
Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2007 Report B64

COMPUTATIONAL METHODS FOR BAYESIAN
ESTIMATION OF NEUROMAGNETIC SOURCES

Toni Auranen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITÉ DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2007 Report B64

COMPUTATIONAL METHODS FOR BAYESIAN
ESTIMATION OF NEUROMAGNETIC SOURCES

Toni Auranen

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Department of Electrical and Communications Engineering, Helsinki University of Technology, for
public examination and debate in Auditorium S4 at Helsinki University of Technology (Espoo, Finland)
on the 27th of October, 2007, at 12 noon.

Helsinki University of Technology
Department of Electrical and Communications Engineering
Laboratory of Computational Engineering

Teknillinen korkeakoulu
Sähkö- ja tietoliikennetekniikan osasto
Laskennallisen tekniikan laboratorio



Distribution:
Helsinki University of Technology
Laboratory of Computational Engineering
http://www.lce.hut.fi
P.O. Box 9203
FI-02015 TKK
FINLAND
Tel. +358-9-451 4826
Fax. +358-9-451 4830
http://www.lce.hut.fi

Online in PDF format: http://lib.hut.fi/Diss/2007/isbn9789512289547/

E-mail: Toni.Auranen@tkk.fi

c©Toni Auranen

ISBN 978-951-22-8953-0 (printed)
ISBN 978-951-22-8954-7 (PDF)
ISSN 1455-0474
PicaSet Oy
Helsinki 2007

http://www.lce.hut.fi
http://lib.hut.fi/Diss/2007/isbn9789512289547/
mailto:Toni.Auranen@tkk.fi


Abstract

The electromagnetic inverse problem in human brain research consists of deter-
mining underlying source currents in the brain based on measurements outside the
head. Solution to the inverse problem is ambiguous, necessitating the use of prior
information and modeling assumptions for obtaining reasonable inverse estima-
tes. In this study, we create new and improve existing computational methods for
estimating neuromagnetic sources in the human brain.

One straightforward way of incorporating presumptions to this problem is to
formulate it in a probabilistic Bayesian manner. Bayesian statistics is largely ba-
sed on modeling uncertainties associated with parameters constituting the model
by representing them with probability distributions. In this work, existing neu-
roscientific knowledge and information from anatomical and functional magnetic
resonance imaging are used as prior assumptions in model implementation.

The neuromagnetic inverse problem is resolved with two different approac-
hes. First, we perform the analysis using distributed source current modeling and
infer some arbitrary parameter choices and the source currents from the measu-
rement data by using numerical sampling methods. We apply similar strategies
to cortically constrained current dipole localization and suggest using functional
magnetic resonance imaging data for guiding the sampling algorithm. The models
are tested with simulated and measured data.

The presented methods are rather automatic, yielding plausible and robust in-
verse estimates of cortical current sources. With the spatiotemporal dipole loca-
lization model, the inclusion of functional magnetic resonance imaging data im-
proves performance of the numerical sampling method. However, apparent mul-
timodality of the parameter posterior distribution causes complications especially
with empirical data.

We suggest using loose cortical orientation constraints for smoothing down
the complicated posterior distribution instead of marginal improvements to the
sampling scheme. This might help to overcome the somewhat limited mixing pro-
perties of the sampling algorithm and ease the inconvenient multimodality of the
posterior distribution.





Tiivistelmä

Ihmisaivojen tutkimukseen liittyvällä sähkömagneettisella käänteisongelmalla tar-
koitetaan aivojen virtalähteiden paikantamista pään ulkopuolisten mittausten pe-
rusteella. Ongelmaan ei ole yksikäsitteistä ratkaisua, joten mallintamisessa on
käytettävä ennakko-oletuksia järkevien ratkaisujen tuottamiseksi. Tässä tutkimuk-
sessa kehitämme uusia ja parannamme olemassaolevia laskennallisia menetelmiä
aivoissa syntyvien magneettikenttiä tuottavien lähteiden paikantamiseksi.

Kenties yksinkertaisin tapa lisätä ennakko-oletuksia tähän ongelmaan on käyt-
tää bayesilaista mallintamista. Bayesilainen tilastotiede perustuu pitkälti paramet-
rien epävarmuuksien mallintamiseen ja esittämiseen todennäköisyysjakaumin.
Työn mallien muodostamisessa käytetään apuna aivojen toiminnallisesta ja ra-
kenteellisesta magneettikuvauksesta saatavaa neurotieteellistä ennakkotietoa.

Sähkömagneettisen käänteisongelman ratkaisuun käytämme kahta eri mene-
telmää. Aluksi analysoimme aivojen pinnalle muodostettuja virtalähdejakauma-
malleja ja pyrimme laskennallisia otantamenetelmiä käyttäen arvioimaan virtojen
sekä muuten etukäteen mielivaltaisesti valittavien parametrien arvoja mittausai-
neistosta. Sovellamme samantyyppistä otantamenetelmää malliin, missä dipolaa-
risia virtalähteitä rajoittaa aivojen kuorikerroksen anatomia ja fysiologia. Ehdo-
tamme lisäksi toiminnallisen magneettikuvauksen tuottaman mittausaineiston
käyttöä otantamenetelmän apuna. Malleja testataan sekä simuloidulla että kokeel-
lisella mittausaineistolla.

Kehitetyt menetelmät ovat hyvin automaattisia ja tuottavat järkeviä ratkaisu-
ja magneettisten mittausten lähteiksi. Dipolaaristen virtalähteiden paikallis-ajal-
liseen määrittämiseen käytetyn otantamenetelmän suorituskyky parantuu toimin-
nallisesta magneettikuvauksesta saatavan tiedon avulla. Mallin parametrien toden-
näköisyysjakauma on kuitenkin selvästi monihuippuinen aiheuttaen ongelmia eri-
tyisesti kokeellisen mittausaineiston kanssa.

Otantamenetelmän parannusten sijaan ehdotamme väljempien aivojen kuori-
kerroksen anatomiaan perustuvien rajoitteiden käyttöä, jolloin itse parametrien to-
dennäköisyysjakauma saattaa muuttua helpommin käsiteltäväksi. Tämä paranta-
nee myös nykyisen otantamenetelmän tehokkuutta tässä ongelmassa ja helpottaa
siten monihuippuisten jakaumien jatkokäsittelyä.
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Chapter 1

Introduction

Prior to the 20th century, functional research of human brain was mainly con-
ducted by relating behavioral deficits with extent and loci of brain lesions. Such
explorations form still the basis of our present knowledge of functional anatomy of
the human brain. Since those times, noninvasive brain measurement techniques
have taken huge steps. Today, researchers have the opportunity to choose from
temporally accurate electromagnetic recordings of neural activity with electroen-
cephalography (EEG) and magnetoencephalography (MEG), to spatially focal
mappings based on nuclear magnetic resonance, for example.

Magnetic resonance imaging (MRI) is currently one of the best techniques for
studying the anatomy of the living brain. This method has gained a huge momen-
tum in the past two or three decades and its developers were awarded the 2003
Nobel Prize in Medicine. Due to its usefulness also as a clinical tool, MRI has al-
ready earned its place in many hospitals and research facilities. For the functional
studies of the brain, MEG has gained popularity along with functional magnetic
resonance imaging (fMRI). However, both MEG and EEG require thorough an-
alyses for solving the so-called electromagnetic inverse problem to localize neu-
ronal sources in the brain. For some years, one of the hot topics in this field has
been the efficient combination of different imaging modalities (e.g., MEG and
fMRI) for producing both temporally and spatially exquisite solutions.

The above-mentioned state-of-the-art methods are used in neuroscience, for
example, in investigating brain mechanisms of human sensory processing. The
visual, somatosensory, and auditory processing networks have been an area of
considerable interest, because these sensory modalities are of special importance
to humans. With the modern imaging technologies and by using sophisticated
experimental designs, however, it is also possible to study more cognitive issues
such as attention and memory.

In this work, the electromagnetic inverse problem of brain signal analysis
is studied using Bayesian statistics and computational methods. The computa-
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tional methods are mainly based on Markov chain Monte Carlo (MCMC) sam-
pling. MCMC sampling is often used in Bayesian inference with complicated
models when the associated integration of high-dimensional probability distribu-
tions turns out to be infeasible or when suitable analytical approximations cannot
be constructed. Both anatomical and functional MRI data are used as prior infor-
mation in the inverse modeling schemes. In the pursuit to develop novel methods
for neuroscience research, validation of the models is done using empirical and
simulated MEG and fMRI data.

This thesis consists of an overview and five peer-reviewed publications orga-
nized by subject matter. The inverse problem is first studied in Publications I,
II, and III from the point of view of distributed source current estimates using
MCMC sampling and variational Bayesian (VB) method. In the distributed meth-
ods the brain is discretized to a predefined number of source space points. The
number of these points can be several thousand, and current estimates are calcu-
lated to all of them. In Publications IV and V, the activity underlying the mag-
netic field changes is modeled with a small varying number of equivalent current
dipoles (ECD). Publication IV deals with the utilization of MRI anatomical in-
formation with dipole fitting. In Publication V, a new way of incorporating fMRI
data to the MEG inverse analysis is proposed. Potential complications of applying
intensive computational methods to such a complex problem as the MEG inverse
problem are addressed in all the publications.

Chapter 2 introduces the necessary concepts and reviews the relevant litera-
ture. The aims of the study are described in Chapter 3. Chapter 4 is an intro-
duction to the specific experimental procedures and data simulations along with a
short description of the analysis environment used in the thesis. The models and
results from the experiments are presented in Chapter 5. Before summary, the
main findings and future goals of this research are discussed.



Chapter 2

Review of literature

2.1 Bayesian data analysis

The models used to solve the electromagnetic inverse problem in this thesis are
treated with Bayesian inference (see also, Section 2.3.4 on page 16). It is a prob-
abilistic formalism in which observables y and parameters of the model θ are all
treated as random variables. A joint probability model for the parameters and
the observables is constructed and always conditioned to some modeling assump-
tions M made by the analyst. The key feature of Bayesian data analysis is that
statistical conclusions about the parameters of interest θ or predicted observables
ỹ are made in probability statements (see, e.g., Gelman et al., 2003; Bernardo and
Smith, 2000, for more details).

