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Abstract 

The online monitoring of induction motors is becoming increasingly important. The main difficulty in 

this task is the lack of an accurate analytical model to describe a faulty motor. A fuzzy logic approach 

may help to diagnose induction motor faults. This work presents a reliable method for the detection of 

stator winding faults (which make up 38% of induction motor failures) based on monitoring the 

line/terminal current amplitudes.  In this method, fuzzy logic is used to make decisions about the stator 

motor condition. The fuzzy system is based on knowledge expressed in rules and membership 

functions, which describe the behaviour of the stator winding. The Finite Element Method (FEM) is 

utilised to generate virtual data that support the construction of the membership functions and give the 

possibility to online test the proposed system. The layout has been implemented in 

MATLAB/SIMULINK, with both data from a FEM motor simulation program and real measurements. 

The proposed method is simple and has the ability to work with variable speed drives. The fuzzy 

system is able to identify the motor stator condition with high accuracy. This work is an example of 

the fusion between soft and hard computing. 
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1. Introduction   
 
 
   Three-phase induction motors are the “workhorses” of industry and are the most widely used 

electrical machine. Because of its simple structure and high reliability, induction motor is used for 

many purposes such as: pumps, blowers, fans, compressors, transportation, etc. In an industrialised 

nation, they can consume between 40 to 50 % of total generated capacity of that country [3,15]. 

     However, owing to the thermal, electrical and mechanical stresses, mechanical and electrical 

failures are unavoidable in induction motors. Early detection of abnormalities in the motor will help to 

avoid expensive failures. Operators of electric drive systems are under continual pressure to reduce 

maintenance costs and prevent unscheduled downtimes that result in lost production and loss of 

financial income.  

    The modern industry has widely used reliability-based and condition-based maintenance strategies 

to reduce unexpected failures and downtime. These techniques can increase the time between planned 

shutdowns for standard maintenance and reduce maintenance and operational costs. The operation of 

the machine in unsafe condition must also be avoided. Nevertheless, the failures are unavoidable, and 

failure statistics [15] has reported that the percentage of failures in induction motor components is as 

follows:  

1. Bearing related faults: 40% 

2. Stator winding related faults: 38% 

3. Rotor related faults: 10% 

4. Other faults: 12% 

      It is important to note that even if the stator fault account makes up 38 % of the all faults, it is very 

important to spot them in time because they can lead to the total destruction of the motor.  A reliable 

system for the detection of such a fault should be able to detect the fault at an early stage, monitoring 

the motor condition online. 
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        The fuzzy logic approach may help to diagnose induction motor faults.  The concept of fuzzy 

logic was introduced by Professor Lofti A. Zadeh to present vagueness in linguistic terms and express 

human knowledge in a natural way [16]. It is well known that fuzzy logic can describe the 

characteristics of industrial process with linguistic terms [11]. The motor condition identification task 

requires the interpretation of data and makes decision from the data. Primarily, the motor condition 

constitutes a fuzzy set. In practice, the users are concerned about the condition of the motor in terms of 

a linguistic variable that can be expressed as “good”, “damaged” or “seriously damaged”. Further, a 

fuzzy system can store certain knowledge, which allows it to make decisions with a high percent of 

accuracy. This knowledge expressed in rules and membership functions is obtained from the analytical 

study of the motor, motor performance, simulated data and power engineer experience. From the point 

of view that sees induction motor condition as a fuzzy concept, there has been some fuzzy logic 

approaches for diagnosis. The lack of proper processing of fuzzy input data and the construction of the 

membership functions are presented as the major difficulties [4, 7, 11, 12]. This problem is tackled in 

this work by using FEM in order to generate reliable virtual data, which allows the construction of the 

membership functions in all faulty and load conditions.  

    The aim of FEM here is to foresee the changes of motor performance due to the changes in the 

internal parameters when the motor is working under faulty conditions. Numerical simulations 

generate useful data, which are used to test the diagnostic techniques. FEM permits the evaluation of 

the influence of different motor faults in an inexpensive and accurate manner [14]. 

