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ABSTRACT

This thesis concerns the analysis of multivariate data. The amount of data that
is obtained from various sources and stored in digital media is growing at an ex-
ponential rate. The data sets tend to be too large in terms of the number of
variables and the number of observations to be analyzed by hand. In order to
facilitate the task, the data set must be summarized somehow. This work intro-
duces machine learning methods that are capable of finding interesting patterns
automatically from the data. The findings can be further used in decision making
and prediction. The results of this thesis can be divided into three groups.

The first group of results is related to the problem of selecting a subset of in-
put variables in order to build an accurate predictive model for several response
variables simultaneously. Variable selection is a difficult combinatorial problem
in essence, but the relaxations examined in this work transform it into a more
tractable optimization problem of continuous-valued parameters. The main con-
tribution here is extending several methods that are originally designed for a single
response variable to be applicable with multiple response variables as well. Ex-
amples of such methods include the well known lasso estimate and the least angle
regression algorithm.

The second group of results concerns unsupervised variable selection, where all
variables are treated equally without making any difference between responses and
inputs. The task is to detect the variables that contain, in some sense, as much
information as possible. A related problem that is also examined is combining the
two major categories of dimensionality reduction: variable selection and subspace
projection. Simple modifications of the multiresponse regression techniques de-
veloped in this thesis offer a fresh approach to these unsupervised learning tasks.
This is another contribution of the thesis.

The third group of results concerns extensions and applications of the self-orga-
nizing map (SOM). The SOM is a prominent tool in the initial exploratory phase
of multivariate analysis. It provides a clustering and a visual low-dimensional rep-
resentation of a set of high-dimensional observations. Firstly, an extension of the
SOM algorithm is proposed in this thesis, which is applicable to strongly curvilin-
ear but intrinsically low-dimensional data structures. Secondly, an application of
the SOM is proposed to interpret nonlinear quantile regression models. Thirdly, a
SOM-based method is introduced for analyzing the dependency of one multivariate
data set on another.
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TIIVISTELMÄ

Tämä väitöskirja käsittelee moniulotteisen tietoaineiston analysointia. Lukuisis-
ta lähteistä peräisin olevien, digitaaliseen muotoon tallennettujen tietoaineistojen
määrä kasvaa eksponentiaalisesti. Aineistot ovat usein hyvin isoja sekä havainto-
kertojen että mitattujen muuttujien lukumäärän suhteen. Jotta analysointi onnis-
tuisi, aineistoa täytyy redusoida. Tässä työssä tutkitaan koneoppimisen menetel-
miä, joilla voidaan automaattisesti löytää mielenkiintoisia piirteitä tietoaineistosta.
Löydöksiä voidaan käyttää edelleen päätöksenteossa ja tilastollisessa ennustami-
sessa. Väitöskirjan tulokset voidaan jakaa kolmeen ryhmään.

Ensimmäinen tulosten ryhmä liittyy syötemuuttujien valintaan regressiotehtäväs-
sä, jossa useita vastemuuttujia pyritään ennustamaan samanaikaisesti. Muuttu-
jien valinta on luonteeltaan hankala kombinatorinen ongelma, mutta väitöskirjassa
tutkitut relaksaatiot muuntavat sen yksinkertaisemmaksi jatkuva-arvoisten pa-
rametrien optimointiongelmaksi. Tähän liittyvä väitöskirjan merkittävä kontri-
buutio on lukuisten yksivastemenetelmien laajentaminen siten, että niitä voidaan
käyttää myös useiden vastemuuttujien ennustamiseen. Lasso-estimaatti ja least
angle regression -algoritmi ovat esimerkkejä tällaisista yksivastemenetelmistä.

Toinen tulosten ryhmä koskee ohjaamatonta muuttujien valintaa, jossa kaikkia
muuttujia käsitellään samalla tavalla tekemättä eroa syöte- ja vastemuuttujien
välille. Tehtävänä on löytää muuttujat, jotka ovat tavalla tai toisella informa-
tiivisia. Läheinen ongelma, jota väitöskirjassa myös tarkastellaan, on muuttujien
valinnan ja aliavaruusprojektion yhdistäminen. Nämä ovat kaksi tärkeintä ulot-
teisuuden pienentämisen kategoriaa. Väitöskirjassa kehitetyt usean vastemuuttu-
jan regressiomenetelmät tarjoavat pienin muunnoksin uudenlaisen lähestymistavan
näihin ohjaamattoman oppimisen ongelmiin, mikä on tärkeä työn kontribuutio.

Kolmas tulosten ryhmä koostuu itseorganisoivan kartan (SOM) laajennuksista
ja sovelluksista. SOM on käyttökelpoinen työkalu moniulotteisen tietoaineiston
alustavassa, tutkiskelevassa analyysissä. Se tuottaa tietoaineistolle ryhmittelyn
ja havainnollisen, matalaulotteisen esitysmuodon. Ensiksi väitöskirjassa esitetään
SOM:n laajennus, joka soveltuu erityisesti voimakkaasti kaarevien tai mutkikkai-
den mutta sisäisesti matalaulotteisten rakenteiden analysointiin tietoaineistossa.
Toiseksi esitetään SOM:n sovellus, joka helpottaa epälineaaristen kvantiiliregres-
siomallien tulkintaa. Kolmanneksi esitetään SOM-pohjainen menetelmä, jolla voi-
daan tutkia moniulotteisen tietoaineiston riippuvuuksia jostakin toisesta moniu-
lotteisesta aineistosta.
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I Timo Similä and Sampsa Laine (2005). Visual approach to supervised vari-
able selection by self-organizing map, International Journal of Neural Systems
15(1–2):101–110.
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Chapter 1

Introduction

1.1 Scope of the thesis

This thesis considers multivariate data analysis. Here the term data means any
information that is already or can be transformed into numerical form. The data
consist of observations, which are measured values of some variables. A data set is
typically represented as a matrix whose rows correspond to the observations and
columns to the variables. Data appear all around our society and a trend is that
the sizes of the data sets are becoming larger all the time. For instance, a set of
gene expression data can have tens of thousands of variables and some hundred
observations. Evidently, such a data set cannot be reviewed by hand, but more
sophisticated methods are needed for the analysis. Fortunately, another trend is
the exponential growth of computing power, so there are excellent resources for
designing and applying new methods.

The methods developed in this thesis are exploratory by nature. Exploratory
data analysis is a branch of statistics, which aims to overview the data (Tukey,
1977). It differs from the classical statistics by generating novel hypotheses, in-
stead of testing rigorously existing ones (Glymour et al., 1997). Little is known in
the beginning, but new discoveries are made directly from the data. Information
visualization is a field related to exploratory data analysis, which concerns repre-
senting some aspects of the data to the analyst. This is quite distinct from the
traditional approach, where a domain expert knows in advance what is interesting
in the data. The use of expert knowledge can be valuable, but it is not always
available or it is too costly. Also, expert knowledge may be biased toward some
established practice, which prevents discovering new phenomena. This thesis pro-
poses novel machine learning methods, which aim at finding interesting patterns
automatically.

Dimensionality reduction is the scope of the thesis. It means representing the data
in a more compact form with as little loss of information as possible. The dimen-
sionality of the data equals to the number of variables. Reducing the dimension-
ality means either selecting a subset of the variables or transforming (projecting)
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the variables into a fewer number of new ones. These are the two main categories
of dimensionality reduction: subset selection and subspace projection.

The objective of subset selection includes improving the prediction performance
of the models, providing faster and more cost-effective models, and providing a
better understanding of the underlying process that generated the data (Guyon
and Elisseeff, 2003). In this thesis, variable selection in a regression problem is
studied. Regression means predicting the value of a response variable given the
values of input variables. In particular, this thesis presents methods for selecting
a subset of the input variables, which is useful for predicting several response
variables simultaneously. In addition to regression, unsupervised variable selection
is considered. Unsupervised selection is distinguished from supervised selection by
the fact that there is no a priori response, but all the variables are treated equally.
Here the task is selecting principal variables that contain as much information as
possible (McCabe, 1984).

Subspace projection shares the objective of subset selection with the difference
that the results must be interpreted in terms of all the variables. The coordinate
axes of the subspace are often called features and feature extraction denotes the
process of finding the transformation that projects the data from the original space
to the feature space. Unsupervised learning aims at discovering intrinsically low-
dimensional structures that are embedded in high-dimensional data. This thesis
proposes a method for the particular problem called manifold learning, where the
embedding can be highly nonlinear. Projecting the data onto a two-dimensional
feature space makes it possible to visualize the structure of the data. This thesis
presents a visualization technique for interpreting nonlinear regression models.

1.2 Contributions of the thesis

The main scientific contributions of this thesis include the following.

◦ Many variable selection and shrinkage methods for single response regression
are extended to be applicable with multiple response variables as well. Effi-
cient algorithms for following the corresponding solution paths are proposed.

◦ Methods for unsupervised variable selection are proposed. In addition, meth-
ods that combine variable selection and subspace projection are introduced
for unsupervised dimensionality reduction.

◦ Extensions and applications of the self-organizing map are presented.

The thesis consists of an introductory part and seven original publications. The
publications, along with the contributions of the present author, are described
more specifically in the next section.

The introductory part also contains some novel unpublished material from the
present author. Firstly, the two theorems in Section 2.3.4 and their proofs in the
Appendix establish the connection between the results of Publications V and VII.
Secondly, variable selection for unsupervised dimensionality reduction is discussed
in Publications III and V to some extent, but this topic is examined more exten-
sively and it is presented in the unified framework of Publication VI in Section 2.4.
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1.3 Contents of the publications and contributions

of the present author

Publication I presents a nonparametric method for investigating the relationship
between two sets of variables. The data are visualized using the self-organizing
map (SOM) (Kohonen, 1982, 2001) in terms of response variables. The proposed
method returns a subset of input variables that best corresponds to the description
provided by the SOM. The method is based on nearest neighbor techniques and
it is capable of depicting complex dependencies without assuming any particular
model. This article is an extended version of an earlier paper (Laine and Similä,
2004), invited to a special issue of the journal from the ICONIP 2004 confer-
ence. The initial idea was developed jointly. While Dr. Laine was more active in
preparing and writing the conference paper, the present author was almost solely
responsible for the extended version. The extensions include a broader view in
general, improvements to optimization, consideration of a smooth neighborhood
kernel, and analysis of the kernel parameter.

Publication II introduces a modification of the SOM algorithm. The SOM has
sometimes problems with data, which form a nonlinear manifold (e.g. a highly
curvilinear surface) in a high-dimensional space. On the other hand, some more
recently presented projection methods can handle these cases. The proposed tech-
nique is a hybrid of the SOM and one of these recent methods. It is shown quan-
titatively that the proposed method is capable of preserving local neighborhoods
better than the SOM when there is a manifold geometry in the data. The article
is the sole contribution of the present author.

Publication III extends the least angle regression algorithm by Efron et al. (2004)
to multiple response variables. The proposed algorithm was named as the multi-
response sparse regression (MRSR) algorithm. It is a forward selection method for
linear regression, which updates the model with less greedy steps than traditional
stepwise algorithms and is, thereby, less prone to overfitting. The present author
suggested the idea originally, but the algorithm itself was developed jointly with
Mr. Tikka. Mr. Tikka carried out the experiments, while the application to
multidimensional scaling was outlined by the present author. The article was
written together.

Publication IV considers the task of interpreting nonlinear quantile regression
models. This is important in many fields of empirical research. It is proposed to
use the SOM to visualize the parameters of the model, which helps understanding
the dependency between the input variables and the response variable. The article
is the sole contribution of the present author.

Publication V presents the MRSR algorithm in a more general framework, where
the correlation criterion is defined by any vector norm. It is also shown that the
outcome of the algorithm is unique, assuming implicitly that the selected inputs
are linearly independent. Comparisons are extensive and they show the strengths
of the MRSR against some other methods when the input variables are highly
correlated. It is proposed to use the MRSR to select variables unsupervisedly in an
application of image reconstruction. The present author was more responsible for
the theoretical developments, including the proof of uniqueness, but this research
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was continuously supported by Mr. Tikka. Image reconstruction was the present
author’s idea. Otherwise, the experiments were designed, carried out, and reported
by Mr. Tikka. The present author wrote the other parts of the article.

Publication VI extends the majorize-minimize algorithm by Hunter and Li (2005)
to multiple response linear regression models. The model fitting is penalized in a
way that input selection and regularization occur simultaneously. The algorithm
is applicable to any penalty function that is increasing, differentiable, and con-
cave. In addition, an active set strategy is proposed for tracking input selection
when the complete path of penalized solutions is computed. The active set strat-
egy has computational advantages, because the optimization can be focused to a
subset of parameters, while the solution remains the same. The article is the sole
contribution of the present author.

Publication VII formulates the problem of input selection in multiple response
linear regression as a convex optimization problem to minimize the error sum of
squares subject to a sparsity constraint. The necessary and sufficient conditions
for optimality and a condition that ensures the uniqueness of the solution are
given. An interior point method is proposed for solving the problem. A predictor-
corrector variant of the solver suits for following the solution path as a function
of the constraint parameter. Extensive empirical comparisons are performed. The
present author contributed the theory, implemented the algorithm, and wrote a
large part of the article. Mr. Tikka provided insight into the theory and helped con-
siderably in the way toward a workable implementation. Furthermore, Mr. Tikka
was responsible for planning, conducting, and reporting the experiments.

