
Programming Semantic Web Applications:
A Synthesis of Knowledge Representation

and Semi-Structured Data

Doctoral Dissertation

Ora Lassila

Nokia Research Center
3 Cambridge Center

Cambridge, MA 02142, USA

Dissertation for the degree of Doctor of Science in Technology to be presented with
due permission of the Department of Computer Science and Engineering for public
examination and debate in Auditorium TU2 at Helsinki University of Technology
(Espoo, Finland) on the 6th of November, 2007, at 12 noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Software Technology

Distribution:
Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Software Technology
P.O. Box 5400
FI - 02015 TKK
FINLAND
© 2007 Ora Lassila
ISBN 978-951-22-8985-1 (PDF)
ISSN 1239-6885 (PDF)
TKO-A44/07

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author Ora Lassila

Name of the dissertation

Manuscript submitted 2007-05-18 Manuscript revised 2007-09-24

Date of the defence 2007-11-06

Article dissertation (summary + original articles)Monograph
Department

Laboratory
Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords Semantic Web, Knowledge Representation, Programming

ISBN (printed) 978-951-22-8984-4

ISBN (pdf) 978-951-22-8985-1

Language English

ISSN (printed) 1239-6885

ISSN (pdf) 1239-6885

Number of pages 145

Publisher Department of Computer Science and Engineering, Helsinki University of Technology

Print distribution

The dissertation can be read at http://lib.tkk.fi/Diss/

Programming Semantic Web Applications: A Synthesis of Knowledge Representation and Semi-Structured Data

X

Department of Computer Science and Engineering
Laboratory of Software Techology
Knowledge Engineering
Professor Lynn Andrea Stein
Professor Markku Syrjänen

Software application development is largely centered around various representations of data and representations of the
world in which the software operates. Often, while a software system itself is specified in terms of procedures and
procedural semantics, the data the system uses and manipulates has declarative semantics; connecting the two is often
an ad hoc endeavor.

The issues of complex data representations are amplified within artificial intelligence applications that employ
sophisticated knowledge representation. More recently, applications involving Semantic Web technologies are faced
with the same situation. The Semantic Web is an attempt to enable sophisticated data representation for and within the
context of World Wide Web content, aiming to enable more automated and autonomous applications to be built that
take advantage of data on the Web. As such, the Semantic Web represents a vision for the next generation of Web
applications and Web usage.

This dissertation focuses on the representation of (Semantic Web) data as directed, labeled graphs. A method is
introduced for querying these representations by expressing path patterns, enabling software programs to be “glued” to
complex representations. The query mechanism is then extended to implement reasoning (i.e., logical inference) for
this data, and to hide the reasoning process from application programs. A reasoner is presented for data based on an
extended version of the RDF(S) data model. The outcome is a synthesis of two views of (Semantic Web) data, namely
the view of the data as a logic formalism, and a view of the data as semi-structured graphs.

An evaluation of the query mechanism is presented, contrasted against other approaches to querying RDF(S) data.
Examples of various software applications making use of the Semantic Web, the path query mechanism, and the
reasoner are also presented.

AB
VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU

PL 1000, 02015 TKK
http://www.tkk.fi

Tekijä Ora Lassila

Väitöskirjan nimi

Käsikirjoituksen päivämäärä 2007-05-18 Korjatun käsikirjoituksen päivämäärä 2007-09-24

Väitöstilaisuuden ajankohta 2007-11-06

Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)Monografia
Osasto
Laboratorio
Tutkimusala
Vastaväittäjä(t)
Työn valvoja
Työn ohjaaja

Tiivistelmä

Asiasanat Semanttinen web, tietämyksen esittäminen, ohjelmointi

ISBN (painettu) 978-951-22-8984-4

ISBN (pdf) 978-951-22-8985-1

Kieli Englanti

ISSN (painettu) 1239-6885

ISSN (pdf) 1239-6885

Sivumäärä 145

Julkaisija Tietotekniikan osasto, Teknillinen korkeakoulu

Painetun väitöskirjan jakelu

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Semanttinen Web ja sovellusohjelmointi tietämyksen esittämisen ja puolirakenteisen datan synteesinä