The joint probability model, p(θ, y|M), can be written as a product of a like-
lihood function for the data given the parameters, p(y|θ,M), and a prior distri-
bution for the parameters, p0(θ |M).

p(θ, y|M) = p(y|θ,M) · p0(θ |M) (2.1)

Conditioning to y, the posterior distribution for θ is given by the Bayes’ rule (e.g.,
Gelman et al., 2003)

p(θ |y,M) = p(y|θ,M) · p0(θ |M)
p(y|M) , (2.2)

where p(y|M) = ∫ p(y|θ,M) · p0(θ |M)dθ is a normalization factor describing
the probability of data y under modelM for all possible parameter values. With a
fixed set of measurement data y, this factor can be omitted, yielding unnormalized
posterior density

p(θ |y,M) ∝ p(y|θ,M) · p0(θ |M). (2.3)
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The marginal distribution (or evidence) of data is often called prior predictive
distribution p(y|M) =1 p(y) = ∫

p(y|θ) · p0(θ)dθ . After the data have been
observed, we can make predictions of the unknown (future) observables ỹ from
the same model. Following the same logic as before, we arrive at the posterior
predictive distribution of p(ỹ|y) = ∫ p(ỹ|θ) · p(θ |y)dθ . Posterior predictive an-
alysis can be used, for instance, in choosing the optimal model (e.g., Gelfand and
Ghosh, 1998). Model selection was performed in Publication I.

One significant virtue of the Bayesian framework is that new parameters and
prior information can relatively easily be incorporated into the model. This is
useful in constructing models for the electromagnetic inverse problem, and also
leads to the possibility of adding intuitive hierarchy, meaning that additional prior
distributions can be assigned to the parameters of prior distributions and even
further (see, Publications II and III). Doing so, the researcher is able to model
uncertainty to ambiguous parameters or rigorous information to those that are
unambiguous. Such hierarchical models with several higher-level parameters (i.e.,
hyperparameters) have been widely used in statistical inference problems.

In order to make probabilistic inferences on the parameters, such as the am-
plitude and location of the electric currents in the brain when considering the
electromagnetic inverse problem (see, Section 2.3), it is necessary to compute
some characteristic quantities or suitable marginal densities based on their poste-

1In the rest of this section, notation M is omitted for clarity, although it is important to bear in
mind that a model is always formulated given some modeling assumptions.
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Figure 2.1: Differently shaped one- and two-dimensional distributions. Distributions
a, b, and f have only one global maximum while the rest have several local maxima.
Distributions e and i have several sharp spikes in addition to the varying landscape.
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rior distribution. For example, a distribution is often described by the parameters
maximizing it, that is, the maximum a posteriori (MAP) estimate, or by its mean
expectation value (Fig. 2.1). Often, the posterior distribution turns out to be mul-
timodal (i.e., there are several local maxima) or the posterior may be very spiky
and in the worst case both (Fig. 2.1e). In the unimodal case (Figs. 2.1a, 2.1b, and
2.1f) the MAP estimate often coincides with the most probability mass, but with
multimodal distributions the “best solution” is not nesessarily the MAP estimate
as most probability mass may be located elsewhere (Figs. 2.1d and 2.1h).

In this thesis, the posterior distribution is a function of several variables with
much more difficult shape than the one- and two-dimensional examples in Fig.
2.1. For example, in Publication I, the number of parameters in the model is
equivalent to the number of points in the discretized brain (several hundred). Be-
cause of the high dimensionality of the associated problem or intractability of the
integrals involved in the marginalization or computation of expectation values, nu-
merical methods are typically needed. Most computational methods used in this
work relate to the numerical sampling of the posterior distribution (Eq. 2.3) with
Markov chain Monte Carlo methods. In the analyses, we are able to calculate the
inverse estimates for the source current location and amplitude from the numerical
samples of the parameters. Notably, the posterior distribution of the parameters is
heavily multimodal especially with the dipole models in Publications IV and V.

2.1.1 Markov chain Monte Carlo methods

MCMC methods (e.g., Robert and Casella, 2004; Gilks et al., 1996) are based on
constructing a Markov chain of numerical samples representing the target distri-
bution, so that each sample depends only on the previous value in the chain. In
Bayesian data analysis, the posterior distribution in question is set as this station-
ary target distribution towards which the chain converges (see, Fig. 2.2). The
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lematic when the parameters switch modes after a long time of stationary sampling (c),
or when heavy autocorrelation is present (d).
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samples obtained from simulation are representatives of the desired distribution.
There are two types of difficulties with MCMC simulations. The chain has

to proceed long enough for the resulting samples to be representative of the tar-
get distribution. This is not often feasible in practice. The early iterations are
also influenced by the starting point rather than the target distribution. Especially
with complex and multivariate distributions, it is very difficult to determine how
many samples are required for reaching convergence (e.g., Brooks and Gelman,
1998). The other problem deals with correlation of the samples within the con-
verging chain. A low number of uncorrelated (i.e., independent) samples may not
be enough for computing accurate characteristic quantities.

No general validation method exists for determining whether a Markov chain
has converged or not. However, it can be assumed to have done so when two or
more chains originating from different starting points can no longer be statistically
differentiated from each other. One way of monitoring convergence is to compare
variances between different segments of chains and calculate by which factor the
scale of the present distribution might be reduced if the sampling was continued
to infinity. This is called the potential scale reduction factor (see, e.g., Gelman
et al., 2003, Ch. 11.6). Often, in addition to this and time series analysis, visual
verification is used to determine convergence.

Multimodal probability distributions may be very difficult to sample with
MCMC methods. If the chain does not mix between all the different modes of
the distribution, further inferences on the relations between the modes turns im-
possible. Some sampling methods, however, are designed to perform better with
multimodal distributions. The standard and more advanced sampling methods
used in this thesis are described in the following. Excluding slice sampling, these
methods have been previously used in Bayesian analysis of the electromagnetic
inverse problem (see, Section 2.3.4, for references).

Metropolis–Hastings

The Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is
a numerical sampling method based on the rejection or acceptance of proposed
parameter values according to an acceptance ratio. In this thesis, Metropolis–
Hastings is used for sampling dipole locations in Publications IV and V. The
algorithm produces random walk converging towards a specified (unnormalized)
target distribution, such as the posterior probability distribution of Eq. 2.3. Let
us assume a random initial parameter sample θt−1 and a probability density of
p(θ |y). At step t , a new sample θ ∗ is proposed according to some jumping rule,
pJ (θ

∗|θt−1). This sample is set as the next sample in the Markov chain, θt = θ∗,
with probability

min

{
1,

p(θ∗|y)pJ (θt−1|θ∗)
p(θt−1|y)pJ (θ∗|θt−1)

}
. (2.4)
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Otherwise, the jump is rejected and the old value is repeated in the chain, θt =
θt−1. The proposal distribution pJ (·) does not need to be symmetric as long as
detailed balance holds and the jump is reversible. This has to be accounted for in
the calculation of the acceptance ratio. The obtained sequence of samples can now
be used to approximate the target distribution with a histogram, for instance, or
to calculate an expectation value that would otherwise require high-dimensional
(intractable) integration. A badly selected proposal distribution leads to inefficient
sampling, especially with multimodal distributions.

Gibbs sampling

Gibbs sampling (Geman and Geman, 1984), used in Publication II (see, Section
5.2), is a special case of single-component Metropolis–Hastings sampling. In
single-component Metropolis–Hastings, the parameter vector θ is divided into
n blocks {θ1, θ2, . . . , θn} and the blocks are sequentially updated using proposal
distribution pJ i (θ

∗
i |θi , θ\i ). Here, θi is the state of the i th block and θ\i is the state

of the blocks 1, 2, . . . , i − 1 already updated with Metropolis–Hastings. In Gibbs
sampling the proposal of a component is the full conditional distribution of the
i th component given all the other components, p J i (θ

∗
i |θ\i ), yielding the proposals

always accepted. The downside with Gibbs sampling is that one must be able to
draw samples from the conditional distribution of each block or variable. This can
be much harder than defining the joint posterior distribution.

Slice sampling

In this work, slice sampling (Neal, 2003) was used for the first time in solving the
electromagnetic inverse problem using a continuous parametrization for the dis-
crete source current locations. Slice sampling relies on the principle that one can
sample uniformly under the curve of some known probability density function.
It is able to adapt to local properties of the target distribution, yet requiring little
tuning. Unlike in Gibbs sampling, the conditional distributions do not need to be
explicitly known, and with multimodal distributions slice sampling is often more
efficient than simple Metropolis–Hastings algorithm in making jumps between
modes. With distributions of many parameters, each variable can be updated con-
secutively.

In slice sampling, a Markov chain converging to the target distribution is ob-
tained by sampling uniformly by turns in vertical direction under the distribution
density and horizontally from a slice defined by this vertical position. Let the
variable to be updated be θ and f (θ) is a function proportional to the probability
density of θ . In producing a chain for θ , at step t the current value θt−1 is replaced
with a new value θ ∗. Specifically, a real value of R from 0 < R < f (θt−1) is
drawn, defining a horizontal slice S = {θ : R < f (θ)}. After this, an interval
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I around θt−1 is selected containing much or all of the slice S. Finally, θ ∗ is
drawn uniformly from the part of the slice within interval I and the procedure is
repeated. In considering the log-posterior energy function often done for compu-
tational purposes with MCMC sampling, that is g(θ) = −log ( f (θ)), a variable
Z = log(R) = −g(θt−1) − E can be calculated to define the slice S = {θ :
Z < −g(θ)}. Variable E is exponentially distributed with the mean of one. There
are several different schemes for finding the interval I that are well covered by
Neal (2003). In fact, the interval can be chosen in any way as long as the resulting
Markov chain remains reversible.

Reversible jump MCMC

Reversible jump Markov chain Monte Carlo (RJMCMC) is a method for con-
structing a Markov chain for a probability distribution of switching dimensionality
(Green, 1995). Such situations occur when the number of explanatory variables
is let to alternate (e.g., number of current sources in the brain is unknown). The
target distribution consists, thus, of a varying number of parameters and normal
MCMC schemes cannot be used.

If the current state of the Markov chain is (θN , N ), where N is the number
of parameters and also the dimensionality of parameter vector θ , the reversible
jump to a new state of differing dimensionality (θN∗, N ∗) is proposed with a di-
rected jumping probability between models pN→N∗ . The jump is accepted with
probability min{1, α}, where

α = p(y|θN∗, N ∗)p0(θN∗ |N ∗)pM(θN∗, N ∗)pN∗→N pJ (u∗|θN∗, N ∗, N )

p(y|θN , N )p0(θN |N )pM(θN , N )pN→N∗ pJ (u|θN , N , N ∗)
×

∣∣∣∣
∂hN→N∗(θN , u)

∂(θN , u)

∣∣∣∣ . (2.5)

p(·) is the sampling distribution of the model, p0(·) is the prior distribution for
the parameters, pM(·) is the prior probability of the model in question, and p J (·)
is a proposal density for a random variable u. The key feature of RJMCMC is the
introduction of additional random variables u and u∗ that enable the matching of
parameter space dimensions of the different models. h N→N∗ is an invertible func-
tion defining the mapping between parameter spaces: (θN∗, u∗) = hN→N∗(θN , u).