   Early work in the detection of induction motor faults using fuzzy logic is presented in [12]. This 

application corresponds to single phase induction motors. This paper suggests the application of the 

approach to other different machines by forming appropriate membership functions and rules knowing 

the machine behaviour. It is suggested that the rules should be known experimentally and with the help 

of an expert. This paper presents some guidelines for the derivation or rules. 
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   Recently, some applications of fuzzy logic for the detection of faults in electrical machines and 

power electronic have emerged as a solution for online diagnosis. In reference [5] a neuro fuzzy 

system for the detection of faults in power transformer is presented. Reference [10] presents a system 

for detecting online fault in HVAC systems, where the fuzzy system is assisted by genetic algorithm to 

generate optimal rules. In both cases automated online diagnosis have been achieved. Reference [2] 

presents an adaptive neural fuzzy inference system  (ANFIS) for the detection of winding and bearing 

faults in single-phase induction motors. In [2] experimental data is generated for five measurable 

different parameters, which constitute the inputs for the ANFIS detector. Such a synergy, between 

neural network, brings a better understanding of the heuristics and motor fault detection can be 

achieved. But still the main drawback the of all data-based identification methods remains: the 

performance of the classification can be only as good as the data it is based on. In fault classification 

this may be a problem, because often there are not much reliable data available from all the faulty 

operations. Further, another major difficulty in motor-fault detection and diagnosis is the lack of an 

accurate analytical model that describes a faulty motor.  

    In our research, fuzzy logic approach is used to make decisions about the motor condition. The task 

of the diagnostic system presented in this work is to detect an upcoming stator fault as early as 

possible, in order to save expensive manufacturing processes or to replace faulty parts. Since stator 

faults do not produce clear signatures in the current spectrum, it is necessary to use other means to 

identify stator faults instead of the traditional spectrum analysis technique. For that reason  the fuzzy 

logic approach is applied to the motor current amplitudes in order to spot failures in the stator. The 

terminal current amplitudes contain potential fault information and constitute suitable measurements 

for diagnosing stator faults in term of easy accessibility, reliability and sensitivity [4].    
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2. Stator winding fault  
 
 
     In low voltage three-phase induction motors the stator-winding fault can be classified as follow: 

 1- Turn to turn shorts within a coil (inter-turn short circuit): motor will continue to operate, but for 

how long? 

 2- Shorts between coils of the same phase, motor can continue to operate but for how long? 

 3- Phase to phase short, motor fails and protection equipment disconnects the supply. 

 4-Phase to earth short: motor fails and protection equipment disconnects the supply. 

 5-Open circuit in one phase, motor may continue to operate, depending on the load conditions. 

     Pre-warning of motor failure, such as 3 and 4 can only be achieved if shorted turns within a coil 

(such as 1) can be initially diagnosed via online diagnostic technique. The general opinion of the users 

and manufactures is that there is a longer lead-time between the inception of shorted turns up to failure 

in low voltage motors. In modern production process, any lead-time can be extremely advantageous 

since unexpected failures of a drive can be very costly. If an inter-turn short (one or two shorted turns) 

can be diagnosed, a pre-planned shutdown can be arranged. 

     The common technique for online detection of motor faults is known as motor current signature 

analysis (MCSA) [15]. The objective of this technique is to detect certain components in the stator 

current spectrum that are only a function of a specific fault. However, it has been shown 

mathematically and experimentally by [9] that the spectral components due shorted turns are not a 

reliable indicator of stator winding fault. 

      In reference [9], the interaction between a faulted stator winding and healthy rotor cage is studied. 

The faulted, asymmetric stator winding may produce spatial harmonics of any wave number into the 

air-gap field. However, all these harmonics vary at a single frequency, i.e. the supply frequency of the 

sinusoidal voltage source. The stator harmonics induce currents in the rotor cage and reflect back from 
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the rotor as new air-gap field harmonics. Seen from the stator, the air-gap harmonics caused by the 

induced rotor currents vary at the frequencies 

 

( )rf 1 1 1nf f s
p
λ⎡ ⎤

= ± −⎢ ⎥
⎣ ⎦

                                                                                                                           

(1) 
 

rff    components reflected from the stator side, so-called rotor slot harmonics                           

1f      supply frequency 

p      number of pole-pairs 

s       slip  

n       number of rotor bars 

...3,2,1=λ  

   The air-gap field harmonics induce electromotive forces in the stator winding and generate harmonic 

stator currents at these same frequencies. Unfortunately, these are the same frequencies at which a 

healthy machine produces harmonic stator currents. 

