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LIST OF SYMBOLS AND ABBREVIATIONS 

 

Roman letters 

A1   Contact area of the embedded cable 

C   Torsional rigidity of the strand 

CS   Circumference of the strand 

di   Inside diameter of the steel pipe 

do   Outside diameter of the steel pipe 

D   Diameter of the strand 

D1   Displacement value at measuring point 1 

D2   Displacement value at measuring point 2 

D3   Displacement value at measuring point 3 

D(204 kN)  Because of the structure of the steel strand, the yield load cannot 

be uniquely determined. Instead of the yield load, the 0.2 limit 

defined in the Finnish standard (SFS 3173) is used as a reference 

value. According to the strength qualification for strand for 

prestressed structures, the 0.2 limit (Rp 0.2) is 1470 N/mm2, 

corresponding to a load of 204 kN (SFS 1265) 

E   Young’s modulus 

E.L.   Embedment length  

E.L. 1   Embedment length 1 

E.L. 2  Embedment length 2 

Fa   Axial force corresponding to the failure mechanisms 

F(bond)  Pull-out load when the first bond failure is detected along the full 

embedment length on one of the embedment sections 

F(2nd bond)  Pull-out load which occurs in the other embedment section after 

the first bond failure (F(bond)) has already occurred 

F(10 mm)  Pull-out load at the displacement (D1) of 10 mm 

F(break)   Pull-out load when bolt failure occurs 

F(max)   Maximum pull-out load during the test 

i    Dilation angle 

Kr   Radial stiffness of the steel pipe 

Le  Embedment length of the bolt 
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Lf  Initial free length (the length exists between the test and anchor 

sections) 

Ls   Length over which shear failure occurs 

l   Pitch length of the strand 

N    Number of outer wires of the strand 

p1    Radial pressure at the inner radius of the cement annulus 

ua    Axial displacement of the exit point 

UBS  Ultimate bond strength determined by using the true contact area 

(bond area) of the test bolt and the maximum pull-out load F(max). 

Defined as N/mm2

UCS   Uniaxial compressive strength 

Vi   Values of the galvanized steel strand or epoxy-coated steel strand 

Vref   Value of the steel strand 

w:c   Water-cement ratio 

Q   Component of the pull-out force required to untwist the free 

length of cable 

   

Greek letters   

θ   Rotation angle of the strand 

ν   Poisson’s ratio 

φ gs    Sliding angle of friction between grout and steel 

α    Angle of the pitch 

φ g    Internal angle of friction for the grout 
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1 INTRODUCTION 

 

1.1 Background 

 

Cable bolting has been used successfully in reinforcing the stopes in Finnish mines 

since 1971. The most commonly used cable bolt material is a seven-wire steel strand. 

Interest in expanding the use of cable bolting to civil rock engineering is increasing due 

to the many benefits of the cable bolting method and the material properties of steel 

strand. However, the use of cable bolts as a permanent reinforcement structure in rock 

construction has not been approved by the authorities in Finland to date. This is the 

main reason for the very limited use of cable bolts in rock constructions. Uncertainty 

regarding their sensitivity to corrosion has been one of the main problems to be resolved 

before cable bolts can be accepted for use in long-term reinforcement. Another 

important issue to be determined is the mechanical applicability of cable bolts in rock 

reinforcement for civil rock engineering and long-term reinforcement purposes. 

 

A research project entitled “Corrosion-protected cable bolts in long-term reinforcement” 

was carried out at the Helsinki University of Technology in 1999 – 2002 (Satola & 

Hakala 2001a). The object of the project was to study the applicability of corrosion-

protected cable bolts in long-term reinforcement. The project was divided into two 

parts. The first part concentrated on determining the mechanical behavior of different 

steel strand modifications. The axial load-displacement behavior of the fully grouted 

test bolts was tested by double pipe pull tests with different embedment lengths and the 

different test configurations.  

 

The mechanical behavior of rock reinforcement element is affected by many important 

factors such as like shear loading, tensile loading and a combination of both, the creep 

of the bolt material and the contact between the bolt and grout and corrosion issues. 

However, the subject of this thesis is focused only on the axial load-displacement 

behavior of the different steel strands tested in the present research. 

 

To the knowledge of the author, very limited information was available regarding the 

axial load-displacement behavior of corrosion-protected steel strands for rock 

reinforcement purposes at the time that this research was initiated. Secondly, axial tests 
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of the steel strands and rebars used in this research have not been performed previously 

under equal conditions in the same host material with identical test system. 

 

1.2 Aim of the thesis 

 

The scope of the thesis was to test and evaluate the axial load-displacement behavior of 

different types of steel strands applicable for rock reinforcement purposes. This was 

performed by conducting strictly controlled axial laboratory pull tests on full-scale 

standard steel strands, modified steel strands and corrosion-protected steel strands under 

axial loading. Rebar was tested as a reference test bolt of the bolt type most commonly 

used in civil rock engineering. 

 

Of special interest was to determine the effect of the corrosion protection material (hot-

dip galvanization or epoxy coating) on the load-displacement behavior of the steel 

strand. 

 

It was also considered important to contribute to the understanding of the axial behavior 

of standard steel strand related to the untwisting mechanism of steel strand observed by 

previous researchers (Hyett et al. 1992b). 

 

In addition, test results obtained from the licentiate thesis by the author were added in 

this thesis (Satola 1999a). The aim of the tests was to determine the effect of the 

different debonding material on the axial load-displacement behavior of the steel strand. 

 

1.3 Scope of the thesis 

 

A total of about 70 axial laboratory pull-out tests were performed, including different 

set-ups for the tests and different embedment lengths used. 

 

This study focused on the axial behavior of cement-grouted test bolts. Resin or any 

other grout material was not in the scope of the study. In addition, no aggregates were 

used in the grout because they are not used in mechanized cable bolting. 
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In practice, rock reinforcement elements are usually subjected to axial loading, shear 

loading and a combination of both. It is also well known that shear loading reduces 

cable bolt capacity and plays an important role in the mechanical behavior of the rock 

bolt (Hyett et al. 1992b). However, only the axial behavior of the steel strands was 

within the scope of this study because it usually dominates the behavior of the rock 

reinforcement element and was considered more important to be studied. The axial test 

is also the most common way to study the behavior of rock bolts, and thus the results 

can be compared with the results obtained by the other researchers.  

 

1.4 Thesis outline 

 

Chapter 1: Introduction, describes the background, the aim and the scope of the thesis 

and the contribution it makes to the understanding of axial load-displacement behavior 

of steel strands in rock reinforcement. 

 

Chapter 2: Describes the cable bolt performance in practice, the factors affecting the 

bond strength as well as the failure mechanisms of the grouted cable bolts. This chapter 

presents the methods used to test cable bolts. A literature review of work and research 

done by previous researchers on the subject of the thesis is also given in this chapter. 

  

Chapter 3: Deals with axial laboratory tests carried out on test bolts. The interpretation 

of the results is given in this chapter. 

 

Chapter 4: Presents the final discussion on the test results. 

 

Chapter 5: Conclusion. 

 

Chapter 6: Recommendations for further studies are given in this chapter. 

 

Each of the chapters has individual discussions and the final discussion is given in the 

Chapter 4. 
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1.5 Contribution 

 

A new modification of the axial double pipe test apparatus was designed and 

constructed. This modification enables testing of rock bolts and cable bolts with 

embedment lengths from 250 mm up to 2000 mm. The loading range is from 0 kN to 

350 kN. Displacements of the test bolt can be measured at three different points. 

 

The effect of the different debonding materials on the axial behavior of fully grouted 

steel strand was determined. 

 

The effects of the epoxy coating and galvanizing on the axial behavior of the steel 

strand were determined. 

 

The axial behavior of steel strand, epoxy-coated steel strand, galvanized steel strand, 

bulbed strand and rebar was tested and evaluated under equal conditions in the same 

host material using an identical test system for the purpose of the rock reinforcement. 
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2 REVIEW OF THE AXIAL BEHAVIOR OF CABLE BOLTS 

 

2.1 Cable bolt reinforcement 

 

Rock reinforcement and rock support are specific techniques within the general 

category of rock improvement methods. Rock improvement includes all techniques that 

seek to increase the strength or decrease the deformability characteristics of a rock mass 

(Windsor & Thompson 1993). 

 

It is important to understand the difference between different reinforcement and support 

techniques. Windsor and Thompson (1993) defined support as including all methods 

that essentially provide surface restraint to the rock mass by the installation of structural 

elements on the excavation boundary. By way of contrast, reinforcement is considered 

to include methods that modify the interior behavior of the rock mass by the installation 

of structural elements within the rock mass. In the case of rock reinforcement the prime 

objective is to improve the shear and tensile strength of the rock mass adjacent to the 

surface and underground excavations. 

 

Cable-bolt reinforcement can perform a combination of reinforcement and holding 

functions. As reinforcement, the cables are effective in preventing separation and slip 

along planes of weakness or blocks in the rock mass. Cable bolts can also provide 

support by retaining elements, keeping the failed rock or free rock blocks in place 

(Hutchinson & Diederichs 1996). 

 

The basic in situ types of cable bolting loading are: axial or tensile, shear and a 

combination of axial and shear. These types can occur individually or in combination. 

In practice the displacements at discontinuities are combined and much more complex 

consisting of translation and rotation in a three-dimensional manner (Windsor & 

Thompson 1993). 

 

2.2 Load transfer mechanisms 

 

The grout column surrounding the cable bolts builds up the anchorage medium and is 

necessary for the load transfer mechanisms between the cable bolt and the rock mass. 
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The load distribution in the fully grouted cable bolt can be divided into two parts: pick-

up length and anchor length. In the pick-up length, the bolt takes up the load from the 

rock mass and reinforces the rock mass. The load is transferred from the rock mass to 

the cable bolt via the shear resistance at the interface between the cable bolt and the 

grout. As the rock slips with respect to the cable, shear stresses accumulate along the 

length of the cable due to the addition of incremental rock loads, the tension in the steel 

strand increases from zero at the face to a maximum at some point into the borehole. 

Beyond this point, in the anchor length, the shear stresses act in the opposite direction, 

as the cable tends to slip down with respect to the rock. In this region, the loads 

accumulated in the bottom portion of the cable are transferred back to the rock mass and 

the cable tension drops back to zero at the upper end of the grouted strand (Hutchinson 

& Diederichs 1996). 

 

2.3 Bond strength 

 

The bond strength of a cable bolt is defined as the resistance to slip at the interface 

between the cable and grout along a unit length or a unit surface area of cable. 

(Hutchinson & Diederichs 1996). Simply put, the bond means the gripping ability of a 

grout column with an embedded length of a cable bolt to resist forces tending to pull the 

strand longitudinally (Moosavi 2002). 

 

When the cable bolt is being pulled out, it provides resistance by the following 

mechanisms: chemical adhesion, friction and mechanical interlocking between the cable 

bolt and the grout (Stillborg 1984). 

 

The effect of the chemical adhesion between the steel and the grout is temporary 

because the chemical adhesion is destroyed after less than one-fifth of a millimeter of 

relative slip by the cable bolt (Fuller & Cox 1975). The importance of adhesion in bond 

strength is also considered minor because the axially directed shear stresses induced 

near the steel/grout interface at low load levels quickly exceed the shear strength of the 

grout. Therefore, even if a significant adhesive bond between the grout and 

reinforcement existed, failure would tend to occur in the grout. Secondly, the optimum 

adhesion relies on the surface conditions of the strand and in practice, it is very difficult 

to keep the surface of the strand clean (Windsor & Thompson 1993; Hyett et al. 1992b). 
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As the cable is loaded and begins to slip at the cable/grout interface, a wave of localized 

adhesion failure propagates down the cable away from the loading point. After the 

adhesion is removed from the interface, the cable slips with respect to the grout annulus. 

A geometric mismatch occurs between the cable flutes and the corresponding grout 

ridges if the rotation of the cable bolt is prevented. This mismatch increases with 

increasing relative slip. Since the grout ridges must ride up and over the cable wires, the 

grout compresses in the confined borehole and thus generates a normal pressure at the 

grout/steel interface. Friction (pressure-dependent shear strength) thus develops along 

this interface providing resistance to further slippage. This interaction is called dilation. 

Dilation is limited in the extreme by the absolute scale (height) of the grout ridges. In 

reality, dilation pressures develop to the point where these ridges crush, reducing the 

maximum dilation to less than 0.1 mm for plain strand cable. Dilation is dependent on 

grout stiffness, rock stiffness around the borehole and grout strength (Hutchinson & 

Diederichs 1996).  

 

If the plates are attached to the cable bolt, the dependence on the bond strength is 

reduced. The load is generated immediately, and if the anchor is designed with a higher 

capacity than the strand, the full tensile capacity of the cable bolt will be made available 

(Hutchinson & Diederichs 1996). 

 

2.3.1 Properties of grout 

 

The water-cement ratio (w:c) is the most important factor affecting the physical and 

mechanical properties of cement grout: 

 

c

w

m
m

cw =: , 
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where mw is the mass of water and mc is the mass of anhydrous cement powder used in 

the same mix. 

 

The optimum water-cement ratio of the grout varies from 0.35 to 0.4 (Hyett et al. 

1992a). Decreasing the water-cement ratio of the grout decreases its sedimentation and 

porosity and, thus increases the strength of the grout. Increased strength results in 
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increased maximum dilation pressure, which in turn results in an increase in ultimate 

bond strength. However, decreasing the water-cement ratio from a value of 0.3 would 

make pumping very difficult or even impossible because of the increased viscosity of 

the grout. A very low water-cement ratio also decreases the mixing efficiency of the 

grout and there might also be a problem with complete saturation and hydration of the 

cement particles due to the less excess water being available (Hutchinson & Diederichs 

1996). 

 

Increasing the water-cement ratio from a value of 0.4 assists pumping but then the grout 

is so thin, that it does not stay in the up holes and it may flow into open joints 

intersecting the boreholes. A high water-cement ratio also reduces the compressive and 

tensile strengths of the grout and increases micro-voids, water bleeding and cement 

particle sedimentation (Goris 1991). 

 

Bleeding of the grout occurs when the particles of cement settle down to the bottom and 

water flows up to the top of the grout column. The section of the cable bolt which is 

within the water filled upper section of the borehole will have less load carrying 

capacity than designed and the effective embedment length of the cable bolt will be 

reduced from the design length (Hutchinson & Diederichs 1996). 

 

Any steel-cement composite is characterized by a “transition zone” at the interface 

between the two, wherein the microstructure of the cement paste is considerably 

different from that of the cement paste away from the interface. In this region, the 

cement paste is much more porous due to bleeding and entrapment of water along the 

surface of the steel, and irregular packing of the cement grains within a zone. The 

adhesional bond between the steel and the cement is not continuous, but instead 

comprises a series of point contacts, resulting in a relatively weak and compliant bond 

(Hyett et al. 1992b). 

 

2.3.2 Borehole diameter 

 

The borehole diameter has minimal effect on the bond strength and pull-out behavior of 

the cable bolt (Stillborg 1984; Hutchinson & Diederichs 1996). The pull tests performed 

on rebars with diameter of 18.2 mm indicated that the use of different borehole 
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diameters, between 27 mm and 75 mm, had no influence on the bolt behavior in practice 

(Stjern 1995). 