X

Tietotekniikan osasto
Ohjelmistotekniikan laboratorio
Tietämystekniikka
Professori Lynn Andrea Stein
Professori Markku Syrjänen

Ohjelmistosovellusten kehittämisessä keskeisessä asemassa ovat erilaiset tiedon esitysmuodot sekä esitykset siitä
maailmasta, jossa ohjelmistojärjestemä toimii. Usein, vaikka itse ohjelmisto on määritelty kokoelmana proseduureja ja
sillä on proseduraalinen semantiikka, sen käsittelemällä tiedolla on deklaratiivinen semantiikka; näiden kahden
yhdistäminessä käytetään monasti varsin satunnaisia menetelmiä.

Monimutkaisen tiedon esittämisen ongelmat ovat erityisen vaikeita edistyneitä tietämyksen esittämisen menetelmiä
käyttävissä tekoälysovelluksissa. Viime aikoina Semanttisen Webin tekniikoita käyttävät sovellukset ovat samojen
haasteiden edessä. Semanttinen web on yritys liittää kehittynyttä tiedon esitystä nettisisältöön tai sen yhteyteen,
päämääränä enenevässä määrin automaattisten tai itsenäisesti toimivien, nettisisältöä hyödyntävien sovellusten
kehittäminen. Tästä näkökulmasta Semanttinen Web edustaa visiota netin seuraavan sukupolven sovelluksista sekä
käytöstä.

Tässä väitöskirjassa keskitytään (Semanttisessa webissä olevan) tiedon esittämiseen suunnattuna verkkona jonka
kaaret on nimetty. Väitöskirja esittelee menetelmän, jolla näitä esitysmuotoja voidaan tarkastella ilmaisemalla tietoon
kohdistuvat kyselyt polkuina; tätä tekniikkaa voidaan sitten käyttää proseduraalisten ohjelmien “liimaamiseen”
monimutkaisiin tiedon esitysmuotoihin. Kyselymekanismia laajennetaan toteuttamalla looginen päättelymekanismi
em. tiedolle; kyseinen päättely voidaan sitten piilottaa sovellusohjelmalta. Väitöskirjassa esitettävää
päättelymekanismia käytetään laajennetun RDF(S)-tietomallin kanssa. Tuloksena on synteesi kahdesta eri tavasta
tarkastella Semanttisen webin dataa (joko loogisena formalismina tai puolirakenteisena tietona).

Kyselymenetelmää arvoidaan suhteessa muihin tapoihin kysellä RDF(S)-dataa. Lopuksi esitellään esimerkkejä
sovellusohjelmista, jotka käyttävät Semanttista webiä, polkukyselyjä sekä päättelyä.

5

Preface

For the past 20 years I have been interested in combining procedural programs with declar-

ative knowledge representation. In 1996 I started thinking of knowledge representation on

the World Wide Web; this work led to the emergence of the “Semantic Web” and its basic

building block, the RDF representation language. Naturally I wanted to apply my earlier

work now in the context of RDF: in this thesis I discuss possible solutions to this specific

integration problem, seen as part of a larger set of obstacles in developing “Semantic Web

applications”, mainstream software systems that exploit the potential of the Semantic Web.

Markku Syrjänen (at HUT) and Stephen F. Smith (at CMU) were instrumental in supporting

my early experiments in integration. Tim Berners-Lee (at MIT) urged me to pursue KR

in the context of the World Wide Web (by asking me in 1996: “What do you think is

wrong with the Web?”). Several other people also helped me to realize the dream of the

Semantic Web: Mark Adler, Sadhna Ahuja, Art Barstow, Jan Bosch, Franklin Davis, Wayne

DeMello, Li Ding, Sapna Dixit, Tim Finin, Barbara Heikkinen, Jim Hendler, Jamey Hicks,

Ian Horrocks, Jyri Huopaniemi, Eero Hyvönen, Bob Iannucci, Deepali Khushraj, Juhani

Kuusi, Pertti Lounamaa, Eve Maler, David Martin, Deborah McGuinness, Sheila McIllraith,

Eric Miller, Jim Miller, Heli Nyholm, Terry Payne, Franklin Reynolds, Heikki Saikkonen,

Marko Suoknuuti, Ralph Swick, Katia Sycara, Louis Theran, Danny Weitzner, and others.

