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Abstract—In this paper, we consider the manifold separation
technique (MST), which stems from the wavefield modeling
formalism developed for array processing. MST is a method for
modeling the steering vector of antenna arrays of practical interest
with arbitrary 2-D or 3-D geometry. It is the product of a sampling
matrix (dependent on the antenna array only) and a Vandermonde
structured coefficients vector depending on the wavefield only.
This allows fast direction-of-arrival (DoA) algorithms designed for
linear arrays to be used on arrays with arbitrary configuration. In
real-world applications, the calibration measurements used to de-
termine the sampling matrix are corrupted by noise. This impairs
the performance of MST-based algorithms. In particular, we study
the effect of noisy calibration measurements on subspace-based
DoA algorithms using MST. Expressions describing the error in
the DoA estimates due to calibration noise and truncation are
derived. This allows predicting the performance of MST-based
algorithms in real-world applications. The analysis is verified by
simulations. We established a link between the optimal number of
selected modes and the statistics of calibration noise. We analyze
the modeling error when MST is used for 1-D (azimuth) DoA
estimation.

Index Terms—Calibration measurement noise, direction-of-ar-
rival (DoA) estimation, effective aperture distribution function
(EADF), error analysis, manifold separation technique.

I. INTRODUCTION

I N array signal processing, it is often convenient to work with
arrays having a steering vector matrix with a Vandermonde

structure. For example, this allows using fast direction-of-ar-
rival (DoA) estimators designed for uniform linear arrays
(ULA) such as root-MUSIC (MUltiple SIgnal Classification),
root-WSF (Weighted Subspace Fitting) [2], [6] [3], [5], and
RARE (RAnk Reduction Estimator) [19]. Similarly, for uni-
form rectangular arrays (URAs), there exist computational
efficient DoA estimation algorithms [23].

Techniques such as array interpolation [2]–[5] and
beamspace transform [6], [7] have been developed in order
to map the steering vectors of any planar array onto steering
vectors of a ULA-type array called the virtual array. These
preprocessing techniques often introduce mapping errors [4]
that cause bias [3], [7] and excess variance [8] in the DoA
estimates. Hence, the estimates are not statistically optimal.
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Here, we consider an alternative approach to this class of
problems. We exploit the wavefield modeling formalism for
array processing [13]–[15] in order to describe the manifold
separation technique (MST) [9]–[16]. Wavefield modeling is
based on the idea that the signal-dependent part of the array
output can be rewritten by an array sampling operator, operating
on the impinging wavefield. Using this approach, the steering
vector of an arbitrary array can be modeled as the product of
a characteristic matrix describing the array itself (sampling
matrix) and a vector with a Vandermonde structure containing
the unknown angular parameter (coefficient vector).

MST allows polynomial rooting-based techniques such as
root-MUSIC and RARE to be applied with arbitrary 2-D or 3-D
array configurations of practical interest [9]–[11], [13], [16]. In
contrast to interpolation and mapping techniques, MST does not
require any division into angular sectors [2], and it can provide
a significantly smaller fitting error over the whole 360 cov-
erage area [10]. Furthermore, MST allows processing the data
recorded by the array directly in element space [9]. Hence, no
transformation or interpolation of the data is required, and map-
ping errors [3], [4], [7] can be avoided.

We consider a practical approach (based on a discrete Fourier
transform) for computing the sampling matrix from array cali-
bration measurements. The calibration data contains informa-
tion on array nonidealities, such as mutual coupling, antenna
manufacturing errors, sensors orientation, and position.

Calibration data are always corrupted by measurement noise.
In order to reduce the impact of this noise on the MST, we use
a truncated version of the sampling matrix, known as effective
aperture distribution function (EADF) of the array [9], [10],
[17], [18], [21]. A criterion for selecting the dimension of the
EADF is presented, and a link between the optimum number of
selected modes and the calibration noise power is established.

The influence of antenna array model mismatch on DoA es-
timation error has been analyzed in several papers (see [3], [4],
[7], [24], [28], and references therein). In this paper, we ana-
lyze the error due to calibration noise in the modeling of the
array steering vector when MST is used. This error causes an
error floor in the DoA estimates, which can dominate over the
(random) error due to observation noise and finite sample ef-
fects [3], [24].

