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Magnetoencephalography (MEG) allows millisecond-scale non-invasive

measurement of magnetic fields generated by neural currents in the

brain. However, localization of the underlying current sources is

ambiguous due to the so-called inverse problem. The most widely used

source localization methods (i.e., minimum-norm and minimum-

current estimates (MNE and MCE) and equivalent current dipole

(ECD) fitting) require ad hoc determination of the cortical current

distribution (‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 2-, ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 1-norm priors and point-sized dipolar, respectively).

In this article, we perform a Bayesian analysis of the MEG inverse

problem with ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ p-norm priors for the current sources. This way, we

circumvent the arbitrary choice between ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 1- and ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 2-norm prior, which

is instead rendered automatically based on the data. By obtaining

numerical samples from the joint posterior probability distribution of

the source current parameters and model hyperparameters (such as the

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ p-norm order p) using Markov chain Monte Carlo (MCMC) methods,

we calculated the spatial inverse estimates as expectation values of the

source current parameters integrated over the hyperparameters. Real

MEG data and simulated (known) source currents with realistic MRI-

based cortical geometry and 306-channel MEG sensor array were used.

While the proposed model is sensitive to source space discretization size

and computationally rather heavy, it is mathematically straightforward,

thus allowing incorporation of, for instance, a priori functional

magnetic resonance imaging (fMRI) information.
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Introduction

Magnetoencephalography (MEG) allows non-invasive meas-

urement of the magnetic fields generated by neural activity of the

living brain (e.g., Baillet et al., 2001; Hämäläinen et al., 1993;

Vrba and Robinson, 2001). Along with clinical applications,

MEG is used in studies of basic sensory (auditory, visual, and

somatosensory) processes as well as cognitive functions. Time

resolution of this method is excellent (~milliseconds), but in

order to locate the underlying source currents accurately on the

basis of MEG data, one needs to solve the so-called electro-

magnetic inverse problem, which does not have a unique solution

(Sarvas, 1987). Therefore, additional constraints are needed to

select the most feasible estimate from the multitude of possible

solutions.

A traditional approach to the MEG inverse problem is to

employ the equivalent current dipole (ECD) model, which relies on

the assumption that the extents of the activated areas are small

enough to be adequately modeled with dipolar point-like sources.

Using fully automatic or manually guided, often partly heuristic,

fitting methods, the model giving best fit to the measured data is

obtained. A downside is that the number and locations of the

source dipoles need to be known to a certain extent (although, see

Mosher et al., 1992). This is a problem especially when complex

cognitive brain functions are studied.

Other widely used methods employ distributed source current

estimates (e.g., Hämäläinen et al., 1993; Pascual-Marqui, 2002;

Uutela et al., 1999). In the well-known minimum-norm (Dale

and Sereno, 1993; Dale et al., 2000; Hämäläinen and Ilmoniemi,

1984; Hauk, 2004) and minimum-current (Uutela et al., 1999)

estimates (MNE and MCE), extra information is embedded to

the model as mathematical ‘2- and ‘1-norm constraints on the

source currents, respectively. Specifically, the least squares error

function is combined with an additional penalty term consisting



Fig. 1. Some of the simulated sources are plotted on the inflated white-gray

matter boundary. The green color depicts gyri and red color sulci,

respectively. Source extent 0 (left column) is a point-sized focal source

whereas extents 1 and 2 (middle and right columns) are wider and spread

over a small segment of a sulcus or gyrus.
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of a weighted norm of the current distribution. Unlike dipole

fitting, the exact number and approximate locations of the

sources do not need to be known in advance. However, the

resulting estimate may be quite diffuse, especially in the case of

the minimum-norm estimate and, therefore, it may be equally

difficult to discern the number of distinct activated areas in

practice.

In Bayesian interpretation, MNE and MCE correspond to ‘2-
and ‘ 1-norm priors for the source currents with a Gaussian

likelihood for the measurements (Uutela et al., 1999). The use of

predefined values 1 or 2 for the ‘ p-norm order p is somewhat

arbitrary as it leads to prior-wise feasible inverse models even

though any value between 1 and 2 could be used. The ‘2-norm
prior produces overly smooth and widely spread estimates

whereas ‘ 1-norm estimates might be too focal. The choice of

p is subject to uncertainty, hence p should be treated as an

unknown variable utilizing Bayesian inference, which has lately

gained popularity in solving the electromagnetic inverse problem

(e.g., Baillet and Garnero, 1997; Phillips et al., 1997; Schmidt et

al., 1999). Markov chain Monte Carlo (MCMC) methods have

become popular in this methodology due to rapid expansion of

computing resources (e.g., Kincses et al., 2003; Schmidt et al.,

1999).

In this paper, we perform a Bayesian analysis of the MEG

inverse problem with ‘ p-norm priors, using MCMC methods and

simulated source currents with a realistic MRI-based forward head

model. Furthermore, we apply the model on a set of real MEG

measurement data. The purpose of this study is to focus on the

Bayesian interpretation of the problem, determine an optimal

source space discretization size when the discretized points are

assumed independent of each other, and to determine whether there

is enough information in the data to clarify which ‘ p-norm prior

should be used. We specifically hypothesize that there is no single

value for p that would be optimal for all cases, but instead the

value depends on the grid discretization size and also on the

underlying source configuration and, therefore, it should be

inferred from the data rather than determined ad hoc.
Materials and methods

Simulated data were generated in order to test the performance

of our model with a priori known, functionally realistic, source

locations (see Fig. 1). Source space was discretized according to

real anatomical MRI-based brain surface reconstruction (Dale and

Sereno, 1993; Dale et al., 1999; Fischl et al., 1999) and simulated

sources were then used to calculate the measurements, to which

Gaussian noise was added. The spatial inverse problem was

addressed with a Bayesian model utilizing numerical MCMC

methods. Different grid sizes were used in order to find the optimal

discretization size of the source space, and two separate source

configurations were used to investigate the effect of varying signal-

to-noise ratio (SNR) and underlying source extent to the spatial

inverse estimate. The performance of the ‘ p-norm model was also

tested with a real MEG data set and compared to similarly

implemented ‘ 1- and ‘2-norm prior models.

Bayesian inference and Markov chain Monte Carlo methods

Bayesian inference (Gelman et al., 2003; Rowe, 2003) is a

theory of probability in which both the parameters of the model
and the measurements are considered as random variables.

According to Bayes’ theorem (Gelman et al., 2003),

P HAD;Mð Þ ¼ P DAH;Mð Þd P HAMð Þ
P DAMð Þ ; ð1Þ

the posterior probability P HAD;Mð Þ is a product of the likelihood
term P DAH;Mð Þ and the prior term P HAMð Þ, divided by the

normalization factor P DAMð Þ. Above, P(d |d ) denotes a condi-

tional probability density function, D are the data, H the model

parameters, and M contains all other assumptions in the model.