The transdimensional jumps can be constructed in any way as long as dimen-
sion matching is ensured by making both directions of a jump equally probable.
Simple proposed moves can be, for example, birth (or death) of a new parameter,
or a simultaneous birth (or death) of one parameter and updates of other parame-
ter values. Due to its flexibility, reversible jump MCMC methods are applicable
to model determination problems (e.g., Green, 1995), for instance. With complex
problems, however, finding of a suitable proposal distribution becomes extremely
important for efficient sampling (e.g., Brooks et al., 2003).
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2.1.2 Variational Bayesian methods

Variational Bayesian methods can be used as an alternative to computationally
heavy and time-consuming numerical sampling methods (for a short review on
variational methods, see, e.g., Ghahramani and Beal, 2001). In Publications II
and III, a variational Bayesian method was compared to MCMC sampling and
their properties were investigated considering the electromagnetic inverse prob-
lem, respectively. The basic idea of a VB method is to try to approximate the
parameter posterior distribution p(θ |y) with a simpler trial distribution q(θ).

In the VB method, the procedure of evaluating the joint probability p(θ, y) is
reformulated as a maximization problem of the free energy, which is defined as

F(q(θ)) =
∫

dθq(θ)log

(
p(θ, y)

q(θ)

)
= log

(
p(y)

)− KL
(
q(θ)‖p(θ |y)) (2.6)

for the trial distribution q(θ) (e.g., Sato et al., 2004). The last term in Eq. 2.6 is
called the (asymmetric) Kullback-Leibler divergence

KL
(
q(θ)‖p(θ |y)) =

∫
dθq(θ)log

(
q(θ)

p(θ |y)
)

(2.7)

between true and variational posteriors, p(θ |y) and q(θ), respectively. The Kull-
back-Leibler divergence is one possibility for measuring dissimilarity between
these two distributions. Maximization of the free energy leads effectively to min-
imization of the Kullback-Leibler divergence, rendering q(θ) to be the closest
possible analytical approximation of the true posterior p(θ |y). The optimization
of the free energy can be solved, for example, using a factorization approximation
in which the free energy is maximized alternately with respect to factorized parts
of q(θ) (see, e.g., Sato et al., 2004, for an exemplar and references).

2.2 Noninvasive brain imaging methods

Human brain imaging methods can be divided into two categories based on their
level of penetration to the body. The first class of methods are essentially inva-
sive, in which a contrast medium is injected to the subject. In positron emission
tomography (PET) and single photon emission computed tomography, a radioac-
tive contrast medium is used while regular computed axial tomography is based
on imaging with X-rays. These methods provide three-dimensional images of the
human brain.

One of the most common noninvasive techniques, magnetic resonance imag-
ing, is widely used in clinical and research facilities around the world. MRI and
functional MRI produce anatomical and functional information of the brain, re-
spectively. Although MRI and fMRI can be considered to be invasive to some
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extent because of the presence of strong magnetic fields and radio frequency (RF)
pulses, the amount of energy absorbed by tissues is minimal and single subjects
can be studied several times, unlike for example in PET.

EEG and MEG are used to noninvasively measure electric potentials and mag-
netic fields produced by the underlying source currents in the brain, respectively.
Although EEG and MEG do not per se produce an image, the localized activations
are often overlaid on anatomical brain images. Highly invasive subdural EEG can
also be measured in humans during brain surgery.

In this thesis, data were gathered using magnetic resonance imaging, func-
tional magnetic resonance imaging, and magnetoencephalography.

2.2.1 Magnetic resonance imaging

With magnetic resonance imaging, the spatial structure of the living brain can
be determined noninvasively. This is not only important in clinical use, but also
essential for basic research. For instance, the resulting volumetric images are
needed in producing accurate computer models of different anatomical volumes
(e.g., skin, inner and outer skull) and cortical layers (e.g., pial surface and white-
gray matter boundary). These are required for further analyses and visualization.
For the inverse analysis of MEG signals the inner skull and cortical white-gray
matter boundary are of special importance as they are used in constructing the
forward model (see, Section 2.3).

MRI is based on nuclear magnetic resonance (see, e.g., Huettel et al., 2004,
for details on the following). The hydrogen nucleus (i.e., a single proton) has
a quantum mechanical property called spin, considered to behave like a small
magnet in an external field. Within this magnetic field, the protons will precess
around an axis aligned either parallel (low energy) or in opposite direction (high
energy) to the field. In MRI, the protons are excited with a radio frequency pulse
and some of the low energy nuclei will absorb the energy and switch to high
energy state. Following the pulse, the net magnetization will decay back to its
equilibrium releasing the absorbed energy. The emitted energy can in turn be
measured with RF coils. The signal itself is spatially encoded by varying magnetic
fields with gradient coils. Different components in the frequency domain signal
space can be separated and the origin of the emission determined. This is done for
each of the slices of the target (e.g., human head), and by inverse Fourier transform
a volumetric image of the target can be produced.

The decay of the net magnetization occurs according to relaxation times T1,
T2, and T ∗2 . T1 is called the spin-lattice or longitudinal relaxation time and it
describes how long it takes for the z-component of the net magnetization to be
relaxed. The spin-spin or transversal relaxation time T2 is caused by interac-
tions between nuclear spins. Relaxation time T ∗2 includes the effect of field in-
homogeneities to the spin-spin relaxation time. The separation of different tis-
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sues or materials with MRI is possible because the relaxation times vary across
them. When duration and detection of the applied RF pulse is varied, differently
weighted images can be obtained for different purposes.

2.2.2 Functional magnetic resonance imaging

Functional MRI (e.g., Ogawa et al., 1992; Bandettini et al., 1992; Belliveau et al.,
1991; Kwong et al., 1992) is based on the assumption that the electrical activity
in the brain is connected to hemodynamic changes in brain tissue (e.g., Logothetis
et al., 2001). It is presumed that when some neurons of the brain are active, they
consume more oxygen, which further increases blood flow to those specific ar-
eas. The detection of blood oxygenation level dependent (BOLD) contrast with
MRI (Ogawa et al., 1992) relies on the differences in magnetic properties of oxy-
hemoglobin (diamagnetic) and deoxyhemoglobin (paramagnetic). As neuronal
activation occurs, blood oxygenation increases in nearby capillaries, leading to
the decreased concentration of deoxyhemoglobin. Unlike oxyhemoglobin, the
paramagnetic deoxyhemoglobin changes the local magnetic field and thus affects
T2- and T ∗2 -weighted images. Therefore, the signal is strongly influenced by the
oxygenation state of blood. Even though the relationship between the fMRI sig-
nal (hemodynamic response) and the underlying neuronal activity is not precisely
known, the relation of these activities is indisputable.

The functional activation localization of BOLD fMRI is based on the relative
signal changes between the different experimental conditions and on the statistical
validation of these changes. Normally, the experiment is an alternating rest and
activity stimulation period in a simple box-car design although also event-related
fMRI designs can be used (e.g., Dale, 1999). The resulting statistical paramet-
ric maps of fMRI signals are overlaid on the corresponding anatomical magnetic
resonance (MR) images to show the exact locations of the activations.

Functional MRI is performed with the same device as the MRI. As several im-
ages need to be acquired in rapid succession, the overall resolution of the images is
greatly reduced from the full potential of the high-end scanners. The most promi-
nent virtue of fMRI is its good spatial resolution while temporal resolution is lim-
ited. In these studies, the term fMRI is used to describe the hemodynamic BOLD
changes associated with neural activations even though the term fMRI could mean
any other nuclear magnetic resonance –based functional imaging method, such as
perfusion and diffusion tensor imaging (see, e.g., Huettel et al., 2004, for details
on these methods).

2.2.3 Magnetoencephalography

The human brain is composed of approximately 1011 neurons (e.g., Kandel et al.,
2000). When the brain is active the neurons transmit information via axons in
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action potentials to be transmitted to postsynaptic neurons. Most of the currents
visible in external magnetic fields are generated by synchronous postsynaptic po-
tentials of cortical pyramidal neurons (e.g., Dale and Sereno, 1993; Okada et al.,
1997). However, as the current flow in one single cell is very low, typically 104

to 105, neurons need to fire simultaneously for the magnetic fields (or electric
potentials) to be detected outside the head (e.g., Vrba and Robinson, 2001).

MEG (e.g., Cohen, 1968, 1972; Hämäläinen et al., 1993; Ilmoniemi, 1994;
Baillet et al., 2001) measures these fields that are generated by activations of rela-
tively large, yet spatially localized, cortical neuronal populations. There are some
sources that are magnetically silent limiting the capabilities of MEG. For instance,
a radially oriented current source inside a spherically symmetric conductor does
not produce any external magnetic fields, leading MEG to be most sensitive to
sources tangential to the head. MEG is poor in detecting sources in the deeper
structures of the brain, partially because the magnitude of magnetic field decreases
rapidly as a function of distance. Fortunately, much of the cortex is located in the
fissures and thus oriented tangentially and close to the scalp.

One of the virtues of MEG is that it provides millisecond scale temporal res-
olution and with excellent conditions also a spatial resolution of few millimeters.
In practice, with two (or more) simultaneously active and neighboring sources,
the spatial resolution allows separation of sources which are at the distance of ap-
proximately 1 cm from each other. In many situations, different sources are within
this range, making the separation task difficult.

MEG is usually measured in a magnetically shielded room as the MEG sig-
nals are about a factor of 1 million to 1 billion times smaller than urban magnetic
noise. The only practical device for measuring such small biomagnetic signals is
the superconducting quantum interference device (e.g., Zimmerman, 1977), ne-
cessitating the MEG sensors to be placed inside a cryogenic Dewar vessel con-
taining liquid helium (e.g., Cohen et al., 1970; Cohen, 1972; Hämäläinen et al.,
1993; Ilmoniemi, 1994).

