slices. From this down-sampled

MRI set, we created yet another set by linearly interpolating new

slices so that we obtained again cubic voxels. These two new sets

simulated a situation where the MR images would be acquired

with thicker slices and would be then interpolated to cubic

voxels.

We used both of the new MRI sets and a mesh created for the

original 1 mm3 voxel set to create optimized mappings and texture

images. Fig. 10 shows the result. Left side (a) shows the case with

2-mm slices and right side (b) the case interpolated from that to

cubic voxels. On the left side, the optimized triangles are more or

less compressed in one direction compared with the right-side

images. Only the few triangles in-plane with the MRI set slices are

not compressed and the triangles perpendicular to the slice plane

orientation are compressed most as the resolution of the MRI data

is lower in that direction. The optimal texture sizes were 256 �
256 for all square texture maps, 512 � 256 for the wrapped

texture map in case (a), and 1024 � 256 for the wrapped texture

map in case (b).

The large panels in Fig. 10 show the resulting surface

visualizations with integration depth of 4 mm. As expected,

practically no differences can be observed between these images.

The linear texture interpolation performed by the OpenGL system

produces equivalent results when compared with linear interpola-

tion of the original MRI data. Thus, it is best to use the acquired

MR images as such and benefit from the savings in both runtime

memory for texture generation and in texture map memory of the

OpenGL rendering.
Discussion

The method presented in this paper allows fast and realistic-

looking visualizations of the brain surface. As compared to plain-

colored triangle meshes, the use of texture mapping allows us to

increase the triangles’ side length which leads to a smaller number

of triangles. The count is reduced even further as segmentation and
tessellation into brain sulci is avoided. As shown, the time needed

for preprocessing in our method is about 10 s in typical cases for

recommended mesh sizes. Higher-resolution meshes take 10–60 s

and problem cases (i.e., spine included) 1–5 min. All this needs to

be calculated only once per mesh and the results can be stored for

later use. Furthermore, as the complicated process of segmenting

and tessellating the cortical mantle into sulci is not necessary, the

preprocessing time required for our method can be easily saved in

that phase.

Due to the reduced number of triangles, the rendering of the

texture-mapped mesh of our method outperforms even the solid

colored triangle meshes, not to mention volume rendering

techniques. Still, the quality of visualization for brain surface

details is excellent and on par with the volume rendering (see Fig.

1 for comparison). Tessellation into brain sulci with fine mesh is

necessary for the solid colored triangles to show enough surface

details (last row of Table 1). On the other hand, for our method,

textured triangles with side lengths of 2.5–3.5 mm are enough for

even full screen visualizations. As can be seen from the table, using

smaller number of textured triangles instead of large number of

solid-colored triangles provides 3- to 10-fold increase in speed

depending on the platform and viewport size. For volume

rendering, the speed depends on many things like the selected

method, exact method parameters, volume size, and viewport size.

Typical frame rates for visualizing brain MRI volumes fall into

0.1–10 fps (see Fig. 1 for examples).

Although texture-mapped triangle meshes are widely used in

computer graphics, to our knowledge, they have not been

previously applied for visualizing brain surface anatomy from

MR images. Texture-mapped meshes require the suitable texture

images and our key contribution was to notice the applicability

of volume rendering techniques for texture generation. This

allows us to create textured surfaces with visual quality of

volume renderings. Like mentioned, the individual steps of our

method are not new but they result in a novel visualization

solution. Our further contributions are in the preliminary

mapping and optimization phases. The error function for the

spherical parametrization (Eq. (1)) is new and especially suitable

for the specific requirements of our method. In the final

optimization of the mapping, the error function (Eq. (2)) is also

novel. Along with the new idea of relating pixels and voxels as

units of measurement, this allows us to optimize the mapping
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according to the resolution of data available. Typically, the

mapping has been optimized to minimize the geometrical distortion

of the triangles.

We made many choices when building up the method, some of

which can be criticized. Our way of dividing the mesh into three

parts is not necessarily the best one. It seems suitable for typical

brain surfaces, but some other ways may be better for different kinds

of tessellated surfaces. Furthermore, the use of wrapped texture map

has drawbacks as it effectively inflicts a static one-direction scaling

for all the triangles in that part. The benefit is the reduction in the

number of seams and the better optimization of OpenGL primitives,

but these effects may be considered negligible. For easy implemen-

tation of this method, the possibility for wrapped texturemaps can be

discarded as that only complicates the implementation.

Cylindrical protrusions (such as spine) were difficult to open to

2D plane and to optimize. This difficulty could be possibly

circumvented by an algorithm detecting those structures and

separating them into their own parts. Furthermore, if the amount

of seams is not an issue, methods that allow tearing of the flattened

mesh to bound the distortions (Sorkine et al., 2002) could be used.

Nevertheless, in typical brain-research applications, the spine can

be left out and thus we did not address this problem in detail.

The error function (2) can be easily changed so that the terms

associated with loss of surface details (si,max and si,min) are

weighted differently from those increasing with wasted texture-

map area (1/si,max and 1/si,min). These factors are not necessarily

equally desirable, but in some cases the gain on surface details can

be greatly preferred over the wasted texture map area. However, for

typical brain meshes, the compression/stretching error is very low

on average and smoothly distributed so that this is not of much

concern. Only the cylindrical protrusions cause local concentra-

tions of error as they necessarily distort the triangles (Fig. 9).

We believe that the method described here proves to be very

efficient for brain surface visualization. Nowadays, even laptop

computers have graphic cards capable for fast OpenGL rendering

with texture-mapped triangles. The texture-mapped mesh object can

be easily combined with other OpenGL objects and methods to

producemore complex renderings. For example, the realistic looking

brain surface can be accompanied with solid-colored triangle-mesh

objects visualizing scalp and skull surfaces, all this cut with standard

OpenGL cut planes to show inside details with anatomical and

functional data. If these kind of complex scenes are rendered into

stereo buffers for a large screen, the rendering speed and the quality

of individual scene components become crucial. With the method

introduced here, interactive frame rates can be maintained even with

widely available consumer-level graphics cards.
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