 

2.3.3 Stiffness of the confinement 

 

The radial stiffness of the confinement due to grout stiffness and the stiffness of the 

rock mass around the borehole has a remarkable effect on bond strength (Moosavi 1997; 

Hutchinson & Diederichs 1996). The structure of the rock mass and joints around the 

borehole affects the stiffness of the rock mass surrounding the borehole (Hutchinson & 

Diederichs 1996). 

 

The effect of the radial stiffness of the rock mass around the borehole is most evident 

for high-strength grouts (0.30 and 0.40, UCS > 65 MPa) (Hyett et al. 1992b). Rock 

stiffness has a remarkable influence on bond strength when the modulus of the rock 

surrounding the borehole is close to or less than the modulus of the grout. In that case 

the probable failure mechanism is radial fracturing and lateral displacement of the grout 

wedges. 

 

In very stiff rocks, the grout modulus and strength are the critical parameters 

determining bond strength (Hutchinson & Diederichs 1996). 

 

If the water-cement ratio of the grout is 0.45 - 0.50 and thus the strength of the grout 

low, then the bond strength of the strand is almost independent of the radial stiffness of 

the rock mass (Hyett et al. 1992b). 

 

2.3.4 Stress change 

 

The rock stiffness around the borehole can change during the service life of a cable bolt 

due to stress changes, blasting- and mining-induced stresses. Stress change in the 

surrounding rock mass after the installation of a cable bolt can profoundly affect the 

bond strength of the cable. In short, increase of stress cause an increase in bond strength 

while decrease of stress can reduce the strength (Kaiser et al. 1992; Maloney et al. 1992; 

Hyett et al. 1995a). 
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In the case of mine-induced stress changes, two effects can occur: first, destressing of 

the ground can cause a decrease in the stiffness of the confining rock mass as it relaxes; 

second, mining-induced stress changes within the rock mass can cause a change in the 

radial stress acting across the cable/grout interface, and hence change the frictional 

resistance which controls the cable capacity. Both stress-induced fracturing and mining-

induced destressing will reduce expected cable capacities, while a stress increase will 

maintain or increase them (Hyett et al. 1992b). 

 

2.3.5 Properties of a cable bolt 

 

The surface properties, the diameter and the geometry of a cable bolt are the main 

properties of a cable bolt that affect the bond strength. A dirty, greasy or rusty cable bolt 

surface decreases the bond strength. However, it has been stated that light rust on the 

cable surface improved the bond strength, although, rusting of the cable bolt surface is 

not recommended (Goris 1990a). Interface friction is dependent on the surface of the 

cable bolt. The effective friction coefficient between the steel strand wire surface and 

the grout is approximately 0.4, corresponding to an average friction angle of 21º to 23º 

(Hyett et al. 1995b). 

 

In epoxy-coated steel strands, silica grit is embedded in the outer surface of the coating 

to improve bond strength between the strand and the grout (Goris 1990b). 

 

Cables with a modified geometry (bulbed strand, birdcage, nut cage etc.) have an 

increased geometric mismatch between the strand and the grout and, thus increased 

bond strength. This will be discussed in more detail later in the text. 

 

2.3.6 Interface separation 

 

Interface separation can occur mainly due to grout shrinkage and cable radial strain. 

Grout shrinkage can cause the grout to pull away from the cable bolt before any cable 

loading occurs. This gap must be closed before any dilation pressure can be generated 

(Hutchinson & Diederichs 1996). This gap results in a reduction in dilation pressure and 

thus reduced bond strength. To minimize grout shrinkage, high water-cement ratios, 
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high temperature and low humidity conditions in the grouting should be avoided. 

Shrinkage can be minimized also by using additives in the grout. 

 

The reduction of an effective diameter in the cable bolt occurs when the cable bolt is 

loaded axially. This reduction can cause interface separation and reduced bond strength 

(Hutchinson & Diederichs 1996). The amount of the reduction of the diameter is 

affected by the load in the bolt, the pretension of the bolt and the distance to the loading 

point. 

 

2.3.7 Rotation 

 

When rotation of the strand is permitted, the strand will tend to take the path of least 

resistance as it slips past the grout interface. Rather than pushing the grout ridges up and 

out of the way, the strand will tend to “corkscrew” out of the grout column resulting in 

reduced dilation, interface pressure and pullout resistance (Hutchinson & Diederichs 

1996). 

  

2.4 Axial behavior and modes of failure of cable bolts 

 

It is generally accepted that the interface between the grout and the steel strand controls 

the behavior and failure mechanism of a cable bolt (Fuller & Cox 1975; Goris 1990a; 

Hyett et al. 1992b; Windsor 1992). 

 

There are three possible mechanisms of bond failure (Hyett et al. 1995b; Moosavi 

1997): 

(1) Untwisting (rotational slip) 

(2) Shear failure of the cement flutes and 

(3) Dilational slip of the cable accommodated by radial splitting 

 

The importance of the untwisting mechanism in the axial behavior of plain cables was 

not properly highlighted until it was emphasized in work by Hyett and others (Hyett et 

al. 1992b; Hyett et al. 1995b). Instead of shearing the cement flutes or dilational slip 

during pull-out, the cable rather untwist out of the grout column provided that the strand 
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is free to rotate. The untwisting mechanism is explained by the helical geometry and 

low torsional rigidity of a plain strand (Moosavi 1997).  

 

The composite nature of a strand means that its lateral contraction under an axial load is 

greater than that of solid wires and bars. This is because the peripheral wires, in an 

attempt to straighten out under a load, rotate in the lay direction, effectively packing the 

wires closer together and reducing the overall strand diameter. Compact strand has a 

lower lateral contraction than plain strand (Windsor 2004). In situ, in grout and under 

axial loads, uncompacted strand laterally contracts away from the grout interface, 

effectively reducing the adhesion, mechanical interlock and friction components. This 

may cause the propagation of a debonding front along the element/grout interface, 

which invalidates a linear extrapolation of load transfer characteristics from shorter to 

longer lengths. The effects of excessive contraction under an initial load can greatly 

affect the constitutive relationship in bond failure (Windsor 2004). 

 

This untwisting behavior was shown in the results of laboratory double embedment pull 

tests by Hyett (1995b; 1992b) and Moosavi (1997). The observation of tested samples 

showed that along most of test section, bond failure occurred by untwisting and shearing 

of the grout flutes occurred only on the small section (75 mm) near the exit point of the 

cable (Hyett et al. 1995b). 

 

For untwisting failure, the torque (T) generated along the length of cable between the 

test and anchor sections can be defined by the following equation: 
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where C is the torsional rigidity of the strand, θ is the twist of the strand, ua is the axial 

displacement of the exit point, Lf is the initial free length (the length of unbonded strand 

between the test section and the anchor section) and l is the pitch length of the strand 

(Hyett et al. 1995b). 

 

 



 26

The axial force Fa corresponding to the three failure mechanisms mentioned above can 

be calculated from the following equations (Hyett et al. 1995b): 

 

for dilational slip, after splitting of the cement annulus 

 

( )ipAF gsa += φtan11 , (3)

 

for non-dilational untwisting 
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and for shear failure of the cement flutes 

 

( )gia pAF φτ tan01 += , (5)

 

where A1 is the contact area of the embedded cable, p1 is the radial pressure at the inner 

radius of the cement annulus, φ gs is the sliding angle of friction between grout and steel 

(10.3º in Kaiser et al. 1992), i is the dilation angle, α is the angle of the pitch,φ g is the 

internal angle friction for grout, changing from 20º to 27º depending on the water-

cement ratio (Hyett et al. 1992a) and τ0 is the grout cohesion which is also dependent on 

grout quality. Q is the component of the pull-out force required to untwist the free 

length of cable: 
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Since the dilation angles are so small (i < 0.2º), the pull-out force component related to 

dilational slip may be ignored and the axial pull-out force may be written approximately 

as (Hyett et al. 1995a): 
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where Ls is the length over which shear failure occurs, Le is the embedment length of the 

bolt. The last term Q should be added for cases in which any length of the test section 

fails through untwisting. 

 

Evidence of untwisting has been observed in many cases from mines, where rock had 

stripped off the cables and the cables had showed no sign of failure in the cable or even 

no signs of a load being taken (Moosavi 1997). This observation was supported by 

Hyett et al. (1992b) who demonstrated in their paper that the yield strength of a cable 

bolt could be mobilized only in special cases, where combination of a long embedment 

length of cable and high radial confinement exists. 

 

Hyett et al. (1995b) studied the axial load-displacement behavior of a plain cable bolt in 

double embedment tests and presented a failure process, which was divided into four 

distinct stages: 

Stage 1 (ua < 1 mm): The essentially linear response that characterizes the initial stage 

of a cable pull-out test is related to the axial stiffness of the cable, the elastic 

properties of the grout and the properties of the interface between the two. The 

initial stiffness is sensitive to the confining pressure, as is the onset of non-

linearity in the load-displacement plot. Both of these observations confirm that 

the bond, even during this initial stage, is related to frictional-mechanical rather 

than adhesional resistance. 

 

Stage 2 (ua < 1 mm). Near the fixed end of the test section, where the bond will begin to 

break first and untwisting is restricted, only limited slip can occur at the 

grout/cable interface unless either (i) radial fracturing of the grout annulus 

splits it into distinct wedges, which can then be radially displaced to allow 

dilational slip, or (ii) shear failure through the cement flutes occurs. The 

initiation and stable propagation of one or both of these mechanisms is 

responsible for the reduction of axial stiffness and defines the onset and the 

extent of stage 2. 
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Stage 2 – stage 3 transition (splitting of the cement annulus, ua = 1 mm). A pronounced 

change in stiffness, often accompanied by a drop in capacity, and an audible 

emission from the specimen, occurs after 1 – 2 mm of axial displacement. It is 

thought that this corresponds to splitting of the cement annulus. 

 

 After the cement annulus is fully split, the stored elastic strain energy in the 

annulus due to shrinkage must be released, and the individual grout wedges 

will have a tendency to extend in the radial direction and contract in the 

tangential direction, prematurely opening the radial fractures. This effect can 

explain the high bond strengths for higher water-cement ratio grouts during the 

early stages of the pull test (ua < 10 mm). 

 

Stage 3 (ua = 1-50 mm). Research has established that stage 3 is the most critical part of 

the cable bolt bond failures process, and that the associated failure mechanism 

is highly sensitive to the radial confinement. 

 

 Note that for tests in which a significant free length exists, or for a loosely 

wound cable with low torsional rigidity C, less torque will develop for a given 

ua and the cable will be able to untwist even at the exit point. Hence, less 

shearing of the grout flutes and less dilation will result in less work hardening 

during stage 3 (i.e. a nearly perfect plastic response and consequently, lower 

bond strengths: similarly, for loosely wound cables with a low C). 

 

Stage 4 (ua > 50 mm). The ultimate capacity and maximum radial dilation are usually 

attained after 40 or 50 mm of axial displacement. 

 

The axial behavior of modified cable bolts is very different from the behavior of the 

conventional cable bolts (plain strand), because the presence of the deformed structure 

(i.e. bulbs) filled with grout greatly increase the geometric mismatch between the cable 

and the grout, which together with the radial stiffness of the borehole wall, generates 

higher shear stresses along the cable, resulting in a higher bond strength and shorter 

critical embedment lengths (consistently less than 0.3 m required to break the strand 

during pull-out). The flared elements of the modified strand serve as concentrated 

dilation and load transfer sites along the cable bolt. The modified strands are, in general, 
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considerably stiffer in pullout than plain strand, generating and transferring much 

smaller degrees of cable-grout slip to the load (Hutchinson & Diederichs 1996). This 

property is desirable to reinforce fractured ground and to limit displacements. 

 

The untwisting mechanism observed in the case of conventional cable bolts is prevented 

by the deformed structure of the modified cable bolts. 

 

2.5 Axial tests of cable bolts 

 

2.5.1 Test configurations of axial tests of cable bolts 

 

The purpose of rock bolt testing is to define their mechanical response to the loading 

conditions that are likely to arise when they are in service, and to enable the most 

appropriate device to be chosen for the predicted rock mass response (Windsor 1992). It 

has to be pointed out that the laboratory axial tests are mostly intended for a comparison 

of different variables between test bolts. The results obtained from the tests are relative, 

and comparison can be made only with the results obtained from tests performed in an 

identical way. None of the laboratory tests can simulate the exact interaction between a 

rock bolt and the rock mass. The most commonly used tests are pull-out tests because 

they are simple to perform in the laboratory.  

 

One of the main problems when comparing the pull-test results of different researchers 

is that the tests are carried out in different ways. This is mainly due to the lack of test 

standards or universally approved codes of practice. This has led to the differences in 

grouting techniques, embedment lengths, test configurations and testing procedures, 

which naturally affect the results and make it difficult to compare and combine the 

results of different studies. To achieve comparable results for different test bolts, it is 

necessary to test them in exactly the same way. 

 

The important data being collected are load levels applied to the test bolt and the 

displacements corresponding to the load levels. 
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There are two basic configurations performing axial testing of cable bolts in the 

laboratory: unconstrained tests and non-rotating tests (Hutchinson & Diederichs 1996) 

(Figure 1). 

 

 

 

 

Figure 1. Different configurations for axial pull-out tests performed in the laboratory 
(Hutchinson & Diederichs 1996). 
 

 

Unconstrained tests 

In an unconstrained test (single embedment axial test, rotating test), the steel strand is 

allowed to rotate during pull-out. The steel strand is grouted into a rigid pipe or some 

other confining material, and one end of the strand is left free for gripping and pulling. 

The section inside the pulling device (hydraulic jack) is unembedded and thus free to 

lengthen which affects the behavior of the strand. These tests give lower pull-out loads 

than non-rotating tests.  

 

Stillborg (1984) and Ito et al. (2001) performed rotating tests using concrete blocks as 

the confining material. Rotating tests in the laboratory have been also been performed 

by Benmokrane & Chekired (1992) and Benmokrane et al. (1992) who tested cable 
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bolts grouted inside concrete cylinders. Kaiser et al. (1992) investigated the effect of 

stress change on the bond strength of fully grouted cables and tested smooth bar grouted 

inside the granite cylinder in a Hoek triaxial cell. Rotating tests where steel pipes have 

been used as a confining material have been conducted by the author (Satola 1999a,b). 

 

As in the laboratory, rotating tests can be done in the field as well. In unconstrained 

tests, the test bolt is covered except for the test section, by plastic tubing for debonding. 

The test bolt is then grouted into the borehole. By debonding, the exact length of the test 

section (embedment length) can be ensured. An example of a rotating test in the field is 

the work done by Maloney et al. (1992). They studied the effect of mining-induced 

stress changes caused by stope mining on the support capacity of the cable bolt.  

 

Bawden et al. (1992) devised a field-testing procedure for constrained field tests. 

 

As Moosavi stated (1997), the rotating test with a long free length of cable is only 

suitable for “ground anchoring” situations, while the non-rotating test arrangement with 

a very short free length (usually equal to the joint aperture) should be used for cable bolt 

reinforcing applications. 

 

Non-rotating tests 

Constrained tests and double pipe tests (double embedment axial tests) are both non-

rotating tests where rotation is prevented during pull-out, forcing the steel strand to 

shear through the grout flutes which results in higher load capacities. In constrained 

tests, the fixed section of pipe is considerably longer than the test section and/or the slip 

is prevented by placing a swaged or welded anchor on the steel strand within the 

grouted test section. In the double pipe test, both sample and test sections are designed 

to slip equally (Hutchinson & Diederichs 1996). The author would like to point out that 

in the double pipe tests described in this thesis, it was found that the strand did not 

rotate between the pipes (joint opening point), but untwisting behavior was detected for 

almost the full length of the tested cable bolts. Shearing of the flutes occurred only 

along about 100-mm sections of the joint opening point in both directions inside the 

grout columns. 
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In these types of tests, the response of the reinforcing element at the interface between 

the two halves of the test specimen more closely represents the performance of a similar 

reinforcing element crossing a dilating discontinuity (Windsor & Thompson 1993). 