1.4 Structure of the thesis

The rest of the introductory part of the thesis is organized as follows. Chapter 2
is devoted to variable selection. It starts with a review of necessary background
knowledge on concepts like why variable selection is important, what variables
should be selected, and what approaches exist to carry out the selection. After
that, variable selection methods for single response linear regression are reviewed.
Their counterparts for multiple response variables are introduced next. Finally,
some approaches to unsupervised variable selection and other approaches that com-
bine unsupervised variable selection and subspace projection are discussed. These
techniques are strongly inspired by the regression methods that are studied in the
previous sections of Chapter 2. Altogether, Chapter 2 positions Publications III
and V–VII with respect to related work conducted by other researchers.

Chapter 3 provides a short tutorial on the visualization process based on the
SOM. Three sections follow the tutorial, each of which introduces one application
of the SOM according to Publications I, II, and IV. Firstly, an extension of
the SOM to strongly curvilinear but intrinsically low-dimensional data structures
is introduced. Secondly, a SOM-based framework is examined for interpreting
nonlinear quantile regression models. Thirdly, a method is proposed for analyzing
the dependency of one multivariate data set on another. One set is visualized using
the SOM and the task is to find the variables of the other set that are related to the
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visualization. This application bears similarity to the variable selection problem
for multiresponse regression, discussed in Section 2.3, but differs in having more
emphasis on data exploration than accurate prediction. Related articles from
literature are reviewed in connection with the proposed methods in Chapter 3.

Chapter 4 concludes the introductory part of the thesis and provides some direc-
tions for future research. The Appendix consists of a pseudocode description of
the MRSR algorithm and the proofs of the two theorems in Section 2.3.4.
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Chapter 2

Variable selection for

regression problems

2.1 General concepts

This section gives an overview of some general issues in relation to supervised vari-
able selection. The issues include noting the difference between relevant and useful
variables, and motivating variable selection as one way to tackle the problem of
overfitting, which occurs in using a too complex model for the data. Some guide-
lines are examined to select the best combination of variables and the potential
instability of this process is also discussed. Finally, three major approaches are
introduced to implement the selection.

2.1.1 Relevant variables and useful variables

A number of notions exist for the definition of relevance of a variable. See, for
example, the review articles by Blum and Langley (1997) and Kohavi and John
(1997). Relevance depends on one’s goals but, in general, relevant variables are
those that carry meaningful information about the problem at hand. John et al.
(1994) point out the weakness of existing definitions and propose two degrees of
relevance: weak and strong. Strong relevance implies that the variable is indis-
pensable in the sense that it cannot be removed without loss of prediction accuracy.
Weak relevance implies that the variable can sometimes contribute to prediction
accuracy. A variable is relevant if it is either weakly or strongly relevant, and is
irrelevant otherwise.

A common factor of most definitions of relevance is that they are based on full
distributions of data and a theoretical model that uses the distributions optimally.
In practical problems, a data set is available but the distributions are not known.
An implementable model can also have a restricted hypothesis space so that it
cannot take full advantage of the subset of relevant variables. As a consequence,
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the variables that are useful to build a good model can be different from the vari-
ables that are relevant. Here the goodness of a model means its generalization
accuracy. There is no guarantee that a relevant variable will necessarily be useful
to the model, particularly, if the variables are redundant. A variable is redundant
if its value can be calculated from other variables. On the other hand, sometimes
even irrelevant variables can be useful. This is rare in practice, but the following
example illustrates the possibility (Example 3 by Kohavi and John, 1997). Con-
sider a perceptron classifier, which separates observations into two classes based on
the sign of a linear combination between the input variables and the model param-
eters. If the perceptron does not have the so-called bias term, a constant-valued
input variable turns out to be useful to this particular classifier, although being
irrelevant to the classification task. Differences between the concepts of relevance
and usefulness are discussed, for example, by John et al. (1994), Blum and Langley
(1997), Kohavi and John (1997), and Guyon and Elisseeff (2003).

2.1.2 Overfitting and the curse of dimensionality

Overfitting means that the model is very accurate on training data, but it has
poor accuracy on previously unseen test data. It occurs when the model is too
complex compared with the true underlying source of the data. The curse of di-
mensionality is a special case, which occurs in learning from few observations in a
high-dimensional space. The term curse of dimensionality is introduced by Bell-
man (1961) to describe the problem caused by the exponential increase in volume
associated with adding extra dimensions to a vector space. More observations
are needed to obtain the same density of data when the dimensionality increases.
The mean squared prediction error of a model can be decomposed into two terms,
known as bias and variance (Geman et al., 1992). Incorrect and too simple models
lead to high bias, whereas overfitting produces excessive variance. A straightfor-
ward way to reduce the variance is to get more observations, but it is typically
impossible. Often, however, the variance can also be reduced by deliberately in-
troducing a small amount of bias so that the net effect is a reduction in mean
squared error. This can be achieved by constraining the flexibility of the model
somehow. Variable selection is one possibility to do this.

Irrelevant variables usually reduce the generalization accuracy of a model. For
instance, by including an excess of irrelevant input variables in a linear regression
model the response variable becomes predicted exactly in terms of training data.
This is hardly a good model for test data if the training observations of the response
variable contained any noise. Relevant but highly correlated variables are also
problematic, for instance, by causing instability to the model parameters. The
instability can lead to relatively large parameters in absolute values, which makes
the model more sensitive to outliers (erroneous observations that are distant from
the rest of the data). In general, focusing on the relevant variables does not
save from overfitting. Kohavi and John (1997) give an example of a medical
diagnosis test, where one of the variables is the patient’s social security number.
This variable is relevant in the sense that it alone solves any classification task
applied to the measured patients. However, given only this variable, any practical
model is expected to generalize poorly on measurements taken from a new patient.
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2.1.3 Model selection and model assessment

Model selection means estimating the generalization accuracy of different models
in order to choose the best one (Hastie et al., 2001). Variable selection is an in-
tegral part of model selection, since all combinations of variables correspond to
different models. From this point of view, model selection aims at finding the sub-
set of useful variables. Model selection is, however, a broader concept including
the optimization of model parameters and fixing the values of hyperparameters.
An example of a hyperparameter is a weighting factor that controls the tradeoff
between the fit on the training set and the simplicity of the model. The hyperpa-
rameters are often difficult to tune together with the model parameters, so their
values are kept constant when the model parameters are optimized. Different val-
ues of the hyperparameters are tried, followed by the optimization of the model
parameters, until generalization accuracy becomes maximized.

Training error is usually a too optimistic measure of generalization accuracy, unless
the training set is very large compared to the model complexity. In order to
approximate the generalization accuracy, the data set can be divided into three
parts: a training, a validation, and a test set. The training set is used for fitting
the models, the validation set is used for estimating generalization accuracy in
model selection, and the test set is used for evaluating the generalization accuracy
of the selected model. In some cases the data set is too small to be split into
three parts. Then the validation step can be approximated by various hold out
techniques including cross-validation and the bootstrap (Efron and Tibshirani,
1993). Another approach is to use theoretical bounds that estimate the optimism
in training error (Vapnik, 1998).

Model assessment, or performance prediction, means estimating the generalization
accuracy of the selected model (Hastie et al., 2001). In most practical problems, it
is not sufficient to provide a good model, it is important to predict how well it will
perform on new unseen data (Guyon et al., 2006). Model assessment is essential
to perform on an independent test set, which is not used in model selection. This
way the estimate includes the uncertainty of model selection.

2.1.4 Variance in variable selection

Many variable selection techniques are sensitive to small perturbations of the data
(Breiman, 1996). For instance, a different subset is found to be useful in different
replicates of cross-validation. This causes instability to model selection. At worst,
the chosen model can have much lower generalization accuracy than the optimal
model would have. Even if the generalization accuracy is the same for models
with different subsets of variables, this deviation is undesirable, because variance
is often the symptom of a bad model, results are not reproducible, and one subset
fails to capture the whole picture (Guyon and Elisseeff, 2003).

To stabilize model selection, several model averaging techniques have been pro-
posed (Breiman, 1996; Brown et al., 2002; Kadane and Lazar, 2004). When many
models are aggregated the risk of choosing a single bad model is avoided. Although
model averaging usually improves generalization accuracy and stability, its draw-
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back is that it does not necessarily lead to a reduced set of variables. The variable
selection process itself can also be stabilized directly. The nonnegative garrote
(Breiman, 1995) and the lasso (Tibshirani, 1996) are seminal methods that select
variables in a non-discrete way as a function of a continuous-valued shrinking pa-
rameter. The smoothness of the process has the consequence that the methods do
not suffer from high variability of subset selection.

2.1.5 Different approaches to variable selection

Many approaches have been proposed over the years for dealing with the problem
of variable selection. One way to categorize the approaches is to consider the
problem from the frequentist and Bayesian perpectives. This thesis belongs to
the frequentist school. Readers interested in comparing the two perspectives are
encouraged to see the review articles by George (2000) and Kadane and Lazar
(2004). The frequentist perspective can be further divided into three categories:
filter, wrapper, and embedded approaches (Blum and Langley, 1997; Guyon and
Elisseeff, 2003).

The filter approach has two distinct steps. Firstly, irrelevant variables are dis-
carded and, secondly, a model is fitted with the selected variables (John et al.,
1994). Possible criteria for guiding the selection are, for example, mutual infor-
mation (Rossi et al., 2006) and the Gamma statistic (Jones, 2004). The main
disadvantage of the filter approach is that it searches for variables that are rather
relevant than useful. Thus, it totally ignores the effects of the selected variable
subset on the performance of the final predictive model. Filters are more like
preprocessors, which can be used with any model to reduce the number of vari-
ables. Sometimes filters are used without the modeling step only to explore the
data and detect relevant variables as shown in Publication I. Filters are typically
computationally efficient, at least compared with wrappers.

The wrapper approach considers the model as a black box and uses only its
interface. Different variable subsets are browsed using the estimated generaliza-
tion accuracy of the model as the measure of usefulness for a particular variable
subset (Kohavi and John, 1997). Wrappers can be coupled with any model and
the approach usually leads to higher generalization accuracy than using filters. A
drawback is that the computational load of the wrapper approach can be unbear-
able.

The embedded approach incorporates variable selection as a part of model fit-
ting and the selection technique is specific to the model. The external search algo-
rithms that are used in the filter and wrapper approaches cannot cover all possible
variable combinations, excluding problems with only a few variables. Thereby,
their solutions are likely to be suboptimal. On the contrary, global optimality is
often easier to guarantee in the embedded approach. Embedded methods are typ-
ically computationally more efficient than wrappers. Publications III and V–VII
consider embedded methods.
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2.2 Single response linear regression

Subset selection in linear regression is a well studied area. The first wave of im-
portant developments occurred in the 1960s when computing was expensive. The
focus on the linear model still continues, in part because its analytic tractability
facilitates insight, but also because many tasks can be posed as linear variable se-
lection problems (George, 2000). A comprehensive treatment of variable selection
methods is provided by Miller (2002). Here the emphasis is on the most recent
developments and such formulations of the problem, where a global solution can
be computed without trying all possible combinations.

Suppose that y, a response variable, and x1, . . . ,xm, a set of potential input
variables, are vectors of n observations. For the sake of simplicity, we assume that
all the variables are standardized to zero mean and unit variance. The columns
of the matrix X = [x1, . . . ,xm] correspond to the input variables and rows to the
observations. Linear regression means estimating w, a vector of m parameters of
the model

y = Xw + e, (2.1)

where e is an unknown noise vector of n elements. Model (2.1) does not include
the bias term, because it is not needed under the assumption that the variables
are standardized.

A traditional approach is to assume the noise independently normally distributed.
In that case, minimizing the error sum of squares produces the maximum likelihood
estimate. However, it is an ill-posed inverse problem whenever the columns of X

are linearly dependent. This happens, for instance, when n < m. Even worse, if w

is sparse in the sense that some parameters are exactly zero, then the estimation
process has a combinatorial aspect. In practical problems, the data analyst may
not have any prior knowledge about the sparsity of w. Note that the parameters
with zero value correspond to the input variables that do not contribute to the
response variable at all, so identifying them is important. Subset selection means
identifying the nonzero parameters and shrinking means placing some constraints
on the parameters. Both techniques can be used to tackle the ill-posedness of the
problem.