EEG (e.g., Niedermeyer and Silva, 1999) is a method in which, instead of the
magnetic fields, electric potentials are measured. In addition to complementary
measurements, it provides information not visible in MEG. EEG is sensitive to
all orientations of the sources and also to deep sources. Unfortunately, skull and
scalp cause attenuation and smearing to the measured potentials complicating the
estimation of the sources. Importantly, EEG can be measured simultaneously with
MEG.

2.3 Electromagnetic inverse problem

The core of this thesis is to apply computational methods in solving the electro-
magnetic inverse problem. However, before considering the inverse problem it-
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self, the term forward model (e.g., Mosher et al., 1999) needs to be clarified. For-
ward model is composed of solving the electromagnetic fields and potentials gen-
erated by the underlying source currents. This relation is governed by Maxwell’s
equations and in MEG it is readily solved under the quasistatic approximation
(e.g., Hämäläinen et al., 1993; Ilmoniemi, 1994). In this, the time derivatives in
the calculation of magnetic fields can be neglected due to most of the cellular
electrical phenomena containing frequencies below 1 kHz. Magnetization of the
tissue can also be left out in the considerations. The solution to the forward model
is affected by different tissue properties, such as conductivities of the skull and
brain, which are in general anisotropic. With MEG signals, a model in which
the realistically shaped cranial volume has uniform electrical conductivity and
the skull is considered as a perfect insulator is sufficient for many practical pur-
poses (Hämäläinen and Sarvas, 1989; Mosher et al., 1999). Such a single-layer
boundary-element model (BEM) is assumed throughout this thesis. In EEG for-
ward computations, three-layer BEM is needed with varying electric properties
for the skin, skull, and brain compartments. Otherwise significant errors can be
encountered in the source localization procedure (e.g., Ollikainen et al., 1999).

Unfortunately, localizing the source currents based only on the electromag-
netic fields outside the head (i.e., the electromagnetic inverse problem) is an
ill-posed problem and does not have a unique solution. This is due to the fact
that there may be an infinite number of magnetically silent sources producing no
detectable fields outside the head (e.g., Sarvas, 1987). Addition of these silent
sources do not alter the measured magnetic fields and, thus, finding the one cor-
rect solution among many becomes impossible.

Beacuse of the nonuniqueness of the inverse problem, it is always necessary
to introduce additional information or assumptions to limit the set of possible so-
lutions. Often, the methods used in tackling the electromagnetic inverse problem
are divided into equivalent current dipole modeling and distributed current source
estimation. Both techniques are used, so that Publications I, II, and III involve dis-
tributed source estimation whereas Publications IV and V deal with dipolar cur-
rent sources. Additionally, combining information from different brain imaging
methods, MEG and MRI/fMRI in this work, alleviates some ambiguities in esti-
mating neuronal currents in the brain. Throughout the thesis, the electromagnetic
inverse problem is treated in Bayesian fashion.

2.3.1 Equivalent current dipole modeling

MEG field patterns are often assumed to be generated by dipolar current sources
located in the cortex directly beneath the scalp (e.g., Brenner et al., 1978; Re-
ite et al., 1978; Hari et al., 1980). This assumption employs the ECD model or
dipole fitting to the MEG inverse problem (e.g., Mosher et al., 1992; Hämäläinen
et al., 1993; Baillet et al., 2001). In ECD modeling, one assumes that the ex-
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tents of activated areas are small enough to be truthfully represented by a set of
point-like current dipoles. By using automatic or manually guided optimization
methods, the ECD model giving the best fit to the measured data is obtained.
The method is usually applied to stimulus-locked responses of time-domain mea-
surements although frequency-domain analysis is also feasible (e.g., Lütkenhöner,
1992; Salmelin and Hämäläinen, 1995). In MEG, these so-called evoked fields
(EF) are obtained by averaging the waveforms that are recorded while present-
ing repetitions of the same physical stimulus to the subject. The corresponding
concept in EEG is called an evoked potential.

Typically, the estimated ECD is overlaid on the high-resolution MR images to
reveal the locations of the corresponding currents in individual cortical areas. In
dipole fitting, user expertise and partly heuristic methods are required to obtain
good solutions. For example, if an automatic fitting algorithm places a dipole
outside the cortical gray matter, manual intervention is needed as there are no
current sources in the white matter or outside cortex. With multiple dipoles, ECD
modeling requires approximate and manual techniques as the related optimization
problem becomes insolvable. A major problem with existing methods is that the
number of dipoles need to be determined a priori to optimization.

In many cases the ECD model is an adequate assumption. However, the actual
cortical activation patterns visible in MEG are generally presumed to be elicited
by a large number of neurons (e.g., Okada et al., 1997; Vrba and Robinson, 2001)
extending over few square centimeters of gray matter. With dipolar sources, the
accurate modeling of such current distributions on the cortex is difficult if not
impossible.

2.3.2 Distributed current source estimation

In distributed inverse estimates, every point in the source space is often thought
to contain a small dipolar source along with some minimum-norm (e.g., Hämäläi-
nen and Ilmoniemi, 1984, 1994; Matsuura and Okabe, 1995, 1997) or maximal
smoothness (e.g., Pascual-Marqui, 2002) properties for the currents. At present,
the discretized source space is generally a realistic cortical surface or volume,
although spherical source space models are still used due to simple and fast im-
plementation.

Perhaps the best-known distributed approach is the minimum-norm estimate
(MNE), in which a shortest source current vector (in the mathematical `2-norm
sense) explaining the data is estimated (Hämäläinen and Ilmoniemi, 1984, 1994).
Although different variations of the conventional MNE have been widely used
previously (e.g., Clarke, 1989; Ioannides et al., 1990; Wang et al., 1992; Dale
and Sereno, 1993; Dale et al., 2000; Hauk, 2004) some undesirable characteris-
tics remain with the solutions from the viewpoint of an empirical neuroscientist
interpreting the results. The estimates are rather diffuse and localized sources are
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biased towards the surface of the cortex.
With the minimum-current estimate (MCE) (Uutela et al., 1999), an `1-norm

constraint (e.g., Matsuura and Okabe, 1995, 1997; Beucker and Schlitt, 1996;
Bücker et al., 2001) is imposed on the currents instead of the Euclidean norm,
yielding inverse estimates that are more focal than with MNE. Depth weighting
(e.g., Köhler et al., 1996; Lin et al., 2006b) has been proposed to improve the
localization of deep sources. Several other modifications to the minimum-norm
estimate have been suggested, such as restricting the orientation and location of
the current source in each distributed point in the source space, to be perpendicu-
lar (e.g., Dale and Sereno, 1993, with `2) or almost perpendicular (e.g., Lin et al.,
2006a, with `1 and `2) to the cortical mantle. These methods require individual
cortical reconstructions based on the anatomical MR images. With strict cortical
constraints the source space reconstructions, and thus also the MRI data, need to
be of an exquisite quality.

2.3.3 Combination of different imaging modalities

Imaging modalities are commonly combined by using anatomical MR images in
MEG/EEG source estimation. Volumetric and surface reconstructions are rou-
tinely used to constrain the possible source locations and orientations with dis-
tributed source imaging methods (e.g., Dale and Sereno, 1993), for instance. Fur-
thermore, with dipole fitting methods, the dipole locations are generally displayed
on the anatomical images, and the individual reconstructions can be used to create
more realistic forward models instead of spherical symmetry.

As many modern MEG devices also facilitate the simultaneous recording of
EEG, there is increasing interest to the combination of EEG and MEG in solving
the electromagnetic inverse problem. Previously, it has been shown that combined
EEG/MEG measurements give the best results to the source localization problem
(e.g., Baillet et al., 1999; Liu et al., 2002) but there is still some uncertainty how
these methods should be combined. In the present study EEG data is not used, but
in principle it is rather straightforward to take it into account in the models.

Functional MRI information has been incorporated to the minimum-norm es-
timation, for example, by using it to adjust the source variance parameters (Liu
et al., 1998; Dale et al., 2000), or by guiding the MEG source estimate by min-
imizing a distance to a subspace defined by fMRI data (Ahlfors and Simpson,
2004). The MEG/EEG inverse algorithm can also be seeded with locations from
the fMRI data or the separate results can be directly compared with no obvious
mathematical integrative model (e.g., Ahlfors et al., 1999). As the exact rela-
tionship between the electric currents and the hemodynamic response is still un-
known, the pursuit of the physiologically “correct” way of combining MEG and
fMRI stays in motion.
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2.3.4 Bayesian formulation to the MEG inverse problem

In neuroimaging, Bayesian formulation has been used in describing the electro-
magnetic inverse problem. Several different methodologies based on, for instance,
anatomical, physiological, and temporal information have been proposed (e.g.,
Dale and Sereno, 1993; Phillips et al., 1997; Baillet and Garnero, 1997; Liu et al.,
2002; Phillips et al., 2002a,b; Sato et al., 2004; Phillips et al., 2005). A Bayesian
perspective to the MEG inverse problem is especially convenient with the dis-
tributed inverse models. In the following, a brief generic Bayesian formulation to
the MEG inverse problem is presented to give an overview of the methodology
and concepts involved in this thesis.

In MEG, the solution to the forward problem yields a linear relationship be-
tween the time-dependent source currents s(t) and measured signals b(t)

b(t) = As(t)+ n(t), (2.8)

where n(t) is the measurement noise vector and A is the gain matrix where each
column gives the measured signal distribution for one dipolar current located on
the source space. Additive Gaussian measurement noise is often assumed, leading
to a linear regression model described in statistical terms as

p
(
b(t)|s(t),C,M) = 1√|C|(2π)M

· e− 1
2

(
b(t)−As(t)

)T
C−1
(

b(t)−As(t)
)
, (2.9)

where C is the noise covariance, M the number of measurement sensors, and M
the implicit and explicit modeling assumptions, such as Gaussian noise, cortical
constraints, utilized conductivity values, selected time windows, and so forth, all
affecting various parts of the model. This probabilistic expression for the obser-
vational model corresponds to the likelihood function in Eq. 2.3.

The statistical prior properties of the source currents can be described by an
exponential density

p0
(
s(t)|M) = 1

α
· e−β f (s(t)), (2.10)

where α and β are constants and f (·) is a function of the unknown source currents
s(t). This representation encompasses, for example, the multivariate Gaussian
models (Baillet et al., 2001).