Additional parameters in the prior term are called hyper-

parameters that can ultimately have higher-level prior structures

leading to hierarchical models. The posterior probability distri-

bution in Eq. (1) is generally a function of several variables and

thus difficult to visualize and handle. Therefore, the distribution is

often characterized by the parameters maximizing it, that is, the

maximum a posteriori (MAP) estimate, or by computing suitable

marginal densities. For the associated high dimensional numerical

integration, Markov chain Monte Carlo methods (Gilks et al.,

1996), such as the Metropolis–Hastings algorithm, are generally

used (see also, Appendix B). More detailed information on

Bayesian data analysis can be found in Gelman et al. (2003).

Source space

The white-gray matter boundary of cortex was reconstructed

from 3-D T1-weighted high-resolution MR images (MPRAGE

sequence, Siemens Sonata 1.5 T, Erlangen, Germany) using the

Freesurfer software (see Dale et al., 1999; Fischl et al., 1999),

with ~150,000 grid points representing each hemisphere. The

resulting cortical surface geometry was overlaid over T1-

weighted images for visual verification followed by transforma-

tion into MATLAB-environment, where the simulations and

MCMC sampling were carried out. To parametrically optimize

the size of discretization of the source space, given the

assumption of statistical independence between neighboring
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source locations, the number of possible source space points was

reduced to ~200, ~400, ~800, ~1600, and ~3200 grid points per

hemisphere. Given the widely accepted assumption that cortical

currents visible to MEG are generated by synchronous post-

synaptic potentials of cortical pyramidal neurons (Dale and

Sereno, 1993; Okada et al., 1997), the orientation of the current

sources was further constrained to be perpendicular to the local

surface geometry when calculating the forward solution.

Forward model

In MEG, the Maxwell’s equations can be solved under the

quasistatic approximation assumption (Hämäläinen et al., 1993). The

solution of the forward problem gives, for one timepoint, the linear

relationship between the source currents and the measured signals

b ¼ Asþ n; ð2Þ

where b is anM � 1 vector for measurements, s is an N � 1 vector

for the source currents, A is an M � N gain matrix, and n a

Gaussian noise vector. N is the size of the discretization of the

source space, and M is the number of measurement sensors. Each

column of A gives the measured signal distribution for one dipolar

current source, located on the cortical mantle and perpendicular to

the cortical surface.

For the computation of A, we employed the single-layer

boundary-element model (BEM), which assumes that the realisti-

cally shaped cranial volume has a uniform electrical conductivity

and the skull is a perfect insulator. For many practical purposes,

this model is sufficient in MEG source estimation (see, e.g.,

Hämäläinen and Sarvas, 1989; Mosher et al., 1999).

For the locations of the sensors, we utilized actual data from a

measurement on the subject whose MR images were employed in

the simulation. The sensor array of the Vectorview system used

(Elekta Neuromag Oy, Helsinki, Finland) is composed of 306

sensors arranged in triplets of two planar gradiometers and a

magnetometer at 102 locations. The approximate distance between

adjacent sensor elements in the array is 35 mm and the minimum

distance of the sensor from the scalp is 17 mm.

The inverse problem

Biomagnetic inverse problem (Sarvas, 1987) stands for solving

the underlying currents in the living brain given the MEG

measurements. Mathematically, the problem involves estimating

s in Eq. (2) from samples of b. In this estimation task, the gain

matrix A is usually assumed to be precisely known. In our model,

the number of measurements M = 306 is much smaller than the

number of points in the used grids and, therefore, the problem is

underdetermined and does not have a unique solution. Further-

more, neighboring sensors have overlapping, non-orthogonal

sensitivity patterns (lead fields; Hämäläinen et al., 1993) and, as

a result, the number of independent equations is even less than M.

The ‘ p-norm model

We present a Bayesian model consisting of a Gaussian

likelihood for the measurements and ‘ p-norm prior for the source

current parameters. In statistical terms, Eq. (2) can be written as a

linear regression model. Assuming statistically independent measu-

rements b = [b1 b2. . .bM]T and zero-mean M-dimensional normal
distribution for the noise, given source current parameters s, the

likelihood is

P bAs;Cð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
detC
p ffiffiffiffiffiffi

2p
p M

d exp � 1

2
b� Asð ÞTC�1 b� Asð Þ

�
;

�

ð3Þ

whereC is the noise covariance matrix for the measurements. In this

study,C is assumed to be known up to an unknown scaling factor of

r l, so that C = r l
2 C̃ where C̃ is known and diagonal. For

computational convenience, we introduce whitening of the gain

matrix, A, and measurements, b, with the known part of the noise

covariance matrix, so that

ÃA ¼ C̃C�1=2A ð4Þ

and

b̃b ¼ C̃C�1=2b: ð5Þ

Leaving out numerical constants, the likelihood simplifies to

P bAs; rlð Þa 1

rM
l

d exp � 1

2r2
l

b̃b � ÃAs
� �T

b̃b � ÃAs
� ��

:

�
ð6Þ

The scaling factor r l in the exponent function is a parameter for

compensating unknown alternations in the noise level. For

simplification, rl was assumed having a uniform prior instead of

a more conventional choice of 1/rl, which would lead to uniform

prior for log (rl). WhenM is large and rl close to one, then 1/rl
M c

1/r l
M+1, and the choice of uniform prior for rl is justifiable. In the

simulation part of this study, the sampling of the posterior

distribution of rl is likely to yield values around one as the

whitening was done with a known (simulated) noise covariance

matrix. In the case of real data, C̃ is estimated from the measure-

ment data and rl would contain, for instance, information on

uncertainty of the whitening.

The ‘ p-norm for vector v is

NvNp ¼
X
i

AviAP

 !1=p

: ð7Þ

In order to reduce the correlations between the formal ‘ p-norm
prior width and the source current parameters (evident in our

preliminary sampling runs), yet maintaining a continuous variable

of the norm order p for our prior, we reparametrize its structure.