2.2.1 Best subset regression

Best subset regression is perhaps the most traditional formulation of variable se-
lection. It means finding the best combination of k input variables in terms of the
error sum of squares

minimize
w

1
2‖y − Xw‖2

2 subject to ‖w‖0 = k. (2.2)

Here ‖ ·‖2
2 denotes the sum of squares of the elements in a vector and ‖ ·‖0 denotes

the number of nonzero entries in a vector. The number of different combinations
of at least one variable given m variables is 2m − 1. The straightforward approach
to compute all these combinations is impossible unless m is small, say, a few dozen.
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The branch and bound strategy by Furnival and Wilson (1974) with some later
improvements (Ni and Huo, 2006) is the current state-of-the-art for solving (2.2)
for the complete sequence of k from 1 to m. It utilizes the fact that adding a new
variable to the model can never increase the value of the objective, so some of the
subsets can be discarded from the search. The computational burden may still
be unbearable in many applications. Approximate solutions to (2.2) can be easily
obtained using forward selection, backward elimination, other stepwise methods,
or genetic algorithms (Miller, 2002; Oh et al., 2004). However, these techniques
are notorious for failing to find the optimal subset when the input variables are
highly correlated (Derksen and Keselman, 1992). Besides the difficulties in solv-
ing problem (2.2), another major deficiency of best subset regression is its weak
stability (Breiman, 1996).

2.2.2 Regression shrinkage and selection

The following list briefly introduces combined shrinkage and selection methods. As
a common denominator, the variable selection process is formulated as a continuous-
valued optimization problem. When the problem is convex a globally optimal so-
lution is easy to obtain. Shrinking stabilizes the estimate, so these methods offer
a remedy to the weaknesses of best subset regression.

Nonnegative garrote. Breiman (1995) proposes the nonnegative garrote as a
strategy for improving the ordinary least squares (OLS) solution

wOLS = argmin
w

1
2‖y − Xw‖2

2 = (XT X)−1XT y (2.3)

so that the strengths of both ridge regression (Hoerl and Kennard, 1970) and
subset selection would be present. In ridge regression, the term λ‖w‖2

2 is added
to the cost function and the value of λ ≥ 0 is tuned in order to find the optimal
penalization of the parameters. It is a very stable shrinking method, but it does not
select variables (Breiman, 1996). In the garrote estimate, in turn, each parameter
of the OLS solution has a multiplier and the multipliers are determined by the
solution to the problem

minimize
c

1
2‖y − X(wOLS · c)‖2

2 subject to cj ≥ 0,

m∑

i=1

cj ≤ t. (2.4)

The expression wOLS · c denotes the entrywise product of the two vectors. By
decreasing t ≥ 0, more of the cj become zero and those that are still positive
shrink the OLS estimate. Importantly, the solutions form a continuous path as a
function of t such that the task of subset selection simplifies to the task of fixing
the value of this parameter. A drawback of the garrote is that the solution depends
on both sign and magnitude of the OLS estimate. When the OLS estimate is poor,
the garrote may suffer as a result. The OLS solution does not even exist when the
input variables are linearly dependent.

Lasso. Tibshirani (1996) proposes the lasso (least absolute shrinkage and selec-
tion operator) estimate, which can be seen as an improvement of the nonnegative
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garrote. The estimate solves the problem1

minimize
w

1
2‖y − Xw‖2

2 subject to ‖w‖1 ≤ t. (2.5)

Selection and shrinkage occur simultaneously, and contrary to (2.4), the estimate
does not depend on the OLS solution. Osborne et al. (2000) and Efron et al.
(2004) show that the solution path is piecewise linear as a function of t and give
efficient algorithms for tracking this path. Efron et al. (2004) also derive the
least angle regression (lars) algorithm, which nearly yields the lasso path but
is a more simple forward selection procedure. A slight modification of the lars
algorithm follows the lasso path exactly. Surprisingly, under certain conditions,
the lasso estimate correctly identifies the variables that are effective in the best
subset regression problem (2.2) (Fuchs, 2005; Donoho et al., 2006; Huo and Ni,
2007; Tropp, 2006b). As a consequence, the difficult combinatorial problem can
be relaxed to a continuous-valued convex problem in some cases. The conditions
are, however, too detailed to be considered in this work.

Extensions of the lasso. Zou and Hastie (2005) define the näıve elastic net
estimate by the solution to the problem

minimize
w

1
2‖y − Xw‖2

2 subject to (1 − α)‖w‖1 + α‖w‖2
2 ≤ t. (2.6)

The parameter α ∈ (0, 1) controls a convex combination of the lasso and ridge
penalties and t ≥ 0 controls the amount of shrinkage. The elastic net fixes two
shortcomings of the lasso. Firstly, the lasso tends to select only one variable from
a group of highly correlated variables, whereas the elastic net tends to give similar
values (up to a change of sign if negatively correlated) for all the parameters within
the group. This way the variables that are relevant to the underlying source of
data are more likely the same as the variables that are useful to build the model.
Secondly, the lasso selects at most n variables in the n < m case, while the elastic
net can select more than that. Zou and Hastie (2005) propose an efficient lars-en
algorithm for computing the elastic net solution path, much like the algorithm lars
does for the lasso.

Bakin (1999) and, more recently, Yuan and Lin (2006) consider an extension of
the lasso to select variables at the group level. Contrary to the elastic net, the m
input variables are divided into m̃ non-overlapping groups beforehand. The group
lasso estimate solves the following problem

minimize
w

1
2‖y − Xw‖2

2 subject to

em∑

j=1

‖wj‖2 ≤ t, (2.7)

where wj denotes the parameters of the jth group. As t decreases, more of the
block norms ‖wj‖2 become zero and the corresponding groups of variables vanish
from the model. Several approaches have been proposed to minimize a loss function

1The constrained minimization of f(w) subject to g(w) ≤ t is equivalent to the penalized
minimization of f(w) + λg(w) in the sense that for any λ ≥ 0 there exists t(λ) ≥ 0 such that
w(λ) solves the both problems, and vice versa, as long as f(w) and g(w) are convex and ∃w0

such that g(w0) < t (Hiriart-Urruty and Lemaréchal, 1996, chap. VII). The lasso problem and
its various successors are often presented in the penalized form.
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subject to the group lasso constraint, for instance, by Park and Hastie (2006),
Meier et al. (2006), Kim et al. (2006), and Publications VI–VII.

Fan and Li (2001) consider a penalized least squares problem of the form

minimize
w

1
2‖y − Xw‖2

2 + λ
m∑

j=1

p(|wj |), (2.8)

where the penalty function p(s) is chosen such that the estimate satisfies the
criteria of unbiasedness, sparsity, and continuity. For instance, the lasso penalty
p(s) = s does not satisfy the first criterion, because the estimate is biased when
the true unknown value |wj | is large. In order to satisfy the criteria by Fan and
Li (2001), p(s) is necessarily strictly concave, which has the consequence that
the objective in (2.8) may have local minima. Hunter and Li (2005) propose
an algorithm, which is applicable to (2.8) with several choices of p(s), and the
algorithm converges to a stationary point of the objective function.

2.3 Multiresponse linear regression

The multiresponse linear regression model is

Y = XW + E, (2.9)

where the columns of the matrix Y = [y1, . . . ,yq] denote the response variables
and the columns of the matrix E = [e1, . . . ,eq] the corresponding noise vectors.
The m × q matrix W = [w1, . . . ,wm]T denotes the regression coefficients. There
are two approaches to multiresponse regression. Either a separate model is build
for each response variable, or a single model is used to estimate all the responses
simultaneously. The simultaneous estimation techniques have some advantages
over the separate model building, especially when the responses are correlated
(Breiman and Friedman, 1997; Srivastava and Solanky, 2003).

In the case of wj = 0, the jth input variable does not contribute to any of the
response variables. In the following, we define the task of identifying and esti-
mating the nonzero rows of W as simultaneous variable selection (SVS). Note
that input selection in the separate model building approach does not necessarily
lead to a reduced set of variables for predicting several response variables. This
is uneconomical if the input variables have measurement costs, and it also com-
plicates model interpretation. In the subsequent four sections, we investigate SVS
techniques for the estimation of several response variables.

2.3.1 Regression shrinkage and selection

Various approaches have been proposed to extend the lasso estimate (2.5) to many
response variables. Turlach et al. (2005) and Tropp (2006a) consider the L∞-SVS
problem

minimize
W

1
2‖Y − XW ‖2

F subject to

m∑

j=1

‖wj‖∞ ≤ t (2.10)
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Figure 2.1: The SVS paths for Tobacco data whose variables are scaled to zero
mean and unit variance: (left) L2-SVS, (right) L∞-SVS. The vertical axis shows the
row norms of the coefficient matrix and the horizontal axis shows the aggregate of
the row norms (left-hand sides of the constraints in (2.10) and (2.11)). The bigger
the norm, the more important is the corresponding input variable.

and Malioutov et al. (2005), Cotter et al. (2005), and Publication VII consider the
L2-SVS problem

minimize
W

1
2‖Y − XW ‖2

F subject to
m∑

j=1

‖wj‖2 ≤ t. (2.11)

In (2.10) and (2.11), ‖ · ‖2
F denotes the squared Frobenius norm of a matrix de-

fined as the sum of squares of all entries of the matrix. As the parameter t ≥ 0
decreases, more of the row norms become zero. This has the effect that some
input variables are completely dropped from the SVS estimate and the regression
coefficients associated with the rest of the inputs are shrunk toward zero. In the
single response case, both SVS problems equal to (2.5).

To illustrate the SVS estimates, Fig. 2.1 shows the solution paths of (2.10) and
(2.11) as a function of t for Tobacco data set (Anderson and Bancroft, 1952, p.
205), which has m = 6 inputs, q = 3 responses, and n = 19 observations. Both
methods consider {1, 2, 6} as the best subset of three input variables. The same
subset is also recognized, for instance, by Sparks et al. (1985) and Bedrick and Tsai
(1994) as the most important one. The results on simulated data in Publication VII
show that the L2-SVS estimate is better than the L∞-SVS estimate both in terms
of prediction accuracy and correctness of input selection. The situation might,
of course, be different when the data points are generated in some other way.
The results on real data sets in Publication VII do not bring out clear differences
between the two estimates.

The L2-SVS problem (2.11) is a convex cone programming problem. In Publica-
tion VII, it is shown that the solution is unique as long as the vectors xj , which
correspond to the selected inputs, are linearly independent. This is less restricting
than assuming linear independence of all the columns of X. Furthermore, Publi-
cation VII proposes a predictor-corrector method for following the solution path
of (2.11) as a function of t. A row-specific linear update is taken to predict the
optimal W due to a change in t. The corrector step applies the barrier method
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Figure 2.2: The mapping p(‖wj‖2) in the bivariate response case, where the
penalty function is p(s) = c log(1+s/c). The value of c is doubled in each subfigure
from left to right.

with Newton iterations to correct the prediction. The path following method is
efficient due to two reasons. Firstly, the barrier method that is used in the cor-
rector step takes advantage of the structure of the problem so that large matrix
inversions are avoided. Secondly, the so-called active set of parameters is updated
each time t changes so that only the rows of W that are likely to be nonzero are
optimized. The nonzero rows are identified based on the property

‖(Y − XW )T xj‖2

{
= λ, j ∈ {j : wj 6= 0}
≤ λ, j ∈ {j : wj = 0},

(2.12)

which follows from the necessary and sufficient conditions for optimality as pre-
sented in Publication VII. The parameter λ denotes the Lagrange multiplier of
the constraint in (2.11). It is readily available in the course of path following.

2.3.2 Bias reduction via concave penalization

Fan and Li (2001) propose the penalized least squares problem (2.8) to avoid
unnecessary modeling bias in sparse estimation when the true unknown value
|wj | is large. Publication VI extends this work to multiresponse regression by
introducing the following novel penalized least squares problem

minimize
W

1
2‖Y − XW ‖2

F + λ

m∑

j=1

p(‖wj‖2), (2.13)

where λ ≥ 0 is used to balance between model fitting and penalization. Any
penalty function p(s) that is increasing, differentiable, and concave on s ≥ 0 can
be used. It is shown in Publication VI that the penalty function encourages row
sparsity only when its derivative is positive at the origin, that is p′(0) > 0 holds.
The same condition has been derived for the single response case by Fan and Li
(2001). Especially, the choice p(s) = s makes (2.13) equivalent to the penalized
formulation of the L2-SVS problem (2.11). Fig. 2.2 depicts some possible penalty
terms in (2.13). A strictly concave p(s) may cause the objective in (2.13) to be
nonconvex, or even worse, to have multiple local minima. This makes the search of
a global minimum more difficult. On the other hand, such a penalty function has
some advantages as demonstrated by the experiments in the end of this section.

Publication VI extends the majorize-minimize algorithm by Hunter and Li (2005)
to solving (2.13). A general majorize-minimize algorithm operates on an auxiliary
function, called the majorizing function. The majorizing function has to fulfill
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two requirements. Firstly, it should touch the objective function at the supporting
point and, secondly, it should never be below the objective function. Each itera-
tion of the majorize-minimize algorithm updates the next supporting point to the
minimizer of the current majorizing function.