 

The first non-rotational “split-pipe pull” test system was developed by Fuller and Cox 

(1975). They used mild steel tubes as a confining material and grouted test bolts inside 

two mild steel tubes separated by a washer. Since then the same principle of the split-

pipe test has been used widely (Goris 1990a,b; Hyett et al. 1992b; Hassani et al. 1992; 

Villaescusa et al. 1992; Villaescusa & Wright 1999). 

 

Stillborg (1990) conducted non-rotational pull tests with a special testing system where 

cable bolts installed in concrete blocks were tested. The same principle of using 

concrete blocks as the host material was performed by Hassani et al. (1992) and Stjern 

(1995). 

 

Pull tests conducted in situ in a rock mass have been performed by Bawden et al. 

(1992). 

 

Hyett et al. (1992b) modified even further the split-pipe test configuration developed by 

Fuller and Cox (1975). In the modified pull test, the stiffness of the confining material 

could be changed using different confining tubes (PVC, steel, aluminum) to simulate 

rock mass conditions. Results from tests conducted with this system were compared to 

those obtained from a conventional test procedure and no significant differences were 

found according to Hyett et al. (1992b). 

 

These modified test systems has been used by Hyett et al. (1995a), Moosavi et al. 

(1996) and Moosavi (1997, 2002). 

 

2.5.2 Literature on previous pull tests of cable bolts 

 

Fuller and Cox (1975) performed double embedment pull tests on grouted steel strands 

and single wires. They found that the load transfer between the tendon and the grout 

was critically dependent on both the shape and the surface properties of the strand. 
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Of particular interest to this study is work conducted by Goris (1990a,b) on fully 

grouted epoxy-coated cable bolts and conventional cable bolts. This is the only 

reference where pull tests on grouted epoxy-coated cable bolts have been reported at the 

time of writing this thesis. Goris performed constrained pull tests and to prevent 

slippage of the end of the cable embedded in the upper pipe, a barrel and wedge steel 

anchor was attached to the cable prior to making the pull-test sample (Goris 1990a). In 

preventing slippage of the strand, the axial behavior of the strand was also affected, 

because rotation of the strand was prevented as well and the resistance to pull-out was 

caused by a compressive force applied against the grout column by the steel button. The 

author would like to point out that, if a barrel and wedge steel anchor is not used in rock 

reinforcement, one has to be careful implementing the results of the tests where they 

have been used. For the same reason the results obtained by Goris (1990a,b) are 

different from those obtained from the tests described in this thesis. 

 

Based on his results, Goris stated that, when using two cables in a single hole, the load-

carrying capacity can be more than twice that of single cables. In addition, the average 

maximum loads for double cable samples can be achieved at shorter displacement 

lengths than with single cables. 

 

The laboratory tests on epoxy-coated cables performed by Goris (1990b) indicated that 

the average shear strength for the epoxy-coated cables was approximately 31% higher 

than the shear strength for conventional cables. Both the conventional and epoxy-coated 

cables showed similar load-displacement behavior in that they reached the maximum 

load within the first 50.8 mm (2 inches) of displacement and then maintained a very 

high residual load-carrying capacity. However, the epoxy-coated cables showed a 

higher average load-carrying capacity. 

 

Stillborg (1984) studied the effect of embedded length, cable surface properties, curing 

conditions and grouts with and without additives, on the mechanical behavior of a 

grouted 15.2-mm seven-wire steel strand. He conducted both short (less than 7xD) and 

long embedment lengths (between 10xD and 25xD) in his laboratory pull-out tests. In 

tests with short embedment lengths the rotation of the strand was allowed during pull-

out, but in the tests with long embedment lengths the rotation of the strand was 

prevented. 
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In his tests Stillborg showed that the cable surface properties, the curing conditions as 

well as the type of grout, significantly affect the pull-out behavior of the cable. He also 

showed that the anchorage capacity is reduced with an increased water-cement ratio. 

Stillborg also demonstrated that Poisson’s ratio of seven-wire strand was as low as 0.02. 

 

Later in his research, Stillborg (1990) presented results from a special testing system 

where cable bolts installed in concrete blocks were tested. The test arrangement was 

designed to simulate the load-deformation characteristics of a rock bolt subjected to 

tensile loading across a joint, which opens normal to the joint plane as a result of rock 

deformation. High-strength reinforced concrete was used for the two 1.5-m concrete 

blocks simulating two 1.5-m blocks of rock separated by a joint. The boreholes for the 

rock bolts were all drilled using a percussive technique in order to create borehole 

surfaces with a roughness comparable to those obtained in metamorphic and igneous 

rock types. The length of the boreholes and the subsequently installed rock bolts were 

3 m. Stillborg tested a wide variety of different test bolts: expansion shell anchor, post-

grouted expansion shell anchor, cement grouted rebar (diameter 20 mm), resin grouted 

rebar (diameter 32 mm), resin grouted fiberglass rock bolt, plain twin steel strand cable 

bolt, birdcage twin steel strand cable bolt, Split set, standard Swellex, yielding standard 

Swellex, super Swellex and yielding super Swellex. 

 

Hyett et al. (1992b) investigated what the most important factors affecting the capacity 

of the cable bolts are both in the laboratory and in the field. They used different radial 

confinement: aluminum, PVC and steel pipes, in their split pipe (double embedment) 

laboratory pull tests to determine the effect of confinement on the bond strength of fully 

grouted cable bolts. It required that the conventional test procedure was modified so that 

the grout column and confining pipe were pushed rather than pulled off the cable. The 

results showed that the radial confinement acting on the outer surface of the cement 

annulus had a strong effect on the capacity of the cable bolts. The results indicated that 

the capacity is also primarily affected by the embedment length and the properties of 

grout (water-cement ratio). 

 

Test results of different short embedment lengths indicated that the capacity of the cable 

bolt increases with embedment length but not in direct proportionality (Hyett et al. 
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1992b). The failure was found to be non-simultaneous in nature, with one section 

having failed while another is approaching peak capacity (Hyett et al. 1992b). 

 

The results of the pull tests with different radial confinement showed that, as the degree 

of radial confinement increased, the failure mechanism changed from radial fracturing 

and lateral displacement of the grout annulus under low confinement to shearing of the 

cement flutes and pull-out along a cylindrical frictional surface under high confinement 

(Hyett et al. 1992b). 

 

Hyett et al. (1995b) performed pull tests on steel strand in a special test arrangement 

where they used a modified Hoek cell to maintain the confining pressure at the outside 

of the cement annulus. The results indicated that radial dilations decreased with 

confining pressure. Low dilations were attributed by the occurrence of an untwisting 

mechanism along most of the test section. This mechanism was stated to be due to the 

helical form and low torsional rigidity of seven-wire steel strand. 

 

Hyett et al. (1995a) conducted laboratory pull tests using a modified push test apparatus 

in order to evaluate the Garford bulb anchor for cable bolt reinforcement. The results 

indicated that the bond strength of the Garford bulb anchor was significantly higher than 

that of standard seven-wire strand especially in the tests at low radial confinement and 

high water-cement ratio grout. 

 

Of particular interest to this study is work performed by Villaescusa et al. (1992) 

because the pull tests described in this thesis were conducted very similarly to and with 

the same test arrangement as in the tests performed by Villaescusa. They tested full-

scale cable bolts and rock bolts with embedment lengths of 0.5 and 1.0 m and used steel 

pipes with a high radial stiffness as the confining material. In pull tests they studied the 

load-displacement behavior of grouted single strand, twin strand, birdcage strand and 

rebar (diameter 20 mm) prior to tensile failure or slippage of the steel, and determined 

the bond strength between steel and grout. The effects of different embedment lengths 

and water-cement ratios were analyzed. The results indicated that the critical 

embedment length for single and twin strand cables was highly dependent on the grout 

density. 
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Moosavi (1997) studied the mechanics of bond failure in both conventional and 

modified geometry cable bolts. The results confirmed that the cable bond strength is due 

more to frictional than to adhesional resistance for conventional cable bolts. His 

observation was also that shearing occurred only on the short section (about 75 mm) of 

the strand and untwisting was the major mode of failure along the rest of the strand. 

This behavior was again explained by the helical form of the strand and its low torsional 

rigidity. 

 

Pull tests on Garford bulb strand showed that the dominant failure mode was shearing of 

the grout flutes. This was due to the very different behavior of bulb strand because it 

does not rotate during a pull test because of its deformed structure that restricts the 

rotation (Moosavi 1997). The main difference in behavior between the conventional and 

modified cable bolts is caused by the higher radial dilation generated in the modified 

cables due to the deformed structure (Moosavi et al. 1996).  

 

Stjern (1995) investigated the behavior of different rock bolts in field pull tests and 

double embedment pull tests in the laboratory. The results showed that different hole 

diameters (28, 45 and 75 mm) did not have an effect on the load-deformation 

characteristics of fully grouted rebars. The pull tests on different configurations of twin 

combination cables showed that the two cables must have similar stiffness for the 

complete cable bolt to obtain a strength equal to the sum of both cables. The results also 

showed that the conventional cable bolts rotated rather than sheared off the grout flutes.  

 



 37

3 AXIAL LABORATORY TESTS 

 

The test equipment, preparation of the tests bolts, quality control of the grout and the 

test procedure are presented in more detail in a research report (Satola & Hakala 2001a) 

and in referee conference papers (Satola & Hakala 2001b; Satola 2001; Satola & 

Aromaa 2003, 2004). 

 

3.1 Test equipment 

 

Following the basic principle of an axial laboratory test (Windsor & Thompson 1993), 

the test system was designed to simulate as closely as possible the performance of rock 

bolts crossing a dilating discontinuity.  

 

A new configuration for the double pipe test system was designed and constructed on 

the basis of the fundamental principles of double pipe testing (Satola & Hakala 2001a). 

The long embedment lengths used in pull-out tests resulted in placing the test machine 

in a horizontal position because of the free space it required. One of the main proposals 

was to use a hollow ram hydraulic jack (hereinafter hydraulic jack) as the loading 

device and RHS steel pipe (RHS = Rectangular Hollow Sections) as the test frame. 

 

The purpose of using steel pipes to demonstrate boreholes was to provide a uniform and 

identical radial confinement in every test. Also, handling and storing the test samples 

was easy when using steel pipes. The author was well aware of the main drawback of 

using steel pipes. Goris (1990a) reported that the main drawback of this kind of test 

system is that the load-displacement curve for the cable bolt sample was not likely to be 

exactly what support systems experience in a large rock mass because the stress-strain 

behavior of pipe is different from that of rock. However, the relative behavior of one 

laboratory test sample compared with another should approximate the behavior of cable 

bolts in rock (Goris 1990b). 

  

The double pipe test machine was developed and constructed in cooperation with the 

Helsinki University of Technology, Sandvik Tamrock Ltd and Gridpoint Finland Ltd. 

The test equipment was dimensioned for a maximum load of 350 kN, which influenced 
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the selection of the materials and sizes of the RHS steel pipe, wedges, and the steel 

pipes where the test bolts were grouted inside (Figure 2). 

 

 

 

 WEDGE  PULLING DEVICE 

STEEL PIPE  STEEL PIPE  

WEDGE   

TEST BOLT 

D1 D2 D3  

RHS -PIPE 

Figure 2. Double pipe test system. Grouted test bolt in double pipe test machine. 
Displacement measuring points (D1, D2 and D3). Schematic drawing. (Satola & 
Hakala 2001a). 
 

 

In this double pipe test configuration, the pressure and flow of the oil from the hydraulic 

pump causes the cylinder of the hydraulic jack to move. The cylinder pushes against the 

barrel generating a load that transfers to the steel pipe via the wall and the bottom of the 

groove on the steel pipe. The load is transferred from the steel pipe to the grout and then 

to the test bolt inside the grout. The load is developed in the bolt and is transferred along 

the bolt to the other side of the discontinuity (to the grout column inside another steel 

pipe). This side works as an anchor section of the test bolt because this steel pipe is 

connected to the RHS testing pipe and is thus forced to stay in place. The load is 

transferred in the opposite direction on this side, from the bolt to the grout and then to 

the steel pipe and via the groove to the barrel and finally to the RHS testing pipe. 

 

The deformation and load transfer in the double pipe test system during pull testing was 

simulated using an axi-symmetric finite difference method model (FLAC 3.3) (Satola & 

Hakala 2001a). Modeling was utilized to determine the effect of the connection points 

on the steel pipes in the test machine (Appendix D). It was found that the best places 

were as far as possible from the discontinuity point (gap) on the outer edge of the pipe.  

 

The final test system consisted of a pulling device, an electric hydraulic pump, an RHS 

testing pipe, a wedge system for the connection of test steel pipes, measuring 

instruments, and a portable PC for data collection (Figure 3). 
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Figure 3. Double pipe axial testing machine (Satola & Hakala 2001a). 
  

 

s obtained from 

 electrically driven hydraulic pump. The double pipe test machine was designed for a 

aximum capacity of 350 kN, but the pulling device was actually capable of an even 

lled by the hydraulic jack and thus the pipes were 

parated from each other. It was also safe to carry out the pull tests inside the RHS 

The pulling device consisted of a hydraulic jack where the pressure wa

an

m

higher load capacity. The maximum stroke of the hydraulic jack was 300 mm. The 

inside diameter of the cylinder of the hydraulic jack was just enough for the steel pipe 

with an outside diameter of 63 mm. 

 

The idea of the RHS testing pipe was to connect one of the pipes and to keep it in 

position while the other pipe was pu

se

testing pipe when any particles possibly flowing from the grout or any other damage 

caused by test bolt failure occurs inside the RHS testing pipe. There was a small hole on 

the RHS testing pipe where the gap was located between the steel pipes for connection 

of the displacement transducer and for visual observation. 
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The measuring instruments consisted of: 

- Three inductive displacement transducers (HBM WA/100) 

An absolute pressure transducer (HBM P8AP) 

ith Spider8 Control measurement technology 

Th acement transducers measured the displacements of the test bolts. 

asured not only from the middle (D1), the most important 

lace, but also from both ends of the bolt (D2 & D3) (Figure 2). Displacement 

 displacement transducers D2 and D3 were connected to the steel 

ipe while the end of the plunger was connected to the magnet that was connected to the 

- 

- An amplifier system (HBM Spider8) w

software package 

- A PC for data collection 

 

ree inductive displ

The displacements were me

p

transducer D1 measured the displacement between steel pipes, while D2 and D3 

measured the displacement between the ends of the steel pipe and the test bolt. 

Transducers D2 and D3 were used to sense when the entire length of the test bolt 

embedded in the steel pipe began to slip, thereby indicating that the bond had broken 

along the entire length of this section of the test bolt. The locations of the connection of 

displacement transducers were selected so that none of them was in contact with double 

pipe test machine and thus they were not affected by the deformation of the double pipe 

test machine itself. 