First, consider a standardized normal distribution

P xð Þ ¼ k d exp � 1

2
AxAq

� �
with q ¼ 2: ð8Þ

If we let q take any values other than 2, the class of exponential

power distributions is obtained. According to Box and Tiao (1973),

(Ch. 3.2.1); with q = 2/(1 + b) these distributions can be written as

P yAh;/; bð Þ

¼ x bð Þ/�1 exp � c bð Þ
				 y� h

/

				
2= 1þbð Þ

!
; �l b y bl;

 
ð9Þ
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where

c bð Þ ¼


G 3

2
1þ bð Þ

� �
G 1

2
1þ bð Þ

� � �1= 1þbð Þ
; �l b h b l; ð10Þ

x bð Þ ¼
G 3

2
1þ bð Þ

� �1=2
1þ bð ÞG 1

2
1þ bð Þ

� �3=2 ; / N 0; and �1 b b V 1: ð11Þ

Parameters h and / are the mean and standard deviation of the

population, respectively. In our model, Eq. (9) is written as

P siArc; bð Þ ¼ x bð Þr�1c exp � c bð Þ
				 sirc

				
2= 1þbð Þ

 !
8i ¼ 1 . . . N ;

ð12Þ

in which the elements of vector s = [s1, s2. . .sN]T are assumed

independent, h = 0, and c(b) and x(b) are as above. b is a

hyperparameter parametrizing the ‘ p-norm order p and rc is the

variance of the source current amplitudes (prior width). In the

Bayesian a priori distribution, this variance corresponds to

regularization of the inverse solution and in that sense it could

also be called a regularization parameter. Further on, the joint prior

for the source currents is simply the product of all the independent

elements

P sArc; bð Þ ¼ x bð ÞNr�Nc exp � c bð Þ
X
i

				 sirc
				
2= 1þbð Þ

 !
: ð13Þ

The energy function corresponding to the prior is defined as a

negative natural logarithm of Eq. (13)

� lnPðsArc; bÞ ¼ � N ln
x bð Þ
rc

� �
þ c bð Þ

X
i

				 sirc
				
2= 1þbð Þ

 !
:

ð14Þ

By substituting b = 0 and b = 1 to the sum expression of Eq. (14),

it simplifies to

X
i

				 sirc
				
2

¼ 1

r2
c

X
i

AsiA2 ¼ 1

r2
c

NsN2
2 ð15Þ

and

X
i

				 sirc
				
1

¼ 1

rc

X
i

AsiA1 ¼ 1

rc
NsN1

1; ð16Þ

respectively.

Thus, our model imposes the ‘ p-norm (see Eq. (7)) prior for the

currents so that, when b = 1, the model corresponds to ‘1-norm,

and when b = 0, the model imposes the Euclidean norm, or ‘ 2-
norm prior, for the source currents. Values 0 b b b 1 correspond to

values of p between 2 and 1, respectively. Similarly to rl in Eq.

(6), a uniform prior was also assumed for both hyperparameters rc

and b. Notice, that b is a hyperparameter defining the ‘ p-norm
order, so that

p ¼ 2

1þ b
: ð17Þ

Consequently, our choice of uniform prior for b will have an effect

on the implicit prior of p, so that the model slightly favors values

of p close to 1 over the values of p close to 2. In Bayesian data
analysis, this effect might be transferred to the shape of the

posterior distribution of p and could be relevant in making

inferences based on the analysis. With the presented ‘ p-norm
model, this effect was insignificant considering our conclusions. To

show this, we performed a prior sensitivity analysis for b, which is

described in a more detailed fashion in Appendix A.

Collecting the pieces of our ‘ p-norm model according to

Bayes’ rule in Eq. (1) and leaving out the normalization factor

which is not required for numerical considerations, the joint

posterior probability distribution for the source currents s,

parameter rl, and model hyperparameters rc and b

P s; rl ; rc; bAbð Þ~ P bAs; rlÞ d P rlÞ d P sArc; bÞ d P rcð ÞdP bð Þ;ððð
ð18Þ

where model assumptions are explicitly defined in the text,

hyperpriors P(rl), P(rc), and P(b) are assumed uniform, and

P(b|s, rl) and P(s|rc, b) are as in Eqs. (6) and (13), respectively. In
the Results and Discussion sections of the paper, we present the

posterior distributions of p according to Eq. (17) and utilize only

the parameter p to facilitate the reading.

Simulated data sets

We utilized four functionally relevant source locations in data

simulations: the left motor cortex (S1), left dorsolateral prefrontal

cortex (S2), right posterior superior temporal sulcus (S3), and right

primary auditory cortex (S4). With each location, at least three

source extents were used. The first source extent contained only a

single active source space point (0-neighborhood). The other types

contained 1- and 2-neighborhoods of the one center point along the

original source space grid. On average, these correspond to point-

sized, ~0.2 cm2, and ~0.7 cm2 physical sizes on the white-gray

matter boundary. In this paper, the source extent is denoted with

subindex (e.g., S10). The anatomical locations and sources are

shown on the inflated white-gray matter boundary in Fig. 1. Mainly,

we simulated single sources, but also combinations of sources were

studied so that the total number of different source configurations

that were used to determine the optimal grid discretization size was

21. To investigate the effect of the extent of the underlying source

configuration, two sources (S1 and S4) were additionally analyzed

with 4- and 8-neighborhoods (~3 cm2 and ~15 cm2, respectively).

The source current amplitude was set to be 80 nAm for the whole

source regardless of its extent. For the combinatory sources S5 (S1

and S2 active together), the source current amplitudes were 80 nAm

for both or alternatively 80 nAm for one and 40 nAm for the other.

Data were generated by using the forward model in Eq. (2)

to create the fields for one timepoint. Maximum amplitudes of the

resulting magnetic fields and magnetic field gradients were

realistic, approximately 200–400 fT for magnetometers and 50–

200 fT/cm for gradiometers. The gain matrix A used in the forward

computation included 306 rows and approximately 32,000

columns. This way, the original source space grid size contained

~16,000 points per hemisphere and consequently, as the solution

grid sizes were all significantly smaller, the most obvious type of

inverse crime was avoided. The term inverse crime is used to

describe all those elements that are fixed in the data generating

model and later presumed known in the solution part. Naturally, in

simulation studies such modeling flaws might lead to improved

and too optimistic results, but also to overfitting and spurious

models which would likely fail in real data scenarios.
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Random zero-mean Gaussian noise was added to the simulated

measurement vector b, so that the mean signal-to-noise ratio

described by

SNR ¼ bTb

Mr2
n

ð19Þ

was 15 for magnetometers and about 60 for gradiometers. M is the

number of sensors and rn is the standard deviation of the

corresponding sensor noise. The measurement noise was assumed

equal separately within the three sets of different sensors (i.e., two

sets of gradiometers, one set of magnetometers). In most cases,

SNR was set to be rather good, because we were mainly interested

whether there is information in the data to determine the norm order

p. The effect of SNR to the model was examined with two sources

S12 and S41, so that the mean SNR for gradiometer measurements

was approximately 5, 15, 30, 60, and 90 (1.25, 3.75, 7.5, 15, and

22.5 for magnetometers). After adding the noise, the simulated data

were whitened according to Eq. (5).

Real MEG data

The real MEG data set contained evoked fields of a self-paced

index finger lifting experiment of a one right-handed male, aged 27.

There were two conditions: the subject lifted his (A) right and (B)

left index finger. Electro-oculogram (EOG) artefact rejection

threshold (peak-to-peak) was set to 150 AV, so that 111 accepted

trials were averaged in the first condition and 113 in the second one.