The mapping p(‖wj‖2) is nondifferentiable at wj = 0 under the sparsity condition
p′(0) > 0. Hence, the desired penalty function p(s) is approximated by pµ(s) so
that the mapping pµ(‖wj‖2) becomes smooth. The smaller the value of the pa-
rameter µ > 0, the more similar the approximation is to the desired function (see
Hunter and Li (2005) and Publication VI for details). When pµ(‖wj‖2) is ma-
jorized by a quadratic function we have the following majorize-minimize algorithm

Ŵ [k+1] = (XT X + λΩ [k])−1XT Y . (2.14)

The matrix Ω
[k] is computed at the current supporting point Ŵ [k] as follows

Ω
[k] = diag

(
p′(‖ŵ[k]

1 ‖2)

µ + ‖ŵ[k]

1 ‖2

, · · · ,
p′(‖ŵ[k]

m‖2)

µ + ‖ŵ[k]
m‖2

)
. (2.15)

For a fixed value of µ > 0, algorithm (2.14) converges monotonically to a stationary
point of the approximated version of the objective in (2.13). Taking µ → 0, algo-
rithm (2.14) converges to a stationary point of the desired objective. These con-
vergence results follow directly from general properties of the majorize-minimize
algorithms (Lange, 1995; Hunter and Li, 2005). The parameter µ is essential for
convergence, and it also has the practical benefit of avoiding singularities in (2.15).
The regularized M-FOCUSS by Cotter et al. (2005) is a related algorithm, which
equals to (2.14) under the choices µ = 0 and p(s) = α−1sα with α ∈ (0, 1].

It is shown in Publication VI that the following condition is necessary for optimality

‖(Y − XW )T xj‖2

p′(‖wj‖2)

{
= λ, j ∈ {j : wj 6= 0}
≤ λ, j ∈ {j : wj = 0}.

(2.16)

Taking p(s) = s, condition (2.16) coincides with (2.12) under the interpretation
that λ is the Lagrange multiplier. This confirms the connection between the
L2-SVS problem (2.11) and the more general penalized framework (2.13). Condi-
tion (2.16) can be used to track the nonzero rows of W when problem (2.13) is
solved for a sequence of values of λ. Computational burden reduces, since only
the rows that are likely to be nonzero need to be optimized. Similar strategies for
tracking blockwise sparsity are used in Publication VII and by Park and Hastie
(2006), but in both cases the penalty function is restricted to be linear, that is
p(s) = s. Only differentiability of p(s) and p′(s) > 0 for s ≥ 0 is required in (2.16).

Fig. 2.3 depicts some results of applying the majorize-minimize algorithm to the
whole range of relevant values of λ. Data are sampled as explained in Publica-
tion VI. In short, there are n = 50 observations, m = 100 inputs, and q = 5
responses. Only twenty inputs are effective in model (2.9) and the rest of the in-
puts are irrelevant. There are strong correlations among the inputs. The estimate
mostly uses the relevant inputs for λ ≥ 1, or at least the irrelevant ones have a
small contribution, as shown by the two rightmost plots in Fig. 2.3. The plot on
the left hand side in Fig. 2.3 illustrates condition (2.16). Note that ‖wj‖2 becomes
nonzero at the moment the curve that represents the left hand side of (2.16) hits
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Figure 2.3: The path of penalized solutions for a single sampling of data when the
penalty function p(s) = c log(1 + s/c) is used with c = 0.4: (left) illustration of
condition (2.16), (middle) and (right) row norms of the coefficient matrix. Black
curves correspond to relevant inputs and red curves to irrelevant ones.
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Figure 2.4: Results calculated from 500 replicates of sampling: (left) penalty func-
tion, (middle) average mean squared prediction error, (right) average number of
selected inputs. The dashed lines show the average number of correct selections.
The figure is taken from Publication VI.

the diagonal in the plot. Fig. 2.4 presents some further results, which are cal-
culated from 500 replicates of sampling. The degree of concavity of the penalty
function does not have a big influence on prediction error, which is the lowest at
λ = 2 in all cases. However, high concavity favors parsimony. The number of rele-
vant inputs in the selected subset is roughly the same in all cases, but the number
of irrelevant inputs decreases as the degree of concavity increases.

2.3.3 The MRSR algorithm

Efron et al. (2004) propose the least angle regression (lars) algorithm for computing
an entire path of regularized estimates, which nearly coincides with the solution
path of the lasso problem (2.5). In the beginning, an input variable that correlates
most with the response variable enters the model. The coefficient of the selected
input is updated in the direction of the sign of its correlation until another input
variable has the same absolute correlation with the current residuals as the selected
one. From this point on, both coefficients are updated in the OLS direction of the
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two inputs. The lars path is piecewise linear and a new input variable enters the
model at each breakpoint. The path continues from a breakpoint in the direction
of the OLS solution of the selected inputs. The absolute correlation between the
residuals and each selected input is equal throughout the path and, moreover,
larger than the correlation between any unselected input. The path is completed
when the number of selected inputs reaches n, or when all m variables are selected
and have attained the OLS solution. The entire sequence of breakpoints in the
lars algorithm with m < n inputs has a similar computational cost to the OLS
estimation on m inputs.

Publications III and V propose the multiresponse sparse regression (MRSR) algo-
rithm, which extends the lars algorithm to many response variables. In the MRSR
algorithm, the correlation between an input variable and the residuals associated
with all the responses is measured. The absolute correlation criterion of the lars
algorithm is replaced with a norm of the vector of the q correlations. The corre-
lation norms for the selected inputs are the same, and the largest, and this value

is denoted by λ in the following presentation. The MRSR path Ŵ (λ) is piecewise
linear as a function of λ and a new row becomes nonzero at each breakpoint λ[k].
The MRSR algorithm generalizes the lars algorithm to the L2-SVS problem (2.11)
in the same way as the group lars algorithm by Yuan and Lin (2006) does to the
group lasso problem (2.7). These connections are discussed more in Section 2.3.4.

The path begins at the point λ[0] for which we have Ŵ (λ[0]) = 0. This point and
the set of active input variables are defined as follows,

λ[0] = max
1≤j≤m

‖Y T xj‖α and A(λ[0]) = {j : ‖Y T xj‖α = λ[0]}, (2.17)

where α ≥ 1 denotes any vector norm. The case α = 1 is proposed in Publica-
tion III and other choices are discussed in Publication V. From now on, we adopt
the notation Lα-MRSR whenever it is necessary to specify the norm that is in use.
The MRSR path is

ŴAk(λ) = (λ/λ[k])ŴAk(λ[k]) + (1 − λ/λ[k])W OLS

Ak

ŵj(λ) = 0, j /∈ A(λ[k])
(2.18)

in the segment λ ∈ [λ[k+1], λ[k]], where the subset OLS solution is

W OLS

Ak = (XT
AkXAk)−1XT

AkY (2.19)

and the subscript Ak defines the matrices

ŴAk(λ) = [· · · ŵj(λ) · · · ]Tj∈A(λ[k]) and XAk = [· · ·xj · · · ]j∈A(λ[k]). (2.20)

The value of λ is decreased from λ[k] until a new index enters the active set

A(λ) = {j : ‖(Y − XŴ (λ))T xj‖α = λ}. (2.21)

This point is denoted by λ[k+1]. It is shown in Publication V that there exists a

unique value λj ∈ [0, λ[k]] such that ‖(Y − XŴ (λj))
T xj‖α = λj holds for any

j /∈ A(λ[k]). The largest value of λj for j /∈ A(λ[k]) is the breakpoint λ[k+1] and the
corresponding index joins the active set. As a consequence, the outcome of the
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Figure 2.5: The L2-MRSR path for Tobacco data: (top) all variables have zero
mean and unit variance, (bottom) responses have zero mean and unit variance but
inputs are also decorrelated, (left) correlation norms, (middle) number of selected
inputs, (right) row norms of the coefficient matrix.

MRSR algorithm is unique, as long as the inverse in (2.19) is well defined, which
actually happens when XAk has a full column rank. It is possible, but unlikely,
that λj equals λ[k+1] for several indices j /∈ A(λ[k]), and then they are all added to
A(λ) at λ[k+1]. Pseudocode for the MRSR algorithm is presented in the Appendix.

To illustrate the algorithm, the upper panel in Fig. 2.5 shows the L2-MRSR path
for Tobacco data (Anderson and Bancroft, 1952, p. 205). A new index enters
the set A(λ) each time the curve of a correlation norm hits the diagonal in the

leftmost subfigure. At the same time, a new row of Ŵ (λ) becomes nonzero as
shown in the rightmost subfigure. Comparisons in Publication V show that the
MRSR algorithm is better than a greedy forward selection in terms of prediction
accuracy and correctness of selection, especially when the input variables are highly
correlated. On the other hand, the L2-SVS estimate (2.11) is compared with the
L2-MRSR in Publication VII and the former is found to be better. The main
strength of the MRSR algorithm is its computational efficiency compared with
the SVS estimates that ensue from the minimization of some objective function.
Using similar arguments as Efron et al. (2004) introduce for the lars algorithm,
one can show that the computational load of the complete MRSR path is about
the same order as an OLS fitting on m input variables. The computational load of
the SVS paths is more difficult to quantify (see Publication VII for details). The
capability of the MRSR to avoid overfitting is advantageous compared with the
greedy algorithms.
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2.3.4 The L2-MRSR algorithm for orthonormal inputs

The lars algorithm can be modified such that it follows the solution path of the lasso
problem (2.5) exactly (Efron et al., 2004). It is, therefore, natural to expect that
the MRSR algorithm is tightly connected to some of the multiresponse shrinkage
and selection estimates, but unfortunately, such a strong relationship does not
seem to exist. However, if the columns of X are orthonormal, then the L2-MRSR
path (2.18) and the solution path of the L2-SVS problem (2.11) coincide. In
Publications V and VII, this connection is established by transforming (2.11) into
a single response form, which is actually a particular form of the group lasso
problem (2.7). Yuan and Lin (2006) state that their group lars algorithm follows
the solution path of the group lasso problem under an orthonormality assumption
on X. It can be shown that the L2-MRSR algorithm and the group lars algorithm
are the same in this case.

For the sake of completeness, and because Yuan and Lin (2006) do not prove their
statement rigorously, the following two theorems establish the connection between
the L2-MRSR algorithm and the L2-SVS problem. Proofs can be found in the
Appendix.

Theorem 2.3.1. If XT X = I holds, then the L2-MRSR path (2.18) can be
written ŵj(λ) = max{0, 1 − λ/‖Y T xj‖2}Y

T xj for λ ≥ 0 and j = 1, . . . ,m.

Theorem 2.3.2. If XT X = I holds, then the L2-MRSR algorithm follows the so-
lution path of the L2-SVS problem (2.11) as a function of the constraint parameter
under the mapping t =

∑m
j=1 max{0, ‖Y T xj‖2 − λ}.

The lower panel in Fig. 2.5 illustrates the L2-MRSR path for Tobacco data whose
variables are first normalized to zero mean and unit variance. Then the input vari-
ables are decorrelated (transformed into linearly uncorrelated variables) using the

transformation Z = XUD−1/2, where U is the orthogonal matrix of eigenvectors
of XT X and D is the diagonal matrix of its eigenvalues. It is easy to check that
ZT Z = I holds. The L2-MRSR algorithm for the decorrelated input data does
not make forward selection of the original input variables but increments a subset
of principal components of the input data (Hotelling, 1933; Jolliffe, 1986) as λ
decreases. Another, perhaps better justified, way to decorrelate the input data
in regression problems is to extract the canonical components (Hotelling, 1936)
instead of the principal components. Note that the path of ‖ŵj‖2 is linear for

λ ∈ [0, ‖Y T zj‖2] due to the decorrelation transformation, whereas correlation in
the input data causes a crease at each breakpoint of the algorithm.

2.4 Other variable selection and feature extrac-

tion methods inspired by regression problems

Unsupervised learning examines multivariate data without explicit response vari-
ables or class labels to guide the analysis. In general, unsupervised learning seeks
some internal structure of the data. Examples include cluster analysis (Jain and
Dubes, 1988), which is the process of grouping similar data points together, and
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visual analysis of high-dimensional data (de Oliveira and Levkowitz, 2003). Vari-
able selection for unsupervised learning is important, because some of the variables
may be redundant and some others may be irrelevant in terms of the cluster struc-
ture of the data. These variables hamper visual interpretation of the data and
may cause misleading conclusions. Furthermore, useless variables cause degrada-
tion of accuracy and loss of running time efficiency in cluster analysis (Dy and
Brodley, 2004; Wolf and Shashua, 2005), just to name few examples. Surprisingly,
variable selection for unsupervised learning has been a bit overlooked in literature
until recently (Dy and Brodley, 2004). Another interesting problem is finding such
transformations of data that combine variable selection with further reduction of
dimensionality. These issues are investigated in the next two sections.

2.4.1 Principal variable analysis

McCabe (1984) introduces the concept of principal variables of data. Principal
variable analysis refers to the task of selecting a subset of the variables that con-
tains, in some sense, as much information as possible. These principal variables
are considered informative as themselves. Note the difference from principal com-
ponent analysis, where the components are linear combinations of all the original
variables (Hotelling, 1933; Jolliffe, 1986). Timely reviews of existing criteria for
selecting the principal variables can be found from the articles by Al-Kandari and
Jolliffe (2005) and Cumming and Wooff (2007). Just like in regression problems in
Section 2.2.1, such criteria only rank combinations of variables and some stepwise
algorithm is typically used to find promising combinations. Cadima et al. (2004)
devote themselves to the combinatorial problem of identifying the optimal subset
with respect to a given criterion. Heuristics seem to be the only possibility for
many real problems unless the number of variables is small.