    According to this analysis, a stator fault may only generate harmonic stator currents, which vary at 

the fundamental and rotor-slot harmonic frequencies. A fault in a stator winding may change the 

amplitudes of the stator-current harmonics but it does not produce any new frequencies in the stator-

current spectrum. This significant result implies that it may be difficult to detect a stator fault from a 

current spectrum using MCSA.  Then, another technique is needed to spot this important fault.  

      A healthy three phases induction motor fed from a symmetric power supply has three balanced 

phase currents. Fig. 1 shows the phase currents of a healthy motor working at half load and fed from 

an inverter at 100 Hz.  The induction motor is ideally a symmetry system.  Any asymmetric in the 

stator winding produces unbalance in the motor currents. The most difficult case to identify might be 

when there is only inter-turn short circuit, as is shown in Fig. 2, where the lowest unbalanced is shown. 

Fig. 1 and Fig. 2 correspond to measured data. The main idea of the developed monitoring system is to 
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spot the unbalance in the input currents as fast as possible avoiding a major failure.  The system should 

be able also to detect a short-circuited coil and open phase. 

 

Fig. 1. Terminal phase currents in a healthy motor. Inverter supply at 100 Hz 

 

Fig. 2. Terminal phase currents in a faulty motor during an inter-turn short circuit. Inverter supply at 

100 Hz. 

 

3. Generating of data by FEM 
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    In our software package, FEM is applied for solving electromagnetic problems, which are described 

by the Maxwell equations. This software is an in-house 2-D FEM program, in which the magnetic 

field in the cross-section area of the test machine is computed. This package was designed for the 

transient magnetic field analysis of electrical machines coupled with the circuit equations of the 

machine windings. This method allows the simulation of electrical machine fed from measured 

voltages of the power converter used in experiments. The software uses the time-stepping method, 

which takes into account the motion of the rotor and the induced voltage due to this motion. Some of 

the 3-D effects like flux fringing and end windings are also modelled with analytical and electric 

circuit approaches. A full description of the software and its accuracy is given in [1]. A detailed 

description about fault implementation in the program can be found in [14].  

    The FEM program permits the generation of data with the motor working in different condition of 

load as well as changing the severity of the fault. Data were generated for healthy motor, inter-turn 

short-circuits and inter-coil short-circuits. In every case three load conditions full, half and no load 

were considered. The membership functions are obtained from the calculated current, taking into 

account the healthy and faulty conditions. 

 

4. Detection system 

 

   A block diagram of the system can be seen in Fig. 3. The system monitors the amplitudes of the 

motor currents ,a bI I  and cI . Firstly, the analogic measurements are converted in digital data through 

an A/D converter. Then, the root mean square (rms) of each phase current is calculated over a period 

of time using the standard formula, 

 ∫
+

=
Tt

t
dttI

T
rms 2)(1                                                                                                           

(2)     
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)(tI    Is the input current 

T        Is the fundamental period 

      In this layout, the motor currents are considered as input variables of the fuzzy system and stator 

condition (SC) is chosen as the output variable. These variables are vague information. The digital 

output from the A/D converter is converted into suitable linguistic values.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 3.  Block diagram of the stator protection system. 

 
 

    4.1 Membership functions 

 

   The stator condition can be known by observing the phase current amplitudes, being the relationship 

between the stator condition and the current amplitudes vague. Therefore, the numerical data are 

represented as linguistic information. 