The measured data vector b was taken at a latency of 20 ms from the

onset of finger movement in both conditions. The known part of the

noise covariance matrix C̃ (see Eq. (5)) was estimated as a variance

of each sensor from a 2-min fragment of filtered measurement data

acquired when the subject was sitting in the shielded room under

the MEG device doing nothing prior to the actual experiment. To

reflect the decrease of noise due to averaging, C̃ was scaled by

dividing it by the number of trials averaged separately for both

conditions. A Hamming window based digital filter was used to

remove noise from the averaged evoked fields and the fragment of

data from which C̃ was estimated. The passband edge frequencies

were [2 18] Hz and stopband edge frequencies [0.5 20] Hz. The

estimated mean signal-to-noise ratio for the utilized data was

approximately 6/0.1 for condition A gradiometer/magnetometer

measurements and 8/0.1 for condition B. However, the sensors that

mostly contained the signal (i.e., the best SNR) had a fairly good

SNR of about 40–70 for gradiometers and 1–2 for magnetometers.

Sampling procedure and inverse estimation

All parameters of the model, including source currents s,

hyperparameter b, likelihood standard deviation r l, and prior width

rc, were considered as random variables and their distributions

were obtained utilizing an MCMC method called slice sampling.

Samples were drawn from the joint posterior distribution of the

currents and model parameters (Eq. (18)) using modern Linux-

workstations (Pentium III/4, 1–3.2 GHz processor, 1024–4096 MB

of RAM). Slice sampling is often more efficient than simple

Metropolis updates as it adaptively chooses the magnitude of the

changes made. Convergence diagnostics and time series analysis,

such as potential scale reduction factor (PSRF), were used to verify

that the convergence of the sampler was plausible (Robert and

Casella, 2004). For more information on utilized sampling method

and convergence diagnostics, see Appendix B.
The inverse estimates were calculated as posterior expectation

values of the currents integrated over the hyperparameters b, rc,

and rl. This was done for all the simulated sources using the ‘ p-
norm prior model. For visualization purposes, the estimates on

each grid size were thresholded by setting to zero the current

amplitude of all the source points whose absolute amplitude value

did not exceed 20% of the peak value of that particular estimate. In

most cases, the solution estimates were also interpolated on the

original cortical mantle (~16,000), so that the visual comparison

with the simulated sources would be easier.

Model choice

In addition to the visual examination of the quality of the

solutions, the model goodness was estimated with a method based

on posterior predictive sampling. Gelfand and Ghosh (1998)

propose a minimum posterior predictive loss approach in which

the criterion, whose minimum defines the optimal model,

comprises of a goodness-of-fit term Gm and a penalty term Pm,

where m denotes the model. In our study, the term Gm was

calculated as a sum of squared error of the model predicted

measurements averaged over 21 different sources that were used in

the analysis, and Pm was determined by the sum of predictive

variances of the measurements. The predictive distribution of the

measurements was attained by computing it using the forward

model in Eq. (2) with the source current samples. In this particular

case, the posterior predictive sampling is easy to do as we already

have a large amount of Monte Carlo samples obtained from the

posterior distribution. The minimum posterior predictive loss

criterion for model m, Dm = Gm + Pm (Gelfand and Ghosh,

1998), was calculated as an average over all the sources analyzed

in this study, and thus considering the grid size as a variable

altering the model structure. Furthermore, our ‘ p-norm model was

compared with similar ‘1- and ‘ 2-norm prior models by analyzing

simulated data sets shown in Fig. 1. These models were realized as

special cases of the ‘ p-norm model by setting the hyperparameter

b to 1 and 0, respectively. Based on the obtained posterior

distributions, we also performed model choice using the minimum

posterior predictive loss approach.
Results

An MCMC chain was produced for each of the simulated

sources and for each of the grid sizes separately. For the smaller

grid sizes (~200, ~400, and ~800 points per hemisphere), the time

required to draw one sample (i.e., one set of source current

parameters and hyperparameters) from the joint posterior distribu-

tion was in the order of 1–4 s. At least 10,000 samples were drawn

for each of these chains. For the chains of the larger grid sizes

(~1600 and ~3200 per hemisphere), the time required for one

sample was about 10–25 s. Despite the time-consuming computer

runs, at least 3000 samples were drawn for these chains.

The convergence of the sampler appeared to be plausible by the

potential scale reduction factor (see Appendix B.2), which was

estimated either for the different segments of one chain or from

several chains of the same source with different initial conditions.

The chains seemed to converge also based on visual inspection of

the obtained samples. Time series analysis revealed that autocor-

relation times of the samples were in general quite long. For some

source current parameters and hyperparameters, the autocorrelation



Fig. 2. Three representatives of best and worst case estimates with our model.

The original sources are on the left and the inverse estimates on the right. For

visualization purposes, the estimates were interpolated on the original

cortical mantle (~16,000 points per hemisphere). For these estimates, the

distances between the simulated source center and the ‘ p-norm estimate peak

value, approximated along the cortical surface triangulation using Dijkstra’s

algorithm for shortest path (Weiss, 1997), are (A) 26.7 mm, (B) 6.5 mm, and

(C) 69.3 mm. In 3-D coordinates, the corresponding distances are (A) 11.0

mm, (B) 5.2 mm, and (C) 18.2 mm, respectively.

Fig. 3. (A) The simulated source S10 is located focally on the precentral

gyrus and its orientation is perpendicular to the white-gray matter boundary

and it points away from the surface. The ‘ p-norm inverse estimate contains

some amplitude pointing away from the surface in the correct gyrus, but the

major peak in this estimate points into the surface in the neighboring gyrus.

Dark shades of gray denote gyri and light shades sulci. (B) The predicted

fields of the ‘ p-norm estimate for source S10 are plotted (solid red line)

against the simulated data (blue dots) with one sigma error bars for noise

separately for both sets of gradiometer and more noisy magnetometer

measurements.

Fig. 4. Inverse estimates calculated from the analysis of the ‘ p-norm model

with grid size ~400 points per hemisphere.
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time was in the order of several hundreds or even over one

thousand samples. This means that from a chain of 10,000 samples

we get effectively only ~50 independent samples or even less.

Inverse estimates were obtained from these independent samples

by implicitly integrating the posterior of source current parameters

over the hyperparameters and computing the expectation value for

s. Low number of independent samples increases the Monte Carlo

error of this estimate, but 10–50 is enough for a reasonable one.

Inverse estimates for simulated sources S10, S21, and S41 are

shown with the original sources in Fig. 2. The utilized grid sizes for

sampling these inverse estimates were ~800 (S10) and ~1600 (S21
and S41) per hemisphere. S10 represents a fairly superficial and

focal source on the left motor cortex whereas S41 is a deeper

source in the right auditory cortex. These solutions are representa-

tives of the best and worst case estimates obtained with our model

for smaller source extents. Quite often, the estimate produced by

the ‘ p-norm model is located in the neighboring sulcus and

oriented almost identically as the original source. For example,

even though the peak value of the solution estimate in Fig. 2A is

not on the same sulcus and over 2 cm away from the original

source along the cortical surface (~1 cm in 3-D), the estimate fits

the original data well (within the noise limits) as can be seen in Fig.