We derive a closed-form expression for the error in DoA esti-
mates due to calibration noise, assuming the true array manifold
is known. In a second step, we derive an approximate expres-
sion for the mean square error (MSE) assuming that the cali-
bration noise is random. This is of particular interest in practice
because it depends only on quantities that are known or com-
putable in real-world applications. Based on the developed anal-
ysis, it is possible to predict the performance limit achieved by
subspace-based algorithms using MST. For the error analysis,
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we have used the element-space (ES) root-MUSIC algorithm
[9], [10]. The results are verified by extensive simulations.

Throughout the paper, we assume that the noncoherent
narrowband sources are located at the same (known) elevation
angle. Hence, we consider 1-D (azimuth) angular estimation.
An extension considering also the estimation of the polarization
of the sources can be found in [11].

This paper is organized as follows. First, the signal model is
defined, and the key assumptions are stated. In Section III, we
give a brief overview of the conventional wavefield modeling,
and we introduce the MST. In Section IV, we extend the MST
by introducing the concept of EADF. In Section V, the ES-root-
MUSIC algorithm is presented. In Section VI, we describe the
impact of noisy calibration data on the EADF. In Section VII,
an analysis of the calibration noise impact on DoA estimates is
given, and expressions for computing the error are derived. In
Section VIII, we verify the proposed error analysis by means of
simulations. Finally, Section IX concludes the paper.

II. SIGNAL MODEL

Unless explicitly stated, we assume to have , possibly
coupled, sensors forming a 2-D or 3-D antenna array with an
arbitrary geometry. Each element has its individual directional
characteristic. For convenience, we define the origin of the
coordinate system to be at the centroid of the array. Note that
in practice the centroid is defined by the calibration setup.

The co-elevation angle is measured down from the axis
(assumed to be fixed at 90 ), and is the azimuth angle
(unknown parameter) measured counterclockwise from the
axis in the – plane.

There are noncoherent narrowband signal
sources on the – plane, impinging an array from di-
rections , where is the azimuth
angle. Furthermore, we assume that snapshots are ob-
served by the array. Let us define the array steering matrix

, using the steering
vectors .
The array data matrix may then be written as

(1)

where is the signal matrix with rank ,
and contains the observation noise. The noise is
modeled as a stationary, second-order ergodic, zero-mean, spa-
tially and temporally white circular complex Gaussian process.

III. WAVEFIELD MODELING AND MANIFOLD SEPARATION

Here, we give a brief overview of wavefield modeling
[13]–[15]. This forms the theoretical basis of our contribution.
We will use it for justifying and explaining several aspects of
the proposed array modeling technique based on the EADF.

We assume that the wavefield is generated by a far field source
only (plane wave assumption) and that the sampling operator is
linear, smooth and continuous. Note, the latter conditions are
not restrictive because they are satisfied by real-world (phys-
ical) antenna arrays [13]. Furthermore, at this stage, we consider
an array formed with omnidirectional sensors. This assumption
does not restrict the generality of the discussion and the results

can be extended to the case of directional sensors, as shown in
[13].

Based on the model in [12], we write the th element of the
array manifold for arrays with arbitrary configuration having
omnidirectional sensors as

(2)

where is the wavenumber, is the angular
frequency, and is the propa-
gation delay associated with the th sensor and a wavefront
impinging from direction . Here, is the distance from the
centroid of the array and is the angular position (counted
counterclockwise from the axis) of the th array element in
polar coordinates.