  Thus, the amplitudes of the currents (inputs) are categorised using four linguistic variables. These 

categories are very small (VS), small (S), medium  (M) and large (L). The linguistic variable  “Stator 

M

Three-phase source 
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Calculate 
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current 
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condition” (SC) (output), interpreting the stator condition could be “Good” (G), “Damaged”(D) or 

“Seriously damaged” (SD). “G” refers to a stator with no faults, “D” might be a stator with current 

unbalance (inter-turn short circuit), and “SD” a stator with an open phase or coil short-circuited. In 

other words and using fuzzy logic theory, the input and output of the system are defined as,  

 

Inputs:  { }aajajIa IiiI
a

∈= /)(µ                                                                                                                                                  (3) 

                 { }bbjbjIb IiiI
b

∈= /)(µ                                                                                                                                                   (4) 

                 { }ccjcjIc IiiI
c

∈= /)(µ                                                                                                                                                    (5) 

 

Output: { }SCscscSC jjSC ∈= /)(µ                                                                                                                                           (6) 

 

, ,aj bj cji i i  , jsc                   are elements of the discrete universe of discourse  

a b c, ,I I I , SC                    are universe of discourse 

SCIII cba
µµµµ ,,,        are corresponding membership functions 

(SC)T                                Term interpreting the stator condition: can be good, damaged or seriously 

damaged  

    

  The membership functions for the input and output variables are constructed by the analysis of data 

generated by FEM. Thus, the FEM program is run from no-load to full-load in the healthy situation 

and the rms values of the phase currents are calculated, obtaining values from 25 to 65 A (for the case 

of motor 1). These values are normalized between [0, 1], defining the membership function which 

corresponds with the linguistic term M, for a healthy motor. Similar process is repeated for the faulty 

conditions, defining the VS, S, and L. The VS condition is obtained when the motor has a fully open 

phase, L corresponds to a short-circuit in one phase and  S  corresponds with a no load motor. All 

these situations are simulated in FEM, allowing the definition of  the trapezoidal membership 

functions. 



 

 11

    The system was tested with triangular, trapezoidal and Gaussian membership functions. It was 

found that the combination of triangular and trapezoidal membership function is the most appropriated 

for fault diagnosis of induction motors. Reference [5] obtained similar results for the case of power 

transformers. Trapezoidal function has well defined corner as the motor has well defined rated 

parameters. Fig. 4 shows an example of input membership functions. Fig. 5 shows the output 

membership functions.  

 

Fig. 4.  Membership functions for the normalized currents a b c, ,I I I . 

 
Fig. 5. Membership functions for the stator condition. 
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  Another known power engineer fact is included that takes into account the amplitude variance, in 

order to improve the system sensitivity and reliability. The membership function for the amplitude  

“variance” of current is shown in Fig. 6.  The variance is calculated as follow, 

2 2 2

2
a b cI I I I I I

v
− + − + −

=                                                                                              (3)            

where , ,a b cI I I     are the rms values of the input currents 

 

Fig. 6.  Membership functions of the variable “variance”. 

        The membership function of the variance is also defined from the FEM calculation and 

normalized between [0, 1]. The amplitudes of the currents as well as the variance are transferred into 

the corresponding universe of discourse as inputs. The fuzzy inference engine evaluates the inputs 

based on power engineer experience. 

 

4.2 Inference system 

 

   The design of rules in our case is based on the expert understanding. The process consists of two 

parts: knowledge acquisition and formation of rules and combination of rules. Our inference system 

will perform as a power engineer with an ammeter.   

   The knowledge acquisition starts, with the translation of the motor understanding to if-then rules.  

Firstly, it is important to remember that a three phase healthy induction motor is a symmetric system. 

Normal Large
1 

1
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This is equivalent to say that the three currents have the same rms values (within a tolerance), this 

define the healthy situation, rules 9 and 10. On the other hand, it is enough that one of the phase 

currents is large (L) to imply the motor is seriously damage, rules 4, 5, 6. Moreover, it is also enough 

that one of the currents is very small (VS) to imply that the motor is seriously damage (SD). Totally, 

we have in the input of the system 64 possible combinations between the three currents and the four 

categories for every current. Many of the combinations are redundant.  For example, if the three 

currents are large, the SC is seriously damage, but this condition is already included in one of the rules 

4 or 5 or 6. Similarly happens when we have two large currents. This analysis is manually extended to 

cover all the combinations.  

   From the optimisation of all different possible combinations between the three currents and four 

linguistic variables the following set of rules is obtained.  This set of rules contains the knowledge and 

description of the machine condition. They are universal for all three phases induction motors. 