In case of fixed data and numerical considerations, the normalization term
p
(
b(t)|M) can be omitted (see, Eq. 2.3 on page 3) and the posterior distribution

is directly proportional to the product of the likelihood and the prior for the source
currents

p
(
s(t)|b(t),M) ∝ p

(
b(t)|s(t),M) · p0

(
s(t)|M). (2.11)

It is straightforward to insert different parameter representations or additional
variables to the model and assign suitable prior densities to them according to
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prior beliefs. Maximization of Eq. 2.11 leads to the MAP estimate, whereas
numerical methods are needed for approximating complicated posterior distribu-
tions. In the MCMC sampling of the posterior distribution, or estimation of the
parameter values of s(t) in this generalized example, the log-posterior is consid-
ered for computational purposes

log
(

p
(
s(t)|b(t),M)

)
∝ log

(
p
(
b(t)|s(t),M)

)
+ log

(
p0
(
s(t)|M)

)
. (2.12)

Desired parameter estimates can be made based on the resulting MCMC samples
that represent the posterior distribution.

In case of conventional MNE (in the presented formalism), the `2-norm for
the source currents is represented by a Gaussian prior distribution with fixed co-
variance matrix. The maximization of the resulting log-posterior corresponds to
the minimization of the associated error function. This yields the traditional lin-
ear inverse operators in a Bayesian way (e.g., Dale et al., 2000; Phillips et al.,
2002a). In minimum-norm estimation, the choice of using the `2-norm prior is of-
ten made by the researcher and the produced inverse estimates may be argued to
be (physiologically) overly smooth due to the mathematical a priori assumption.

Recently, Sato et al. (2004) introduced a hierarchical generalization to the
minimum-norm estimation. Each source space point is assumed to have its own
variance parameter instead of one parameter value for all. These variances are in-
ferred from the data using an automatic relevance determination prior (e.g., Neal,
1996). This leads to a more focal solution in which the data are essentially ex-
plained by a few prominent source space locations whereas other locations are
dampened by the prior. The approach is nonlinear, hence variational Bayesian
method was applied to approximate the posterior distribution.

Some parametric dipole fitting or extended region models (e.g., Schmidt et al.,
1999; Bertrand et al., 2001a,b; Kincses et al., 2003; Jun et al., 2005, 2006) are
analyzed with numerical MCMC methods, so that the full posterior probability
distribution can be evaluated instead of just one maximum a posteriori estimate.
The feasibility of obtaining a large number of likely solutions to the MEG inverse
problem, rather than one single estimate, was first demonstrated by Schmidt et al.
(1999) with an active region model consisting of number, location, and extent of
active brain areas. Later, they extended their analysis to the full spatiotemporal
MEG/EEG data set (Schmidt et al., 2000). The most natural way of numeri-
cally sampling the number of active regions or dipoles is done using reversible
jump MCMC (Green, 1995). This has been used previously (e.g., Bertrand et al.,
2001a,b; Jun et al., 2005) and also combined to parallel tempering methods which
are used to evade local convergence (Bertrand et al., 2001a,b).

In recent work by Jun et al. (2005), instead of extended regions (e.g., Schmidt
et al., 1999; Kincses et al., 2003), spatiotemporal Bayesian inference dipole an-
alysis for MEG was proposed. Their model is shown to be faster than the extended
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region model, and it does not require the use of individual anatomical information
or any prior knowledge about the number of underlying dipoles. Additionally,
they marginalize over the given background noise considering it as an uncertain
parameter. Lately, they improved their model to contain active time range in-
formation, which allows the source constellation to change over time (Jun et al.,
2006). In this, additional parameters of activation starting and ending timepoints
for each source are also inferred by MCMC sampling.

2.4 On human cortical processes

The human brain is the most complicated organ in our body and with connections
to nervous, sensory, and muscular systems, it guides our functioning (e.g., Kandel
et al., 2000). Only a brief description of the anatomy and operation of (primary)
auditory, visual, and somatomotor cortices is given, enough to understand the
experiments performed in this study.

Motor cortices can be roughly divided into primary motor cortex (M1) and
premotor areas (supplementary motor cortex and premotor cortex). Primary mo-
tor cortex is located in the precentral gyrus (Fig. 2.3) in both cerebral hemispheres
and organized according to so-called homuncular representation in which specific
muscles are governed by different regions in M1. Important parts of the body,
such as the face and fingers, hold the largest areas of M1. The supplementary
motor cortex is situated medially in front of M1 in the frontal lobe and premo-
tor cortex laterally from the former. M1 is active in planning and execution of
movements while the premotor areas are active only during the preparation of
movement. Motor tasks require constant fine adjustment and, thus, there is clear
functional connectivity between primary motor and primary somatosensory areas
(S1). The postcentral gyrus is associated with the primary somatosensory infor-
mation processing and it is organized in similar manner to M1. Motor control and
sensory pathways between the brain and the rest of the body are crossed. There-
fore, operation of the left hand, for example, is controlled contralaterally by the
right hemisphere (RH) and vice versa, although ipsilateral connections, that is,
left hemisphere (LH) controlling the left hand, exist.

The primary auditory cortex (A1) is located in both hemispheres in the tem-
poral lobe in the posterior half of the superior temporal gyrus extending to Sylvian
fissure as Heschl’s gyrus. Auditory evoked fields have been extensively studied
and localized with ECD models in the literature (e.g., Reite et al., 1978; Farrell
et al., 1980; Hari et al., 1980). Typically, any auditory stimulus or change in a con-
tinuous sound evokes a response whose cortical location depends of the stimulus
properties. One such property is the frequency of the presented stimulus (see, Ro-
mani et al., 1982, for tonotopic organization of the primary auditory cortex). The
most prominent component of the EF is the N100m that peaks about 100 ms after
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Figure 2.3: Approximate primary cortical areas and major anatomical landmarks are indi-
cated on lateral and medial view of the inflated right hemisphere to facilitate interpretation
and comparison to the corresponding images in the publications.

the stimulus. Together with the other components, such as early N19m and late
P200m, they are of cortical origin (see, e.g., Hämäläinen et al., 1993; Ilmoniemi,
1994, for more).

The visual cortex is generally divided into primary visual cortex (i.e., striate
cortex or V1) and extrastriate visual areas that include the areas V2, V3/VP, and
V5/MT. V1 is located in the occipital lobe around and in the calcarine sulcus. The
ventral stream (“what pathway”) goes from V1 to V2 and onwards to the inferior
temporal lobe and is considered to be associated with object and form represen-
tations in the cortex. The dorsal stream (“where pathway”) is associated with
object locations and motion along with the control of eyes and arms when visual
information processing is involved. The dorsal stream goes through V2 to V5/MT
and onwards to the inferior parietal lobe. Visually evoked fields (e.g., Brenner
et al., 1975; Teyler et al., 1975) measured in MEG have been used to study the
retinotopic organization of V1. The first results showed that information from left
visual field go to the right hemisphere and vice versa. Since the development of
fMRI (e.g., Ogawa et al., 1992; Kwong et al., 1992; Belliveau et al., 1991) the
representations of the visual fields in human cerebral cortex (e.g., DeYoe et al.,
1996) and mappings of borders and sizes of human retinotopic visual areas (e.g.,
Sereno et al., 1995; Dougherty et al., 2003) have become more accurate. Tradi-
tionally, flickering checkerboard stimuli of certain spatial and temporal frequency
have been used as they are known for producing a good response in V1 (e.g., En-
gel et al., 1997). Functional imaging has also been used to study the visual areas
with operational specialization, and, for instance, V5/MT is known to be sensitive
to visual motion.

Accumulating evidence exists that the human visual system is anatomically
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and functionally organized not only for bottom-up hierarchical processing but also
for top-down modulation with higher cognitive tasks (e.g., Courtney and Unger-
leider, 1997). For scrutinizing such complicated cortical networks, the analysis
methods need to be capable of high accuracy in both spatial and temporal domain.

Audiovisual integration is used to describe the processes in the brain that com-
bine the information from these two different processing streams. For instance,
seeing articulatory movements of a speaker’s face significantly improves the per-
ception and speech comprehension especially in noisy conditions. Audiovisual
or some other form of crossmodal integration is affected by several other pro-
cesses, such as the focus of the perceiver’s attention or stimulus characteristics. In
this thesis, the utilized sensory stimuli (i.e., auditory, visual, and motor task) are
mainly unisensory, so that no notable integrative processes are presumed to take
place. However, with more complicated multisensory stimulation this assumption
is unjustifiable.



Chapter 3

Aims of the study

The overall aim of this study was to create new and improve existing state-of-the-
art computational methods for solving the MEG inverse problem. The main ob-
jective was to utilize the individual anatomical and functional magnetic resonance
imaging data of the participants, keeping in mind that the models should be fea-
sible in real neuroscientific investigations. Our guideline was to utilize Bayesian
inference in order to be able to examine the whole distribution of different solu-
tions rather than one single point estimate.

Specifically, Publication I was motivated by the Bayesian interpretation of
the electromagnetic inverse problem. We aimed at determining whether there is
enough information in the data to determine which ` p-norm order p together with
the least squares error function of the data gives rise to the best solutions.

In Publication II, we wanted to compare the results of a full Bayesian analysis
via MCMC sampling to a newly introduced variational Bayesian method with a
hierarchical generalization of the traditional MNE (Sato et al., 2004). The objec-
tive in Publication III, was to test the hierarchical VB model for the first time with
empirical data and discuss practicalities in using the method.

We wanted to alleviate the computationally heavy process of MCMC sampling
and decided to reduce the dimensionality of the parameter space by reformulating
the problem with dipolar sources in Publication IV. We aimed at improving a
recently published similar model (Jun et al., 2005) by utilizing cortical location
and orientation constraints known to be useful in the source estimation task. In
Publication V, the goal was to introduce a novel way of including fMRI data to the
MCMC based MEG inverse modeling and show that it improves the performance
of the sampling method.
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Chapter 4

Overview of the experimental
measures

4.1 Data simulations

In all the publications, simulated MEG data were generated using a single-layer
boundary-element model assuming the skull to be a perfect insulator and the cra-
nial volume to have homogeneous electrical conductivity. The forward model
and the gain matrix were computed using the MNE software1 developed at Athi-
noula A. Martinos Center for Biomedical Imaging, Massachusetts General Hos-
pital, Charlestown, MA, USA.

Importantly, in inverse estimation, the term inverse crime is used to describe
all those elements that are fixed in the forward model construction and later pre-
sumed known in the solution part. It is common within MEG inverse problem
simulations that the estimation is done using the same gain matrix that was used
for data simulation. In this thesis, different grid discretizations were always em-
ployed for simulation and estimation in order to avoid the most common type of
inverse crime. Different discretizations were used in the analysis phase for study-
ing the effect of grid discretization size to the solutions.