I would also like to thank the anonymous reviewers of my conference articles on which this

dissertation is largely based. Furthermore, I am indebted to the friendly staff of Starbucks

coffee shops in Nashua, NH and Leominster, MA where most of this thesis was written.

I am grateful to my wife Marcia and my daughters Lauren and Grace for their love, support,

and patience. Finally, I would like to dedicate this work to my parents, Heljä and Ola Lassila:

without you, none of this would ever have happened.

– Ora Lassila (Hollis, NH, September 2007)

6

7

Contents

Preface 5

Contents 7

List of Figures 11

List of Tables 13

1 Introduction 15

1.1 Structure of the Dissertation . 17

1.2 Relation to Author’s Earlier Work . 18

2 On Data Representations 20

2.1 Knowledge Representation and Reasoning 20

2.2 Integrating Applications with Data Representations 25

3 Semantic Web 26

3.1 Automation and Agents . 27

3.1.1 Meaning of “Meaning” . 30

3.2 Semantic Web Formalisms . 34

3.2.1 Resource Description Framework . 34

3.2.2 Other Formalisms . 39

3.3 Querying Semantic Web Data . 40

3.4 Service-Oriented Computing and Web Services 44

3.4.1 Semantic Web Services . 44

3.4.2 Agent-Based Systems . 46

3.5 Semantic Web Use Case: Ubiquitous Computing 47

3.6 A Philosophical Note . 48

8

4 Challenges in Building Semantic Web Applications 49

4.1 Using Complex Declarative Representations 51

4.1.1 “Identity Crisis” in RDF . 51

4.2 Using Reasoning . 52

4.3 Implementing Serendipity . 52

5 Exposing Representation to Application Logic 54

5.1 Traditional Approaches to Data Interfaces 54

5.2 Procedural Attachment in Frame-based Systems 55

5.3 A Path Query Language . 60

5.3.1 Implementing the Path Query Language 62

6 Hiding Reasoning from Application Logic 67

6.1 Exposing the Deductive Closure . 70

6.2 Entailment and “RDF(S)-Closures” . 71

6.3 Reasoning in RDF(S) via Forward-Chaining Rules 72

6.4 Reasoning in RDF(S) as Theorem-Proving 73

6.5 Reasoning in RDF(S) as Query Rewriting 73

6.5.1 Type and Subclass Rules . 75

6.5.2 Subproperty Rules . 77

6.5.3 Domain/Range Rules . 78

6.5.4 Inverting Paths with Default Values 82

6.5.5 Implementation Summary and Evaluation 83

6.6 Generalization of Rewriting Approach to Reasoning 84

7 Practicality of RDF(S) in Applications 87

7.1 Semantic Theory for RDF++ . 88

8 Concrete Semantic Web Platform 91

9

8.1 Toolkit Concepts . 92

8.2 Hidden Reasoner . 93

8.3 Input and Output of Data . 94

8.4 Practical Evaluation of Expressive Power of WilburQL 94

9 Exploiting Reasoning and Serendipity in Applications 98

9.1 Trivial Example: An RSS Formatter . 98

9.2 Browsing Semantic Data . 99

9.2.1 Browsing RDF Data . 100

9.2.2 Architecture and Implementation of OINK 102

9.2.3 Lessons Learned from OINK . 105

9.3 Social Networks and Organizational Structures 106

9.4 Service Composition and Substitution . 109

9.4.1 “DAML-S Lite” – a Subset of OWL-S/DAML-S 110

9.4.2 Service Substitution . 111

9.4.3 Composing Workflows . 112

9.4.4 Practical Implementation Using RDF(S) 113

9.4.5 Lessons Learned from Service Substitution 115

10 Conclusions 116

References 119

10

11

List of Figures

3.1 Semantic Web “layers” . 35

3.2 Statement 〈A,P,B〉 . 36

3.3 Typical PICS label . 37

3.4 Simple graph example . 42

4.1 Requirement of expressive power in applications discussed in this dissertation 50

5.1 Genealogy of author’s frame-based representation systems 56

6.1 DFA corresponding to the complex path from rewrite pattern (6.6) 76

6.2 Reified Statement S . 79

6.3 Computed shortcut seq(inv(rdf:subject), rdf:predicate) 80

6.4 Inferring the type of node A using the domain rule 81

6.5 DFA corresponding to the complex path from rewrite pattern (6.21) 82

9.1 RSS-to-XHTML formatter . 99

9.2 A typical page from OINK . 101

9.3 The overall architecture of OINK . 103

9.4 Visualization of navigation history and automatically generated queries . . . 106

9.5 Exporting a FoaF profile from the phone . 107

9.6 Substitution of a Weather Information Service 114