 

The displacement transducers measure the displacement by the movement of the 

plunger inside. The

p

test bolt. Because of the steel strands tendency to rotate in pull tests, a special system 

was designed for connecting the magnet to the test strand. The magnet holder was 

connected to a normal two-component wedge, which allows the inner wedges to rotate 

with the strand. The outer part of the wedge, the barrel, was only able to move axially 

with the inner wedges because rotation was prevented. This system held the magnet in 

the correct position with the plunger (Figure 4). The magnets were found very 

practicable in connecting the transducers. When bolt failure occurs, a lot of energy is 

released resulting in a very rapid movement of the broken parts of the test bolt, which 

can break the displacement transducer if the connection is too rigid. Using a magnet, the 

transducer became detached from the magnet and survived without breaking. The 

influence of the magnet on the displacement results was tested and none was found. 
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The double pipe test machine was pre-tested with a number of pull tests before the main 

test program started. Many details were improved and all necessary changes were made 

 the test configuration on the basis of the pre-tests until the test machine worked as to

desired. 

 

 

 

Figure 4. The connection of the displacement transducer to the test strand (Satola & 
Hakala 2001a). 
 

 

 total of six different bolt types were tested in different test configurations: rebar, hot-

g tandard steel strand, hot-dip galvanized steel strand, epoxy-

oated steel strand, and bulbed strand (Table 1, Figures 5-7). All the strands were seven-

3.2 Bolt types tested 

 

A

dip alvanized rebar, s

c

wired steel strand. The rebar was tested as a reference test bolt of the bolt type most 

commonly used in rock construction in Finland. The galvanized steel strand and the 

epoxy-coated steel strand were selected for testing because of their corrosion protection 

ability. 
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Table 1. Test bolt types and the properties of the test bolts. 
Bolt type Diameter 

 

m) 

Average coating 

thickness 

Minimum 

breaking 

Minimum 

breaking load 

 

(m

 

(µm) 

strength 

(N/mm2) 

 

(kN) 

Rebar 25 70(1) 550(1) 2

Galvanized rebar 

rand  

trand ,5) )

 steel strand ,5) 00(6) (epoxy) 

.0 )

25.3 155(2) (zinc) 550(3) 270(3)

Steel st 15.2  1801 254(4)

Galvanized steel s 15.7(4 68(2) (zinc) 1860(4 260(4)

Epoxy-coated 16.8(6 8 1860 250(7)

Bulbed strand 15.2 / 28   ~240(7

(1) SFS 1215, (2) research report of Sta sear tre (20 ) assumed 

 th ation from ma ufacturer, (5 meter of 

te Technical Re ch Cen 02), (3

to be the same as that of e rebar, (4) inform n ) the dia

the strand without coating is 15.2 mm, (6) measured by slide gauge, (7) (Hutchinson & 

Diederichs 1996). 

 

 

Figure 5. Standard steel strand (Hutchinson & Diederichs 1996). 
 

 

fness compared to the 

lain steel strand. The bulbed strand is formed by clamping a section of plain strand 

The bulbed strand was worthy of interest because of its greater stif

p

between two hydraulic grips and crimping the intervening section to create a deformed 

bulb (Figure 6). The geometry of the bulbed strand is thought to be more resistant to 

corrosion than the geometry of the plain strand. The king wire of the strand is placed on 
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the ring with the other wires in the bulbs so water cannot flow as easily along the king 

wire as it can along the plain steel strand. In the tests described in this report, the bulbed 

strand was not corrosion-protected. However, the bulbed strand can also be galvanized 

or have an epoxy coating. The bulbed strand to be tested had two bulbs per meter. 

 

 

Figure 6. Bulbed strand (after Hutchinson & Diederichs 1996). 
 

 

 

Figure 7. Test bolt types. From left: Rebar (with hot-dip galvanizing in the figure), 
bulbed strand, standard steel strand, hot-dip galvanized steel strand and epoxy-coated 
steel strand (Satola & Hakala 2001b). 

.3 Grouting 

  and installation of the test bolts 

ay in an inclined position. The steel 

ipes were washed to remove all oil from the internal surfaces of the pipes before 

 

 

3

 

3.3.1 Grouting

 

Empty steel pipes were put in a cradle where they l

p
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grouting. The lower end of the steel pipe system was plugged so that the grout could not 

drain out of the pipes during grouting. The upper end of the pipe systems was left open 

for a grout hose. 

 

The grout was mixed in a cement mixer for 20 min before grouting. Test bolts were 

routed using a 0.40 water-cement ratio grout with normal cement without any additives 

d into them. A section of 0.3 -

.5 m of the tests bolt was left out at both ends of the pipes so that the displacement 

elative humidity of 

8% and a temperature of 12°C for at least 30 days in the Research Tunnel of the 

 (Finnsementti 2001). 

laine Blend components Setting time (20 °C) Strength, 2 days Strength, 28 days

Pa) 

g

or aggregates (Table 2). The grout hose was placed inside the steel pipes from the upper 

end of the pipe system, and then the pipes were filled with the grout as the hose was 

retracted from the bottom to the upper end of the pipes.  

 

After filling the pipes, the test bolt was manually inserte

0

transducers in double pipe tests might be connected. In the lower end of the steel pipe, 

this was possible without drainage problems because of the special plug system 

designed for that purpose. Bolt was not centralized inside the pipes. 

 

The grouted test bolts were stored under stable conditions with a r

9

Laboratory of Rock Engineering before testing. 

 

Table 2. The properties of cement CEM II A 42.5

B

(m2/kg) (%) (min) (MPa) (M

380 ± 

40 

6 – 20 120 – 240 ≥ 10 42.5 – 62.5 

 

 

3.3.2 Quality control of the grout 

batches during the grouting according to the 

FS 5283 and SFS 5341 standards for uniaxial compressive tests and water-cement 

 

Grout samples were taken from some of the 

S

grout tests. The samples were taken from the mouth of the grout hose by filling the 

plastic cylinder with the grout. The cylinders were stored under the same conditions as 

the test bolts and were tested after 28 days. 
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The aim of the uniaxial compressive tests was to determine the compressive strength, 

Young's modulus and Poisson's ratio from the samples taken from the grout. The 

s levels of 0% and 

0% of the ultimate strength (compressive strength). The density of the samples was 

ater-cement ratio of the grout was tested by taking samples of the fresh grout 

uring grouting to ensure the correct water-cement ratio. Testing was performed using 

t bolts were conducted by grouting the test bolts inside 

eel pipes. The first test bolt samples with an embedment length of 2000 mm had a gap 

specimens were prepared according to the SFS 5441 standard and tested according to 

the suggested methods of International Society for Rock Mechanics (ISRM 1981) by the 

MTS 815 testing system at the Helsinki University of Technology. The compressive 

stress rate was 0.6 ± 0.4 MPa/s according to the SFS 4474 standard. 

 

Young’s modulus and Poisson’s ratio were calculated between stres

5

determined according to the SFS 5442 standard by measuring the dimensions and the 

weight of the samples. The mean value of the compressive strength was 55 MPa, the 

mean value of Young’s modulus 15.6 GPa and the mean of Poisson’s ratio 0.20. The 

results of the uniaxial compressive tests showed that the grouting mix had succeeded 

well. 

 

The w

d

the procedure described in Satola & Hakala (2001a) and Hutchinson & Diederichs 

(1996). The grout samples were taken and the water-cement ratio was determined from 

every batch of the grout. Results showed that the water-cement ratio of the grout was 

very close to the desired value of 0.4 in every case. 

 

3.4 Test sample preparation 

 

Double pipe axial tests of the tes

st

of 20 mm between the grout columns (between the steel pipes) for visual observation 

(Figure 8). However, this was considered useless and the rest of the test bolt samples in 

further tests had no gap between the steel pipes. In the tests with long embedment 

length, the length of the steel pipes was 2000 mm (Section 3.7). The thickness of the 

pipe wall was 9 mm (Table 3). The inside diameter of the steel pipe was 45 mm, which 

is very close to the common borehole diameter in Finnish and in Norwegian tunneling 

practice as well (Stjern 1995). A groove was turned in a lathe at one end of each steel 

pipe for the connection of the specially designed wedge system. 
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In the tests with short embedment length, the length of steel pipes was 1000 mm 

(Section 3.8). To ensure the exact length for the test sections, the rest of the test bolt 

of two different 

ngths of steel pipes: 2000 mm and 500 mm (Section 3.9). In half of the samples, plates 

 
001a). 

 Outside Inside Thickness Yield 

2) 

Breaking Radial 

m)

outside the desired embedment length was debonded by plastic tubing. 

 

In the tests with unequal embedment length, test samples consisted 

le

were attached to the test bolts. Square plates and nuts were used with the rebars and 

they were tightened manually to sit firm on the shorter embedment length end (steel 

pipe with a length of 500 mm). Typical barrel and wedge anchors with two component 

wedges were used with the steel strands and the galvanized steel strands. The barrel and 

wedge anchors were tightened manually instead of tensioning with the installation jack. 

 

Table 3. The properties of the steel pipes used as host material (Satola & Hakala
2

diameter diameter of the wall Limit  strength stiffness 

(mm) (mm) (mm) (N/mm (N/mm2) (MPa/m

Steel pipe 63 45 9 470 620 2726 

 

he radial stiffness (Kr) of the steel pipes (Table 3) was calculated from the thick-wall 

ylinder theory according to the equation: 

 

T

c

 

( ) ( )[ ]⎪⎭
⎪⎫⎪⎧ − 222 io ddE
⎬

⎪⎩
⎨

+−+
= 22211 oii

r ddd νν
, 

(8)

 

where E is Young’s modulus, ν is Poisson’s ratio for the pipe material (E = 196 MPa 

nd ν = 0.3 for steel), and di and do are the inside and outside diameters of the pipe, 

pull tests unless rotation is prevented. To prevent the 

tation of the steel pipes relative to each other, two round rods were welded on each of 

K

a

respectively (Hyett et al. 1992b). 

 

Steel strand will tend to rotate in 

ro

the steel pipes (Figure 8). The welded round rods allow the steel pipes to move axially 
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to each other but not rotationally. The effect of the friction between round rods on the 

results was considered insignificant. 

 

 

 

 

Figure 8. Welded round rods preventing the rotation of the pipes during pull-out tests 

 was suspected that the bond between the smooth inside surface of the steel pipe and 

(Satola & Hakala 2001a). 
 

 

It

the grout was not strong enough to transfer the load from the steel pipe to the grout and 

then further to the test bolt. There was a concern that the steel pipe would slip away 

from the grout column resulting in unsuccessful test behavior. To prevent the grout 

column from slipping, a ring was welded to the inside surface of each steel pipe to 

create a ridge at the same end of the pipe where the round rods were welded (Figure 9). 

 

 

 

Figure 9.The split test pipe and the grout column after the test. Welded ring inside 
surface of the pipe (30 mm from the end of the pipe in the figure). 
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3.5 Test procedure 

he steel pipes with the grouted test bolt inside were put through from one end of the 

fter placing the test sample in the correct position in the double pipe test machine, the 

he pressure transducer measured the pressure applied to the hydraulic jack from the 

.6 Analyses of the test data 

he test sample preparation and the pull tests were time consuming and expensive. 

(bond): Pull-out load when the first bond failure is detected along the full embedment 

 

T

RHS -test frame, through the hydraulic jack and placed into the double pipe test 

machine. The wedges were placed into the grooves made for them at the outer end of 

both steel pipes to connect the steel pipes to the double pipe test machine. Then, the 

slack was taken up so that the wedges sat firmly in the grooves. 

 

A

displacement transducers were put in their places and all the values were set to zero. 

The test began, and increasing the pressure from the hydraulic pump, the load steadily 

rose at a rate of 10 kN/min. The test bolt was loaded until the failure of the test bolt 

occurred or the stroke was completed. 

 

T

hydraulic pump. The computer, via the Spider amplifier system with a sampling interval 

of 0.5 s, recorded all the information data from the pressure transducer and 

displacement transducers. The load was calculated from the pressure values and 

working areas of the hydraulic jack. 

 

3

 

T

Within the resources and time available, the number of identical tests had to be limited 

to a maximum of three samples for each test series. The pull-test procedure and the data 

obtained were first analyzed by observing the performance of the test bolt as it was 

tested and identifying and recording inconsistencies. If the tests were successful, the 

data were analyzed by evaluating the following parameters: 

 

F

length on one of the embedment sections. The test bolt starts to slip, relative to the grout 

column along its full length. The value is identified by the change in the shape of the 

load-time curve (Figure 10). 
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F(2nd bond): Pull-out load which occurs in the other embedment section after the first 

bond failure has already occurred (Figure 10). 

 

 

0

2

4

6

8

10

12

0 120 240 360 480 600 720

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

F(bond)

F(2nd bond)

D3D2D1

 

Figure 10. Evaluation of the bond strength. 

(204 kN): Because of the structure of the steel strand, the yield load cannot be uniquely 

(10 mm): Pull-out load at the displacement (D1) of 10 mm (Figure 11). 

(max): The maximum pull-out load during the test (Figure 11). 

(break): Pull-out load when the bolt failure occurs (Figure 11). 

BS: Ultimate bond strength is calculated using the true contact area of the test bolt and 

 

 

D

determined. Instead of the yield load, the 0.2 limit defined in the Finnish standard (SFS 

3173) is used as a reference value. According to the strength qualification for strand for 

prestressed structures, the 0.2 limit (Rp 0.2) is 1470 N/mm2, corresponding to a load of 

204 kN (SFS 1265) (Figure 11). 

 

F

 

F

 

F

 

U

the maximum pull-out load during the test (F(max)) (Stillborg 1984). Defined as N/mm2. 
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Figure 11. Evaluation of the parameters. Displacement is the value measured between 
steel pipes (D1). 
 

 

The circumference of the strand was calculated by the equation: 
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(9)

 

where CS is the circumference of the strand, N is the number of outer wires of the strand 

and D is the diameter of the strand (Goris 1991a, Stheeman 1982). The contact area of 

the steel strand was then calculated by multiplying the circumference by the length of 

embedded strand in the test pipe.  

 

If serious disturbances occur during the test or if the test failed, the test result was 

rejected. All the rejected tests are reported in the test results section. All load-

displacement curves for each test period were averaged using an Excel macro, so that 

the load-displacement trends could be evaluated. 

 

 



 51

3.7 Long embedment length 

 

3.7.1 Aim of the tests 

 

The aim of the pull tests with long embedment lengths was to induce the failure of each 

test bolt and, thus, obtain the total load-axial behavior of the test bolts from the load of 

0 kN up to the breakage load. 

 
3.7.2 Test bolt types 

 

Five different bolt types were tested with an embedment length of 2000 mm: galvanized 

rebar, standard steel strand, hot-dip galvanized steel strand, epoxy-coated steel strand, 

and bulbed strand (Table 4).  

 

Table 4. The number of tests of bolts with an embedment length of 2000 mm. 

Bolt type Diameter Number of tests 

 (mm)    

Galvanized rebar 25  3  

Steel strand 15.2  3  

Galvanized steel strand 15.7(5)  5  

Epoxy-coated steel strand 16.8(5)  5  

Bulbed strand 15.2 / 28.0  4 *  

* One of the tests was rejected, see section 3.7.3. (5) The diameter of the steel strand 

without coating is 15.2 mm. 