In Publication I, the signal-to-noise ratio and extents of the simulated sources
were varied and random zero-mean Gaussian noise was added to the simulated
measurements. In Publication II, the simulated data were similar with additive
Gaussian measurement noise, but contained several timepoints instead of spatial-
only data as in Publication I. The locations of the sources were manually chosen
to correspond to plausible physiological cortical patches in both publications.

In Publications IV and V, realistic measurement noise was added to the sim-
ulated fields prior to averaging in order to produce the same spatiotemporal noise
structure as with empirical data. The locations and latencies of the simulated

1URL: http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
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sources were chosen manually to be similar to their empirical equivalents. In
addition, simulated fMRI data were created by placing Gaussian kernels on the
source space enveloping the desired sites of activation in Publication V.

4.2 Empirical data

Three different categories of empirical MEG data were acquired throughout the
study. MEG data were analyzed for a self-paced somatomotor finger-lifting task
(Publication I), simple auditory tone presentation (Publications III and IV), and
two types of visual stimulation (Publications III, IV, and V). Empirical fMRI data
were acquired for the visual stimulation in Publication V, whereas anatomical MR
images were acquired for all participants of the experiments in order to obtain the
individual source space reconstructions for the analyses. For the calculation of the
forward model, the MNE software was employed.

4.2.1 MEG data

MEG data were acquired in a magnetically shielded room with a Vectorview MEG
system (Elekta Neuromag Oy, Helsinki, Finland) located at Low Temperature
Laboratory, Helsinki University of Technology. Voluntary subjects participated to
the experiments. In addition to the MEG, bipolar electro-oculogram was obtained
in all of the measurements and later used for eye-blink artifact removal. The sen-
sor array of the system used is composed of 306 MEG channels arranged in triplets
of two orthogonal planar gradiometers and a magnetometer at 102 locations, mea-
suring the magnetic field gradient and the magnetic field, respectively (Fig. 4.1).
All preprocessing of MEG data were performed using inhouse designed functions
for MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA), Vectorview
MEG system software, and Neuromag FIFF-file access functions2.

4.2.2 MRI and fMRI data

High-resolution T1-weighted three-dimensional anatomical MR images were ob-
tained with a 3 T scanner (General Electric Signa, Milwaukee, Wisconsin, USA)
located at Advanced Magnetic Imaging Centre, Helsinki University of Technol-
ogy. The anatomical MR images of two subjects were scanned with 1.5 T scanners
(Siemens Sonata and Vision, Erlangen, Germany) located at Massachusetts Gen-
eral Hospital, USA and Helsinki University Central Hospital, Finland. The local
3 T scanner was used for acquiring the fMRI images depicting BOLD contrast in
Publication V.

2URL: http://www.kolumbus.fi/kuutela/programs/meg-_pd/

http://www.kolumbus.fi/kuutela/programs/meg-pd/
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Figure 4.1: Functional MRI and MEG data of presenting visual lower left quadrant drift-
ing grating stimulus to a subject. Statistical parametric map of fMRI data on inflated right
hemisphere depicts the BOLD contrast, whereas the waveforms of the MEG evoked fields
show the two orthogonal magnetic field gradients. The MEG channels are viewed from
the top, nose of the subject pointing up in the figure.

Preprocessing of the anatomical MRI data sets were performed with the Free-
surfer software3 also developed at Athinoula A. Martinos Center for Biomedical
Imaging. An automated segmentation algorithm was used to obtain the geometry
of the white-gray matter boundary (see, Dale et al., 1999; Fischl et al., 1999, 2001,
for details). This limited the locations and orientations of the possible source cur-
rents based on the assumption that most of the currents visible to MEG are pro-
duced in the cortical pyramidal neurons. This information was applied in the for-
ward BEM calculations. Inflation of the cortical layers (Fig. 4.2) was performed
using Freesurfer. For further processing and visualization, the brain surfaces were
transformed into MATLAB.

Functional MRI analyses in Publication V were conducted using the FSL soft-
ware tools (see, Smith et al., 2004, for details and additional information) devel-
oped at Oxford Centre for Functional Magnetic Resonance Imaging of the Brain,
Department of Clinical Neurology, Oxford University, UK.

4.3 Analysis environment and visualization

Excluding the preprocessing procedures described previously in this chapter, all
other preprocessing of MEG data, numerical analyses, and visualization were per-

3URL: http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofFreeSurf.php

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofFreeSurf.php
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Figure 4.2: In the inflation process, the white-gray matter boundary is extracted and
inflated to reveal the sulci and gyri of the cortex.

formed using MATLAB. A set of MATLAB functions used to import, preprocess,
and analyze the data was written. Preprocessing of MEG data includes filtering,
averaging, artifact removal, noise covariance estimation, and model-specific ini-
tializations. With fMRI data, only the model-specific initializations were needed
as statistical analyses were done using different software.

For the numerical analyses, appropriately designed and tailored sampling sch-
emes were written. One of the sampling methods used (i.e., slice sampling) was
written to a more general form and included in a collection of MATLAB functions
for Bayesian inference with MCMC methods4 developed and distributed at Lab-
oratory of Computational Engineering, Helsinki University of Technology. Many
of the functions available in the toolbox were used as such.

MATLAB functions were also created for visualizing the results. The tools
are capable of displaying cortical surfaces and overlaying activations and curva-
ture information to them. Realistic individual white-gray matter boundary sur-
faces were used in the analyses while the inflated cortical mantles were exploited
for visualization purposes. All the images in the publications and thesis were
produced in MATLAB using these functions with data-specific modifications.

The preprocessing, numerical analyses, and visualizations were mostly per-
formed with ordinary Linux workstations (Pentium III/4, 1–3.2 GHz processor,
1024–4096 MB of RAM). The code was optimized for MATLAB to keep com-
puting time reasonable although in some cases special actions were needed in di-
viding the computer runs to a large cluster of Linuxes for achieving results faster.
Stand-alone C language compilations of the MATLAB code were also generally
used.

4URL: http://www.lce.hut.fi/research/mm/mcmcstuff/

http://www.lce.hut.fi/research/mm/mcmcstuff/


Chapter 5

Overview of the models

In this chapter, main features and results of the analyses with the models are sum-
marized. Details can be found in the corresponding publications. A general dis-
cussion and description of possible future work are included at the end.

5.1 Publication I: `p-norm model

5.1.1 Introduction

In the Bayesian interpretation of the minimum-norm and minimum-current esti-
mates, prior information of the current distribution is embedded to the model as
mathematical `2- and `1-norm constraints, respectively. The choice of the ` p-
norm order p leads to either focal (p = 1) or rather diffuse (p = 2) estimates,
although any value between 1 and 2 could be used. In Publication I, we circum-
vent this choice by trying to infer p from the data. We assume the noise covari-
ance C to be diagonal and known up to a scaling constant σl in order to evade the
computationally heavy sampling of C. For additional computational convenience,
we whiten the model-specific gain matrix and measured fields b by multiplying
them with C−1/2. Although being a spatial-only study, temporal structure could
be added with the cost of computational time.

In the preliminary sampling runs, correlations between the ` p-norm prior
width and source current parameters s were present. Thus, we reparametrized
the prior structure yielding a hyperparameter β that defines the ` p-norm order, so
that

p = 2

1+ β , (5.1)

and the prior itself is as in Box and Tiao (1973, see, Ch. 3.2.1). The parameter
value β = 1 corresponds to the `1-norm model and β = 0 to the `2-norm model.
In Bayesian data analysis, our choice of uniform prior for β might have an effect
on the implicit prior of p, also noted by one of the anonymous referees, so that
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the model would slightly favor values of p close to 1 over the values close to 2.
However, we performed a prior sensitivity analysis for β, and showed that the
effect of implicit prior propagating to the shape of the posterior distribution was
insignificant considering our conclusions.

Collecting the pieces of our `p-norm model, we arrive at an unnormalized
parameter posterior density of

p(s, σl, σc, β|b) ∝ p(b|s, σl) · p(σl) · p0(s|σc, β) · p(σc) · p(β), (5.2)

where priors for noise-scale parameter σl , current prior width σc, and β are as-
sumed uniform. The likelihood of the data is of the presented general form with-
out time dependency and with diagonal C (see, Eq. 2.9 on page 16).

The posterior distribution was numerically sampled with slice sampling and
the convergence of several Markov chains was monitored visually and by using
the potential scale reduction factor. Posterior predictive sampling was employed
in obtaining a measure between different `p-norm models with respect to the grid
discretization size and of comparison between the `1-, `2-, and `p-norm models
(Fig. 5.1). The model was tested with empirical MEG data of an active finger-
lifting task and with simulations having varying source extents and SNRs.

5.1.2 Results

With the data presented in the publication, our model favors values of the ` p-norm
order p close to 1, yielding more focal solutions than the traditional minimum-
norm estimation. However, the shapes of the posterior distributions of p (his-
tograms) are clearly dependent of the underlying simulated source configuration,
used grid discretization, and SNR. Based on the qualitative results and the pos-
terior predictive sampling, the optimal grid discretization size for our model is
around approximately 3500 points for the whole cortical surface of both hemi-
spheres. With poorer SNR, the distribution of p gets flatter, suggesting that in-
ferring p from the data is more difficult with increasing noise. Wider and deeper
simulated source configurations seem to localize as more diffuse activations on
the cortex than the focal superficial ones.

With the empirical data, predicted data fits are reasonable and the posterior
distribution of p suggests the use of `1-norm for the currents, although the solu-
tions are moderately spread. Lifting of the right index finger yields spatial activa-
tion contralaterally to the hand area of M1 and S1. Left index finger-lifting task
in turn generates activity to the right hemisphere (Fig. 5.2). This is in agreement
with the literature.
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Figure 5.1: Comparison of different `p-norm solutions obtained with MCMC sampling.
The estimates are interpolated on the original dense grid for visualization purposes. Only
the absolute values exceeding 20% of the maximum absolute amplitude of the estimate
are plotted on the inflated brain.
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5.2 Publications II and III: Hierarchical MNE

5.2.1 Introduction

In Publications II and III, a time-dependent observational model assuming multi-
variate Gaussian noise independent of time is united with a Gaussian prior distri-
bution for the source current parameters. In this, each cortical source space loca-
tion is assumed to have its own precision (i.e., inverse variance) parameter αVB, so
that in contrast to the traditional MNE, the sources s(t) can have a posteriori dif-
ferent variances, that is, some sources are more likely to yield zero amplitude val-
ues than others. Furthermore, a hyperprior is imposed for the precision parameters
and for the scale parameter βVB, which is included in the calculations to facilitate
the variational Bayesian estimation (Sato et al., 2004). The precisions are inferred
from the measurement data using automatic relevance determination prior (e.g.,
Neal, 1996; Sato et al., 2004) on them. In Publication II, inverse solutions with
MCMC sampling were compared to those obtained with the VB approach using
simulated data, whereas in Publication III, empirical MEG data was analyzed for
the first time with the hierarchical variational Bayesian method.