12

13

List of Tables

2.1 Terminological correspondences between OOP, frame systems, and DL 23

6.1 Implementation Summary . 83

8.1 Comparison of RDF Query Languages . 97

14

15

1 Introduction

The best way to become acquainted with a subject is to write a book about it.

– Benjamin Disraeli

Any non-trivial software system will embody representations of the world (or some aspect or

detail thereof) in multiple forms. Most notably, such a system is a combination of program

code, with procedural semantics, and data, with (typically) declarative semantics. By and

large, the procedural and declarative semantics are “connected” mostly via informal methods

and/or completely “out-of-band” (for example, the details of the connection are only known

to the software developer and, in the worst case, “live” inside his head). The aspects of the

connection also include actual methods of access to the data. The connection is most “natu-

ral” when the programming language’s native data representation is used; usually, however,

data sources are external, and data has to be marshalled/unmarshalled when accessed by a

program. Examples of typical external data representations are databases, documents (e.g.

XML documents) and knowledge bases. This dissertation addresses some of the issues of

“connecting” programs with data, particularly when it comes to knowledge representation

and knowledge bases.

Connecting programs with data, especially external data, is particularly important for the

Semantic Web [21]. The Semantic Web is an idea of the future direction of the World Wide

Web, aimed at making Web content (i.e., data) more amenable to not only processing but

also intepretation by machines. In many ways, the Semantic Web is not a new idea; instead,

it is an amalgamation of pre-existing technologies from multiple domains and communities,

and it is this amalgamation, if anything, that is “new.” The technological components of the

Semantic Web include networking technologies (particularly those associated with the Inter-

net), knowledge representation & reasoning, information retrieval, agent-based systems, and

others. In this dissertation, I will primarily focus on the knowledge representation aspects

16

of the Semantic Web, particularly as they are related to concrete application development.

On the one hand, one could argue that the Semantic Web knowledge representation has

its legacy in frame-based representation systems, and my work on the Semantic Web and

Semantic Web programming has been strongly influenced by work undertaken in develop-

ing frame-based representation systems. On the other, techniques developed for processing

semistructured data [1] can be applied to Semantic Web representations, particularly repre-

sentations expressed in W3C’s Resource Description Framework (RDF) language.

Despite the original somewhat high-flying vision for the technology [21], the concrete realiza-

tion of the Semantic Web has proven to be quite challenging. There are a number of reasons

for this, some of which are not technical in nature, but have more to do with the social, “cul-

tural” and business environments where the Semantic Web technology has to be deployed

[175]. From the technical perspective – and this is the viewpoint taken in this dissertation –

the challenges are often quite pragmatic. I will claim that one of the main challenges of im-

plementing “Semantic Web applications” (i.e., software systems making use of Semantic Web

technologies and information sources) is the difficulty in providing a harmonious co-existence

for traditional (procedural) programming techniques with largely declarative knowledge rep-

resentation and reasoning technologies which form the core of the Semantic Web. By and

large, the Semantic Web is all about data, hence issues of accessing, acquiring, transforming,

manipulating and communicating information are paramount (this is not to say that there

would not exist similar issues in other software domains).