In contrast, the SVS framework to multiresponse regression offers another more
tractable approach. We call the jth column of X as a principal variable if the
m × m matrix W solves the problem

minimize
W

1
2‖X − XW ‖2

F + λ
m∑

j=1

p(‖wj‖2) (2.22)

and the jth row of W is nonzero. The first term of the objective function measures
the error of a linear reconstruction of the data. Observe that principal component
analysis can also be derived from this perspective2. Given a large enough λ, the
second term in (2.22) has the effect that only some of the variables are used in
the reconstruction. The identity matrix solves the problem at λ = 0 without any
error. Principal variables, according to the above definition, are good at predicting
many other variables.

Problem (2.22) is derived from (2.13) by substituting Y = X, so algorithm (2.14)
and condition (2.16) are applicable. In the same way, any other SVS estimate could
be extended to principal variable analysis. In Publication V, the MRSR algorithm

2Besides the maximum variance definition, the loadings of the principal components can
be shown to minimize the reconstruction error 1

2
‖X − XWWT ‖2

F
under an orthonormality

constraint on the columns of W (see, for example, Hastie et al., 2001).
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Figure 2.6: Images of handwritten digits: (top) sample images, (bottom) their
normalized noisy versions, (bottom right) the color map of pixels that is used in
Fig. 2.7.
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Figure 2.7: The path of penalized solutions in image reconstruction: (left) row
norms of the coefficient matrix, (right) illustration of condition (2.16). The penalty
function p(s) = c log(1 + s/c) is used with c = 40. See Fig. 2.6 for the connection
between colors and pixels.

is used. If one still needs to reduce the dimensionality after extracting the principal
variables, a low-rank approximation of W can be obtained by computing the
singular value decomposition W = USV T . The matrix U has the same row sparse
structure as W . The columns of U associated with the largest singular values
define an orthogonal projection to a low-dimensional subspace. The subspace only
depends on the principal variables.

Image reconstruction is an application of principal variable analysis. Consider
images of handwritten digits with 28 × 28 pixel grid3. Each row of X contains
grayscale values of the m = 784 pixels of an image. The grayscale values are cor-
rupted by Gaussian noise and they are normalized to zero mean and unit variance
pixelwise. There are 100 images per digit and total n = 1000 images. Fig. 2.6
shows some sample images. The task is to reconstruct the complete images by
a linear combination of some useful pixels. The normalization makes the task
harder, since the useless pixels cannot simply be discarded by their low variance.
The noise brings out the possibility of overfitting. Several variants of the MRSR
algorithm are applied successfully to this task in Publication V. Instead, Fig. 2.7
shows the solution path of problem (2.22), which is computed by the majorize-
minimize algorithm (2.14). The pixels in the middle enter to the model before
the pixels close to the borders of an image as the value of λ is decreased. This

3The images are available from http://yann.lecun.com/exdb/mnist/.
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is logical, since only the middle ones carry meaningful information. As shown in
Publication V, greedy selection strategies are likely to fail in this task, because the
nearby pixels are highly correlated.

2.4.2 Row sparsity in parametric multidimensional scaling

Multidimensional scaling (MDS) (Cox and Cox, 2001) methods aim at finding a
configuration of data points in a vector space, usually Euclidean, such that the
pairwise distances between the points match with given dissimilarities as well as
possible. The dissimilarity values δij can measure relations between objects of any
type. This process is also known as embedding.

The necessary and sufficient condition for the values δij = δji ≥ 0 to represent
distances in a Euclidean space is that the matrix

B = − 1
2J∆

(2)J (2.23)

is positive semidefinite (Young and Householder, 1938; Torgerson, 1952). Here
J = I − 1

n11T denotes the centering matrix and ∆
(2) is the matrix of squared dis-

similarities δ2
ij between all n objects. Assuming that B is positive semidefinite, the

configuration Y that perfectly satisfies the dissimilarities can be recovered from
the eigendecomposition B = UDUT by setting Y = UD1/2. Furthermore, all
eigenvalues are nonnegative and the number of nonzero values defines the lowest
possible dimensionality, which is required to have an exact matching. In the classi-
cal MDS, the dimensionality of the perfect point configuration is reduced by using
only a few, say q, columns of Y that correspond to the largest eigenvalues of B.
Gower (1966) shows that these dimensions are identical to the first q principal
components of the perfect point configuration.

The connection to principal component analysis suggests that the dimensionality
reduction step of the classical MDS is rather based on preservation of variance than
on preservation of the dissimilarity representation. Additionally, the transforma-
tion is necessarily linear. A more flexible way to seek a q-dimensional, possibly
nonlinear, embedding Y is to minimize the cost function4

E(Y ) =

n∑

i=1

∑

j>i

αij(‖yi − yj‖2 − δij)
2, (2.24)

which is sometimes called as the stress criterion. The perfect low-dimensional
embedding is usually impossible, so the parameters αij ≥ 0 are introduced to
weight some pairs more than the others. The sammon mapping (Sammon, 1969)
has αij = δ−1

ij and, thereby, it focuses on preserving the relations between similar
objects. Curvilinear component analysis (Demartines and Hérault, 1997) gives
high values of αij to the pairs of objects whose embeddings yi and yj are close
by. Venna and Kaski (2006) propose a user-tunable method for controlling the
tradeoff between the two ends. The sammon mapping is used in Publication III.

4Throughout the text, xi denotes the ith observation of all m variables, whereas xi is the
vector of all n observations of the ith variable. The same thing differs yi from yi.
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The MDS methods are often used in feature extraction by letting the dissimilarities
denote distances in the m-dimensional input space according to some metric, that
is δij = d(xi,xj). Taking q < m, the input data become projected to a lower-
dimensional feature space unsupervisedly. The metric can also depend on auxiliary
data such as class labels of the observations. In that case, one can use metrics,
where the between-class dissimilarity is considered larger than the within-class
dissimilarity (Cox and Ferry, 1993; Zhang, 2003). Then the MDS method extracts
discriminative features, which highlight class separation.

In order to use the feature representation of the input variables in any subsequent
task on new observations, it must be possible to project these observations to the
feature space. There exist certain out-of-sample techniques (Bengio et al., 2004)
but, in general, the MDS framework described above does not give a parame-
terized transformation from the input space to the feature space in a consistent
manner. In the remaining, we focus on the linear regression mapping Y = XW

and present two algorithms for minimizing (2.24) while enforcing the matrix W

to be row sparse. As pointed out in Publication III, this framework enables com-
bining variable selection with feature extraction. Recently, Maniyar and Nabney
(2006) have proposed a probabilistic approach to data visualization with simulta-
neous variable selection based on a generative topographic mapping, which offers
an alternative to the MDS approach to be presented next.

The iterative majorization algorithm by Webb (1995) is applicable to min-
imizing the objective function E(XW ), which denotes the stress criterion (2.24)
under a linear mapping. Despite the different name, this is actually a majorize-
minimize algorithm. The value of the objective function is reduced monotonically
by minimizing a succession of quadratic approximations, each of which majorizes
the objective. Consider the penalized MDS problem

minimize
W

1
2E(XW ) + λ

m∑

j=1

p(‖wj‖2). (2.25)

It is straightforward to majorize the objective in (2.25) by applying the majorizing
function by Webb (1995) to the first term and the majorizing function proposed
in Publication VI to the second term. The next iterate

Ŵ [k+1] = (A + λΩ [k])−1D[k]Ŵ [k] (2.26)

is taken to minimize the current majorizing function. The matrix Ω
[k] is defined

in (2.15). Webb (1995) defines A and D[k], but they are not reproduced here in
order to avoid introducing an excess of additional notation.

The shadow targets algorithm by Tipping and Lowe (1998) is a two-step iter-
ative procedure to minimizing E(XW ). The first step updates the configuration
Y [k] in the direction of the steepest descent ∆Y [k] ∝ − ∂

∂Y
E(Y [k]). The second

step makes an OLS fitting, where the updated configuration T [k+1] = Y [k] + ∆Y [k]

serves as the response data and X denotes the input data. The output of the re-
gression model gives the next configuration. Cox and Ferry (1993) have used this
idea earlier, but in their method the complete MDS optimization and the consec-
utive model fitting are both performed only once and separately. The second step
of the shadow targets algorithm can be replaced with solving a penalized problem
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Figure 2.8: Discriminative projection of images representing handwritten digits 1,
2, and 3 to a two-dimensional feature space: (left) training and validation errors as
a function of the number of selected pixels, (middle) the projection of independent
test images to the feature space, (right) the contributions of individual pixels to
the two features. The figure is taken from Publication III.

of the form (2.13) to enforce row sparsity, and so we have the modified algorithm

T [k+1] = XŴ [k] + ∆Y [k] (2.27)

Ŵ [k+1] = (XT X + λΩ [k])−1XT T [k+1]. (2.28)

This is flexible to many changes. The first step (2.27) can be improved by using
the update rule by Demartines and Hérault (1997), which is significantly faster to
evaluate than the steepest descent update. If one agrees to decorrelate the input
data, then the inverse operation becomes more simple in the second step (2.28). In
Publication III, the MRSR algorithm is used to enforce row sparsity in the second
step.

Fig. 2.8 shows some results that are taken from Publication III, where the modified
shadow targets algorithm is applied to find a discriminative projection of images
representing handwritten digits. The discrimination is implemented via the dis-
similarity measure by Zhang (2003). The same set of images is used here as in
Section 2.4.1, but including only the digits 1, 2, and 3. The selected group of
about 11% of the pixels is apparently enough to form a successful projection to a
two-dimensional feature space. While the image experiment is somewhat artificial,
the combined variable selection and feature extraction approach of Publication III
has also attracted interest from the field of genomic and proteomic data analysis
(Li and Harezlak, 2007). Discovering genes or peptides, which dictate object class
membership, are of ultimate interest to biologists.
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Chapter 3

Information visualization

using the self-organizing map

3.1 Self-organizing map

Clustering is the process of grouping similar data points together. It provides
a summary, because the original set of data points x1, . . . ,xn is represented by
another set m1, . . . ,mK , where K < n. Vectors mj are called prototypes and
they lie in the same m-dimensional input space as the vectors xi. Each data
point is assigned to the cluster whose prototype is the nearest. The self-organizing
map (SOM) (Kohonen, 1982, 2001) is a method for clustering and visualizing high-
dimensional data. The visualization capabilities of the SOM are particularly useful
in exploratory analysis of data (Vesanto, 2002). It is distinguished from most other
prototype-based clustering methods, such as the well known K-means algorithm
(MacQueen, 1967), due to these capabilities. There exist clustering methods that
do not use prototypes (Jain and Dubes, 1988), but they are not discussed here.

The prototypes of the SOM constitute the nodes of a grid in the input space. The
neighborhood connections are fixed and the topology is typically two-dimensional
with either rectangular or hexagonal connections. The grid can be unfolded to
form a uniform lattice, which is used as a visual display. The SOM reduces the
dimensionality, because the display depicts how the prototypes reside in the input
space. The prototypes are adapted according to the density of the data during an
iterative learning process. More prototypes move to the dense areas and less to
the areas of few data points. Finally, after successful learning, the nodes that are
close in the lattice represent prototypes that are close in the input space as well.

Original incremental algorithm. The SOM algorithm iterates two steps that
are the winner node selection and adaptation

ci(k) = argmin
j

‖xi − mj(k)‖2 (3.1)

mj(k + 1) = mj(k) + α(k)hci,j(k)[xi − mj(k)], (3.2)
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where k is the index of the iteration. The winner node for a randomly picked
data point xi is the one whose prototype is the nearest in the input space. The
prototype of the winner node, as well as the prototypes of the neighboring nodes,
is moved closer to the point xi. The neighborhood function hci,j controls the
adaptation. It is a decreasing function of the distance between the winner node
ci and another node j along the lattice. The Gaussian kernel is often used and
the width of the kernel is decreased in the course of iteration. The parameter
α denotes the learning rate, which is also decreased. See the book by Kohonen
(2001) for further technical details and other possible forms of hci,j .

Supervised incremental algorithm. Among many variants of the SOM the
most relevant to this thesis is the one that is applicable to learning regression type
of mappings. Suppose that we have observations of inputs xi and responses yi,
which are vectors of m and q variables, respectively. The following SOM algorithm
learns the dependency of the response data on the input data

ci(k) = argmin
j

‖xi − m
(1)

j (k)‖2 (3.3)

[
m

(1)

j (k + 1)

m
(2)

j (k + 1)

]
=

[
m

(1)

j (k)

m
(2)

j (k)

]
+ α(k)hci,j(k)

[
xi − m

(1)

j (k)

yi − m
(2)

j (k)

]
. (3.4)

The supervised SOM can be used to predict unknown responses given a vector of
inputs as follows. Firstly, the winner unit c for the input vector is computed by
(3.3) and, secondly, the prediction of the responses is given by m(2)

c . However, the
supervised SOM is hardly accurate enough for pure prediction purposes due to its
discrete nature. It is more useful in visualizing the potentially nonlinear regression
surface. This supervised variant is used, for instance, by Kiviluoto (1998) and in
Publications II and IV.