By using the Jacobi–Anger expansion [20], we can mathe-
matically express (2) as [12], [13], [16]

(3)

where defines
the th element of the sampling matrix and,

is the Bessel function of the first kind of order . Note,
depends on the array configuration only, and it is

independent from the wavefield (in particular from ).
The idea of wavefield modeling is to write the signal-depen-

dent part of the array output in (1) as the product of a sampling
matrix (independent from the wavefield) and a coefficient
vector (independent from the array) [13], [14]. Conse-
quently, by writing (3) in matrix form, we can express the key
concept of MST by

for (4)

In case of 1-D (e.g., azimuth) estimation, the th component of
is

for (5)

For the 2-D (azimuth and elevation) estimation problem,
may be expressed using spherical harmonics [13],

[22].
Note that for a given antenna array, the MST can perfectly

model the array steering vector for only
by using an infinite1 number of Fourier coefficients [see (4)
and (5)]. However, this condition can be relaxed. In practice,
the sampling matrix may be truncated by considering only a
finite number of excitation modes [9], [10]. Ideally, the re-
sulting truncation error can be made arbitrarily small, only by
increasing the number of modes.

1In [13], the sampling matrix is introduced as an operator, which operates on
functions belonging to an infinite dimensional Hilbert space H so that G :

H ! . The operatorG can also be interpreted as a matrix withN rows
and an infinite number of columns.
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For example, in [12], [13], and [16], it is proposed to trun-
cate the coefficient vector at , where is the
radius of the smallest circle centered at the origin of the array
and enclosing all the physical components. In Section VI-A-1),
we propose a different criterion based on practical observations.
In order to minimize the modeling error, a larger number of
excitation modes should be selected [10]. This leads to a
smaller array manifold reconstruction error and, consequently,
to a smaller error in the DoA estimates.

IV. EFFECTIVE APERTURE DISTRIBUTION FUNCTION

A practical approach for the determination of the sampling
matrix starting from the calibration measurement of an an-
tenna array is here presented. For simplicity, we restrict the fol-
lowing discussion to arrays formed by uncoupled and omnidi-
rectional sensors, and we assume noise-free calibration data.
However, this does not limit the generality of the discussion.

The response of an antenna array to a far-field source can
be modeled by measuring the directional characteristic of the
array in an anechoic chamber. Let us define the set of calibration
points , where is the
number of calibration points.

We may measure the array response to a far-field source
by moving the source around the array at a

fixed co-elevation angle, e.g., at 90 in the azimuthal range
. Alternatively, the same result can be obtained

by fixing the source location and rotating the array about its
centroid. This creates a discrete set of measured points (along

), which represents a discrete -periodic function in .
Combining the measurements of an elements antenna

array into a matrix, we can form the calibration matrix
. Note that is

assumed to have full row-rank if for .
By computing the -point inverse discrete Fourier transform

(IDFT) of the -periodic discrete set of measured points and
using (3), we can express the th row of as

(6)

where with and .
Expression (6) describes a -periodic signal comprised of two
terms. The first term defines the th element of the sam-
pling matrix in (3). The second term describes
the set of, infinite many, replicas of the first term due to the an-
gular sampling of the array manifold during calibration. The th
replica is shifted by from the principal term (at ).

From (6), we observe that since ,
the magnitude of the sampling matrix (the prin-
cipal term) is an even function of . Moreover, as described in
[13], its magnitude decays superexponentially as the number of
modes . Consequently, when the number of calibra-
tion points is chosen sufficiently large , the replicas
are far apart, and the aliasing in the area of interest is negligible.

Considering the -points periodicity of (6), we define the
EADF matrix as

(7)

for and .
The variable denotes the excitation mode index of the EADF.
Consequently, we can rewrite (4) as

for (8)

where contains the modeling error due to
aliasing and . Observe, as ,
the norm of the aliasing error . Practically,
for a sufficiently large , the matrices and carry the
same information [13], [18], [21].

Due to the superexponential decay of the magnitude of the
sampling matrix [13], the contribution of modes with a suf-
ficiently high index (within a period) to the array man-
ifold reconstruction is negligible. Hence, a truncated version

of the EADF matrix can be defined as

(9)

for and , where
and .

As a result, we can rewrite (3) using a finite number of exci-
tation modes (Fourier coefficients) as

(10)

where contains the mod-
eling error due to aliasing and truncation . Com-
bining (4), (8), and (10), we rewrite the MST principle

for (11)

where the Vandermonde vector is of the form

(12)

Observe that for sufficiently large , the error due to truncation
dominates, i.e., . In the following, we assume that
a sufficiently large number of calibration points have been mea-
sured, such that . For more detail
and numerical evaluation of the error, see [10] and [13].