Rather than forcing software developers to deal with the logic-based view of the Seman-

tic Web and associated representational models (and one could argue that this is – if not

incomprehensible – at the very least “alien” to most developers), presenting the models as

familiar data structures (and programming methods) would make the Semantic Web more

palatable to the larger developer community. In this light, what follows is not an attempt to

invent, say, better reasoning methods but rather an approach to make things more readily

17

acceptable to, and thus deployable by, the largest number of developers.

If one follows the line of thinking presented in the original Semantic Web vision [21] one will

observe that one of the fundamental differences between “traditional” software systems and

those systems that exploit the Semantic Web is that the latter are required to be able to

deal with “unanticipated” situations and data representations (and thus agent-based systems

are acknowledged as a key inspiration for the development of the Semantic Web idea). This

aspect further emphasizes the need for technologies that make it easy and straightforward

for programs to deal with complex representations of information.

The mainstream adoption of Semantic Web technologies is predicated on mainstream appli-

cation developers building applications that take advantage of Semantic Web technologies.

These technologies have aspects that are often completely alien to typical software developers

(e.g., reasoning). The more we can do to ease the software development process, possibly by

hiding some of the key mechanisms or “packaging” them in a palatable way, the better the

chances for adoption. This is ultimately the goal of this dissertation.

1.1 Structure of the Dissertation

Chapter 2 will review the prerequisite technologies for understanding and implementing

Semantic Web applications, with emphasis on pragmatic software issues. Chapter 3 will

present a vision for the Semantic Web, as well as an overview of the current state of Semantic

Web technologies. Chapter 4 discusses some of the pragmatic challenges in building Semantic

Web software, and will be the basis of the subsequent discussion on program/representation

integration.

Chapter 5 demonstrates how to expose declarative representations to procedural programs in

a “natural” and convenient way; emphasis will be on a path-based query language that allows

programs and representation to be “glued” together. The integration of data and procedural

18

programs is discussed in the context of World Wide Web Consortium’s (W3C) Resource

Description Framework (RDF) -standard in particular. In a sense, this work represents the

amalgamation of “Semantic Web applications”, applications that make use of a frame-based

representation system, and the use of semi-structured data.

Chapter 6 will discuss how to build programs that access the deductive closure of the rep-

resentation at hand, and how to hide the associated reasoning processes and mechanisms

(that effectively create the deductive closure); this will be done by proposing a reasoning

algorithm based on the query language presented in the preceding chapter. Chapter 7 will

discuss the practical applicability of RDF in software applications and will introduce and

discuss extensions of the representation language that improve the applicability. It will also

demonstrate how these “new” languages can be implemented using the approach proposed

in the previous chapters, and why the proposed extensions are critical to Semantic Web

applications.

Chapter 8 describes a concrete implementation of a “Semantic Web platform” based on the

ideas presented in Chapters 5–7. Chapter 9 will then present some examples of how this

platform can be used. The overall conclusions will be discussed in Chapter 10.

1.2 Relation to Author’s Earlier Work

Keep true to the dreams of thy youth.

– Friedrich von Schiller

This dissertation is based on my earlier published and unpublished work from the past ten

years (and even more). The intent, generally speaking, is to take the original ideas of the

Semantic Web, as I view them, and use them as insight into how such software applications

should be developed and structured, such that they can take advantage of the Semantic Web

technologies. As such, the dissertation draws heavily from my previously published work,

19

especially the following:

• Semantic Web in general [21] and RDF in particular [122, 124, 141].

• Integration of frame-based representation and object-oriented programming in general

[95, 118, 120, 144, 121, 117, 140] as well as integration of RDF and programming in

particular [125, 127, 133].

• Applications of Semantic Web technologies in general [135, 131, 138, 132, 139], and

Semantic Web Services in particular [126, 137, 174, 110].

20

2 On Data Representations

To be sure, mathematics can be extended to any branch of knowledge, including

economics, provided the concepts are so clearly defined as to permit accurate

symbolic representation. That is only another way of saying that in some

branches of discourse it is desirable to know what you are talking about.