3B. This is because the small amount of current in the correct gyrus

is compensated with a larger amount in the neighboring gyrus (see

Fig. 3A). As a result, these activations produce similar fields to

what the original simulated source does. As MEG is fairly

insensitive to small locational discrepancies when measured from

a distance (outside the scalp), this type of solutions when computed

through the forward model gives rise to excellent fits with the

original measurement data. The ‘ p-norm model estimate in Fig. 2B
looks relatively good, and the deeper source in Fig. 2C is spread on

the source points closer to surface.

The ‘ p-norm inverse estimates for simulated sources in Fig. 1 are

shown in series of Figs. 4–6. It is seen that with smaller grid sizes

(less than ~1600 points per hemisphere; see Fig. 4) only the major

cortical structures are visible and the localization accuracy is limited



Fig. 5. Inverse estimates calculated from the analysis of the ‘ p-norm model

with grid size ~1600 points per hemisphere.

Fig. 6. Inverse estimates calculated from the analysis of the ‘ p-norm model

with grid size ~3200 points per hemisphere.
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by the grid discretization size. With the larger discretization sizes

(more than ~1600 points per hemisphere; see Figs. 5 and 6), the

estimates of the 0-neighborhood sources are spread when the

original source is a deep or a combinatory source, whereas especially

with the combinatory sources the larger source extents (2-neighbor-

hoods) are more focally localized. However, with a wider superficial

source (e.g., S12), the estimate gets more diffuse. With the grid size

of ~1600 (Fig. 5), the estimates of the ‘ p-norm model look rather

satisfactory with respect to the model assumptions.

Histograms of the posterior distribution samples of model

parameters rc, rl, and the ‘ p-norm order p for some of the

abovementioned simulations are visualized in Fig. 7. It is clearly

seen that p (upmost row in each subfigure in Fig. 7) is dependent

of the source configuration as well as the grid size. For instance,

the distributions of p for grid size ~1600 per hemisphere with

sources S10 and S30 are different. The distribution shapes also vary

through the same source configuration depending on the grid size.

For p, with source S31 and grid size ~3200, the most probable

value of the posterior distribution is clearly different from the most

probable value with smaller grid sizes. In most cases, the ‘ p-norm
model seems to lean towards the ‘1-norm model ( p = 1), but this is

not the case, for instance, with the abovementioned source and grid

size for which the most probable value of p is somewhere between

1 and 2. The tendency of the ‘ p-norm order p to favor values close

to 1 is not a manifestation of the implicit prior for p, but as our

prior sensitivity analysis reveal, it is an effect that is caused

inherently by the data (see Appendix A). In all situations, the

expectation value of rl is close to one, as was hypothesized.

Notably, the distribution of the regularization parameter, or prior

width rc, tends to be extremely narrow with larger grid sizes. This

suggests that with a dense grid, manual choice of the regularization

parameter is more difficult.

The results of analyzing sources S1 and S4 with a wider range

of source extents and grid size ~1600 are shown in Figs. 8 and 9.

With source S1 on the left motor cortex (Fig. 8), the inverse

estimate seems to spread as the source extent gets larger. Especially

with the widest extent (S18), the inverse estimate is spread

throughout the cortex and does not look acceptable. Notably, the

posterior distribution of p is similar with all the source extents even
though with the larger extents the distribution seems to be

somewhat wider. The distribution of prior width rc is slightly

peaked with 4- and 8-neighborhoods. Source S4 on the right

auditory cortex (Fig. 9) seems to be equally well localized

regardless of the underlying source extent. The hyperparameter

posterior distributions look similar with different source extents

except for the distribution of p, which is not so strongly peaked

towards p = 1 as was the case with source S1 in Fig. 8.

Sources S12 and S41 were analyzed with a range of different

signal-to-noise ratios. The corresponding inverse estimates are

shown in Fig. 10 and labeled with gradiometer mean SNR,

respectively. The utilized grid size was ~1600 per hemisphere.

Original simulated sources of these estimates can be seen in Figs.

1 and 2. With all the utilized SNR values, the inverse estimates of

superficial source S12 and deep source S41 are similar with each

other. With SNR = 5, especially the inverse estimate of source S41
is more spread along the cortex. In Fig. 11, one can see the

hyperparameter posterior distributions of the samples of these

particular estimates. Even though the distributions of the ‘ p-norm
order p are more diffuse with poorer SNR, suggesting that the

determination of p becomes more difficult with more noise, it

seems clear that the model favors values close to 1 in these cases.

Importantly, by examining the distribution of parameter p, it can be

seen that the most probable value of p for source S41 and SNR = 5

might be where the distribution has the most mass (i.e., between 1

and 1.5), even though the maximum of this distribution appears to

be at 1. This effect is most likely due to high noise, but in some

cases the posterior distribution might indeed be multimodal.

The inverse estimates obtained from the analysis of the ‘ p-
norm model with real MEG data (grid size ~1600 per hemisphere)

are shown in Fig. 12. The first condition (right index finger lifting)

seems to yield spatial activation contralaterally on the hand area of

the left somatosensory and motor cortices (see Fig. 12A).

Similarly, the left index finger lifting produces activation on the

hand area of the corresponding right hemisphere areas (see Fig.

12B). The activation peaks seem to be predominantly located on

somatosensory hand areas even though the solutions are moder-

ately spread. The distributions of the samples of the hyper-



Fig. 7. Histograms of the samples of the posterior distributions of the hyperparameters p, rc, and rl from the simulations of the sources S10, S30, S11, and S31
for different grid discretization sizes per hemisphere.

Fig. 8. The simulated source S1 with 0-, 1-, 2-, 4-, and 8-neighborhoods is plotted on the white-gray matter boundary on the top row. The ‘ p-norm estimates

with grid discretization size ~1600 are shown on the second row. For the corresponding estimates, the posterior distributions of the model parameters p, rc, and
rl are shown below.

T. Auranen et al. / NeuroImage 26 (2005) 870–884 877



Fig. 9. The simulated source S4 with 0-, 1-, 2-, 4-, and 8-neighborhoods is plotted on the white-gray matter boundary on the top row. The ‘ p-norm estimates

with grid discretization size ~1600 are shown on the second row. For the corresponding estimates, the posterior distributions of the model parameters p, rc, and

rl are shown below.
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parameters as well as inverse estimate fits to measured data for

both conditions are also presented in Fig. 12. With real data, the

model seems to favor values of p closer to 1 than 2. The estimates
Fig. 10. The inverse estimates of sources S12 and S41 with varying signal-

to-noise ratios. The SNR label denotes the mean signal-to-noise ratio of the

gradiometer measurements of the corresponding source. The original

simulated sources S12 and S41 can be seen in Figs. 1 and 2. The utilized

grid size in the analysis was ~1600 per hemisphere.
produce a good fit with the data in both conditions even though the

magnetometer measurements had in general quite poor SNR.