However, this does not apply in a real-world scenario where
the calibration data always contain measurement noise and
cannot be arbitrarily chosen. In Fig. 1, we compare the EADFs
computed from simulated calibration measurements with and
without noise. For noise-free calibration data, the error floor is
determined by the computational accuracy of the used computer
(IEEE-754, 64-bit float). Otherwise, the perturbed EADF (com-
puted with noisy calibration data) saturates at the measurement
noise error level. Clearly, there is a link between the calibration
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Fig. 1. Ideal and real-world EADFs computed from Q = 360 simulated and
calibration points, respectively. The measurement noise level � limits the
maximum number of usable modesM . The truncated EADF is within the trun-
cation boundaries.

noise power and . In Section VI-A-1), we present a criterion
for selecting the optimum number of modes for a given cal-
ibration signal-to-noise ratio (SNR).

The MST expression in (11) has a useful property. It can be
algebraically differentiated. In fact, since the EADF vector
( th row of ) is independent from the unknown angular pa-
rameter [13], the derivative of the th sensor beampattern with
respect to can be expressed as [15], [17], [18]

(13)

This will be exploited in Section VII.

A. Discussion

Let us consider the theoretical case of noise-free calibra-
tion data of a real-world array. Every sensor has a unique
beampattern that is influenced by the neighboring sensors,
i.e., mutual coupling. Performing calibration measurements of
the whole antenna array implies that the th measured beam-
pattern is influenced by the other array elements. Moreover,
the calibration data contains also array nonidealities, such as
antenna manufacturing errors, and orientation and position of
the sensors. A comparison between the EADF of an ideal and
real-world array can be found in [8].

In (7) and (9), the matrices and have the same
number of rows but different number of columns, i.e.,
or , respectively. The EADF and truncated EADF
matrices represent a reduced version of the sampling matrix.

Let us consider the th row of each of the above matrices,
defined by and , respectively. is an
aperiodic discrete function having an infinite support, can
be understood as a -periodic discrete function and, within a
period, is an -points truncated version of . The
sampling matrix contains the full description of the array.
By choosing and properly, the matrices and also
contain a sufficiently accurate description of the antenna array
under investigation.

V. ELEMENT-SPACE ROOT-MUSIC

Here, we briefly present the ES-root-MUSIC algorithm. It
allows azimuthal DoA estimation of noncoherent sources at a
fixed elevation angle on arbitrary array configurations [9], [10].
The algorithm does not require interpolation or mapping of the
array data matrix. Assuming the true array manifold is known,
for uncorrelated sources and no finite sample effects, it is an un-
biased estimator [24]–[26]. This motivates the use of ES-root-
MUSIC in order to study the impact of the calibration measure-
ment noise on the DoA estimation; see Section VI.

It is important to remember that in a real-world radio
systems, the maximum SNR is mainly limited by the
transmit power and the receiver noise. Whenever the SNR

, the residual modeling error can be
neglected and (11) still holds. In other words, if the error floor
caused by is much smaller than the variance of the DoA
estimates at the highest achievable SNR, the modeling error

can be neglected.
Therefore, combining (1) and (11), we can write

(14)

where is a matrix formed as
and are the true DoAs of the sources.

Here, is the truncated EADF matrix defined in
Section IV.

The element-space covariance matrix can be expressed by

(15)

where is the identity matrix, is the signal
covariance matrix, and the matrices of eigenvectors and
span the signal and the noise subspaces,
respectively. The key idea used in the derivation of ES-root-
MUSIC is that , and span the same subspace. Con-
sequently, is orthogonal to [10].

Exploiting MST, we can express the pseudospectrum of ele-
ment-space MUSIC for arrays of arbitrary geometry as [10]

(16)

which allows applying fast polynomial rooting algorithms in-
stead of exhaustive search, e.g., root-MUSIC [1], [25]. By sub-
stituting into the Vandermonde structured vector

, (16) can be rewritten in polynomial form.
The azimuth estimates are computed from the argument of

the roots closest to the unit circle, i.e., . A
summary of the ES-root-MUSIC algorithm is given in Table I.
Note, the matrix is formed offline, and it needs to be com-
puted only once for a given antenna array.