– James R. Newman

A discussion on representation will serve as background information for this thesis. It can

be recognized that issues of access and manipulation of data are some of the most funda-

mental in computer science, and therefore cut across all areas of the discipline. Focus in

this thesis, however, will be on aspects of knowledge representation because this provides the

most appropriate background for a subsequent discussion on the Semantic Web and related

technologies.

2.1 Knowledge Representation and Reasoning

Knowledge Representation (KR) is an important subfield of artificial intelligence, aiming

to facilitate the representation of information (about the “real world”) in such a way that

automated systems can better interpret that information. To quote Brachman and Levesque

[28]:

The notion of representation of knowledge is at heart an easy one to under-

stand. It simply has to do with writing down, in some language or commu-

nicative medium, descriptions or pictures that correspond in some salient way

to the world or the state of the world. In Artificial Intelligence (AI), we are

concerned with writing down descriptions of the world in such a way that

an intelligent machine can come to new conclusions about its environment by

21

formally manipulating these descriptions.

This characterization is relevant, since this dissertation looks at knowledge representation

from the viewpoint of interfacing classical, procedural programs with systems that facili-

tate, not only the management of representations, but also the process of reasoning from

them. This should be seen against what Fikes and Kehler [65] define as the basic criteria

for a knowledge representation language, namely expressive power, understandability and

accessibility :

1. Expressive power measures the possibility and ease of expressing different pieces of

knowledge with the system. Since this dissertation largely focuses on W3C’s RDF as

the underlying knowledge representation formalism (see section 3.2.1) with relatively

low expressive power. Those things that might be used to extend this formalism,

without necessarily complicating the system in ways that would undermine the two

other goals, are of particular interest.

2. Understandability measures whether knowledge in a system can be understood by hu-

mans. This dissertation will focus largely on frame-based representation, an approach

that is relatively easy to introduce to – and to be understood by – software practition-

ers who do not necessarily have any formal background in knowledge representation.

3. Accessibility measures how effectively the system can access and use the knowledge

contained within. This characteristic is central to this thesis, specifically as it re-

lates to the ease of interfacing procedural programs with a knowledge representation

subsystem.

One of the key realizations about knowledge representation is that not all formalisms or struc-

tures qualify as representation; instead, a representation formalism needs to be associated

with a semantic theory to provide the basis for inference [87].

22

The early work on knowledge representation focused on human associative memory – in

a metaphoric sense – and introduced associative formalisms and structures for capturing

information about the world. These structures, known as semantic networks [178, 206, 27],

represent information as labeled graphs where vertices denote concepts and arcs denote

relationships between concepts.

Semantic networks are related to another structured object -based approach to knowledge

representation, namely frames [158, 65, 105, 39]. The simplistic view of frame-based rep-

resentation is that a frame represents an object or a concept. Attached to the frame is a

collection of attributes – or slots – and these may initially be filled with default values. When

a frame is being used, the values of slots can be altered to make the frame correspond to the

particular situation at hand. According to an interpretation by Minsky [158], the slots of a

frame might represent questions most likely to arise in a hypothetical situation represented

by the frame.

Frames, soon after the inception of the idea in the 1970s, were criticized as not introducing

anything new to the field of KR; for example, Pat Hayes has said, “most of ‘frames’ is just

a new syntax for first-order logic” [88]. Although this statement is certainly easy to accept,

it does not diminish the value of frame systems as easy-to-understand tools for simple KR

(starting from what might be called “structural modeling”), nor does it exclude a more

“formal” approach. An example of a frame-based system that argues both these points is

Ontolingua [62]. It provides a frame-based syntax, but then translates all information into

KIF,1 which is just a first-order logic encoding of the information.

The advent of frame systems and semantic networks also led to the early work on description

logics [11] – as we know them today – with the introduction of KL-ONE [26, 29]. This work

began with an emphasis on making term definitions in semantic networks more precise.

Description logics provide representation and reasoning languages with precise semantics.

1http://logic.stanford.edu/kif/kif.html

23

They also limit language expressiveness so that reasoners can be built that can provide

complete (and sound) inference in a tractable manner.