3.1.1 Interpreting the SOM

The interpretation of the SOM is based on visualizations of the prototypes. It is
assumed that properties seen from the visualizations will also hold for the original
data. The visualization process is discussed thoroughly, for instance, in the review
works by Vesanto (1999) and Himberg et al. (2001). Some basic methods are
introduced here for the sake of completeness. The low-dimensional lattice is used as
a visualization platform. A local area of nodes in the lattice represents a local area
of prototypes in the input space. The lattice makes effective use of the visualization
area. The density of the prototypes follows roughly the density of the data, but
the lattice remains uniform. Thereby, the SOM offers an automatic adjustment
of resolution without fear of overlaps. In contrast, methods that project data
points directly may suffer from the fact that many points can end up very close
to each other (overlap) and some of them very far away so that it is difficult
to use the low-dimensional representation of the data for visualization purposes.
The relational perspective map (Li, 2004) is one of the few other dimensionality
reduction methods that is able to visualize data in a non-overlapping manner.

The coordinate axes of the lattice do not have clear interpretation in terms of
the original variables. Instead, the variables are typically visualized by a compo-
nent plane representation, where several lattices, one for each variable, are shown
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side by side. The colors of the nodes in a lattice represent the locations of the
prototypes in the input space in terms of the corresponding variable. A lattice
supplemented with a variable-specific coloring is called a component plane. The
component plane representation is useful in finding dependencies between vari-
ables. The dependencies are perceived as similar patterns in identical areas of
different component planes. The dependency search can be eased by organizing
the component planes such that similar planes are positioned near to each other
(Vesanto and Ahola, 1999). Lampinen and Kostiainen (2000) discuss some poten-
tial problems of the SOM-based analysis including the risk that the prototypes
overfit to the data and the tendency to overinterpret the dependencies seen from
the component planes.

The SOM does not preserve distance information, but only topological information,
that is the neighboring relationships between the prototypes. In many applications,
however, it is important to analyze the density of the prototypes, because it reflects
the density of the data. Recent contributions to this problem with a good survey
of previous work can be found from the article by Pölzlbauer et al. (2006). A
traditional way is to use the U-matrix (Ultsch and Siemon, 1990), which depicts
local cluster boundaries of the prototypes. It means computing the distances
from each prototype to its nearest topological neighbors and then visualizing the
distances as grayscale values on the lattice. A rather different way is to disregard
the topology, apply standard clustering methods to the prototypes, and then show
the clusters on the lattice (Vesanto and Alhoniemi, 2000). One approach is to
actually project the prototypes to a two- or three-dimensional space, where their
mutual distances are visible. However, the risk of losing the orderliness of the grid
is apparent when some standard dimensionality reduction method is used. Another
concern is how to link the projection to the lattice such that the prototypes can
be identified. The methods by Kaski et al. (1999) and Himberg (2000) aim at
maintaining the orderliness of the grid in the projection and use a color coding
of the prototypes in the linkage. In Publication II, a modification of the SOM
is proposed, which consists of two grid layers with the same topology. One layer
models a curvilinear data manifold in the high-dimensional observation coordinates
in the same sense as the standard SOM does. The other layer lies in the internal
coordinates, which pass through the data manifold. When the manifold is low-
dimensional, the grid can be examined visually in the internal coordinates (see
Fig. 3.1). This capability comes as a by-product of the algorithm of Publication II.
However, there are also modifications of the SOM algorithm that are particularly
intended for preserving distance information of the prototypes (Yin, 2002).

The methods discussed so far visualize properties of the prototypes with the goal
of explaining the data set that is used in the learning process. Another important
application of the SOM is to provide a groundwork for comparing external data.
Individual observations can be compared by inserting markers to their winner
units on top of the lattice. A data set can be linked to the SOM by counting
the number of times a node is found to be the winner node for an observation
and then displaying the histogram of the counts on the lattice. Several data sets
can be compared by showing their histograms side by side. For more details, see
(Vesanto, 1999). In the case of time-series data, a trajectory of adjacent winner
units can be shown on top of the lattice to study the behavior of a process in time
(Alhoniemi et al., 1999).
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Figure 3.1: The grid of M-SOM (M denotes manifold, see Section 3.2.2) in the
internal coordinates (left) and a lattice that visualizes the grid in the observation
coordinates (right). Each node is characterized by pose parameters in the internal
coordinates and by an image in the observation coordinates. The corner nodes
have been marked to allow comparison between the coordinates. The data set
consists of images of a toy object. The figure is taken from Publication II.

3.1.2 Assessing the SOM

All properties of high-dimensional data cannot be retained in low-dimensional
representations in general, so visualization methods must make compromises re-
garding what kinds of relationships to represent. Given two visualizations of the
same data set, it is crucial to know, which one is better than the other. The
success of a visualization depends on the reliability and usefulness of the results
to the user. Personal preferences have an influence, so ranking visualizations is a
somewhat subjective task. The SOM is a particularly problematic method in its
general form, because it neither has a proper cost function (Erwin et al., 1992) nor
a clear probabilistic interpretation, which could be used to compare two different
SOMs. Therefore, the quality of the SOM is usually determined in terms of two
rather general aspects: quantization error and the quality of topology representa-
tion. The former aspect is common to all clustering algorithms and it is measured
as the average distance from an observation to its nearest prototype. The latter as-
pect is common to all dimensionality reduction methods and it is more challenging
to measure. The two aspects are competing, but they are not directly opposed.

One approach to assess the quality of the SOM is to consider a cost function that
the SOM algorithm minimizes approximately. Vesanto et al. (2003) decompose
such a cost function into three parts: quantization error, neighborhood variance,
and neighborhood bias. The second term concerns topological quality and it mea-
sures the closeness of prototypes in the input space that are close to each other
on the lattice. The third term links the quantization and ordering together. The
decomposition offers a unified view of different aspects of quality.

Several approaches have been proposed that only focus on the topological quality
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of the SOM. One of the earliest attempts is the topographic product (Bauer and
Pawelzik, 1992), which measures the preservation of the neighborhood between the
nodes in the lattice and their prototypes in the input space. However, as pointed
out by Villmann et al. (1997), the topographic product is mostly useful when
the data manifold is nearly linear, since it may not be capable of distinguishing
between folding of the grid along true nonlinearities in the data and faulty folding.
The topographic function (Villmann et al., 1997) is more appropriate when the
SOM is fitted to a nonlinear data structure. It measures the frequency of having
adjacent Voronoi polyhedrons1 of the prototypes in the input space, while the
corresponding nodes are further away on the lattice than a predefined threshold,
or vice versa. The threshold is the argument of the topographic function. The
topographic error (Kiviluoto, 1996) shifts the emphasis towards taking the density
of the observations better into account. An error occurs when the nearest and the
second nearest prototypes of an observation in the input space do not correspond to
adjacent nodes in the lattice, and the frequency of these events is the topographic
error. Kaski and Lagus (1996) propose a related criterion, where the extent of
non-adjacency of the two nodes is measured as their shortest path distance along
the lattice. Such a distance reflects the perceptual dissimilarity of a pair of nodes
on the lattice display.

Venna and Kaski (2001) propose nonparametric measures for comparing topology
preservation of nonlinear projections (see also Kaski et al., 2003). Two kinds of
errors may occur. Either the projection introduces new observations to the neigh-
borhood, or observations that are originally neighbors become projected further
away. The former kind of error reduces trustworthiness of the visualization: ob-
servations found to be similar in the visual display (e.g. the two-dimensional SOM
lattice) cannot be trusted to be proximate in the input space. The latter kind of
error results from discontinuities in the projection: all proximities that exist in
the input space are not present in the visual display. In most cases, both types
of errors cannot be avoided. Then it is crucial to decide, which one of the errors
is more harmful. The SOM is found to give trustworthy visualizations of data
compared with many other projection methods (Venna and Kaski, 2001, 2006).
The two measures are also used in Publications I and II.

3.2 Manifold learning

A manifold is by definition a topological space that is locally Euclidean. To illus-
trate the idea, consider the surface of the Earth, which looks on the small scales
flat. However, unlike the ancient belief, we know that it constitutes globally a
sphere. Manifolds arise in data when a set of high-dimensional data points can
be modeled in a continuous way using only a few variables. A typical example is
a set of images of an object taken under fixed lighting conditions with a moving
camera. Each image represents a point in the high-dimensional space whose co-
ordinate axes denote the pixels. As the camera moves, the images also move in
the pixel space along a surface that is defined by the orientation parameters of the
camera such as rotation and elevation (Weinberger and Saul, 2006).

1The Voronoi polyhedron of a prototype mj is the set {z : ‖z−mj‖2 < ‖z−mi‖2,∀i 6= j}.
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Manifold learning methods study intrinsically low-dimensional structures lying in a
high-dimensional space aiming at discovering the low-dimensional representation.
For linearly embedded manifolds, principal component analysis is guaranteed to
succeed. MDS is another classical manifold learning method. The SOM produces
nonlinear dimensionality reduction, so it also shares the objective of manifold
learning. However, as pointed out by Tenenbaum (1998), it fails to model a visu-
ally obvious nonlinear structure in the data in some cases. Recently, several other
methods have been developed that offer a more powerful framework of manifold
learning than the SOM. As a common denominator, their error functions are con-
vex, so there is no risk that the optimization yields poor local minima. Some of
these methods are briefly reviewed in the next section. After that, it is shown
how any manifold learning algorithm can be combined with the SOM to guide the
learning process when there is a nonlinear manifold geometry in the data.

3.2.1 Nonlinear manifold learning methods

The isomap by Tenenbaum et al. (2000) is an extension of the classical MDS,
where the dissimilarities denote geodesic distances. The geodesic distance between
two points on a manifold is the length of the shortest curve that is on the manifold
and connects the two points. In practice, the geodesic distances are approximated
by graphical distances, which can be computed from the data. The low-dimensional
configuration is recovered from the eigendecomposition of an n×n matrix just like
in the classical MDS (see Section 2.4.2). However, any other MDS method can
also be used in the recovery (Lee et al., 2004).

The locally linear embedding by Roweis and Saul (2000) consists of three
steps. Firstly, compute the K nearest neighbors of each data point. Secondly, find
the n×n matrix W that minimizes the reconstruction error ‖X−WX‖2

F subject
to

∑
j wij = 1, and wij = 0 if xj does not belong to the K nearest neighbors of xi.

Thirdly, find the low-dimensional configuration Y that minimizes the embedding
cost ‖Y − WY ‖2

F subject to
∑

i yi = 0 and 1
n

∑
i yiy

T
i = I. The solution to

the second step is found by solving a least squares problem. The solution to the
third step is found by computing the eigendecomposition of the n×n sparse matrix
(I−W )T (I−W ). The eigenvectors with the smallest positive eigenvalues provide
the configuration Y .

The laplacian eigenmap by Belkin and Niyogi (2003) is justified theoretically by
its connection to the Laplace-Beltrami operator on manifolds, which can be used to
construct an optimal embedding. The Laplace-Beltrami operator is approximated
by the weighted Laplacian of the adjacency graph of the data points. For two
connected points, the weight wij is a positive similarity value. For two disconnected
points, the weight wij is zero. The low dimensional configuration is found by
minimizing the objective

∑
ij wij‖yi − yj‖

2
2 subject to

∑
i diyiy

T
i = I, where

di =
∑

j wij . This can be written as a generalized eigenvalue problem Lu =
λdiag(d)u, where L = diag(d)−W is the Laplacian matrix. The eigenvectors with
the smallest positive eigenvalues give the configuration Y . The hessian eigenmap
by Donoho and Grimes (2003) is a related method, which relaxes the implicit
requirement that the embedded manifold is sampled on a convex region.
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Figure 3.2: The problem of manifold learning for three-dimensional data (b) sam-
pled from an intrinsically two-dimensional S-curve manifold (a). The locally linear
embedding algorithm discovers the projection of the data to the internal coordi-
nates on the manifold (c). The M-SOM learns similarities in the internal coor-
dinates (d) and provides a successful representation of the manifold in the obser-
vation coordinates (e). The SOM algorithm fails to model the data properly (f).
The figure is taken from Publication II.

Alignment methods (Brand, 2003; Zhang and Zha, 2005; Verbeek, 2006) fit
several local linear models that give separate low-dimensional coordinate systems.
Then these models are merged to get a global coordinate system.

The maximum variance unfolding by Weinberger and Saul (2006) attempts to
project the data points apart while preserving the local distances. The objective∑

ij ‖yi − yj‖
2
2 is maximized subject to

∑
i yi = 0, and ‖yi − yj‖

2
2 = ‖xi − xj‖

2
2

if there is an edge between xi and xj in the graph formed by pairwise connecting
all K nearest neighbors. This can be reformulated as a semidefinite program-
ming problem in terms of the elements of the inner product matrix. From the
inner product matrix learned by semidefinite programming, the configuration Y

is recovered by matrix diagonalization.