 

3.7.3 Results 

 

The behavior of different test bolts is illustrated in the load-displacement diagram where 

the curve of the average value of each test bolt type is presented in (Figure 12). The full 

test data of each test are presented in the appendices (Appendix A and C). All the test 

bolts broke off in the double pipe tests as expected. The averaged reference values taken 

from test data are presented in (Table 5). 
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Table 5. The averaged test results of the pull-out tests with an embedment length of 

2000 mm. Abbreviations are explained in Section 3.6. 

Bolt type F(bond)

(kN) 

F(2nd bond)

(kN) 

D(204 kN)

(mm) 

F(10mm)

(kN) 

F(max)

(kN) 

F(break)

(kN) 

UBS 

(N/mm2)

Epoxy-coated strand 227.5 260.9 9.5 208.8 281.6 277.6 2.0 

Galvanized strand (a) (a) 8.3 221.4 268.4 267.1 (b)

Steel strand 109.3 124.2 28.1 131.9 267.5 267.3 2.1 

Bulbed strand (a) (a) 5.3 261.8 281.8 280.4 (b)

Galvanized rebar (a) (a) 1.4 309.0 334.4 286.4 (b)

(a) bond failure didn’t occur, (b) UBS was not defined 
 

 

One of the tests of galvanized rebar with an embedment length of 2000 mm failed 

because of problems with measuring and recording the data during the test. The test was 

rejected. 
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Figure 12. Axial double pipe test results. The average load-displacement curves of each 
test bolt type with an embedment length of 2000 mm. Displacement is the value 
measured between steel pipes (D1). Symbol ● denotes that test bolt ruptured (after 
Satola & Aromaa 2004). 
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3.7.4 Discussion 

 

There was only a small difference in breaking loads between each test strand type. The 

breaking load of the test bolts obviously corresponded to the breaking strength of the 

bolt material, being a slightly higher, whereas the shapes of the curves and the 

displacement at the failure point were more interesting to analyze. When comparing the 

displacement at failure, there was a distinct difference between standard steel strand and 

the other strands. Corrosion protection treatment on the surface of the test strand 

improved the bond strength between the test strand and the grout because of an increase 

in roughness of the surface and bond area, resulting in a higher axial stiffness of the 

grouted steel strand.  

 

The displacement at the proportional yield limit (204 kN) for epoxy-coated steel strand 

was only 34% of the value of the steel strand. The corresponding value was 30% for the 

galvanized steel strand, 19% for the bulbed strand and only 4% for the rebar (Table 6). 

 

Table 6. Comparison of D(204 kN) between different bolt types. Embedment length of 
2000 mm. 
Bolt type D(204 kN)

(mm) 

Fi / Fref

Epoxy-coated steel strand (Fi) 9.5 0.34 

Galvanized steel strand (Fi) 8.3 0.30 

Steel strand (Fref) 28.1 1 

Bulbed strand (Fi) 5.3 0.19 

Rebar (Fi) 1.4 0.04 

 

 

The bond failure occurred in both embedment sections for the plain strand at the quite 

low loads. The first bond failure value was 108% higher for the epoxy-coated steel 

strand (228 kN) than that of the plain steel strand (109 kN). The result was about the 

same for the second bond failure. Despite the high flexibility of the steel strand, the test 

bolt finally broke off instead of just slipping out of the grout column. 
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The bulbed strand had a high degree of stiffness mostly because of the bulbs that 

functioned as anchors. Galvanized steel strands and epoxy-coated steel strands behaved 

in a very similar way in the tests. This was clearly seen from the shapes of the curves of 

the epoxy-coated steel strands and the galvanized steel strands. The displacement at 

failure was clearly shorter for corrosion-protected steel strands than normal steel strand. 

The epoxy-coated steel strand and the galvanized steel strand behaved almost equally in 

the double pipe tests, despite the fact that the corrosion protection materials were so 

different. 

 

In the tests with an embedment length of 2000 mm, the section of ungrouted test bolt 

between the steel pipes (20 mm) is free to stretch according to the material properties of 

the test bolt, and might result in higher displacement values in D1 than in the case, when 

there is no gap between the steel pipes, especially with the steel strands. However, the 

effect of the gap on test results was considered insignificant. 

 

The steel pipe and grout around the test bolt were split after the double pipe tests. The 

compactness as well as the fractures in the grout and in the corrosion protection material 

on the bolt caused by loading, were all inspected visually. No significant air holes were 

found in the grout and the compactness of the grout was found to be good.  

 

The bulbs of the bulbed strand were examined carefully after splitting. The visual 

examination showed that the bulbs were filled with the grout and no holes in the grout 

were found inside the bulbs (Figure 13). This indicates that the bulbs can be completely 

filled with the grout when inserting the bulbed strand into the borehole after grouting. 

This is an important observation for mechanized cable bolting, in particular. 

 

 
 

 

Figure 13. The split test pipe and grout column of the bulbed strand test sample (Satola 
& Hakala 2001a). 
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The bulbed strand had a high degree of stiffness because of its modified geometry. The 

bulbs were filled with the grout and they worked as anchors increasing the bond 

strength. 

 

The end of the curve corresponding to the failure of the rebar test bolt was cut in the 

interpolated averaged load-displacement curve in (Figure 12). The values presented in 

the Table 5 are taken from the original test data and the real break load is presented 

there. 

 

3.8 Short embedment lengths 

 

3.8.1 Aim of the tests 
 

The aim of the tests was to determine the effect of shorter embedment lengths on axial 

load-displacement behavior of each test bolt type and to estimate the average load 

transfer and critical embedment length if possible. 

 

3.8.2 Test bolt types 
 

Five different bolt types were tested: rebar, standard steel strand, hot-dip galvanized 

steel strand, epoxy-coated steel strand, and bulbed strand (Table 7.). 

 

Table 7. The number of tests of bolts with different embedment lengths. 
Bolt type Diameter Embedment length (E.L.) 

 (mm) 250 mm 500 mm 750 mm 1000 mm 

Rebar 25 3 3 3 3 

Steel strand 15.2 0 0 0 3 

Galvanized steel strand 15.7 3 2 * 2 * 2 * 

Epoxy-coated steel strand 16.8 3 2 * 3 3 

Bulbed strand 15.2 / 28.0 3 0 3 3 

* One of the tests was rejected, see Section 3.8.3
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3.8.3 Test results 
 

The behavior of different test bolts is illustrated in the load-displacement diagrams 

where the average curves of each test bolt type are presented (Figures 14-17). The full 

test data of each test are presented in the Appendix A and C. The averaged reference 

values taken from test data are presented in (Table 8, Table 9, Table 10 and Table 11). 

 

With an embedment length of 1000 mm, all the test bolts broke off in the double pipe 

tests except steel strands and one test of the galvanized steel strand (Figure 14). The 

averaged breaking load of the galvanized steel strand presented in Table 8 is higher than 

the maximum load, because the break load value is from one test and the maximum load 

is the averaged value from two tests. 
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Figure 14. Axial double pipe test results. The average load-displacement curves of each 
test bolt type with an embedment length of 1000 mm. Symbol ● denotes that test bolt 
ruptured (after Satola & Aromaa 2004). 
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One test of the galvanized steel strand with an embedment length of 1000 mm was 

rejected because of exceptionally low load values. Low load values were considered to 

be caused by air holes detected in the split grout column. 

 

Table 8. The averaged test results of the pull-out test with an embedment length of 

1000 mm. Abbreviations are explained in Section 3.6. 

Bolt type F(bond)

(kN) 

F(2nd bond)

(kN) 

D(204 kN)

(mm) 

F(10mm)

(kN) 

F(max)

(kN) 

F(break)

(kN) 

UBS 

(N/mm2)

Epoxy-coated strand 247.4 268.6 6.9 239.7 284.7 284.1 4.0 

Galvanized strand 203.4 234.1 12.6 201.0 269.5 (g) 270.9 (h) 4.1 

Steel strand 64.4 71.4 (d) 87.5 172.1 (c) 2.7 

Bulbed strand (a) (a) 4.7 269.0 288.1 286.3 (b)

Rebar (a) (a) 5.3 290.5 361.4 317.9 (b)

(a) bond failure didn’t occur, (b) UBS was not defined, (c) bolt failure didn’t occur, (d) a 
force of 204 kN was not reached in the tests, (g) two tests, (h) only one test, because in 
one of the tests slippage occurred instead of failure 
 

 

With an embedment length of 750 mm, only galvanized steel strand and epoxy-coated 

steel strand were tested. None of the test bolts broke off. The end section from 62 mm to 

80 mm of the averaged curve of galvanized steel strand was cut in the interpolated 

averaged load-displacement curve in Figure 15. The values presented in the Table 9 are 

taken from the original test data and the real maximum load is presented there. It has to 

been pointed out that in one test of two of the galvanized steel strand the bond failure 

occurred at exceptionally low load value. The both original curves are presented in 

Appendix A. 
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Figure 15. Axial double pipe test results. The average load-displacement curves of two 
test bolt type with an embedment length of 750 mm (Satola & Aromaa 2004). 
 

Table 9. The averaged test results of pull-out test with embedment length of 750 mm. 

Abbreviations are explained in Section 3.6. 

Bolt type F(bond)

(kN) 

F(2nd bond)

(kN) 

D(204 kN)

(mm) 

F(10mm)

(kN) 

F(max)

(kN) 

F(break)

(kN) 

UBS 

(N/mm2)

Epoxy-coated strand 227.0 235.7 7.3 223.2 261.9 (c) 5.0 

Galvanized strand 132.9 (i) 153.5 (i) 57.7 140.3 220.0 (c) 4.5 

Steel strand (e)       

Bulbed strand (e)       

Rebar (e)       
(c) bolt failure didn’t occur, (e) the bolt types were not tested with this embedment length, 
(i) in one test exceptionally low load values 
 

 

With an embedment length of 500 mm, the rebar broke off in one single test, whereas in 

two identical tests, slippage occurred without bolt failure. All bulbed strands broke off. 

One test of the galvanized steel strand with an embedment length of 500 mm failed 

because of problems with recording the test data during the test. One test of the epoxy-

 



 59

coated steel strand with an embedment length of 500 mm was rejected because of 

exceptionally low load values. The test samples were not split after tests and thus it is 

impossible to say what the reason for the low load values was. 
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Figure 16. Axial double pipe test results. The average load-displacement curves of each 
test bolt type with an embedment length of 500 mm (Satola & Aromaa 2004). 
 

Table 10. The averaged test results of pull-out test with an embedment length of 

500 mm. Abbreviations are explained in Section 3.6. 

Bolt type F(bond)

(kN) 

F(2nd bond)

(kN) 

D(204 kN)

(mm) 

F(10mm)

(kN) 

F(max)

(kN) 

F(break)

(kN) 

UBS 

(N/mm2)

Epoxy-coated strand 146.6 178.5 25.7 (g) 156.2 201.2 (c) 5.7 

Galvanized strand 104.2 113.8 (d) 112.3 160.7 (c)  4.9 

Steel strand (e)       

Bulbed strand (a) (a) 6.5 249.0 289.2 286.5 (b)

Rebar 319.0 (a) 6.9 282.1 334.0 311 (h) 8.5 
(a) bond failure didn’t occur, (b) UBS was not defined, (c) bolt failure didn’t occur, (d) a 
force of 204 kN was not reached in the tests, e) the bolt types were not tested with this 
embedment length, (g) force of 204 kN was not reached in one of the test, (h) in two out 
of three tests, slippage occurred instead of the failure 
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With an embedment length of 250 mm, none of the test bolts broke off (Figure 17). The 

averaged results are presented in Table 11. 

 

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Displacement (mm)

Lo
ad

 (k
N

)

Galvanized strand Epoxy coated strand
Rebar

 

Figure 17. Axial double pipe test results. The average load-displacement curves of each 

test bolt type with an embedment length of 250 mm (Satola & Aromaa 2004). 

 
 

Table 11. The averaged test results of pull-out test with an embedment length of 

250 mm. Abbreviations are explained in Section 3.6. 

Bolt type F(bond)

(kN) 

F(2nd bond)

(kN) 

D(204 kN)

(mm) 

F(10mm)

(kN) 

F(max)

(kN) 

F(break)

(kN) 

UBS 

(N/mm2)

Epoxy-coated strand 35.3 51.6 (d) 68.4 159.5 (c) 9.1 

Galvanized strand 73.8 84.0 (d)  86.9 131.4 (c) 8.0 

Steel strand (e)       

Bulbed strand (e)       

Rebar 290.7 (a) 6.9 275.3 291.2 (c) 14.8 
(a) bond failure didn’t occur, (c) bolt failure didn’t occur, (d) a force of 204 kN was not 
reached in the test, (e) the bolt types were not tested with this embedment length 
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3.8.4 Discussion 

 

The corrosion protection treatment on the surface of the test strand increased the friction 

between the strand and the grout and thus improved the bond strength and the stiffness 

of the grouted strand meaning shorter displacements for given loads. This was clearly 

seen from the shapes of the curves of the epoxy-coated steel strands and the galvanized 

steel strands with every tested embedment length: 1000 mm, 750 mm, 500 mm and 

250 mm (Figures 14-17) 

 

Embedment length of 1000 mm 

The axial load-displacement behavior of the rebar, bulbed strand and epoxy-coated steel 

strand was very close to the behavior they displayed in the tests with an embedment 

length of 2000 mm, whereas the behavior of the galvanized steel strand and steel strand 

was more flexible than that of the tests with an embedment length of 2000 mm. 

 

Epoxy–coated steel strand had higher load values at bond failure, maximum load and 

break load than galvanized steel strand. The load at the first bond failure for the epoxy-

coated steel strand was 22% higher than that of the galvanized steel strand. Higher load 

values are probably due to the grit surface of the epoxy, which generates more friction 

to resist pull-out. 

 

The maximum load value for the epoxy-coated steel strand was slightly higher than that 

of the galvanized steel strand. The corresponding values for steel strand were distinctly 

lower. Bond failure took place in both embedment sections for the standards steel strand 

at the quite low loads. The first bond failure value was only 26% of that of epoxy-

coated steel strand and 32% of that of the galvanized steel strand (Table 8). The surface 

of the steel strand is smooth generating very low friction between the surface of the 

grout and the steel. As presented earlier in this thesis, the untwisting mechanism of the 

steel strand plays a very important role in bond strength and thus the friction at the 

interface of the grout and steel is more dominant than the mechanical interlocking and 

dilation, especially in the tests with short embedment lengths. 

 

The displacement at the proportional yield limit (D(204 kN)) for epoxy-coated steel strand 

was only 55% of the value of the galvanized steel strand. The corresponding percentage 
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was 37% for the bulbed strand and 42% for the rebar (Table 12). Bulbed strand had a 

lower displacement value than rebar, which was surprising. In tests of steel strand, a 

load of 204 kN was not reached because of the slippage of the strand at a lower load. 

The maximum load was 189 kN at a displacement of 58 mm. 

 

Table 12. Comparison of D(204 kN) values between different bolt types. Embedment length 
of 1000 mm. 
Bolt type D(204 kN)

(mm) 

Fi / Fref

Epoxy-coated steel strand 6.9 0.55 

Galvanized steel strand (Fref) 12.6 1 

Steel strand (d) - 

Bulbed strand 4.7 0.37 

Rebar 5.3 0.42 
d) a force of 204 kN was not reached in the test 

 

The bulbed strand had a high degree of stiffness mostly because of the bulbs that 

functioned as anchors. The axial behavior and the maximum load value and breaking 

value were very close to the values obtained from the tests with an embedment length of 

2000 mm. It is natural that the pull-out resistance of the bulbed strand is based on the 

anchoring mechanism produced by the bulbs and the effect of the embedment length is 

minor compared to the anchoring mechanism. 