There also exists a connection between frame systems and object-oriented programming

(OOP) [95, 117, 140], particularly if we think of the “structural modeling” aspect mentioned

above. The basic vocabulary is different, but what the terms denote are approximately the

same, as shown in Table 2.1.2

OOP Systems Frame Systems DLs

instance frame, instance, individual instance, individual

instance variable, slot, attribute slot role, attribute

value filler, value filler

class, type frame, schema class, concept

Table 2.1: Terminological correspondences between OOP, frame systems, and DL

From the adoption viewpoint, it can be observed that many people understand OOP even if

they have never heard of frame systems.3 We can think of frame systems very pragmatically

through a “heuristic” interpretation (they are vehicles for storing knowledge and performing

inferences) and depart from Minsky’s “metaphysical” interpretation.

In comparison to OOP systems, frame systems – as indicated above – typically embody

some notion of reasoning. Frame system reasoning may sometimes be incomplete (i.e., there

is no guarantee that everything that could be deduced from a given set of information may

be deduced) and frame systems do not typically make guarantees about the computational

tractability of their inference. Description Logic -based systems typically provide information

2Note that in Description Logics the term“attribute”has sometimes been used to distinguish single valued
roles from multi-valued roles. Attributes in these systems have a maximum cardinality of 1.

3There are some alarming indications, though, that perhaps even some aspects of OOP – such as inheri-
tance – may be poorly understood by programmers [22, as an example].

24

– many times proofs – concerning the tractability of their inference, and if they do not provide

complete inference, they typically provide a detailed discussion of what kind of reasoning

can be computed (e.g., [24]). They also provide precise semantics – typically denotational

semantics – for the meanings of term expressions.

Ontologies have been around for many years. The Merriam Webster dictionary, for example,

dates ontology circa 1721 and provides two definitions [156]: 1) A branch of metaphysics

concerned with the nature and relations of being, and 2) a particular theory about the nature

of being or the kinds of existents. These definitions provide an abstract philosophical notion

of ontology. Ontologies have slowly moved into a more mathematical and precise domain,

and the notion of a formal ontology has existed for over a century: Smith [189] points out

that by the year 1900 the philosopher Husserl distinguished them from formal logic [94].

People, as well as artificial agents, typically have a notion or conceptualization of the meaning

of terms. Just as the specification of inputs and outputs of a software program could be

used as a specification of the program itself, ontologies can be used to provide a concrete

specification of term names and meanings. Considering ontologies as specifications of the

conceptualizations of terms, there is much room for variation, and the spectrum of Web

ontologies typically range from simple controlled vocabularies, through informal concept

hierarchies, to something where arbitrarily complex logical relationships can be specified

between defined concepts. In practical terms, one would expect the following properties to

hold in order to consider something an ontology [140]:

1. Finite controlled (extensible) vocabulary

2. Unambiguous interpretation of classes and term relationships

3. Strict hierarchical subclass relationships between classes

The following properties for ontologies are typical but not mandatory:

25

4. Property specification on a per-class basis

5. Inclusion of individuals (i.e., instances) in the ontology

6. Value restriction specification on a per-class basis

A widely cited succinct definition of the term ontology, representing a departure from the

abstract philosophical notion, is Gruber’s “a specification of a conceptualization” [78]. The

ontological approach characteristic of the Semantic Web is predicated on the existence and

use of ontologies4 for the purposes of employing mechanisms of reasoning.

2.2 Integrating Applications with Data Representations

The issue of integrating potentially complex, typically external, data representations with

application programs is pervasive in software development. In contemporary software devel-

opment projects, there are frequent needs to query, interpret and manipulate two popular

data representations, namely relational databases and XML documents. Solutions to “bind-

ing” data and programs range from high-level architectural approaches – such as OMG’s

Model-Driven Architecture [192] – to source code -level solutions – such as Sun Microsys-

tems’ Java Architecture for XML Binding (JAXB).5 Many of these solutions typically take

some form of software generation from declarative specifications, whether these be UML

models or XML schemata. In the former, relatively complete software components can be

generated; in the latter, class or function interfaces are generated that correspond to partic-

ular data declarations.