We also analyzed the data with the models where p equals 1 and

2, corresponding to ‘1- and ‘2-norm prior models. In Fig. 13, the

obtained inverse estimates for simulated source S11 are shown.

Notably, the ‘ 2-norm estimate is more diffuse on fairly large areas at

the parietal cortices whereas ‘ p- and ‘1-norm estimates are spatially

of smaller extent. Typically, the inverse estimates obtained with ‘ p-
and ‘ 1-norm models were more focal and visually similar to each

other whereas the ‘2-norm model estimates were more extensive.

The source current parameter expectation values were smaller in the

‘2-norm estimates as this prior tends to impose little current on

number of source space points rather than large amount of current

on very few points. The standard deviations of the posterior

distribution Monte Carlo samples for those estimated source current

points whose absolute amplitude exceed 20% of the maximum

absolute amplitude of the estimate are plotted as one sigma error

bars to the figure for each estimate, respectively. In many cases of

our simulations, these Monte Carlo variances of the source current

parameters were considerable. However, the posterior expectation

value is still a credible indicator of which of the parameters were

non-zero, because even with a small number of independent

samples, the uncertainty of this estimate is relatively small.

For the model choice, the resulting posterior predictive loss

criterion (Gelfand and Ghosh, 1998) as a function of grid

discretization size is shown in Fig. 14A and the comparison

between the ‘ p-, ‘1-, and ‘2-norm priors in Fig. 14B. According to

this approach, the optimal grid discretization size for our ‘ p-norm
model is around 1000–2000 points per hemisphere (see the

minimum of curve in Fig. 14A). The visual examination of the

‘ p-norm estimates using grid size of ~1600 points per hemisphere

(see Fig. 5) yielded similar findings. For the comparison of

different norms, the results obtained with the posterior predictive



Fig. 11. Histograms of the samples of the posterior distributions of the model hyperparameters p, rc, and r l from the simulations of the sources S12 and S41
with varying SNR. The utilized grid size in the analysis was ~1600 per hemisphere.
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loss approach were indecisive even though the ‘ p- and ‘1-norm
estimates were visually more satisfying than the ‘2-norm estimates.
Discussion

We studied a Bayesian MEG inverse model with ‘ p-norm priors

for the source currents. This type of model has not been implemented

before, even though similar ideas considering different values of p

have been suggested (e.g., Beucker and Schlitt, 1996; Bücker et al.,

2001; Matsuura and Okabe, 1995; Uutela et al., 1999). Using

Bayesian methodology, the full joint posterior distribution of the

parameters and hyperparameters of the model, such as the ‘ p-norm
order p and prior width rc, can be obtained. From the posterior

distribution, one is able to compute quantiles, moments, and other

summaries of interest as needed. The purpose of our study was to

find an optimal source grid spacing for the ‘ p-norm model, to show

that there is no universal correct value for the norm order p, to

investigate how p is dependent on the underlying source config-

uration and grid discretization size, and to elucidate the uncertainties

that exist in using either ‘ 1- or ‘2-norm priors for the currents.

Our results suggest that the posterior distribution of p is

dependent of the utilized density of the source locations in the

model and also slightly of the source configuration under

investigation. Even though in many occurrences of our simulations
the most probable value of p was close to 1, corresponding the ‘1-
norm prior for the currents, this was not the case always. This

suggests that there might be enough information in the data to

determine the norm order p. It was also demonstrated that this

effect observed in the posterior distribution of p was not due to the

implicit prior for slightly favoring values of p closer to 1 over 2

(see Appendix A). Therefore, a good way would be to let the

source current prior (i.e., the value of p when utilizing ‘ p-norms)

be inferred from the data, instead of determining it ad hoc, as long

as the basic properties of the prior are defined to be realistic.

An MCMC sampling scheme was utilized as we were interested

in the posterior distributions of all the parameters and did not want

to make any uncontrolled analytical approximations that might

have some unexpected qualities. With MCMC, the posterior

expectation values can be computed reliably as the error due to

Monte Carlo estimation is quite small even with small number of

independent samples. In addition, one is able to investigate the

whole posterior distribution of the solutions and is not limited to

conclusions based only on the MAP estimate. As demonstrated by

Schmidt et al. (1999), the use of the most likely solution is not

necessarily representative for constructing robust and reliable

inferences from the data. In our study in Fig. 11 (S41, SNR = 5),

it was seen that the maximum of the marginal posterior for p is not

where the most probability mass lies and the distribution might

even be multimodal. Similar situations may occur also in the



Fig. 12. Results of the analysis of the realMEG finger lifting data with the ‘ p-normmodel (grid size ~1600). The conditionswere (A) right and (B) left index finger

lifting. For both conditions, the predicted data are plotted (red line) on top ofmeasurement data (blue dots)with one sigma error bars separately for each gradiometer

and magnetometer sensors. Histograms of the posterior samples of p, rc, and rl are also shown to visualize the shapes of the marginal posterior distributions.
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posterior distribution of the parameters of interest (source currents).

In that case, if the posterior is multimodal, the importance of

making inferences from the whole posterior rather than MAP

estimate becomes absolutely crucial.

Beucker and Schlitt (1996) showed that the density of source

locations has an effect on the norm order p. Our results indicate

that a dense discretization seems to favor values of p closer to 2.

The optimal discretization size for our model was ~1500 points per
Fig. 13. Simulated source S11 and its corresponding inverse estimate with the ‘ p-

interpolated on the original cortical mantle (~16,000) for visualization purposes on

deviation error bars (both hemispheres) in the bottom row. Only the values that are

inflated brain and only corresponding error bars are shown. Note that the curre

estimate is the most diffuse out of these three.
hemisphere. If number of sources is decreased to 200–400 points

per hemisphere, the accuracy of the estimates is not good and the

model does not fit the data well, because the grid is too sparse and

only major cortical structures are visible. As the discretization size

increases, the goodness-of-fit improves, but with really dense grids

the proposed ‘ p-norm model becomes unacceptably heavy to

compute, and at the same time the model prior assumption of

independent source currents is severely violated.
, ‘ 1-, and ‘ 2-norm models using grid size ~800. The solution estimates are

the top row and shown as vector values with Monte Carlo sampling standard

at least 20% of the estimate peak value (dotted red lines) are plotted on the

nt amplitude values obtained with the ‘ 2-norm model are smaller and the



Fig. 14. (A) The posterior predictive loss criterion Dm plotted as a function of source space grid discretization size per hemisphere. The optimal grid size for the

‘ p-norm model can be argued to be at the point that minimizes Dm. (B) Model choice between ‘ p-norm model and corresponding ‘ 1- and ‘ 2-norm models as a

function of grid size. Even though the ‘ 2-norm model produced visually the worst-looking inverse estimates, the comparison of goodness between the ‘ p- and

‘ 1-norm models with the utilized posterior predictive loss approach is somewhat undecided.
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One way to ease the computational load would be to decrease

the number of parameters by parametrizing the sources. For

example, Schmidt et al. (1999) employed regional source model,

which was characterized by three parameters comprising of

number, location, and extent of the active regions. This way, they

decreased the number of parameters sampled from several

thousands to only three (per activity region). In this case, one

introduces some spatial dependency to the model as the points

inside the active regions are assumed to correlate strongly. The

assumption of uncorrelated source space points seems justifiable in

early sensory responses while in complex cognitive tasks one may

expect correlations not only between neighboring points but

between remote cortical regions as well. However, taking this into

account in the inverse model is not necessarily straightforward due

to the absence of data on the exact nature of the correlations.