Rule 1:  If aI  is VS then SC is SD  

Rule 2: If bI  is VS then SC is SD 

Rule 3:  If cI  is VS then SC is SD 

Rule 4: If aI  is L then SC is  SD 

Rule 5: If bI  is L then SC is  SD 

Rule 6: If cI  is L then SC is  SD 

Rule 7: If aI is S and bI  is S and cI  is  M then SC  is  D 

Rule 8: If aI is S and bI  is M and cI is  M then SC  is  D 

Rule 9: If aI is M and bI  is S and cI is  M then SC  is  D 

Rule 10: If aI is M and bI is M and cI is  M then SC is G 

Rule 11: If aI  is S and bI  is S and cI  is  S then SC is  G 

Rule 12: If aI  is S and bI  is M and cI  is  S then SC is D 
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Rule 13: If aI  is M and bI is S and cI  is  S then SC is  D 

Rule 14: If aI  is M and bI  is M and cI is S then SC is D 

Rule 15: If v  is L then SC is D 
 
     In the final stage, the fuzzy actions are reconverted in crisp ones by using the center of area method. 

According to this method, each affected output membership is cut at the level indicated by the 

previous max-rule, then the gravity center of the possible distribution is computed and becomes the 

numerical output value [11]. 

 
4. Simulation results 
 

    Two different motors, a 15 kW delta connected and 35 kW star connected machines were studied.  

The parameters are given in Appendix 1.  The SIMULINK model of the fault detection system is 

shown in Appendix 2.  The model is implemented online with the data.    

     The fault detection method was first tested online with data from FEM motor simulation program. 

As the FEM program takes into account the non-linearity and inhomogeneous characteristics of the 

materials, it is a good approximation to the actual motor. The sampling frequency in the FEM 

simulation program was 40 kHz and the number of samples simulated was 10 000. The simulation 

model was able to identify the fault with excellent accuracy as can be seen in Table 1. 

        During every data set, the fuzzy filter executes 25 validations of the stator condition. The duration 

time of every data set was 0.25 seconds. The test was carried out with the motor in three different load 

conditions, no-load, half-load and full-load. In order to prove the performance of the SIMULINK 

model under noise condition, a source of noise was added to each phase. Table 2 shows the results 

under noisy condition.  

 

Table 1. Percentage of correct detection from simulated data  
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Motor condition Data 
sets 

15 kW 35 kW 

Healthy motor 3 100% 100% 
Open phase 9 100% 100% 
Inter-turn short 3 100% 100% 
Short circuited 
coil 

3 100% 100% 

 
 
 
 
Table 2. Percentage of correct detection under noise condition. 

 
Motor condition Data sets Accuracy 
Healthy motor 3 96% 

Open phase 9 100% 
Inter-turn short 3 92% 

Coil short 
circuited 

3 100% 

 
 
6. Measurement results 

 

    A measuring setup was arranged to get data from a working motor. It is shown in Appendix 3. The 

data was recorded with a transient recorder. The sampling frequency used was 40 kHz. The motor was 

tested at four different frequencies. The tests were carried out with the motor in healthy condition and 

with a real inter-turn short circuit. 

     The real short circuit was done between two adjacent turns. The insulation of winding wires were 

scratched and two wires were soldered to them. These were long enough to be closed from outside the 

motor through a switch.   The short circuit was made active during a short time, just enough to take the 

0,75 seconds of data. The fuzzy filter makes a validation at a frequency equal to the main frequency of 

the line current, ensuring the fastest response time. For example: at 100 Hz supply frequency the 

refresh time is 0,01 seconds, which means 75 validations by data set. The results are shown in Table 3, 

the faulty condition refers to the real inter-turn short circuit.  Measurements at full load were not 

carried out because of some concern whether or not the motor could withstand the short circuit 
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conditions. Fig. 7 shows a test result when the motor was working in healthy situation, half load at 100 

Hz. Fig. 8 shows the test result for the faulty situation (inter-turn short circuit) for the same load and 

supply conditions. This corresponds with the worst case scenario to be detected. 

       The motor used in the measurements was the same as used with the FEM motor simulation 

program (35 kW). Thus, the SIMULINK model was able to work properly without any changes when 

run with the simulated and measured data.  

 

Table 3. Percentage of correct detection. Measured data with Inverter supply for the 35 kW motor. 
 