So far, we have assumed a large number of observations
( and are known) and noise-free calibration data.
In the next section, we study the effect of modeling error due
to noisy calibration data on the DoA estimates, i.e., when the
orthogonality between and is impaired.

VI. EADF PERTURBATION IMPACT ON DOA ESTIMATES

In this section, we focus on the MST when an estimated
EADF computed from noisy calibration data is used. In par-
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TABLE I
ES-ROOT-MUSIC ALGORITHM

ticular, we investigate the impact of the noise recorded during
the array calibration measurement on the DoA estimates. We
assume that the angular estimates are found by the ES-root-
MUSIC algorithm; see Section V.

Let us model the perturbed EADF as

(17)

where is the ideal (calibration error-free) EADF
matrix, and contains the calibration measurement
noise. The noise is modeled as a zero-mean, independent and
identically distributed (i.i.d.) circular complex Gaussian process
with variance .

Combining (8), (11), and (17), and considering only the mod-
eling error due to a truncation down to modes, we can express
the perturbed array steering vector as

(18)

where is an block of the matrix . Equation (18)
is comprised of three terms. The first is the ideal MST using
a calibration noise-free EADF matrix. The quantities and

represent error terms depending on the calibration noise
and the truncation error, respectively.

In the next sections, we investigate the impact of these error
terms on both the EADF and the MSE of the DoA estimates.
Illustrative examples are here presented.

A. Dependence on the Truncation Error

Let us fix the calibration noise power and focus on the
effects due to truncation error. This situation is close to reality,
particularly when only one set of calibration measurements is
available and the system designer has to choose the optimum
number for .

In Fig. 2(a), we depict an ideal (noise-free) and perturbed
(noisy) EADF. Here, we also plot three possible choices of se-
lecting the number of modes . For the simulation, we have
used an uniform circular array (UCA) with sensors, ra-
dius , and EADF-to-calibration noise ratio (ENR)
80 dB. The ENR is defined as ENR , where and

define the true EADF and calibration noise powers for
the th sensor; see also Section VI-A-2).

In Fig. 2(b), we show the impact of on the root mean-
square error (RMSE) of the estimates. For a fixed value of the
ENR, each curve has a minimum representing the minimum

Fig. 2. In (a), different truncation boundaries forG are depicted. WhenM =

11 (too small), useful information is discarded. If M = 31 (too large), we
consider modes which are corrupted by calibration noise. In (b), the estimated
RMSE using ES-root-MUSIC is shown. For a fixed value of ENR, by increasing
M , the error decreases to a minimum value. Hence, by further increasingM ,
the RMSE slowly increases due to the calibration noise in the EADF.

achievable error in that scenario, e.g., for ENR
80 dB. Consequently, there is an optimum number of modes

, which minimizes the antenna modeling error. For these
simulations, we used two uncorrelated sources at
25 45 , observation noise-free data, an 8 elements

UCA with , and 1500 independent realizations of .
1) Selection of the Number of Modes: As described in [10],

ideally can be selected such that . However,
due to calibration noise, we have a smaller selection range

, where is the highest
mode order having a magnitude larger than the calibration noise
variance ; see also Table I.
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Given a perturbed EADF computed from noisy calibration
data, the following rule of thumb can be used: the optimal
number of modes , which minimize the modeling error, is
given by the number of modes having a magnitude larger than
the calibration noise level. This criterion is also confirmed by
the following observations.

Choosing leads to a gradual increase of the RMSE,
because those additional modes are severely degraded by cali-
bration noise. This also means that the term dominates over

; see (18). Conversely, by selecting , the RMSE
increases due to truncation error.

2) Advantages of Truncation: Truncating the perturbed
EADF to having modes has two main effects.
First, it reduces the amount of data that we have to store [17].
Second, it improves the accuracy of the array data model
approximately by a factor of in ENR.