 

Embedment length of 750 mm. 

In one test of the galvanized steel strand the bond failure occurred at exceptionally low 

load value, and thus the averaged load values presented in Table 9 and in Figure 15 are 

lower than they should be. 

 

Embedment length of 500 mm 

The axial load-displacement behavior of the bulbed strand with an embedment length of 

500 mm was very close to its behavior with an embedment length of 1000 mm. The 

values were just slightly lower. The axial stiffness and the reference force values were 

highest for the bulbed strand compared to the other strands.  
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Epoxy-coated steel strand had a higher degree of stiffness than galvanized steel strand. 

For the galvanized steel strand, the load at bond failure was 71%, maximum load 80% 

and UBS 86% of those of epoxy-coated steel strand. The 0.2 limit value (204 kN) was 

not reached in the galvanized steel strand tests. 

 

Embedment length of 250 mm 

Epoxy-coated steel strand started to slip relative to the grout column earlier than 

galvanized steel strand. The bond failure value of the epoxy-coated steel strand was 

48% of the value of the galvanized steel strand. However the maximum load was higher 

for the epoxy-coated steel strand than for the galvanized steel strand. The maximum 

load value of the latter was 82% of the former. The 0.2 limit value of 204 kN was not 

reached in the test for either of the test bolt types. No explanation for the difference 

between the behavior of galvanized steel strand and epoxy-coated steel strand could be 

given. 

 

Rebar had still very high values. The value at the bond failure was at the same level as 

the yielding load of rebar and about 8.2 times higher than that of the epoxy-coated steel 

strand and about four times higher than that of the galvanized steel strand. 

  

3.9 Bolts with plates and unequal embedment lengths 

 

3.9.1 Aim of the tests 

 

The aim of the test was to determine the effect of plates and barrels/wedges on the axial 

behavior of test bolts. One of the goals was also to determine the effect of unequal 

embedment lengths on the axial behavior of test bolts. The idea behind the unequal 

embedment lengths (2000 mm/500 mm) was that the shorter embedment section (E.L. = 

500 mm) represents a rock block falling and pulling away from a bolt, while the longer 

embedment section (E.L. = 2000 mm) represents the anchor section. 

 

3.9.2 Test bolt types 

 

The following test bolt types were tested: galvanized rebar, steel strand and galvanized 

steel strand (Table 13). 
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Table 13. The number of double pipe axial tests with unequal embedment lengths 

(2000 mm/500 mm). Test bolts were tested both with and without plates. 

Bolt type Diameter  

 (mm) Plates No plates 

Galvanized rebar 25 2 2 

Steel strand 15.2 2 2 

Galvanized steel strand 15.7 2 2 

 

 

3.9.3 Test results 

 

Test results of rebars showed that the full capacity of the rebars was obtained even 

without plates (Figure 18) (Table 14). In one test without plates, the rebar slippage 

instead of failure occurred indicating that the critical embedment length was about 

500 mm. 
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Figure 18. Axial double pipe test results of galvanized rebars of unequal embedment 
lengths (2000 mm/500 mm) and plates. Symbol ● denotes that test bolt ruptured. 
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Table 14. The averaged test results of pull-out test with embedment length of 

2000 mm/500 mm. Abbreviations are explained in Section 3.6. 

Bolt type F(bond)

(kN) 

F(2nd bond)

(kN) 

D(204 kN)

(mm) 

F(10mm)

(kN) 

F(max)

(kN) 

F(break)

(kN) 

UBS 

(N/mm2)

Galvanized strand 51.5 (a) (d) 41.9 82.3 (c) 2.5 

Galvanized strand (plated) 47.5 137.0 68.2 74.2 254.8 294.8 7.8 

Steel strand 34.0  (a) (d) 48.0 95.1 (c) 2.9 

Steel strand (plated) 37.6 138.1 32.0 78.6 263.0 246.8 8.0 

Galvanized rebar 312.0 (a) 2.8 279.7 305.2 247.3 9.3 

Galvanized rebar (plated) (a) (a) 2.4 285.7 310.3 230.9 (b)

(a) bond failure didn’t occur, (b) UBS was not defined, (c) bolt failure didn’t occur, (d) a 
force of 204 kN was not reached in the test 
 

 

Test results of steel strand showed a significant difference in the axial behavior between 

plated and unplated tests (Figure 19). In both plated tests, the test bolt broke off.  
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Figure 19. Axial double pipe test results of steel strands of unequal embedment lengths 
(2000 mm/500 mm) and plates. Symbol ● denotes that test bolt ruptured. 
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Test results of galvanized steel strand showed a difference in axial behavior between 

plated and unplated tests (Figure 20). One of the plated galvanized steel strands broke 

off (no. 86) and another test was stopped at the load of about 214 kN (no. 87) because of 

the problems with the connection of the displacement transducer. 

 

Because the barrel and wedge anchors were not tensioned with the installation jack, the 

displacement values in (Figure 19) and (Figure 20) also include the displacement caused 

by taking up the slack between the barrel, wedges and plates. 
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Figure 20. Axial double pipe test results of galvanized steel strands of unequal 
embedment lengths (2000 mm/500 mm) and plates. Recording the test data at the end of 
the test no. 86 failed because of problems with displacement transducers (spotted line). 
Symbol ● denotes that test bolt ruptured. 
 

 

3.9.4 Discussion 

 

When comparing the results of galvanized steel strands with embedment lengths of 

2000 mm/500 mm, some very interesting observations can be made (Figure 21). The 

stiffness of the grouted galvanized steel strand with an embedment length of 

2000 mm/500 mm is significantly lower than at an embedment length of 

500 mm/500 mm. This behavior can be explained by the untwisting mechanism of the 
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strand. The torque absorbed in the strand during the test can not be released at the end of 

longer embedment (2000 mm) which in turn causes untwisting to occur earlier along the 

shorter embedment section (500 mm) and the strand slips at a lower load. 

 

Another interesting observation is the behavior of plated galvanized steel strand 

(2000 mm/500 mm) compared to that of galvanized steel strand with an embedment 

length of 2000 mm/2000 mm (unplated). The plated galvanized strand showed a 

slippage at a load of 150 kN at the end of the embedment section of 2000 mm. The 

explanation is related to the untwisting mechanism in this case also. 
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Figure 21. The difference in the axial behavior of galvanized steel strand with different 
embedment length variations and plated strands. Symbol ● denotes that test bolt 
ruptured. 
 

 

The behavior of plated galvanized steel strand can be divided into the following stages 

(Figure 22): 
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Stage 0 - 1 (0 - 57 kN): The strand starts to lengthen in the section between two 

embedment sections. The bond between the grout and the strand starts to break off and 

the strand starts to debond itself from the joint opening point and debonding proceeds to 

both embedment sections. Finally, the strand has debonded itself from the grout at the 

full length of the shorter embedment section (on the both embedment section). 

 

Stage 1 - 2 (57 - 48 kN): The torsional energy absorbed by the strand causes the strand 

to untwist and slip rapidly until the wedges inside the barrel are start to tighten against 

the strand and the barrel. 
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Figure 22. Example of different stages of axial behavior of galvanized steel strand with 

unequal embedment lengths (2000 mm/500 mm, plated). Test bolt no. 87. 

 

 

Stage 2 - 3 (48 - 156 kN): The slack is taken up between the barrel/wedges and between 

the barrel/wedges and the end of the steel pipe. Rotation is prevented on the shorter 

embedment section because the slack has been taken off and the barrel/wedge and the 

plate prevent the rotation. The grout compresses. The strand continues to debond itself 
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from the grout in the longer embedment section and the decoupling front (bond failure 

front) propagates further along the grout column. 

 

Stage 3 - (156 kN -): The decoupling front has propagated along the whole length of the 

embedment and bond failure occurs along the full length of the embedment. The end of 

the strand (pull-in end) moves into the grout column as the strand moves along the grout 

column for its full length. 

 

When comparing the test results of the strands to that of the rebars, it has to be noted 

that the barrel and wedge anchors were not tensioned with the installation jack and thus 

the displacement values of the strands also contain the displacement caused by taking 

up the slack between the barrel, wedges and plates. 

 

In a normal situation in cable bolting reinforcement, the barrel and wedge anchors are 

usually attached to the cable bolt after the bolt is tensioned at the pre-load of 50 kN. 

This load is enough to take up the slack of the surface fixtures of the cable bolt. 

Tensioning certainly has an influence also on the bond between the grout and bolt near 

the loading point. It is very likely that the load of 50 kN pointed towards the end of the 

strand, deteriorates the bond at section of dozens of centimeters from the loading point. 

How this affects the axial behavior of the strands should be determined. However, this 

was not the topic of this research. 

 

3.10 Ungrouted steel strand 
 

One single test was performed on the ungrouted steel strand to ascertain, how it behaves 

in the double pipe test (Figure 23). The test length of the steel strand was 4020 mm. 

 

The strand was connected to the test frame with a plate and barrel and wedge anchors at 

both ends of the strand. In the beginning of the test, the slack was taken up from the 

barrel and wedge anchors (from 0 mm to 18 mm). At a load of approximately 240 kN, 

failure of the first wire(s) occurred. The failure of the next strand occurred at a load of 

220 kN. It has to be pointed out that in the pull tests, when failure or sudden slippage 

occurs, the load is dropped to the lower level and then it starts to increase again. 
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In the real situation the load is constant and corresponds to the weight of the block or 

rock mass falling, leading to the breakage of all the wires at the same time (or within a 

very short time anyway). 

 

The load corresponding to the theoretical 0.2 limit (204 kN) was reached after a 

displacement of about 55 mm. 
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Figure 23. Load-displacement behavior of ungrouted steel strand with a test length of 
4020 mm. The test was performed by a double pipe test machine. 
 

 

3.11 Effect of debonding material on bond strength (Licentiate thesis) 

 

3.11.1 General 
 

This part of the research was done in a project on the development of a mechanized 

cable bolting system during 1996 - 1999 and is reported by the author in his licentiate 

thesis (Satola 1999a) and in a refereed conference paper (Satola 1999b). The aim of the 

licentiate thesis was to find the main factors and mechanisms affecting the behavior of 

the cable bolt reinforcement. Determining, whether those factors could be changed to 
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achieve a more flexible cable bolt in order to increase the cable bolt’s displacement 

capacity was also important. This kind of solution, “a yielding cable bolt”, would be a 

very applicable reinforcement structure in rock masses with large deformations. The 

main limitation of the study was to develop a solution suitable for mechanized cable 

bolting using standardized seven-wire steel strand being at the same time safe, 

technically practicable and economically viable. 

 

3.11.2 Aim of the tests 

 

The aim of the pull-out test was to determine the axial load-displacement behavior of 

debonded steel strands during loading. The idea of these tests was to test the 

applicability of a yielding cable bolt achieved by debonding by a very simple test 

procedure using steel pipes. Also, the aim was to determine the applicability of three 

different materials as debonding materials for steel strands. 

 

3.11.3 Test sample preparation 

 

The test bolt type was a steel strand described in Section 3.2. Three different materials 

were tested on the surfaces of the steel strands: paraffin, lubricating oil and silicone 

spray. Each material was tested on the surface of the three steel strands. Three reference 

steel strands were tested without any surface treatment (Table 15). 

 

Table 15. The number of test samples with different debonding materials in 

unconstrained pull-out tests (Satola 1999a,b). 

Bolt type Diameter 

(mm) 

Debonding material Embedment length 

(mm) 

Number 

Steel strand 15.2 Paraffin 1000 3 

Steel strand 15.2 Silicone spray 1000 3 

Steel strand 15.2 Lubricating oil 1000 3 

Steel strand 15.2 - 1000 3 

 

 

The steel strands were placed in a horizontal position and the debonding treatment was 

performed on that part of the steel strand to be grouted inside the steel pipe. Lubricating 
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oil was spread on the surface of the strand in a thin layer with a paintbrush. The silicone 

spray was sprayed on from a distance of about 200 mm. The paraffin was first melted 

and then spread with a paintbrush. The paraffin cooled very fast and set solidly on the 

surface of the steel strand. 

 

3.11.4 Grouting and installation of the test steel strands 

 

Cement CEM II A 42.5 was used as the grouting material and the water-cement ratio 

was about 0.4. The portion of cement was weighed with scales and then mixed with a 

measured amount of water in a large tub. The water-cement mixture was mixed 

manually with an electric drill and beater in a tub. No additives or aggregates were used. 

 

The test steel strands were grouted into the steel pipes. The inside diameter of the steel 

pipe was 44 mm and the length was 1000 mm. The thickness of the wall of the steel 

pipe was 2.3 mm. One end of the steel pipe was closed and sealed with a welded steel 

plate. The steel pipes were filled with the grout poured from a can into the steel pipes. 

Steel pipes were filled with the grout in several steps. The grout was compacted with a 

tamping bar between every step. Steel strands were inserted manually into the steel 

pipes. The grouted test steel strands were stored in a vertical position under constant 

conditions with a relative humidity of 98% and a temperature of +11ºC at the research 

tunnel of the Laboratory of Rock Engineering before testing. 

 

3.11.5 Pull-out tests  

 

Pull-out tests were performed in the research tunnel of Sandvik Tamrock Ltd. in 

Tampere in September 1997. The pull-out test equipment consisted of a hydraulic jack 

with an electric pump and measuring instruments. The measuring instruments consisted 

of a measuring program, a data logging modulus, two pressure transmitters and a telltale 

to measure the displacement of the steel strand. The hydraulic jack with the electric 

pump was capable of applying a maximum load of 300 kN. The stroke of the hydraulic 

jack was about 300 mm. The load was calculated from the pressures and working areas 

of each side of the hydraulic jack. The pressures were measured by two pressure 

transmitters. Pressures were calibrated by using computational values. The telltale was 

connected to the data logging modulus through a message converter. The telltale was 
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calibrated by using measuring tape. The measuring range was selected between 0 and 

100 mm to reach an adequate resolution.  

 

3.11.6 Test procedure 

 

The steel strand was put through the hydraulic jack. A steel plate was then placed 

between the end of the steel pipe and the hydraulic jack. The steel strand was connected 

to the hydraulic jack by another plate, a barrel and wedges. The plate was tightened 

against the hydraulic jack by the barrel and wedge anchor. A small load was applied to 

the strand so that the plates, barrel and wedge anchor and hydraulic jack would sit 

firmly on each other and the direction of the pull was axial to the strand. 

 

The telltale was connected to the hydraulic jack by the steel band and the line of the 

telltale was tied to the holder, which was connected to the free end of the steel strand. 

After taking up the slack in the equipment, the telltale was tied to the holder. The rate of 

the load 10 kN/min was in the line with the suggested methods of the ISRM (1981). The 

load from the electric pump was steadily increased until the bolt moved/stretched the 

amount of the stroke or failure occurred. The pressure and displacement readings were 

taken at increments of 0.5 s and they were recorded automatically by the computer. 

After each pull-out test the line of the telltale was released and the strand was cut off in 

order to remove the strand from the hydraulic jack. 

 

3.11.7 Test results 

 

The averaged axial behavior of the test steel strands during pull-out testing is illustrated 

in the load –displacement diagram (Figure 24). Because of the calibration of the telltale 

it was possible to record the displacements of the first 100 mm. However, all the steel 

strands were pulled out the full amount of the stroke of the hydraulic jack (300 mm). All 

the test steel strands slipped out of the pipes instead of breaking. In every pull-out test 

the steel strands came out by untwisting. 
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Figure 24. The averaged test results of steel strands with different debonding materials 

(after Satola 1999a,b). 