The conditional distributions required for the MCMC sampling scenario with
the hierarchical MNE (Publication II), are derived from the full joint probability
of the data, parameters, and hyperparameters. Gibbs sampling can be used for
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sampling all but one of the conditional distributions. For the estimation of this
one hyperparameter of the prior, slice sampling is used instead.

In the variational Bayesian framework (Publications II and III), the currents
and precisions are assumed to factorize in two parts q1

(
s(t), βVB

)
and q2

(
αVB

)
,

and the two q-distributions that maximize the free energy are searched. The algo-
rithm itself is divided into s(t), βVB –step and αVB-step, for obtaining the solution
by successive iterations (Fig. 5.3).

5.2.2 Results

The obtained inverse estimates are evidently more focal than with basic MNE.
However, the posterior distribution seems to be multimodal. When compared to
each other, MCMC and VB produce similar results although the multimodality
of the posterior was more clearly observed in the different MCMC simulations.
This could be due to the VB approach having a tendency of converging towards
posterior modes containing most of the probability mass. Our results clearly show
that the hierarchical MNE model is sensitive to hyperprior selection, although es-
pecially the VB method can be used to produce physiologically credible estimates
in a rather automated fashion. The empirical data analyzed in Publication III was
previously analyzed in Publication IV with a multiple dipole localization method.
Both models yielded similar results.

5.3 Publication IV: Cortically constrained analysis of mul-
tiple dipoles

5.3.1 Introduction

Conventional dipole fitting methods and algorithms in their basic form require
both user expertise and some prior knowledge of the locations or at least the num-
ber of underlying current dipoles. In Publication IV, we assumed the notation of a
recent spatiotemporal Bayesian dipole inference model (Jun et al., 2005) and im-
plemented a similar model with several modifications. First, instead of a spherical
forward model, we employed a more realistic forward model based on the sub-
ject’s individual anatomy and, second, we restricted the possible source locations
to being located and oriented perpendicular to the cortical mantle.

Both data simulations and empirical MEG data were analyzed with the method,
the simulated data having exactly the same noise covariance structure than the
empirical data. The empirical data sets were acquired in an experiment producing
activations to the human auditory and visual systems to see whether this type of
automatic dipole fitting methods could be used to study audiovisual processes in
the brain. Notably, prior knowledge of the locations and number of underlying
sources is not required.
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In our sampling scheme, a mixture of three different MCMC methods was
constructed. As a new feature, slice sampling was used to sample the location
of each specific dipole on the source space of white-gray matter boundary. As
the parameter space sampled with slice sampling needs to be continuous, a com-
pact parametrization of the source space grid points with spherical angle coordi-
nates was used. Slice sampling should in principle switch well between different
modes and, therefore, perform better than the previously used methods. Stan-
dard Metropolis–Hastings was used in switching the hemisphere of a randomly
selected dipole and RJMCMC to perform the transdimensional sampling between
varying number of dipoles. Our method is initialized with random location on the
cortex, whereas the existing algorithms are frequently initialized with a location
close to conceivable source locations.

In order to reduce the computational load of our spatiotemporal method, also
intended to be used for analyzing long data sets, we speed up the procedure by
reducing the dimensionality of the sensor space. This is done by exploiting sin-
gular value decomposition (SVD) of the (transposed) gain matrix AT = (U3VT),
where U and V are unitary matrices and 3 is a diagonal matrix. Manipulation of
the gain matrix A and the measurements b(t) lead to

A = (
U3VT

)T ≈ (Un ·3nVT
)T = V3T

n · UT
n = Ã · UT

n (5.3)

b(t) = b(t) · I = b(t) · UUT ≈ b(t)Un · UT
n = b̃(t) · UT

n (5.4)

where n is calculated so that the estimates cannot be expected to yield smaller
error than the measurement error. Ã = V3T

n and b̃(t) = b(t)Un are the modified
gain matrix and linearly independent measurement combinations used in the rest
of the model formulation.

Marginalizations of the noise covariance parameter C and source current time
courses s(t) were conveniently adopted from previous work by Jun et al. (2005)
with adaptations made to match our parametrization and SVD speed-up strategy.
These steps lead to the final approximated posterior distribution of the dipole num-
ber and location parameters. Posterior realizations of the current timecourses can
be drawn from a multivariate normal distribution by using the existing samples.

5.3.2 Results

Although the method by Jun et al. (2005) seemed to consistently localize multiple
simulated dipoles, our sampling scheme did not perform optimally in the pres-
ence of apparently multimodal parameter posterior distribution, partially due to
the rigid cortical orientation constraints. It is evident based on our analyses that
Markov chains of different data sets converge to a local mode rather quickly. In
general, however, it is extremely difficult to determine whether the chains have
converged globally as the samples might jump to a different mode after long sta-
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tionary sampling in one mode (see, Fig. 2.2c on page 5). Because of these some-
what limited mixing properties especially in the more complex cases (with more
than two nearby dipoles), one cannot compare how much probability mass each
mode has. This spoils the possibility of Bayesian comparison between the differ-
ent solution candidates. Thus, it is left to the researcher to qualitatively contrast
one mode with many others. Nevertheless, the model seems to produce reasonable
solution candidates and adequate data fits without much manual intervention.

5.4 Publication V: fMRI-guided multidipole localization

5.4.1 Introduction

The human visual system is anatomically and functionally organized hierarchi-
cally, so that higher-level processes modulate activity in lower levels. Therefore, it
is crucial that the methods used in evaluating the sensory and cognitive processing
of information are capable of resolving several close and temporally overlapping
source configurations. One possibility would be to use automated dipole fitting
methods, such as the one presented in Publication IV.

As our sampling method was limited by somewhat poor mixing of the samples
between different modes of the multimodal posterior distribution, the use of infor-
mation from other imaging methods might improve the performance. In Publica-
tion V, we introduce a novel way to incorporate fMRI information to the modeling
by constructing proposal distributions for the RJMCMC sampling scheme.

Specifically, the fMRI guidance is executed by first projecting the statistical
parametric maps of the fMRI results (see, Fig. 4.1 on page 25) on the source space
(i.e., white-gray matter boundary), then assigning some constant non-zero value
to those locations that do not contain any fMRI activation, and finally normalizing
the distribution to sum up to unity. This can be used as a dipole location proposal
distribution affecting the acceptance ratio of the Metropolis–Hastings part of the
sampling scheme so that the asymmetrically proposed jumps to locations contain-
ing fMRI activation are taken into account in the computations. If the proposed
location is close to such supported by the likelihood of the MEG data, chances are
that the jumps are more often accepted in the vicinity of fMRI activation leading
to improved convergence. Similarly, with the reversible jumps between different
number of dipoles, the fMRI-guide affects the acceptance probability of a new
state via the proposal distribution for the new location parameters.

For a more efficient implementation, we deserted the practice of sampling
the dipole location parameters as spherical angle coordinates with Metropolis–
Hasting and RJMCMC. Slice sampling was still performed equivalently in spher-
ical angle coordinates. More importantly, any kind of proposal distributions can
be used without biasing the MCMC results asymptotically.
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In order to reveal differences with or without the guided sampling procedure
and with small errors in the proposal distribution, we constructed sets of MEG and
fMRI data simulations, corresponding false positive and missing cases of fMRI
detection. The simulated data were also used to examine how much faster conver-
gence is achieved with the fMRI-guide.

We used the same drifting grating stimulus in both MEG and fMRI experi-
ments of three participants. The drifting grating elicits visual responses first at V1
and then extending to movement area V5/MT. For qualitative evaluation of the
accuracy of the obtained fMRI-guided MEG inverse solution candidates, we used
multifocal mapping with fMRI to find out the individual retinotopic areas.

5.4.2 Results

With simulated data, the number of iterations required for convergence was re-
duced (order of 3–5) in comparison to the method without fMRI-guidance (Fig.
5.4). The clustered locations of solution candidates are more disperse with no
fMRI guidance. In some cases, even though the correct fMRI information was
missing, the slightly incorrect fMRI-guide still performed better than no guide
at all. Our results suggest, that small errors or noisy fMRI activations will not
jeopardize the localization as long as the SNR of MEG recording is good enough.

Despite the empirical clustered solutions being rather diffuse, the individual
candidate solution locations coincide with the primary visual areas mapped with
multifocal fMRI and to some extent also the areas close to V5/MT. In addition,
the representative solution candidates produce favorable fits between the measure-
ments and forward calculated fields (Fig. 5.5).

5.5 General discussion

5.5.1 Distributed approaches

In Publication I, the possibility of finding one specific optimal value for the ` p-
norm order p was examined. It was the first time such a model was implemented
although ideas considering different values of p with minimum-norm estimation
have been suggested (e.g., Matsuura and Okabe, 1995; Beucker and Schlitt, 1996;
Uutela et al., 1999; Bücker et al., 2001). Our results show that the optimal value
inferred from the data varies according to such features as the source space grid
discretization size, SNR of the data, and the underlying source configuration.
Thus, the use of some predefined value seems arbitrary. One of the best char-
acteristics of Bayesian formulation and evaluation in this type of model is that the
samples representing the parameter posterior distribution can be used to obtain
point estimates or confidence limits for the parameters of interest. An unfortunate
downside is, that with distributed source estimates the source space has to contain
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at least approximately 3000 discretized points in order to adequately reveal any-
thing other than just major cortical structures. Typically, big grid discretizations
mean more extensive computational demands especially with numerical methods.

In many cases, the value of p was close to 1, suggesting that more focal
sources would optimally explain the measured data. It seems probable that if the
value of p was let to vary below 1, the sampling would still bang the lower limit
and favor as small positive value as possible. This would lead to distributions with
higher kurtosis (i.e., peakedness) favoring solutions in which almost all the source
space points contain no current and very few points yield values from the tails of
the distribution. Unfortunately, this obscure effect of p banging the lower limit of
1 may well be just a manifestation of the properties of the specific model without
any physiological meaning. Also, the optimal ` p-norm order p for the data set
presented in Publication I (close to 1), might not be optimal for a totally different
data set consisting of ten or more widespread activations around the cortex. In
such situations, the model might favor values of p close to 2 and yield estimates
similar to the MNE.