3.2.2 Extending the SOM to manifold learning

It is proposed in Publication II to use some nonlinear manifold learning algorithm
to guide the learning process of the SOM. Fig. 3.2 shows an example, where the
SOM fails to model the data properly, but the proposed M-SOM learning strategy
succeeds with the help of locally linear embedding. The prefix M denotes a mani-
fold. The M-SOM is actually a supervised SOM algorithm (see Eqs. (3.3)–(3.4)),
where the winner node is computed in the manifold coordinates and the nodes
are updated both in the manifold and observation coordinates. The M-SOM algo-
rithm requires that the projection of the observations to the manifold coordinates
is available before the learning process.

Visualization is the purpose of the M-SOM algorithm. The nonlinear manifold
learning algorithms are able to discover the low-dimensional representation of the
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data under suitable conditions, but the reduction of the dimensionality is not
enough for the visualization purpose. For an efficient visualization, the represen-
tation must be summarized somehow. Besides the need to comprehend a possibly
large data set, the projection to the manifold coordinates may be highly over-
lapping, which complicates the analysis. On the other hand, the M-SOM shares
the same advantages that the SOM has in summarizing massive data sets (see
Section 3.1.1).

Publication II provides several comparisons between the SOM and M-SOM al-
gorithms. Given a representation of the data in the manifold coordinates, the
learning process of the M-SOM algorithm is faster, because the winner node is
sought in a lower-dimensional space and the extra cost in the adaptation step
is minor. Experiments on image data with manifold geometry indicate that the
M-SOM visualization is less trustworthy but preserves the original neighborhoods
better than the SOM according to the criteria by Venna and Kaski (2001). If trust-
worthiness is considered important, the M-SOM can be used as an initialization
algorithm and the learning process is continued with the SOM algorithm. The
two-stage learning process may be useful, particularly, if there are doubts about
the accuracy of the representation of the data in the manifold coordinates.

3.3 Interpreting quantile regression models

Regression analysis aims at estimating some statistical property of the response
variable when the values of the input variables are known. The classical regres-
sion methods based on minimizing the sum of squared errors enable one to esti-
mate models for the conditional mean function. In contrast, quantile regression
(Koenker and Bassett, 1978; Koenker, 2005) offers a mechanism for estimating
models for conditional quantile functions. The median is the best-known example
of a quantile and the term quantile is synonymous with percentile. For example,
the 25% and 75% quantiles can be defined as values that split ordered data into
proportions of one- and three-quarters. Conditional quantile functions split the
conditional distribution of the response variable accordingly given the values of
input variables. By estimating several different conditional quantile functions a
more complete picture of the conditional distribution of the response variable is
obtained than using the classical regression methods.

Suppose that the model Qθ(x) is used for the θth conditional quantile function,
where θ ∈ (0, 1) defines the probability level of interest. The loss function to be
minimized in quantile regression is (Koenker and Bassett, 1978)

n∑

i=1

ρθ(yi − Qθ(xi)), (3.5)

where ρθ(·) is the so-called ”check function”

ρθ(e) =

{
θe , e ≥ 0
(θ − 1)e , e < 0.

(3.6)

If the model Qθ(x) is linear in parameters, then the minimization of (3.5) can be
performed efficiently by linear programming methods. Koenker (2005) provides a
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comprehensive review that includes both parametric and nonparametric models for
conditional quantile functions. The overview can be further supplemented by the
recent works by Takeuchi et al. (2006) and Li et al. (2007) on quantile regression
in reproducing kernel Hilbert spaces, which appear to offer a tractable framework.

Model interpretation is important if the problem setting is extended from predic-
tion toward explorative analysis, where the aim is to understand the underlying
process that generated the data. For instance, economists are interested in esti-
mating the effects of education on employment or earnings and the effects of a
firm’s inputs on its outputs. This type of inference is typically based on partial
derivatives of the model ∂

∂xj
Qθ(x). For a linear model the partial derivatives are

constant and they coincide with the regression coefficients, which are readily avail-
able. If the linear model does not fit to the data, then any inference that is based
on it is incorrect. However, things become much more complicated when a nonlin-
ear model is used. Accurate pointwise estimation of the derivatives is difficult due
to the curse of dimensionality. The derivatives are no longer constant, so one has
to interpret m partial derivative surfaces in the (m + 1)-dimensional space given
m input variables. As a remedy, Chaudhuri et al. (1997) propose to use the av-
erage derivative. This entails averaging nonparametric estimates of the derivative
function over some appropriate region in the input space. Another approach is to
use a nonlinear additive model of the form Qθ(x) = w0 +

∑
j Q(j)

θ (xj), which offers
advantages at the model interpretation stage (Doksum and Koo, 2000; De Gooijer
and Zerom, 2003; Yu and Lu, 2004). By displaying the curves Q(j)

θ (xj) it is pos-
sible to examine the roles of the input variables in predicting the θth conditional
quantile function.

A novel approach is proposed in Publication IV. The conditional quantile function
and its partial derivatives are visualized using the SOM. It enables to examine the
shapes of these potentially nonlinear functions of several input variables via the
two-dimensional component plane representation of the SOM. Compared with the
average derivatives, a more comprehensive picture is obtained with the possibility
of identifying local properties of the partial derivative functions. Compared with
visualizing an additive model, the SOM-based approach is more flexible, because
any type of model can be used. In additive models, the effect of an input variable
on the conditional quantile regression surface does not depend on the values of the
other input variables, which may be too restrictive in practice. The next section
serves as a word of caution by overviewing some pitfalls as regards to interpreting
regression surfaces in general. After that, the SOM-based approach is presented.

3.3.1 Notions on interpreting regression surfaces

In practical situations, the choice of the model is limited by conditions like what
input variables can be measured and what kinds of models can be estimated reli-
ably, so the model is merely an approximation of the true underlying phenomenon.
Even if the model happens to be an excellent predictor, the interpretation of the re-
gression surface in terms of its partial derivatives often requires considerable care.
Small fluctuations of the regression surface may not weaken the prediction accu-
racy much, but they can make the derivatives noisy. When the number of input
variables increases the data cloud becomes sparser and more data points are close
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to the boundaries. Sparsity makes the estimation problematic and the boundary
effect has the consequence that most directions point away from the data cloud,
so it is impossible to measure changes of the regression surface in those directions.

The partial derivatives are often interpreted to measure the change in the regression
surface when an input variable is changed by one unit while all the other input
variables are unchanged. This is strictly true only in well-designed experiments in
which the input variables can be manipulated independently of each other. Given
observations of some process that cannot be controlled, the justification to speak
about changes is faint. It may not be possible even theoretically to change one
input variable without changing the others. Furthermore, it is not allowed to state
conclusions in causal terms without experimental control. Causality means that
the change in the input variable causes the change in the regression surface. It is
difficult to identify the dynamics of individual subjects even when causality can
be inferred. If a particular subject happens to fall at the θth quantile initially, and
then receives an increment ∆xj , it does not necessarily fall on the θth conditional
quantile function following the increment (Koenker, 2005).

The magnitudes of the partial derivatives with respect to different input variables
can only be compared if the variables are measured in the same units. Often the
input variables are normalized to have an equal standard deviation. It makes the
comparison easier but is only justified if a change proportional to the standard
deviation constitutes a meaningful quantity. Correlation between the input vari-
ables complicates the comparison further. A model with perfectly correlated input
variables can be reparameterized in infinitely many ways in terms of these vari-
ables, so the corresponding partial derivatives are arbitrary as well. The partial
derivatives may also be inaccurate and misleading, because they measure changes
along the coordinate axes but correlated data points are mainly distributed along
the diagonal direction.

3.3.2 Visualizing quantile regression surfaces using the SOM

The approach that is proposed in Publication IV is a direct application of the
supervised SOM algorithm, shown in Eqs. (3.3)–(3.4). It is assumed that input
data, models for the conditional quantile functions, and the partial derivatives of
the models are available for some probability levels of interest θ1, . . . , θℓ. Local
polynomial fitting is applied in Publication IV, but any other technique can also
be used to estimate the models. The available information can be represented as
follows

{xi, Qθ1
(xi), . . . , Qθℓ

(xi),∇Qθ1
(xi), . . . ,∇Qθℓ

(xi)}
n
i=1. (3.7)

The proposed approach enables visualizing local properties of the above functions
with the help of the SOM.

The winner node in the supervised SOM algorithm is computed using the first m
terms (input variables) and the update concerns all the m+ ℓ+ ℓm terms in (3.7).
The prototypes in the input space model the data in the same way as would be
the case when using the original SOM algorithm. In the other dimensions, the
prototypes represent sorts of conditional averages, which are computed over local
areas of the input space. The averaging has the practical benefit of smoothing
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Figure 3.3: Component planes of the SOM that visualize the θth conditional
quantile function and its partial derivative functions for the probability levels
θ = 0.1, 0.5, 0.9. Response variable: strike index. Input variables: x1 unemploy-
ment rate (%), x2 yearly inflation rate (%), x3 social democratic parliamentary
representation (%). The figure is taken from Publication IV.

the potentially noisy estimates of the quantile regression surfaces and their partial
derivatives. The prototypes are likely to be in dense regions of the input space,
so the method is somewhat resistant to the instability of model estimation near
boundaries of the data.

The proposed approach is applied on real data in Publication IV. The data set
consists of annual observations on the level of strike volume (days lost due to
industrial disputes per 1000 wage salary earners) and their covariates in eighteen
OECD countries from 1951–19852. The years 1981–1985 are, however, missing
for one country. Three observations are left out, because they have extremely
high levels of strike volume. The response variable of the analysis is the so-called
strike index, which is the difference between the observed level of strike volume
and the country specific median level. Three input variables are used: yearly
inflation rate (%), unemployment rate (%), and social democratic parliamentary
representation (%). The conditional median, upper 90%, and lower 10% quantiles
of strike index are modeled using nonparametric local linear quantile regression.

2The data set is available from http://lib.stat.cmu.edu/datasets/strikes.
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Fig. 3.3 shows the component planes of the SOM that visualize the quantile re-
gression models. The conditional median is the highest when inflation rate is also
high. The 90% conditional quantile, in turn, is the highest when both inflation
and unemployment rates are high. The extreme quantiles are close when unem-
ployment rate is low, so strike index is rather invariant in that case. There is no
clear dependency between social democratic representation and the distribution
of strike index. An identical scaling of the axis is used in the component planes
that represent the partial derivative functions of different quantiles with respect
to a certain input variable. This helps to observe that the shape of the 90% condi-
tional quantile function is more sensitive to the input variables than the two other
functions. If unemployment rate is low, then the upper tail of the conditional dis-
tribution of strike index has a positive relationship between unemployment rate.
If unemployment rate is high, then the relationship is negative. Inflation rate has
a positive relationship between the upper tail in all cases and the connection is
the strongest when unemployment rate is high and inflation rate is low. It is diffi-
cult to summarize the component planes, which represent partial derivatives with
respect to social democratic representation.

3.4 Exploring the dependency of one data set on

another

This section considers the analysis of two data sets of continuous-valued variables,
say X and Y . The goal of the analysis is somewhat similar to multiresponse
regression, investigated in Section 2.3. However, the following approach focuses
more on data exploration or data mining than accurate prediction. It serves the
early step of a research problem, where the analyst is making the first conceptions
of the data sets and their relations to each other. The relations can either be
symmetric or asymmetric. Symmetric dependency modeling means finding things
that are common to both data sets and the sets are treated equally. A classical
example is canonical correlation analysis (Hotelling, 1936), which seeks linear com-
binations for both variable sets by maximizing their mutual correlation. Further
pairs of maximally correlated linear combinations are chosen such that they are
orthogonal to those already identified. Nonlinear extensions of canonical corre-
lation analysis also exist, such as the kernel version by Bach and Jordan (2002).
Nonparametric methods offer another flexible approach to symmetric dependency
modeling. For instance, associative clustering by Kaski et al. (2005) groups similar
observations within each data set such that the groups of different sets capture as
much of the pairwise dependencies between the observations as possible.

From now on, only asymmetric dependency modeling is investigated. One set is
considered as the response data, say Y , and the goal is to find simplifying rep-
resentations of X without loss of information on the conditional distribution of
Y |X. No prespecified model is required, which differs from the techniques that
select variables of X (see Section 2.3) or reduce the dimensionality of X (Abraham
and Merola, 2005) for predictive purposes. Sliced inverse regression by Li (1991)
is a seminal method that formalizes the model free framework by searching for a
transformation that reduces the dimensionality of X while retaining the regres-
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Figure 3.4: Analysis of car data: (left) component planes of the response variables
that measure safety (Symboling describes insecurity) and economic aspects of the
cars, (right) the optimal combination of four input variables and their SOM visual-
ization. The clustering and the histograms illustrate the mapping of observations
between the two SOMs. The figure is taken from Publication I.

sion information. The original sliced inverse regression assumes a single response
variable, but there exist many extensions to multivariate responses (Setodji and
Cook, 2004; Barreda et al., 2007).

In Publication I, a visualization approach to asymmetric dependency modeling is
proposed. There would be an inherent need to apply visualization methods to
the two data sets even if they were analyzed separately for explorative purposes,
because both are multivariate. If the analyst has gained his/her understanding
about the response data via some visualization, it is perceptually justified to derive
such a representation of the input data that is related to the visualization, not the
response data itself. The SOM is used to visualize the response data and the
representation that is sought for is the subset of input variables that best supports
the visualization. The next section describes the approach in more detail. Several
extensions and related work are discussed in the subsequent section.