 

3.11.8 Discussion 

 

Reference wire strands came out of the steel pipes with quite low pull-out loads rather 

than a break in the wire strands. This was mainly because of the rotation of the wire 

strand during pull-out and the low radial stiffness of the steel pipes. Pull-out tests, where 

rotation is allowed, give lower pull-out resistances than tests where rotation is prevented 

(Hutchinson & Diederichs, 1996). The radial stiffness of the steel pipe affects the 

embedment length where the full cable capacity (240 kN) is attained (Hyett et al. 

1992b). The lower the radial stiffness, the longer the embedment length required. In the 

reported pull-out tests, the thickness of the wall of the steel pipes was only 2.3 mm and 

thus the radial stiffness of the steel pipe was quite low.  

 

The thickness of the layer of the debonding materials applied to the surface of the steel 

strand varied with each debonding material. Lubricating oil and paraffin were spread 

onto the surface of a steel strand by paintbrush. Thus, it was difficult to get those 

materials to spread uniformly. The thickness of the layers had a clear effect on the pull-
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out loads. Increasing the thickness of the layer decreases the pull-out resistance. Silicon 

was easier to spread uniformly on the surface of the steel strand, because it was sprayed 

on. The thickness of the layer was also less and thus the pull-out resistance was higher 

than that of the steel strands debonded by the other debonding materials. 

 

There was a clear difference between the mean values of maximum pull-out loads of 

debonded steel strands and reference steel strands (not debonded) (Table 16). The mean 

value of the pull-out loads of the steel strands debonded by paraffin was only 11% of 

that of the reference steel strands. The steel strands debonded by silicon spray had the 

highest pull-out loads of the debonded steel strand. The mean value of the pull-out loads 

of those steel strands was about 58% of the reference steel strands. The corresponding 

value was 34% for the steel strands debonded by lubricating oil. It should be pointed out 

that the mean values were calculated from three values and are thus only averages. 

 

Table 16. The number of test samples with different debonding material in 

unconstrained pull-out tests (Satola 1999b). 

Bolt type Diameter 

(mm) 

Debonding 

material 

Fmax  

(kN) 

Fi / F ref

Steel strand 15.2 No debonding 122 (Fref) 1 

Steel strand 15.2 Silicone spray 71 (Fi) 0.58 

Steel strand 15.2 Lubricating oil 42 (Fi) 0.34 

Steel strand 15.2 Paraffin 14 (Fi) 0.11 

 

 

3.12 Interpretation of the test results 

 

To check the load values and calibrate the double pipe test system, the hydraulic jack 

was connected in the MTS 815 testing system and the calibration test was performed. 

The load values measured by the MTS 815 testing system were compared to those 

measured by the double pipe test system. The load measured by the MTS 815 testing 

system was 6% higher than that of the double pipe test at a load of 50 kN. When the 

load was increased from 50 kN to 400 kN the corresponding value decreased from 6% 

to 1% (Appendix B). 
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The artificial improvement of the bond strength by the welded ring inside the steel pipe 

cannot simulate the real bond between the grout and the surface of the borehole. 

However, the mechanisms affecting on the surface between the test bolt and the grout 

column were virtually the same. 

 

The displacement (D1), the total opening between the pipes, has been defined as total 

displacement, although it is the sum of the elongation of the embedded test bolt, the 

elongation of the ungrouted section of test bolt between two pipes, the elongation of the 

pipe and grout column, and any initial movement in the testing apparatus when loading 

began. 

 

It should be pointed out that the laboratory axial tests are mainly intended for a 

comparison of different variables between test bolts. The results are relative and 

comparison can be made only with the results obtained from tests performed in a similar 

way. None of the laboratory tests can simulate the real situation of a rock reinforcement 

element loaded in a rock mass. However, in double pipe axial tests the response of the 

reinforcing element at the interface between the two halves of the test specimen most 

closely represents the performance of a similar reinforcing element crossing a dilating 

discontinuity. 

 

A minimum of five tests are usually required in rock bolt testing according to the ISRM 

Suggested Methods for Rock Bolt Testing (ISRM 1981). However in the tests described 

in this thesis, a very limited number of identical tests were performed because of the 

limited resources of and schedule available. Normally the number of identical tests was 

at least three, but in some tests only two successful identical tests were performed. 
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4 FINAL DISCUSSION 

 

4.1 Effect of corrosion protection 

 

The corrosion protection treatment on the surface of the test strand increased the friction 

at the interface between the strand and grout and improved the bond strength resulting 

in higher bond failure loads, maximum load and ultimate bond strength (Table 17). The 

bond failure loads (F(bond) and F(2nd bond)) of the epoxy-coated steel strand with 

embedment length of 1000 mm were about 3.8 times that of the steel strand. The 

corresponding values of the galvanized steel strand were about 3.2 - 3.3 times that of the 

steel strand. 

 

The maximum loads of the epoxy-coated steel strand and the galvanized steel strand 

were about 60% - 70% higher than that of the steel strand with an embedment length of 

1000 mm and less than 10% higher with an embedment length of 2000 mm. D(204 kN) of 

the epoxy-coated steel strand, with an embedment length of 2000 mm, was only 34% of 

that of the steel strand, whereas the D(204 kN) of the galvanized steel strand was only 30% 

of that of the steel strand. 

 

Table 17. The comparison between corrosion-protected steel strands and unprotected 

steel strand. Abbreviations are explained in the Section 3.6. Vi = values of the 

galvanized steel strand or epoxy-coated steel strand, Vref = value of the steel strand. 

Bolt type E.L. 

(mm) 

F(bond)

(Vi/Vref) 

F(2nd bond)

(Vi/Vref) 

D(204 kN)

(Vi/Vref) 

F(max)

(Vi/Vref) 

UBS 

(Vi/Vref) 

Epoxy-coated strand 1000 3.84 3.76 * 1.65 1.52 

Epoxy-coated strand 2000 2.08 2.10 0.34 1.05 * 

Galvanized strand 1000 3.16 3.28 * 1.57 1.52 

Galvanized strand 2000 * * 0.30 1.00 * 

* could not be defined, see previous results 

 

 

Epoxy-coated steel strand had higher load values at bond failure and maximum load 

than galvanized steel strand (Table 18). The F(bond) of the epoxy-coated steel strand was 

about 22% higher than that of the galvanized steel strand with an embedment length of 
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1000 mm. There was a distinct difference in D(204 kN) values between the epoxy-coated 

and galvanized steel strands with an embedment length of the 1000 mm with that of the 

epoxy-coated steel strand being only 55% of that of the galvanized steel strand. With an 

embedment length of 2000 mm, epoxy-coated steel strand had, however, a higher (14%) 

D(204 kN) value than galvanized steel strand.  

 

Higher load values of the epoxy-coated steel strand with the embedment length of 

1000 mm are probably because of the grit surface of the epoxy and larger contact area, 

which generates more friction and thus increased pull-out resistance. The effect of the 

grit and larger contact area decreased when the embedment length was increased. This 

can be seen from the results of the test strands with the embedment length of 2000 mm. 

 

The maximum load value for the galvanized steel strand was slightly higher than that of 

the epoxy-coated steel strand. 

 

Table 18. The comparison between epoxy-coated (Ei) and galvanized strand (Gi). 

Abbreviations are explained in Section 3.6. 

Bolt type E.L. 

(mm) 

F(bond)

(Ei/Gi) 

F(2nd bond)

(Ei/Gi) 

D(204 kN)

(Ei/Gi) 

F(max)

(Ei/Gi) 

UBS 

(Ei/Gi) 

1000 1.22 1.15 0.55 1.06 0.98 Relation 

2000 * * 1.14 1.05 * 

* could not be defined, see previous results 

 

 

4.2 Effect of the embedment length 

 

Most of the axial pull tests were carried out in such a way that both embedment lengths 

were equally long in the same test. The results showed that the maximum load-carrying 

capacity of galvanized steel strand and epoxy-coated steel strand increased linearly as 

embedment length increased from 250 mm to 1000 mm (Figure 25). In the tests 

presented in this thesis, steel strand was tested with only two different embedment 

lengths (1000 mm and 2000 mm), and thus it is not reliable to present any thoughts 

about linearity as regards the behavior of steel strand. However, Goris (1990a) found a 
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linear behavior in his tests on steel strand for embedment lengths from 203 mm 

(8 inches) to 813 mm (32 inches). 

 

The maximum loads of bulbed strands were about the same level at every embedment 

length tested. It is obvious that for the steel strands the maximum load increases when 

the embedment length increases, until the critical embedment length is reached 

(Figure 25). 
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Figure 25. The averaged maximum load at the different embedment lengths. 
 

 

The ultimate bond strength, i.e. the maximum load divided by the bond area, was 

calculated for every test bolt type with the embedment length tested in the cases when 

the bond failure was detected (Figure 26). Rebar and bulbed strand had the highest bond 

strength values with every embedment length tested. 
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The high pull-out resistance of the bulbed strands is based on the bulbs which work as 

anchors, and therefore the mechanisms affecting the pull-out resistance differs from that 

of other strands (Figure 7). The ultimate bond strength values for the bulbed strand were 

not defined because bond failures were not detected.  

 

Epoxy-coated steel strand had higher UBS values than galvanized steel strand with 

every embedment length. 
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Figure 26. The ultimate bond strengths (UBS) of test bolt types with different 
embedment lengths. Bond strength is defined as the ultimate load divided by the bond 
area of the bolt. 
 

 

Some of the axial pull tests were performed in such a way that that one of the 

embedment lengths was shorter (500 mm) and the other was longer (2000 mm) in the 

same test. The idea of this test system was to simulate a rock block falling from the roof 
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and pulling away from a support cable bolt. Also the effect of the plates on the axial 

behavior was tested. 

 

It is obvious that the end of the test strand in the shorter embedment section (500 mm) 

offered the least resistance to pull-out and consequently pulled out of the grout as the 

load applied to the system was increased. The bond between the grout and strand was 

broken first at the junction of the steel pipes (joint opening point) and then propagated 

along the length of the steel strand in both 500-mm and 2000-mm embedment sections. 

When the bond along the entire length of the strand embedded in the 500-mm section 

was broken the grout began to slip along the surface of the strand. It is assumed that the 

bond was also broken along the 500 mm of the strand in the 2000-mm section. 

 

Untwisting mechanism played a very important role in the tests and two very interesting 

observations were made. The stiffness of the grouted galvanized steel strand with the 

embedment lengths of 2000 mm and 500 mm (2000 mm/500 mm) was significantly 

lower than in the case of 500 mm and 500 mm (500 mm/500 mm). This behavior was 

explained by the untwisting mechanism of the strand. It is the author’s opinion that the 

torque generated along the strand during the test cannot be released at the section of 

longer embedment (2000 mm), which in turn caused untwisting to occur earlier at the 

end of shorter embedment section (500 mm) and the strand slipped at a lower load. 

 

Another interesting observation was the behavior of plated galvanized steel strand 

(2000 mm/500 mm) compared to that of galvanized steel strand with embedment 

lengths of 2000 mm and 2000 mm (unplated). Plated galvanized strand took a slippage 

at a load of 150 kN at the 2000-mm embedment end. This behavior is probably caused 

by the prevention of the rotation of the strand due to the plate. 

 

4.3 Effect of the debonding material 

 

The effect of the debonding material is based on the thickness of the debonding layer 

and the ability to decrease the friction between the strand and grout. The thickness of 

the layer plays a dominant role, because it smoothes the profile of the grout surrounding 

the debonding layer and thus the interlocking is decreased. The thickness of the layers 
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had a clear effect on the pull-out loads. The thicker the layer, the lower the pull-out 

resistance.  

 

4.4 Effect of untwisting mechanism 

 

As mentioned earlier in this thesis, the untwisting mechanism of the strand plays an 

even more important role in the axial behavior of plain strand than the other 

mechanisms: shear failure of the cement flutes and dilatational slip of the strand 

accommodated by radial splitting. This phenomenon was discussed earlier in the 

Section 2.4. 

 

An untwisting mechanism was also detected in the axial pull tests presented in this 

thesis. The steel strand untwisted out of the grout column, instead of shearing the 

cement flutes or dilational slip during pull-out. Bond failure occurred by untwisting 

nearly the full length of the bond length and shearing of the grout flutes occurred only 

on the small section near the exit point of the strand. 

 

The untwisting mechanism is very closely related to the torsional rigidity of the steel 

strand, the friction between the strand and grout, the strength of the grout and the 

stiffness of the host material (rock, steel pipe). 

 

The effect of the untwisting mechanism has to be taken seriously in rock reinforcement 

design. The critical embedment length values of the plain strand presented in the 

literature are very often determined by single embedment length tests, where an 

untwisting mechanism is not presented because the torque is not generated in the strand. 

This leads to an unrealistic behavior of the steel strand under loading, and thus a longer 

critical embedment length than occurs in reality.  
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5 CONCLUSIONS 

 

Due to the interest in the expanded use of cable bolting also in civil rock engineering, 

“Corrosion-protected cable bolts in long-term reinforcement” research projects were 

carried out in the Helsinki University of Technology in 1999 – 2003. The object of the 

projects was to study the applicability of corrosion-protected cable bolts in long-term 

reinforcement.  

 

This thesis concentrated on one of the topics of the projects, related to the mechanical 

applicability of cable bolts in rock reinforcement for civil rock engineering and long-

term reinforcement purposes. The scope of the thesis was to test and evaluate the axial 

load-displacement behavior of different types of steel strands applicable to rock 

reinforcement. 

 

Of particular interest was to determine the effect of the corrosion protection (hot-dip 

galvanization and epoxy coating) on the axial load-displacement behavior of the steel 

strand. 

 

A new modification for axial laboratory testing of rock reinforcement elements was 

designed and constructed for this research. The double pipe test apparatus enabled 

testing of different bolt types with embedment lengths from 250 mm up to 2000 mm 

with a loading capacity of 0 kN - 350 kN. The test apparatus worked as desired and was 

easy to operate. 

 

A total of about 70 axial laboratory pull-out tests were performed, including different 

set-ups for the tests and different embedment lengths used. This was performed by 

conducting strictly controlled axial laboratory pull tests on full-scale standard steel 

strand, modified steel strand, galvanized steel strand and epoxy-coated steel strand, 

under axial loading. Rebars were tested as a reference given that they are the most 

commonly used bolt types in civil rock engineering in Finland. 

 

An untwisting mechanism was detected in the axial pull tests. The results showed that 

untwisting mechanism dominates the axial behavior of the steel strands. This 

observation is in line with the results reported in the literature. The steel strand 
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untwisted out of the grout column, instead of shearing the cement flutes or dilatational 

slip of the strand during pull-out. Bond failure occurred by untwisting nearly along the 

full length of the bond length, and shearing of the grout flutes took place only on the 

small section near the exit point of the strand. 

 

The main principle of axial behavior of the test bolt, despite the type of bolt, was the 

following: as the load was increased, the bond between the grout and strand was broken, 

first at the junction of the pipes and then propagating along the length of the bolt. If the 

load applied to the bolt is larger than the force resisting pull-out (i.e. bond strength), the 

bolt starts to slip out of the grout column. If the load applied to the bolt is less than the 

bond strength, the bond between the grout and the strand is broken to the definite point 

of embedment. In other words, if the embedment length is longer than the critical 

embedment length strand will break off. The length of the broken bond section (i.e. the 

point of embedment) is dependent on the factors affecting bond strength. 