In fact, by using Parseval’s theorem, we can write the ENR
of the perturbed EADF for the th sensor as

ENR (19)

where is the th element of the true EADF matrix.
Furthermore, since the magnitude of the ideal EADF decays
superexponentially for modes in the range [13],
we may truncate the ideal EADF at modes and approx-
imate . Therefore, the ENR
of the truncated perturbed EADF is

ENR

ENR (20)

For a fixed number of selected modes , the larger is the
number of calibration points , the higher ENR we get. This
is an advantage of MST/EADF-based techniques over methods
that perform array manifold interpolation directly using the
calibration data.

B. Dependence on the Calibration Noise

Now, we consider to fix the truncation error level (by selecting
), and we investigate the impact of the calibration noise power

on the RMSE of the DoA estimates.
In Fig. 3(a), we depict an ideal (noise-free) and perturbed

(noisy) EADF in four different ENR scenarios. Let us focus on
the mode indexes , i.e., . Clearly, the
impact of the calibration noise on the considered modes reduces
as the ENR increases.

In Fig. 3(b), we show the impact of the calibration noise on
the DoA estimates. By fixing and increasing the ENR, we can
observe that the RMSE decreases until it reaches an error floor.
For example, for , the curve saturates at ENR 60 dB.
This means that for an ENR 60 dB, the term dominates
over the truncation error. On the other hand, for ENR 60 dB,
the term dominates and, since is fixed, the error on the
DoA estimates remains constant. The following settings have
been used in the simulation: UCA with , radius ,

Fig. 3. In (a), comparison between the ideal (noise-free) and real-world (noisy)
EADFs. By increasing the ENR, the influence of the calibration noise on the
M = 21 selected modes fades. In (b), the estimated RMSE using ES-root-
MUSIC is shown. The error decreases as the calibration noise decreases (and
ENR increases) until it reaches a saturation floor. The error floor depends onM
through the truncation error, and it decreases asM increases.

25 45 , observation noise-free data, and 1500
independent Monte Carlo trials.

VII. ERROR ANALYSIS

Let us assume the calibration noise model defined in
Section VI. Here, we present an analysis of the error in the
DoA estimates due to calibration noise and truncation. Note
that the following analysis is carried out under the assumption
of noise-free observations.

For the analysis, we use ES-root-MUSIC [9], [10]. The esti-
mates are given by the smallest local minima of the quadratic
expression

(21)

where spans the true noise subspace,
is a truncated version of the estimated EADF, and

is the Vandermonde structured vector in (12),
which depends on the unknown parameter . For a discussion
of large sample properties of MUSIC and root-MUSIC, see
[25]–[27].

Note that, in order to simplify the notation, we will write
as and as from now on.

A. Single Calibration Measurement

Let us construct the calibration matrix by mea-
suring a given antenna array. We form the matrix
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by truncating the IDFT of the calibration data
down to modes; see Section VI-A-1).

Observe that and depend on a particular
realization of the calibration noise .

Rewriting (21) as , we can find
an expression for the error caused by . We expand the first-
order derivative of with respect to and evaluate it at .
For small enough errors, we can write [7], [24]

(22)

where and are the true and estimated DoA for the th
source, respectively, and . More-
over, let us define the vector as

(23)
and, similarly, . Here, denotes a diag-
onal matrix formed from the elements within the brackets.

The first derivative of in (21) with respect to is

(24)

where denotes the real part of the expression within
the brackets. Similarly, the second derivative

is

(25)

Combining (22), (24), and (25), we can establish a relationship
between the errors in the calibration data and in the DoA esti-
mates, when MUSIC is used. A closed-form expression for the
error at can be written as in

(26)

By observing (26), the following consideration can be made.
a) The term is a measure of the orthogonality be-

tween the true noise subspace and the modeled array
steering vector ; see (18). For a fixed , increasing
the ENR causes and . The
quantity represents the error in orthogonality and
it defines the error floor as depicted in Fig. 3. Then, by se-
lecting and . As a result
the following expression holds:

(27)

This also ensures that the modeling error caused by using
MST is zero if a perfect model for the antenna array is
used.

b) For the term , we can observe that

(28)

Fig. 4. Comparison between the estimated and computed RMSEs by using
ES-root-MUSIC and (30) with (� ; � ) = (25 ; 45 ). In (a), the error de-
creases as the calibration noise decreases (and ENR increases). The error floor
is due to the truncation ofG toM = 21modes. In (b), using an ENR = 80 dB,
the minimum of the curve defines the optimum number of modes M = 21.
In both cases, the estimated RMSEs are well approximated by (30).