3.4.1 Variables that explain the SOM visualization

The response variables are fixed in the supervised learning framework, so it is
quite natural to use the SOM to overview the response data. For example, a
data set consisting of several measurements of various car models3 is investigated
in Publication I (see also Fig. 3.4). The four response variables measure safety
and economic aspects of the cars. After the SOM-based visual exploration of the
response data, the analyst may want to know, which other properties of the cars
explain the notion of safety and economic efficiency provided by the SOM. The
purpose could be to support market research of the car industry. In short, the
problem is to find input variables that are visually salient to the response SOM.

The interpretation of the response SOM is based on some representation of the
uniform lattice, such as the component planes. The dissimilarity of two nodes is
perceived as their distance in the lattice. This is formalized, in the first place, by

3The data set is available from http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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the neighborhood function in the update rule of the SOM algorithm in Eq. (3.2).
Each observation can be clustered to a certain node in the lattice by computing
its winner node according to the response variables. Each observation also has a
position in the input space. The task is to select relevant input variables without
making parametric assumptions on the mapping from the continuous-valued input
space to the uniform lattice of the response SOM. The criterion that is proposed in
Publication I is a weighted sum of pairwise distances between observations in the
lattice of the response SOM, where a weight depends on the closeness of the two
observations in the input space. The simplest way to measure closeness is to give
the unit weight for the K nearest neighbors of an observation and fix the other
weights to zero. Different combinations of input variables are sought to minimize
the criterion.

The minimization already gives additional information by discarding irrelevant in-
put variables. If many relevant input variables are found, then it is useful to apply
some visualization technique to them. The SOM is also used to visualize the re-
duced set of input variables in Publication I. The mapping between the two SOMs
can be examined as follows. The observations are clustered using one SOM, and
then, the SOM is itself clustered. The two-level approach to clustering is reviewed
by Vesanto and Alhoniemi (2000). Finally, the cluster-specific histograms of obser-
vations are displayed on the top of the lattice of the other SOM. Fig. 3.4 illustrates
the mapping of observations between the two SOMs in the car experiment.

3.4.2 Extensions and related work

A good comparison criterion is proposed in Publication I, but finding the combi-
nation of input variables that minimizes the criterion may be a difficult task when
the number of candidates is large. Instead of going deeply into combinatorial op-
timization, alternative ways of combining the input variables or a subset of them
to the response SOM are discussed next.

The MDS techniques introduced in Section 2.4.2 are readily applicable to the com-
bining. To see this, let the dissimilarity δij denote the distance between the winner
nodes of a pair of observations in the lattice of the response SOM. Define the linear
transformation f(x) = W Tx as a solution to the penalized MDS problem (2.25).
If W is set to have fewer columns than rows, then the input data become projected
to a lower-dimensional feature space. With a sufficiently large value of the penalty
parameter λ the feature space does not depend on all the input variables. This way
the combinatorial subset selection problem can be relaxed to a continuous-valued
optimization problem. The mapping from the feature space to the response SOM
is handled nonparametrically by preserving local distances.

If one is willing to make parametric assumptions, any regression model to bivariate
(the lattice is typically two-dimensional) ordinal response data (Agresti, 2002) can
be used to model the dependency of the response SOM on the input variables.
The regression model could be penalized or constrained such that input selection
occurs. However, the parametric regression approach is already quite different
from the one taken in Publication I, where the dependency is measured without
requiring a prespecified predictive model.
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A characteristic feature of the SOM is the topological ordering of the nodes. Ignor-
ing this information, however, brings out several new possibilities to dependency
modeling. A related method, K-means inverse regression by Setodji and Cook
(2004), uses the K-means algorithm (MacQueen, 1967) to group the response data
into K clusters. Sliced inverse regression (Li, 1991) is then applied, with the slices
replaced by the clusters, to reduce the dimensionality of the input data. Sliced
inverse regression could also follow the SOM-based clustering of the response data,
but it is only one possibility. Several discriminative projection methods that have
been developed for multiclass classification are applicable, starting from multi-
ple discriminant analysis to the more recent methods (Peltonen and Kaski, 2005;
Weinberger et al., 2006). In Publication I, the input data are visualized in terms
of the selected variables using the SOM. Instead of this completely unsupervised
visualization after supervised variable selection, it might be more reasonable to
focus on visualizing the properties of the selected input variables that are relevant
to the clustering of the response data. The learning metrics principle (Kaski et al.,
2001) offers a mechanism for this purpose.
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Chapter 4

Conclusions

4.1 Summary

The analysis of multivariate data is a frequent task in nearly any field of modern
science. The problem of focusing on the most meaningful information has become
increasingly important as the data sets have become larger. This thesis addressed
the problem of finding simplifying representations automatically from the data.
The proposed methods can be roughly divided into those that aim to discard
irrelevant or useless variables and those that aim to overview the data in terms
of a fixed set of variables. The thesis had three main contributions, which are
summarized next.

The first half of the thesis considered methods for automatic model building in
linear regression to enhance predictability and facilitate model interpretation. A
traditional way is adding or deleting variables stepwise, or even trying all possible
combinations. However, the stepwise approach is notorious for failing when the
variables are strongly correlated and the exhaustive approach is limited to a small
number of variables. Both approaches also suffer from weak stability. The first
contribution of this thesis was extending several shrinkage and selection methods
that offer a remedy to the aforementioned problems in single response regression
to be applicable with multiple response variables as well. The key property of a
selection and shrinkage method is that it can be formulated as a single optimization
problem of continuous-valued parameters. The solution is more stable and it is
more easily available than in the traditional combinatorial paradigm. Moreover,
it is often possible to compute the whole path of solutions as a function of the
shrinking parameter efficiently, which reduces the computational burden of model
selection.

The MRSR algorithm was proposed as a multiresponse counterpart of the lars
algorithm (Efron et al., 2004) in this thesis. Despite a close connection between
the lars algorithm and the solution path of the lasso estimate (Tibshirani, 1996),
it has been shown to be challenging to ensue the MRSR algorithm from some well
defined objective function. However, Theorem 2.3.2 showed that the L2-MRSR
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algorithm follows the solution path of the L2-SVS estimate under an orthonor-
mality assumption on the input variables. The L2-SVS estimate (Publication VII;
Cotter et al., 2005; Malioutov et al., 2005), in turn, is a multiresponse counterpart
of the lasso estimate. In a general case, the solution path of the L2-SVS esti-
mate is piecewise smooth but nonlinear, and the path was examined in this thesis
for the first time. A predictor-corrector method and a related active set strategy
were proposed for following the path efficiently. In addition, the necessary and
sufficient conditions for optimality and a condition that ensures the uniqueness
of the L2-SVS estimate were derived. Yet another contribution to regression was
extending the penalized least squares framework by Fan and Li (2001) and the
majorize-minimize optimization algorithm by Hunter and Li (2005) to cover mul-
tiple response variables. In relation to that, an active set strategy for following the
path of penalized solutions was proposed, which is not an extension but a novel
result based on the necessary conditions for optimality developed in this work.

The second contribution concerned unsupervised variable selection, which was also
discussed in the first half of the thesis. According to the definition by McCabe
(1984), it is the task of finding principal variables that contain as much information
as possible. The definition was formalized in this work as the optimal reconstruc-
tion of data by a linear combination of its most prominent variables. A practical
implementation was obtained by regressing the data set against itself while forcing
the coefficient matrix of the linear combination to be row sparse. Here, a sur-
prising possibility opens up to the multiresponse regression techniques that were
proposed in the thesis. Still supplementing the second contribution, parametric
multidimensional scaling was examined with the goal of reducing the dimension-
ality of data via combined subset selection and subspace projection. It was shown
how the iterative majorization algorithm by Webb (1995) and the shadow targets
algorithm by Tipping and Lowe (1998) are applicable to the task as a result of an
appropriate penalization of the parameters.

The third contribution was introduced in the second half of the thesis. It concerns
extensions and applications of the SOM (Kohonen, 1982, 2001). The SOM was
extended to a class of data sets in which it had previously lacked accuracy, namely
strongly curvilinear but intrinsically low-dimensional data manifolds. With the
assistance of an auxiliary projection of the data the proposed M-SOM algorithm is
capable of preserving local neighborhoods of such data better than the SOM. An
application of the SOM was proposed for interpreting nonlinear quantile regression
models. Finally, it was examined how to find properties of one data set, which are
related to a SOM-based visualization of another data set.

4.2 Directions for future work

The topics of the first half of the thesis offer several interesting possibilities for
future research. One open theoretical problem is quantifying the deviation of the
L2-MRSR path from the L2-SVS path when the input variables are correlated.
Another open problem is finding sufficient conditions under which the MRSR al-
gorithm and the L2-SVS estimate identify the nonzero rows of the best subset
regression estimate, which has already been done for the L∞-SVS estimate by
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Tropp (2006a). Most effort in this thesis was put in row sparsity of a coefficient
matrix. However, some of the proposed methods are directly applicable to induce
various other forms of structural sparsity. Requirements for such structures might
potentially emerge in applications of nonlinear models or latent variable models.
In relation to the latter, sparse principal component analysis by Zou et al. (2006)
provides an interesting groundwork that could be extended toward structural spar-
sity.
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Appendix

The Lα-MRSR algorithm.

Initialize Ŵ (λ) = 0 for λ ≥ 0, k = 0, and λ[0] = max
1≤j≤m

‖Y T xj‖α

while λ[k] > 0 do

A = {j : ‖(Y − XŴ (λ[k]))T xj‖α = λ[k]}

ŴA(λ) = λ
λ[k] ŴA(λ[k]) +

(
1 − λ

λ[k]

)
(XT

A XA)−1XT
A Y for λ ∈ [0, λ[k]]

if |A| < min{m,n} then

λ[k+1] = max
j /∈A

min
λ∈[0,λ[k]]

{λ : ‖(Y − XŴ (λ))T xj‖α ≤ λ}

else

λ[k+1] = 0
end if

k := k + 1
end while

Proof of Theorem 2.3.1. Suppose, without loss of generality, that the index j
enters the set A(λ) at λ[kj ]. Since XT X = I holds, the MRSR path (2.18) is

ŵj(λ) =

{
(λ/λ[k])ŵj(λ

[k]) + (1 − λ/λ[k])Y T xj , λ ∈ {[λ[k+1], λ[k]] : k ≥ kj}
0 , λ ≥ λ[kj ].

(A1)

Firstly, we formulate the following hypothesis about (A1)

ŵj(λ) = (1 − λ/λ[kj ])Y T xj , λ ∈ [0, λ[kj ]], (A2)

which is clearly true for λ ∈ [λ[k+1], λ[k]] with k = kj . Next, we assume that (A2)
holds for λ ∈ [λ[k+1], λ[k]] with some k = k′ ≥ kj . But then, (A2) must also hold
for λ ∈ [λ[k+1], λ[k]] with k = k′ + 1, because we have

ŵj(λ) = (λ/λ[k′+1])ŵj(λ
[k′+1]) + (1 − λ/λ[k′+1])Y T xj (A3)

= (λ/λ[k′+1])(1 − λ[k′+1]/λ[kj ])Y T xj + (1 − λ/λ[k′+1])Y T xj (A4)

= (1 − λ/λ[kj ])Y T xj . (A5)

Hypothesis (A2) is, therefore, true by induction. The property XT X = I implies

(XŴ (λ))T xj = ŵj(λ) and we have ŵj(λ
[kj ]) = 0, so the equivalence

λ[kj ] = ‖(Y − XŴ (λ[kj ]))T xj‖2 = ‖Y T xj‖2 (A6)

holds according to (2.21). Substituting (A6) into (A2) completes the proof.
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Proof of Theorem 2.3.2. Publication VII shows that the conditions

(Y − XW )T xj = λwj/‖wj‖2, j ∈ {j : wj 6= 0} (A7)

‖(Y − XW )T xj‖2 ≤ λ, j ∈ {j : wj = 0} (A8)

λ
( m∑

j=1

‖wj‖2 − t
)

= 0, λ ≥ 0 (A9)

are necessary and sufficient for W to be the solution to (2.11) at t. It is easy

to verify that the L2-MRSR path Ŵ (λ), shown in Theorem 2.3.1, satisfies (A7)

and (A8), where we have (XŴ (λ))T xj = ŵj(λ) due to the property XT X = I.
In the case of λ > 0, (A9) holds when t =

∑m
j=1 ‖ŵj(λ)‖2 applies, and for λ = 0,

we may choose any t ≥
∑m

j=1 ‖ŵj(0)‖2. By the definition of the L2-MRSR path

in Theorem 2.3.1, we have ‖ŵj(λ)‖2 = max{0, ‖Y T xj‖2 − λ}.
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Meier, L., van de Geer, S. and Bühlmann, P. (2006). The group lasso for logistic re-

gression, Technical Report 131, Eidgenössische Technische Hochschule, Seminar
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