In recent hierarchical generalization of the MNE (Sato et al., 2004), each
source space point is considered to have its own precision parameter. This model
was scrutinized with MCMC and VB approaches in Publications II and III. It
was verified that the hierarchical MNE model results in an effective student t-
distribution for the source currents, favoring focal inverse estimates in comparison
to the traditional MNE. Even though the method produced rather robust estimates
also with empirical data, another major issue calls for attention. The true poste-
rior distribution as revealed by MCMC seems to be multimodal, that is, there are
several possible solution candidates. The traditional MNE is unimodal while the
solution depends of the selected regularization and variance parameters.

Despite that all the technical details in these models are not easily compre-
hended, it is important to the ordinary user to establish an understanding how
specific assumptions and utilized methods affect the inverse estimates and how
the results should be interpreted. For example, as one of the aims was to inves-
tigate the full distribution of solutions, the user of these methods must be careful
not to draw too strict conclusions based on one single point estimate. This is of
special importance as the posterior distribution in Publication II is multimodal
and there are no practical ways so far to present or visualize other than one or two
solution modes at a time. Note, that high multimodality was clearly observed also
in Publications IV and V with the dipolar models.

One surprise with the distributed source current models was the effect that
the grid discretization has on the solution. Naturally, if the number of possible
source locations is decreased to a few hundred points, the accuracy of the esti-
mates is worse than with few thousands of source space points. Even though one
might consider increasing the grid discretization size as a trivial way to improve
localization accuracy, at least two issues need to be considered. First, the com-
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putational load for such a model in which several thousands of parameters are
sampled is unbearable even with fast computers. Secondly, the model assumption
of independent currents would no longer be valid if the neighboring source space
points are very close to each other. Different cortical areas could be correlated
with each other by introducing fMRI data to the model, for instance, or by spatial
priors based on the available neuroscientific knowledge.

5.5.2 Dipole localization

The dipole localization methods in Publications IV and V are computationally
feasible because the underlying sources are modeled with small number of current
dipoles. This reduces the dimensionality of the parameter space considerably from
the distributed current approach. The grid discretization size can be increased
without affecting much of the computational aspects or the inherent properties of
the model, which was not the case with the `p-norm model. The original model
by Jun et al. (2005) and the ones presented in this thesis are rather automatic in
comparison to traditional trial-and-error type of manual ECD fitting. In addition,
the practically impossible task of globally optimizing a large number, say 5–6,
dipoles to a complex data set is alleviated as the number of underlying dipoles is,
in principle, possible to infer from the data by using RJMCMC sampling.

Perhaps the most profound complication emerging with the dipole localization
model was already seen with the hierarchical MNE. The parameter posterior dis-
tribution proved to be highly multimodal. With computationally heavy methods,
such as MCMC sampling, multimodality causes major problems as the sampling
needs to be carried out for a long time before all the modes are visited. In case
the sampling is not optimal some modes might not be visited at all. This leads to
obvious difficulties in making statistical inferences on the parameters. If the dis-
tributions cannot be extensively charted, the conclusions may become unreliable
as some solution modes of the many might not be observed at all. Importantly,
the possibility of false deductions increases if the user is oblivious of the different
aspects involving the interpretation of results.

As the idea with multimodal distributions is to be able to compare the proba-
bility masses of different modes, one might easily tend to believe that introducing
more efficient sampling methods would ease the situation. However, methods for
avoiding local convergence, such as simulated annealing or parallel tempering,
may only cause unnecessary complexity to otherwise straightforward sampling.
In our experience, they possibly only marginally improve the results. A more sen-
sible remedy would be to make the model itself better by measures that may help
to smooth the multimodal posterior distribution.

To the fact that our dipole sampling is still hampered by the multimodality of
the posterior distribution, loosening the rigid orientation constraint (e.g., Lin et al.,
2006a) could prove to be useful. Based on preliminary examinations with loose
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orientation constraints, in which the orientations of dipoles are allowed to slightly
vary of the perpendicular with respect to the cortical mantle, the localization er-
ror caused by slight inaccuracies in the alignment of MRI and MEG coordinate
frames seems to diminish (Auranen et al., 2006). Furthermore, as the posterior
distribution is highly multimodal and contains spiky local modes, the loose orien-
tation would implicitly smooth down the posterior distribution between adjacent
points and that way improve the mixing properties of the sampling as it is.

With these models the researcher is, for the time being, forced to look at clus-
tered solutions of different modes and some representative modes and make de-
ductions of the underlying neural activity based on these. On the grounds of our
empirical results and simulations presented in the publications this is, however,
a practicable way of studying the brain activations. On the other hand, by per-
forming dipole analysis the user must remember that several assumptions, such as
using few point-like sources to represent all brain activations, are made already
in choosing the model. This may be feasible in such a situation when there is
strong prior knowledge that few focal sources should emerge from a certain type
of stimulus presentation. With a more complex and “unknown” research question
in mind, distributed source estimates might give at least a better starting point for
interpreting the results.

With the dipole localization models the source space discretization size could
be increased without adding to the computational cost. This would give a better
specificity on details of the cortical white-gray matter boundary, and thus also im-
prove localization accuracy of the dipolar sources. The proposed speed-up and
regularization resort based on the SVD decomposition of the gain matrix, how-
ever, becomes heavy to compute if the dimension of the source space increases.

The speed-up strategy is needed for making the sampling scheme feasible for
studies of several subjects and long data blocks. It is credible to use the SVD
speed-up strategy given that nearby sensors measure at least partially the same
phenomenon and some redundancy is present with the data. Nonetheless, the
question of how much information is lost in this process remains partially open
and more thoughtful surveys on this issue are required.

In Publication IV, the use of fMRI data for creating a proposal distribution
for the reversible jump and Metropolis–Hastings parts of our MCMC sampling
method was suggested. This seems to be one alternative to improve the limited
mixing properties leading also to faster convergence, albeit the best results were
achieved with simulated data. Despite this, it seems that slightly false fMRI acti-
vation does not mislead the sampling as long as the data is clearly visible in the
MEG sensors. Conversely, our MEG simulations suggest that in case of low SNR,
the correct fMRI-guidance is of help. One desirable feature of using proposal
distributions with RJMCMC is the fact that it does not invalidate the theoretical
considerations of MCMC. Thus, any type of proposal distribution may be used.

As a fresh idea, one might use researcher defined proposal distributions in
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which the existing neuroscientific knowledge is used to weight the proposal dis-
tribution. Another way might be to create a beamformer (e.g., Hillebrand and
Barnes, 2003) style simple MEG data driven proposals, in which one dipole is
“scanned” through the source space to form a proposal distribution based on the
measurements. This is justifiable as in MEG particularly the underlying activa-
tions are located typically right beneath the sensors in which activity can be seen
(not necessarily in EEG). Data driven proposal distributions might be useful in the
absence of fMRI data in particular.

Based on the results presented in these publications, it seems that the most
difficulties are encountered in analyzing complex experimental data. The back-
ground brain activity (i.e., brain noise) might still influence the measured fields
even with a large number of averages. With such a delicate forward model, in
which considerable changes in the source currents may be propagated to either
small or large changes in the measured fields, the background activity might cause
some unexpected traits to the source estimation task. If a suitable prior for the
background brain activity was constructed, a more robust examination of the un-
derlying cortical processes might be possible. This could enable higher-level com-
parison of the fundamental level processes without the nuisance of unexplained
background brain activity.

5.6 Future work

After the unwanted effects caused by the multimodality of the posterior distribu-
tion are suppressed, other challenges in future modeling considerations become
apparent. One issue is how to calculate and visualize confidence limits and other
standardized measures from the sampled representation of the posterior distribu-
tion. This will allow better conclusions based on various statistical aspects of the
parameters and solutions given by the models. This is also extremely important
for the practical user of the source estimation methods. Another issue is the incor-
poration of fMRI information also in a more profound manner than just a proposal
distribution for the sampling scheme.

Recently, there have been advances in performing EEG measurements inter-
leaved with fMRI scans (e.g., Bonmassar et al., 2001), while measuring EEG si-
multaneously with MEG has been a routine task for some time already. With
clever experimental designs, similar conditions could be made in MEG/EEG and
fMRI/EEG, with EEG used for validating the interchangeability of the two exper-
imental environments. As no fundamentally correct way of combining fMRI and
MEG exists, this might serve as a way to truly integrate MEG and fMRI mea-
surements. It is noteworthy that also EEG data by itself with the presented MEG
inverse models might prove to be helpful.

Such automatic dipole fitting methods as the ones considered in this thesis
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localize static dipoles, so that the actual sources are not assumed to move on the
cortex. However, there is increasing interest also to dynamic models in which
the sources themselves can move. Some recent ideas, for example, are based on
the interpretation that dynamic nature of MEG sources prevents averaging nor-
mally used in the preprocessing phase. In these, Bayesian filtering (i.e., particle
filters) is employed, particularly suitable for spontaneous MEG data (e.g., So-
mersalo et al., 2003). One of the future goals is to pursue true dynamics in the
models as this might also help to understand the behavior and separation of the
brain noise from the activations associated with sensory stimulation and intrinsic
cognitive processes.



Chapter 6

Summary

In this study, novel ideas and improvements to the inverse estimation of neu-
romagnetic sources were presented using computational methods and Bayesian
data analysis. Both anatomical and functional MRI data were used in the model-
ing. The empirical experiments and simulations performed for testing the models
were tightly connected to real neuroscience data. All the proposed methods are
relatively automatic and require little or no manual intervention, although a good
understanding of the properties of the models involved is needed in order to avoid
false interpretations by the ordinary user. Whereas the sampling of the distributed
source current parameters may be computationally overly intensive, the sampling
of location and number of dipolar sources seems as a good alternative to this. The
performance of the dipole localization with MCMC, however, is deteriorated by
the presence of an apparently highly multimodal parameter posterior distribution.
Even with additional prior information from fMRI measurements in guiding the
algorithm, the dipole sampling seems to have somewhat limited mixing properties.
In our experience, it appears unlikely that trying to improve the sampling method
as it is will be successful. Loosening the strict orientation constraint instead or
utilizing other ways for smoothing the spikedness and multimodality of the pos-
terior distribution might be much more fruitful in future endeavors. It will also be
extremely important to develop the visualization of the distribution of solutions
for making the interpretation of results easier for the user.
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