It converges to a constant value. It can be seen as the rate
of change of about the true DoA.

c) From (a) and (b), we also note that for large enough ENR
and and the following inequality holds:

(29)

The second term in the denominator of (26) dominates.
As a result, (26) can be reduced into the following expression:

(30)

In order to verify the approximation (30), we have considered
independent realizations of the calibration noise

for each SNR. We have compared the estimated (see Section VI)
and computed RMSEs of the DoAs using ES-root-MUSIC and

, respectively. In Fig. 4, we show
that (30) well describes the error either as a function of ENR or

. In the simulations, we have used two uncorrelated sources
at 25 45 , a UCA with , and
observation noise-free data.

Observe, from an application point of view, (30) is not very
practical. It requires the knowledge of the span of the noise sub-
space . The key idea in the next section is to drop this de-
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pendency by deriving an approximate closed-form expression
of the MSE due to calibration noise.

B. Multiple Calibration Measurements

Let us consider measuring an infinite number of times a given
antenna array with the same calibration setup (SNR, antennas
positions, etc.). This scenario can be modeled similarly to
Section VI, but now and are all random
quantities depending on the calibration noise .

Here, we derive an approximate expression of the MSE due
to calibration noise, which depends only on quantities that are
known or computable in real-world application, such as the
perturbed EADF , the calibration noise power , and the
number of selected modes . This is of interest in practical
applications because it allows us to compute the performance
limit achievable by using a perturbed EADF (computed from
real-world calibration data) as a model for the antenna array.

As discussed in Section VI, the modes of the noise-free
and noisy EADFs with magnitude larger than the mea-
surement noise level are dominated by their expected
value; see also Figs. 2 and 3. Consequently, selecting
modes and assuming , the approxima-
tion holds [29]. In other words,
the rates of change of these functions are similar; see also
Section VII-A, consideration b.

As a result, we express the approximate MSE of (30) as

(31)

Here, stands for expected value with respect to . Fol-
lowing the derivation in Appendix I, an approximate close-form
expression of the MSE can be written as

(32)

where is the perturbed noise subspace defined in (38).
In Fig. 5, we compare the estimated RMSEs and computed

from ES-root-MUSIC and (32), respectively. Recalling the dis-
cussion in Section VI-B, we can observe that expression (32)
approximates the RMSE well, when the term dominates
the error in the perturbed .

In the simulations, we have used two uncorrelated sources at
25 45 , a UCA with , and ob-

servation noise-free data. Similarly to Section VII-A, we have
used 1000 independent realizations of for each ENR to es-
timate the RMSE of ES-root-MUSIC. For the computation of
(32), the error floor estimate shown in the same figure, we have
used a single realization for each ENR value.

VIII. SIMULATION RESULTS

In a real-world scenario, the array calibration measurements
are always corrupted by noise. Consequently, the ideal (nonper-

Fig. 5. Comparison between the estimated and computed RMSEs by using
ES-root-MUSIC and (32), respectively. The proposed closed-form expression
well estimates the saturation floors due to the truncation error. In (a) and (b), the
behavior of sources at (� ; � ) = (25 ; 45 ) is shown.

turbed) EADF matrix is always an unknown quantity. Here,
we have simulated an ideal and perturbed version of the EADF
according to the model defined in (17).

In order to verify the accuracy of the proposed error analysis,
we compare the expressions in (30) and (32) with the statistical
performance of ES-root-MUSIC. Note that both modeling er-
rors and finite sample effects are here considered.