A conceivable way to take into account the putative depend-

encies between source space points would be to introduce spatial

priors. Furthermore, with the current ‘ p-norm model, the grid

discretization size cannot be increased unless spatial priors are used.

As the most feasible spatial priors are neither simple nor intuitive,

there exists some unclarity of which kind to use. Phillips et al. (2002)

suggest that the combination of functional and anatomical con-

straints might provide a way for introducing spatial priors to the

model and at the same time for reducing the dimensionality of the

MEG inverse problem. With real data scenarios, one has to remem-

ber that some sources are not visible for MEG and therefore the use

of spatial priors becomes even more important if additional infor-

mation is not available from elsewhere. The implementation and

testing of such justifiable spatial priors is left for subsequent studies.

Converging evidence from other imaging modalities, such as

functional magnetic resonance imaging (fMRI) and electroence-

phalography (EEG), can be introduced to the current ‘ p-normmodel

if the utilized experimental setup is suitable for collecting data with

various methods. The combination of adjacent imaging methods

(Dale et al., 2000; Liu et al., 2002), MEG with fMRI in particular

(Ahlfors and Simpson, 2004; Dale et al., 2000; Schulz et al., 2004),

is going to be an invaluable tool in brain research in the future. Even

if the coupling between fMRI BOLD signal and EEG/MEG

response is not well understood, clear evidence exists on how these

two fundamentally different signals are related (Kim et al., 2004;

Logothetis et al., 2001). In comparison, the combined use of MEG

and EEG is relatively straightforward as both of these methods

detect the neural electric currents. Since EEG provides information

about the radial currents in addition to the tangential ones detected
by MEG, it is conceivable that the combination will provide a more

comprehensive estimate of the underlying neural events.

However, as Liu et al. (2002) and Phillips et al. (1997) suggest,

the combination of EEG and MEG might not improve the results

much. Furthermore, with EEG inverse modeling, there exists the

problem of creating a realistic forward model for EEG as in that

case the electric conductivites of the scalp, the skull, and the brain

tissue and the shapes of the corresponding compartments need to

be known more precisely (Ollikainen et al., 1999). In contrast, an a

priori bias towards fMRI information is straightforward to add to

the current model per se. In addition, depth normalization can be

included to reduce the location bias of the estimates (Köhler et al.,

1996) and, with the cost of computational burden, the use of

temporal dynamics in the model might prove to be useful

especially for empirical investigations.

Our preliminary analysis with real MEG data were promising.

The results are in line with similar MEG studies in the field (see,

e.g. Alary et al., 2002). However, the application of the model with

more complex real data (e.g., cognitive tasks and audiovisual

studies) still requires work and implementation of some of the

abovementioned methods such as spatial priors and temporal

dynamics. As of now, the ‘ p-norm model is a spatial only MEG

source localization method.

The quality of MEG inverse estimates in general is not trivial to

evaluate even though in simulation studies the original sources are

known. In addition to the visual quality of the solution estimates,

one can, for example, easily approximate the physical distance

between the solution peaks and original sources both along the

cortical surface and in 3-D and use this as a quantitative error. But

the question arises how to penalize false activations, for instance,

in situations where the solutions are spread over the cortex, and

how to penalize the goodness of the solution if the estimate is

located in the wrong gyrus yet being highly probable (see Fig. 3).

In the analysis of real data, particularly, when the original sources

are not known, different methods are needed. One way is to look at

all the solutions and compare different models with each other

instead of single estimates and their accuracy. One such method is

the posterior predictive loss approach (Gelfand and Ghosh, 1998),

which we used, along with visual examination, to determine the

optimal discretization of the source space for our ‘ p-norm model.

On top of being able to evaluate the whole posterior distribution

of the parameters and hyperparameters, which conceal information

of the model behavior and inverse estimates, a substantial benefit

of our model is that it is very simple and therefore additional (prior)
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information is easy to attach. Virtually no user expertise is required

after the model is compiled and the method can be used almost

without any manual interaction or tuning, which is not the case

with ECD fitting. This feature is more or less fundamental with

many Bayesian models. Naturally, an experienced user can achieve

excellent results with methods that require more interaction, but a

problem rises if one’s goal is to study cognitive processes about

which very little is known in advance. In those cases, a model that

does not require tuning would be most convenient to use. The

estimates obtained with our ‘ p-norm model can also be used as a

starting points or seeds for other source localization methods. This

is practical when little is known of the sources under investigation.

In conclusion, the ‘ p-norm prior family seems usable in a

Bayesian setting, in which all the parameters and hyperparameters

of the model, such as the ‘ p-norm order p, are considered random

variables and inferred from the data. For example, the grid

discretization size and underlying source configurations have an

effect on the probabilities of the hyperparameters, and thus on

choice of model. As MEG measurements with convenient signal-

to-noise ratios might provide little extra information to which

model should be used, careful data collection and a priori model

consideration becomes extremely important. As an ultimate goal,

the proposed modeling scheme can be expanded to a freely

distributable environment in which different model assumptions

could be compared with each other and further developed.
Acknowledgments

This research was supported in part by Academy of Finland

(projects: 200521, 202871, 206368), Instrumentarium Science

Foundation, Finnish Cultural Foundation, National Institutes of

Health (RO1-HD40712), The MIND Institute, and Jenny and Antti

Wihuri Foundation. Authors would like to thank anonymous

reviewers for helpful remarks and Mr. Antti Yli-Krekola for a

helping hand with the preprocessing of MR-images.
Appendix A. Prior sensitivity analysis for B

When transforming probability distributions from one para-

metrization to another, one needs to carefully consider what kind of

effects and extra terms it has on the outcome. Gelman et al. (2003),

(Ch. 1.8): Suppose that Pu(u) is the density of vector u and we

want to transform to v = f (u). If Pu is continuous and v = f (u) is a

one-to-one transformation, then the joint density of v

Pv

�
v
�
¼ jJj d Pu f �1

�
v
��
;

�
ð20Þ

where |J | is the determinant of the Jacobian of the transformation u

= f �1(v). The Jacobian J is a square matrix of partial derivatives,

with the entry (i, j ) equal to Bui /Bvj.