Detection accuracy [%] Frequency [Hz] Load 
Healthy Faulty 

No-load 94,7 100 
Half load 97,2 94,4 

 
 

25 
Full load 96,3 -- 
No-load 94,7 100 
Half load 96 100 

 
 

50 
Full load 97,3 -- 
No-load 100 100 
Half load 100 100 

 
 

75 
Full load 100 -- 
No-load 100 100 
Half load 100 100 

 
 

100 
Full load 100 -- 
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Fig. 7. Test result for the case of healthy motor, measured data, half load at 100 Hz. 
 
 

 
 

Fig. 8. Test result for the case of inter-turn short circuit, measured data, half load at 100 Hz. 
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7. Discussion 
 

   The main objective of this work was to establish an online system capable of detecting the stator 

condition of the cage induction motor by monitoring the motor currents.  Throughout this work, fuzzy 

logic was used to analyse the data and make decisions. The method was able to detect the motor 

condition with high accuracy as can be seen in Table 3. Fuzzy logic is a good option because there is 

no general and accurate analytical model that describes successfully the induction motor under fault 

conditions. 

     The proposed motor protection system was implemented in the MATLAB environment. It was able 

to identify the stator condition with simulated and measured data.  The model was able to identify the 

stator condition with good accuracy even under noisy condition. The performance of the model 

without noise was excellent. When noise was added to the simulation data, the performance in the 

accuracy detection rate decreased slightly. 

      Reference [4] considers the detection of an imitated inter-turn short circuit by adding resistance to 

one phase. This imitation is far from the real inter-turn short circuit, which is the worst case scenario to 

be detected. Our work has been tested with a real inter-turn short circuit and in variable speed drives 

online with the data. We obtained better accuracy than [4] e.g. for the case of an open phase (severe 

fault) we obtained 100% as can be seen in table 3 (even under noise condition), for the same fault 

reference [4] obtained 94% of accuracy. The better results are due to two facts. First, we improved the 

system sensitivity by adding a new rule. Second, our membership functions have better accuracy by 

the support given by FEM.  

      It is important to sign that in the case of stator faults in induction machines the most important 

fault to be detected is a primary inter-turn short circuit (the fault in an early stage, as it is detected in 

Fig. 8). Detecting  at the early stage would avoid the total destruction of the stator winding.  
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    We also tested the layout for both, the delta and star connections. For both cases, the detection 

accuracy were good. The model showed that comparing the rms values of the three terminal currents 

reveals changes in the internal electrical balance of the machine. It was sensitive enough to reveal only 

one shorted turn in the stator winding, where there were 11 turns per coil and 4 coils in series.  

  This inference system is universal for all kind of three phase induction motors. However, the 

membership functions must be defined from a FEM calculation. They depend of the motor size. 

 
8. Conclusion 
 

    This work shows the feasibility of spotting stator failures in an induction motor by monitoring the 

motor current amplitudes using fuzzy logic. Its forward application is in variable speed drives. This 

system could be implemented in the software of the inverter to monitor the stator condition online. It is 

able to work with motors connected in star and delta. In addition, it has two important abilities: to 

work in variable speed drives and a short delay time between fault and response. This work is also an 

example of fusion between soft computing (fuzzy logic) and hard computing techniques (FEM) in 

order to design a reliable system. 

      A possible drawback of the method is associated with the fact that a current unbalance originating 

from the supply source may be identified as a fault condition of the motor. But even this shortcoming 

can be overcome by monitoring the voltage and introducing new rules in the inference system.  
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Appendix 1. Motor parameters 

 

 Motor 1 

Star connection 

Power                                              35 kW 

Rated current                                   64 A 

Number of rotor bars                       40 

Number of poles pairs                     2 

Number of stator slots                     48 

Voltage                                            400 V 

Rated frequency                              100 Hz         

 

Motor 2 

Delta connection  

Power                                             15 kW 

Rated Current                                 29 A 

Number of rotor bars                      34 

Number of poles pairs                    2 

Number of stator slots                    36 

Rated frequency                             50 Hz   

Voltage                                           400V 
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Appendix 2. Matlab/Simulink model. 
 

 
 
 
Appendix 3.  Measurement setup 
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