In particular, we have used an UCA with elements
and radius measured by uniformly taking
calibration points in with an ENR 50 dB. The
resulting noisy and ideal EADFs are similar to the ones depicted
in Fig. 1. We have used 1000 independent realizations of and

. The perturbed EADF is then constructed by truncating at
modes. The simulation has been carried out consid-

ering two uncorrelated sources at 25 45 , and
256 observations. Note that (32) has been evaluated using

a single realization for each SNR value.
From Fig. 6, we observe that, even if the MST uses a per-

turbed and truncated version of the EADF, for SNRs 32 dB,
the finite sample effects dominate over the antenna modeling
error. As a result, the statistical performance of the ES-root-
MUSIC algorithm is close to the Cramér–Rao bound (CRB) [9].

On the other hand, when SNRs 32 dB the modeling error
dominates over the observation noise and finite sample effects
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Fig. 6. Comparison between the RMSEs of the DoA estimates using the
ES-root-MUSIC and the proposed error analysis. The proposed expressions in
(30) and (32) well estimate the error floor due to modeling error. In (a) and (b),
simulation results for sources at (� ; � ) = (25 ; 45 ).

TABLE II
NUMERICAL EVALUATION OF THE ERROR FLOORS IN FIG. 6 COMPUTED

BY USING ES-ROOT-MUSIC, (30) AND (32). THE FLOOR IS

WELL APPROXIMATED BY BOTH OF THE PROPOSED EXPRESSIONS

errors. The statistical performance of the DoA estimates satu-
rates. We observe that both expressions (30) and (32) predict
the error floor due to modeling errors well.

Note, since the proposed expressions in (30) and (32) are de-
rived under observation noise-free assumptions, they do not de-
pend on the SNR of the sources. From Fig. 6, an interesting ob-
servation can be made: The intersection of the CRB and either
one of the curves in (30) or (32) defines the operational area of
any subspace-based algorithms using MST with the considered
array configuration.

A numerical evaluation of the error floor in the DoA esti-
mates using ES-root-MUSIC algorithm and the expressions in
(30) and (32) is given in Table II. The proposed analysis accu-
rately describe and predict the error due to calibration noise and
truncation of the EADF.

IX. CONCLUSION

In this paper, we considered the manifold separation tech-
nique (MST). We described a practical approach for performing
MST through the computation of the EADF. This is based on
the IDFT of array calibration data. The proposed preprocessing
techniques allow fast direction-of-arrival (DoA) algorithms de-
signed for linear arrays to be used on real-world arrays with ar-
bitrary configuration.

In the first part of this work, we have studied the effect of
noisy calibration measurement on both the EADF and the MSE
of the DoA estimates. A criterion for selecting the optimum
number of modes has been proposed, and a link between
the number of selected modes and the statistics of the calibra-
tion noise has been established.

We have analyzed the impact of using a perturbed EADF with
MST. The perturbed EADF introduces a modeling error that
limits the statistical performance of subspace-based DoA esti-
mation algorithms. Two closed-form expressions describing the
error floor have been presented. The latter expression is of par-
ticular interest in practical applications because it depends only
on quantities which are known or computable in real-world sce-
narios.

Based on the proposed analysis, it is possible to predict the
performance achievable by subspace-based algorithms using
MST with noisy calibration data. This may also be done of-
fline. Simulation results showing the accuracy of the proposed
analysis have been presented.

APPENDIX I
DERIVATION OF (32)

By expanding the numerator of (31) and considering (27) and
(28), we can write

(33)

In (33), we have considered that since , the
following inequality holds:

(34)

By defining the noise subspace projector , (33)
can then be rewritten as

(35)

where

(36)
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Here, denotes the vector operator, and and
stand for transpose and conjugate, respectively.

Combining (31), (35), and (36), and since , we
can express the approximated MSE by

(37)

Let us denote the perturbed noise subspace by
. This quantity can be computed by eigenvalue

decomposition of the perturbed covariance matrix

(38)

From (27), we note that asymptotically (ENR and )
and spans the same space. Similarly to (31), assuming

, the approximation
also holds [29]. By using this approximation in

(37), we get the same as in (32).
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