 

The bond failure loads (F(bond) and F(2nd bond)) of the epoxy-coated steel strand and the 

galvanized steel strand with an embedment length of 1000 mm were significantly higher 

than that of the steel strand. 

 

The maximum loads of the epoxy-coated steel strand and the galvanized steel strand 

were about 60% - 70% higher than that of the steel strand with an embedment length of 

1000 mm. Displacement at a load of 204 kN (D(204 kN)) for the epoxy-coated steel strand 

and the galvanized steel strand was only about 30% - 34% of that of the steel strand 

with an embedment length of 2000 mm. 

 

The results showed that the maximum load-carrying capacity of galvanized steel strand 

and epoxy-coated steel strand increased linearly as the embedment length increased 

from 250 mm to 1000 mm. The critical embedment length of those bolt types was 

between 750 and 1000 mm.  

 

When making a comparison between the epoxy-coated steel strand and galvanized steel 

strand, the results showed that the epoxy-coated steel strand had higher load values at 

bond failures and maximum load than galvanized steel strand (Table 18). There was a 

distinct difference in D(204 kN) values between the epoxy-coated and the galvanized steel 
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strand with an embedment length of 1000 mm such that the epoxy-coated steel strand 

were only 55% of those of the galvanized steel strand. 

 

Rebar had the highest breaking load, the highest maximum load simultaneously 

allowing the shortest displacement values. Rebar was found to be the best bolt type 

tested for situation where minimum rock mass displacement is allowed. Bulbed strand 

acted most closely to the rebar. The load-displacement curves from 0 to 250 kN were 

similar between the rebar and the bulbed strand with an embedment length of 1000 mm 

and from 0 to 220 kN with an embedment length of 500 mm. 

 

Tests with unequally long embedment lengths (2000 mm and 500 mm) were also 

carried out. It is obvious that, the end of the test strand in the shorter embedment section 

(500 mm) offered the least resistance to pull-out and, consequently, pulled out of the 

grout as the load applied to the system was increased. The bond between the grout and 

strand was broken first at the junction of the steel pipes (joint opening point) and was 

then propagated along the length of the steel strand in both 500-mm and 2000-mm 

embedment sections. When the bond along the entire length of the strand embedded in 

the 500-mm section was broken, the grout began to slip along the surface of the strand. 

Results showed that untwisting mechanism played a very important role also in the test 

with unequal embedment lengths. 

 

To summarize the results, the corrosion protection on the surface of the steel strand 

significantly increased the bond strength and decreased the displacement in proportion 

to the loads and thus increased the stiffness of the grouted steel strand under axial 

loading. 

 

The effect of the debonding material was found to be based both on the thickness of the 

debonding layer and the ability to decrease the friction between the strand and grout. 

The thickness of the layer plays a dominant role because it smoothes the profile of the 

grout surrounding the debonding layer, and thus decreases the interlocking between the 

grout and strand. Thickening the layer, decreases the pull-out resistance leading to lower 

pull-out loads.  
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6 RECOMMENDATIONS FOR FURTHER STUDIES 

 

The test system designed for the purpose of this research was found to be very practical 

and successful. However, a test system, where test bolts are grouted inside rock or 

concrete blocks (Stillborg 1984), would simulate even more closely the real situation in 

rock mass, when it comes to the properties of the host material. The roughness of the 

borehole as well as the radial stiffness of the confining material should be closer to that 

of borehole in a rock mass. However, using rock or concrete blocks would require the 

determination of the stiffness of the confining material to ensure that the testing 

conditions are as identical as possible between different tests. 

 

If possible more identical tests are recommended to ensure more reliable statistical 

analysis. The ISRM (1981) suggests that at least five identical tests should be 

performed. The author’s opinion is that statistical analysis would require many more 

identical tests than the suggested five. However, the resources and the schedule 

available for research usually keep the amount of the tests to a minimum, and thus the 

ISRM recommendation seems very reasonable. 

 

All necessary further research should be performed for approval of the use of cable bolts 

as a permanent reinforcement structure in rock construction in Finland. As needed, more 

corrosion tests on steel strands should be performed. 

 

The flexibility of the fully grouted steel strand can be decreased by increasing the 

roughness of the surface of the strand or using modified cable bolts, such as bulbed 

strand. This kind of stiff axial behavior is usually desired in the civil rock engineering, 

where very limited displacement of the rock mass can be allowed on the surfaces of the 

rock construction and on structures on the earth. The opposite kind of behavior is often 

desired in reinforcing the stopes or drifts in underground mines, where rock bolts should 

withstand large rock mass deformation. Increasing the flexibility can be achieved by 

discharging the bond between the grout and the strand using debonding. The ideal rock 

bolt would be provided by a bolt that whose stiffness and corrosion protection can be 

adjusted as desired. 

 

 



 87

An applicable solution for a multipurpose rock bolt could be provided by the 

mechanized cable bolter which could spread debonding or corrosion protection material 

on the surface of the strand, as well as create a deformed bulb wherever desired by 

clamping and crimping a plain steel strand. The operator could increase and decrease 

the stiffness of the fully grouted cable bolts using debonded sections or bulbs where 

necessary, and add corrosion-resistant material to the surface of the bolt if necessary. 
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APPENDIX A 

AXIAL DOUBLE PIPE TEST RESULTS 
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Figure A.1. The axial double pipe test results of hot-dip galvanized steel strand with 

embedment lengths of 250 mm, 500 mm, 750 mm, 1000 mm and 2000 mm. Symbol ● 

denotes that test bolt ruptured. 
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Figure A.2. The axial double pipe test results of epoxy-coated steel strand with 

embedment lengths of 250 mm, 500 mm, 750 mm, 1000 mm and 2000 mm. Symbol ● 

denotes that test bolt ruptured. 
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Figure A.3. The axial double pipe test results of steel strand with embedment lengths of 

1000 mm and 2000 mm. Symbol ● denotes that test bolt ruptured. 
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Figure A.4. The axial double pipe test results of bulbed strand with embedment lengths 

of 250 mm, 1000 mm and 2000 mm. Symbol ● denotes that test bolt ruptured. All the 

test bolts broke off. 
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Figure A.5. The axial double pipe test results of rebar with embedment lengths of 250 

mm, 500 mm and 1000 mm and galvanized rebar of 2000 mm. Symbol ● denotes that 

test bolt ruptured. 
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CALIBRATION OF THE HYDRAULIC JACK 
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 Figure B.1. The calibration curve of the hydraulic jack (double pipe) by the MTS 815 

testing system. 
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AXIAL DOUBLE PIPE TEST RESULTS. TIME-DISPLACEMENT DIAGRAMS 
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Figure C. 1. Time-displacement diagram of hot-dip galvanized rebar with embedment 
length of 2000 mm (test bolt no. 7). Symbol ● denotes that bolt ruptured. 
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Figure C. 2. Time-displacement diagram of hot-dip galvanized steel strands with 
embedment length of 2000 mm (test bolt no. 24). Symbol ● denotes that bolt ruptured. 
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Figure C. 3. Time-displacement diagram of epoxy-coated steel strand with embedment 
length of 2000 mm (test bolt no. 22). Symbol ● denotes that bolt ruptured. 
 
 

Steel strand

0

10

20

30

40

50

60

70

80

90

100

110

0 200 400 600 800 1000 1200 1400 1600 1800

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

Displacement 1
Displacement 2
Displacement 3

D1

D2

D3

 
Figure C. 4. Time-displacement diagram of standard steel strand with embedment 
length of 2000 mm (test bolt no. 28). Symbol ● denotes that bolt ruptured. 
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Figure C. 5. Time-displacement diagram of bulbed strand with embedment length of 
2000 mm (test bolt no. 11). Symbol ● denotes that bolt ruptured. 
 

Rebar

0

10

20

30

40

50

0 500 1000 1500 2000 2500

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

Displacement 1
Displacement 2
Displacement 3

D1

D3

D2

 

Figure C. 6. Time-displacement diagram of rebar with embedment length of 1000 mm 
(test bolt no. 63). Symbol ● denotes that bolt ruptured. 
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Figure C. 7. Time-displacement diagram of hot-dip galvanized steel strand with 
embedment length of 1000 mm (test bolt no. 43). Symbol ● denotes that bolt ruptured. 
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Figure C. 8. Time-displacement diagram of hot-dip galvanized steel strand with 
embedment length of 1000 mm (test bolt no. 42). Instead of rupture, test bolt slipped 
(see also Figure C.7). 
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Figure C. 9. Time-displacement diagram of epoxy-coated steel strand with embedment 
length of 1000 mm (test bolt no. 38). Symbol ● denotes that bolt ruptured. 
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Figure C. 10. Time-displacement diagram of standard steel strand with embedment 
length of 1000 mm (test bolt no. 123). 
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Figure C. 11. Time-displacement diagram of bulbed strand with embedment length of 
1000 mm (test bolt no. 51). Symbol ● denotes that bolt ruptured. 
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Figure C. 12. Time-displacement diagram of hot-dip galvanized steel strand with 
embedment length of 750 mm (test bolt no. 32). 
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Figure C. 13. Time-displacement diagram of epoxy-coated steel strand with embedment 
length of 750 mm (test bolt no. 71). 
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Figure C. 14. Time-displacement diagram hot-dip galvanized steel strand with 
embedment length of 500 mm (test bolt no. 33). 
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Figure C. 15. Time-displacement diagram of rebar with embedment length of 500 mm 
(test bolt no. 64). Symbol ● denotes that bolt ruptured. 
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Figure C. 16. Time-displacement diagram of rebar with embedment length of 500 mm 
(test bolt no. 122). Instead of rupture test bolt slipped (see also Figure C.15). 
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Figure C. 17. Time-displacement diagram of epoxy-coated steel strand with embedment 
length of 500 mm (test bolt no. 68). 
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Figure C. 18. Time-displacement diagram of bulbed strand with embedment length of 
500 mm (test bolt no. 58). Symbol ● denotes that bolt ruptured. 
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Figure C. 19. Time-displacement diagram of rebar with embedment length of 250 mm 
(test bolt no. 59). 
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Figure C. 20. Time-displacement diagram of hot-dip galvanized steel strand with 
embedment length of 250 mm (test bolt no. 44). 
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Figure C. 21. Time-displacement diagram of epoxy-coated steel strand with embedment 
length of 250 mm (test bolt no. 35). 
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Figure C. 22. Time-displacement diagram of hot-dip galvanized rebar with embedment 
lengths of 2000 mm and 500 mm (test bolt no. 91). Symbol ● denotes that bolt ruptured. 
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Figure C. 23. Time-displacement diagram of hot-dip galvanized steel strand with 
embedment lengths of 2000 mm and 500 mm (test bolt no. 85). 
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Figure C. 24. Time-displacement diagram of standard steel strand with embedment 
lengths of 2000 mm and 500 mm (test bolt no. 95). 
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Figure C. 25. Time-displacement diagram of hot-dip galvanized rebar with embedment 
lengths of 2000 mm and 500 mm (plated) (test bolt no. 89). Symbol ● denotes that bolt 
ruptured. 
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Figure C. 26. Time-displacement diagram of hot-dip galvanized steel strand with 
embedment lengths of 2000 mm and 500 mm (plated) (test bolt no. 86). 
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Figure C. 27. Time-displacement diagram of standard steel strand with embedment 
lengths of 2000 mm and 500 mm (plated) (test bolt no. 92). Symbol ● denotes that bolt 
ruptured. 
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FLAC 3.3 SIMULATIONS (Hakala, unpubl.) 

 

1. Simulation 
 
The effect of the connection points on the steel pipes in the test machine was studied in 
three different cases (Figure D.1): 

1. The connection points of steel pipes to the RHS test frame were at the outer 
edges of the steel pipes. Pipes were separated from each others by pulling at the 
connection points (Case A) 

2. One of the connection point was at the outer edge of the pipe and another 
connection point was at the inner edge of the other pipe (Case B) 

3. One of the connection point was at the outer edge of the pipe and another 
connection point was in the middle of the other pipe (Case C) 

 
The simulations were done with two dimensional finite difference code FLAC version 
3.3. An axi-symmetric model was used to simulate the double pipe test (Figure D.2).  
The 3D-construct of steel strand was simulated with surface of repeatable slopes and 
anisotropic Young’s modulus. In cable-grout and grout-steel pipe contacts interface 
elements capable to deform, slip and separate were used. 
 
In simulation the pulling device itself was not modelled instead the displacement at 
pulling device contact was increased with a constant rate. The pull was stopped at the 
displacement step of 0.5 mm, 1.5 mm, 3.0 mm, 5.0 mm, 7.5 mm and 10 mm and the 
model was run to an equilibrium state.  This was done to get comparable results without 
any ongoing dynamic effects. 
 

2. Parameter values for simulation 

Steel strand 
- Young’s modulus: E_axial = 196 GPa,  E_radial = 2 GPa 
- Poisson’s ratio_axi/rad = 0.25 
- Anisotropic, elastic material 

Grout 
- Young’s modulus: E = 13.8 GPa 
- Poisson’s ratio = 0.25 
- Cohesion = 16.5 MPa or 8 MPa 
- Friction angle = 30º 
- Tensile strength = 4 MPa or 2 MPa 
- Dilatation = 10º 

Steel pipes 
- Young’s modulus: E = 196 GPa 
- Poisson’s ratio = 0.3 

Steel strand/grout contact and grout/steel pipe contact 
- Normal stiffness = 1000 GPa/m 
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- Shear stiffness = 10 GPa 
- Friction angle = 22º 
- Cohesion = 2 MPa 
- Tensile strength = 2 MPa 

 
 
3. Conclusions 
The simulation results shoved that in Case A the failure starts in the middle as a bond 
failure between cable and grout. With increasing load the failure proceeds as grout 
yielding. First the grout is cut in to 20 cm to 30 cm sections by tension (Figure D.4) and 
later the tensile failure propagates through the entire grouting. At highest loading bound 
failure in cable-grout contact is observed. 
 
Case B connection type induces unwanted bond failure at grout-steel pipe contact 
(Figure D.3). In case C the grouting outside the RHS-pipe is subjected to less tension in 
the beginning of loading and therefore the grouting inside the RHS-pipe fails and major 
strains are taking place in that section. Case C is not recommended because of the 
length of efficiently working grouting is hard to predict and the overall mechanical 
behaviour is two-parted (Figure D.4). 
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Figure D.1. Simulated cases, anchoring point of RHS-pipe varies, pulling device is 
simulated with constant velocity boundary condition (Hakala, unpubl.). 
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Figure D.2. FLAC elements and materials (Hakala, unpubl.). 
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Figure D.3. Total displacements in the middle in cases A, B and C. Case B connection 
type induces unwanted bond failure at grout-steel pipe contact (Hakala, unpubl.). 
 

 



 120

APPENDIX D 

DOUBLE PIPE TEST SYSTEM. FLAC 3.3 SIMULATIONS 
 
 

 
Figure D.4. In case C the grouting outside the RHS-pipe is subjected to less tension in 
the beginning of loading and therefore the grouting inside the RHS-pipe fails and major 
strains are taking place in that section. Case C is not recommended because of the 
length of efficiently working grouting is hard to predict and the overall mechanical 
behaviour is two-parted (Hakala, unpubl.). 
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