A.1. Uniform prior for b

If we want to transform to using p with the utilized para-

metrization (Box and Tiao, 1973) of our ‘ p-norm model having

uniform prior probability density for b and f (b) being Eq. (17), we

get by rearranging Eq. (17)

f �1 pð Þ ¼ b ¼ 2

p
� 1; 0 V b V 1; and 1 V p V 2: ð21Þ
The Jacobian for f �1( p) is simply the derivative

db
dp
¼ d

dp

2

p
� 1

�
¼ � 2

p2
;

�
ð22Þ

and the probability density of p

P pð Þ ¼
				 � 2

p2

				 d P bð Þ; 0 V b V 1; and 1 V p V 2: ð23Þ

Thus, the implicit prior for p in our ‘ p-norm model with

uniform prior for b only slightly favors values of p close to 1 over

values of p close to 2 as the determinants of the Jacobian at the

endpoints of p are 2 and 0.5, respectively.

A.2. Uniform prior for p

Consider another possibility for our model by choosing a

uniform prior probability density for p. With the parametrization

used, when transforming to using b, we get the Jacobian as

dp

db
¼ d

db
2

1þ b

� �
¼ � 2

1þ bð Þ2
; ð24Þ

and the probability density of b

P bð Þ ¼
				 � 2

1þ bð Þ2
				 d P pð Þ; 1 V p V 2; and 0 V b V 1: ð25Þ

Now the implicit prior for b will slightly favor values of b close

to 0 over values of b close to 1 as the determinants of the Jacobian

at the endpoints of b are 2 and 0.5, respectively. This converts to

favoring values of p close to 2 over values of p close to 1, which is

opposite to the case of uniform prior for b.

A.3. Sensitivity analysis

In addition to the analysis done with our selection of uniform

prior for b, we analyzed some of the simulated sources (S10–2 and

S40–2 with grid sizes ~800, ~1600, and ~3200) with the choice of

uniform prior for p. This was done in order to validate that the effects

observed in the posterior distribution of p were, in fact, caused by the

data and not by the implicit shape of the utilized prior distribution. In

Fig. 15, one can see the envelope curves of the posterior distributions

of p for the ‘ p-norm model with a uniform prior for b (blue curve)

and uniform prior for p (red curve). The shapes of the (implicit) prior

distributions of p are shown with dotted curves, respectively. As the

posterior shapes in general are significantly different from the prior

shapes, it is clear that posterior distributions yield values closer to

p = 1 regardless of which prior was used. The slight inconsistency

with source S31 (grid size ~3200, red curve) is most likely due to

the fact that the corresponding chain with the uniform prior for p

did not have enough independent samples.
Appendix B. Sampling method and diagnostics

B.1. Slice sampling

In Bayesian data analysis (Gelman et al., 2003), applications of

Markov chain Monte Carlo sampling often involve retrieving

samples from the joint posterior distribution of the parameters and

hyperparameters of the model. In Metropolis–Hastings scheme,



Fig. 15. Blue lines denote the envelope curves of the posterior distribution shapes of parameter p for the proposed ‘ p-norm model with uniform prior for b
(implicitly favoring values of p closer to 1 than 2, dotted blue line), and red lines denote the envelope curves of the posterior distribution shapes of parameter p

for the model having a uniform prior for p (implicitly favoring values of b closer to 0 than 1, that is, in terms of p values closer to 2 than 1, dotted red curve).

The posterior distribution of the norm order p is not overly sensitive to different priors and thus the observed posterior effects originate from the data.
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badly selected scale of the proposal distribution leads to high

rejection rate or inefficient random walk. Slice sampling (Neal,

2003) relies on the principle that one can sample uniformly under

the curve of some known probability density function P(d ). With

slice sampling, unlike in Gibbs sampling (Gilks et al., 1996), the

conditional distributions of standard form do not need to be

known, and with multimodal distributions slice sampling is often

more efficient than simple Metropolis–Hastings algorithm in

making jumps from one mode to another. Slice sampling adapts

to the local properties of the target distribution and it requires very

little tuning. With multidimensional distributions, each variable

can be updated in turn.

A converging Markov chain towards the target distribution

can be obtained by sampling uniformly by turns in vertical

direction under the curve and horizontally from a slice defined

by this vertical position. Let the variable to be updated be x and

f (x) the function proportional to the probability density of x.

The idea for producing a chain for x is to replace the current

value xold with a new value xnew. Draw a real value of y from 0 b y b

f (xold) which defines a horizontal slice S = {x:y b f (x)}. Find an

interval I around xold that contains much or all of the slice S. Now,

draw xnew uniformly from the part of the slice within interval I and

repeat the procedure. There are several different schemes for finding

the interval I that are well covered in the work by Neal (2003). In
fact, the interval can be chosen in any way as long as the resulting

Markov chain remains invariant.

For computational purposes, in order to avoid possible

problems with floating-point underflow, an energy function of

f (x), g(x) = �ln( f (x)) is often calculated instead of f (x) itself.

With this particular case, a variable z = ln(y) = �g(xold) �e can be

calculated to define the slice S = {x:z b �g(x)}. Variable e is

exponentially distributed with mean one. Furthermore, for our

simulations, as the sampling was done one variable (source current

parameters s = [s1, s2. . .sN]T, b, rc, and rl) at a time, we optimized

the performance of the sampler by updating only the change caused

by this particular variable to the value of the energy function of the

joint posterior distribution rather than computing it completely

every time each variable was updated.

B.2. Convergence diagnostics

There are two types of difficulties with iterative simulations such

as MCMC simulations. The simulations might not have been

proceeded long enough so that the resulting samples are not yet

representative of the target distribution. The early iterations are also

influenced by the starting point rather than the target distribution.

After a plausible convergence is reached, the chain has forgot its

starting point and produces representative values of the target
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distribution. The early iterations are removed from the beginning of

the chain.

The other problem lies in the correlation within the converging

chain. In general, it is better to start several chains with different

starting points especially if the autocorrelation time of the chain is

long. This way, when the chains have converged, the number of

independent samples is greater than with one long chain. However,

all the converged samples can still be used as the order in which they

were drawn is ignored when performing inferences based on their

distributions.

A chain can be assumed to have converged when two chains

originating from different starting points can no longer be differ-

entiated from each other. Onemethod inmonitoring the convergence

is to compare the variances between different chains or different

segments of one chain and estimate a factor by which the scale of the

current distribution might be reduced if the sampling was continued

to infinity. The procedure of calculating this potential scale reduction

factor (PSRF) is described in Gelman et al. (2003), (Ch. 11.6).
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