4In practice ontologies are documents or files that formally define the relationships between terms for any
particular domain of discourse

5http://java.sun.com/webservices/jaxb/

26

3 Semantic Web

The Semantic Web is not a separate Web but an extension of the current one,

in which information is given well-defined meaning, better enabling computers

and people to work in cooperation.

– T. Berners-Lee, J. Hendler & O. Lassila in “The Semantic Web” [21]

The World Wide Web was designed to be universal, able to accommodate a wide spectrum

of information that varies along many dimensions. One of the shortcomings of the “classical”

World Wide Web, however, is that it was built as a means of distributing information that was

produced primarily for human consumption, as opposed to this information being consumed

and interpreted solely, or at least primarily, by machines (i.e., artificial agents). The Semantic

Web [21] is an attempt to rectify this shortcoming.

In order for the Semantic Web to function, computers must have access to structured col-

lections of information and sets of inference rules that they can use to conduct automated

reasoning. This is, obviously, an area where the application of knowledge representation

technologies is appropriate. Due to the nature of the World Wide Web, as an open, decen-

tralized, and often chaotic6 environment, traditional knowledge representation approaches

may not be directly suitable. These systems have typically been centralized, requiring ev-

eryone to share the same definitions of common concepts in their vocabulary of discourse.

Central control, however, can be stifling, and increasing the size and scope of such systems

quickly becomes quite unmanageable.

Ultimately, systems that are built to take advantage of the Semantic Web must accept that

missing or contradictory information, paradoxes and unanswerable questions are a price

that must be paid to achieve versatility. We make the language for the rules as expressive

6In the colloquial sense of the word.

27

as needed to allow wide deployment (and acceptance) of the reasoning mechanisms. This

philosophy is similar to that of the conventional World Wide Web. Early in the Web’s

development, critics pointed out that it could never be a well-organized library; without a

central database and tree structure, one would never be sure of finding everything. They were

of course right, but the expressive power of the system made vast amounts of information

available, and search engines (which would have seemed quite impractical earlier) can now

produce remarkably complete indices of a lot of the material out there. The challenge of the

Semantic Web, therefore, is to provide a language – or as it is turning out, a set of compatible

languages – that expresses both data and rules for reasoning about the data, and that allows

rules from any existing knowledge-representation system to be exported onto the Web.

Adding logic to the Web – the means to use rules to make inferences, choose courses of action

and answer questions – is the central technical task faced by the Semantic Web community.

A mixture of mathematical and engineering decisions complicate this task. The logic must

be powerful enough to describe complex properties of objects but not so powerful that agents

can be tricked by being asked to consider a paradox. Fortunately, a large majority of the

information we want to express is along the lines of “a Yorkshire Terrier is a type of dog,”

which is readily written in existing languages with a little extra vocabulary.

3.1 Automation and Agents

Making Web content more amenable to automated processing is an important driver of the

Semantic Web. This goal is largely related to the observation that much of information

technology we use today comes in the form of “tools” that still require human users to do a

lot of work. The more of the menial details we can automate, the better humans can focus

on matters of importance. The ultimate manifestation of this thinking is the deployment

of autonomous agents, software systems that operate with a great degree of autonomy and

perform tasks for their “owners” – that is, their human users [101, for example].

28

In the context of this dissertation the term “agent” is defined as a software system that acts

autonomously (typically on users’ behalf) and maintains some type of discourse with users.

Much of agent research has concentrated on the Beliefs-Desires-Intentions paradigm (BDI)

which structures agents as having a representational model of their world (beliefs), goals of

what results to achieve (desires) and a plan of how to get there (intentions).

The word“agent”has often given rise to an incorrect association to omnipotent“secret agents”

(like James Bond – this observation is true, for example, in Finnish where the corresponding

word“agentti”does not have the generic connotation –“a person or thing that takes an active

role or produces a specified effect” – as the word does in English). In her invited speech at

AAAI’97 [196], Katia Sycara pointed out that agents should rather be thought of like show-

business agents – they don’t necessarily know how to do something, but they know someone

who knows. James Hendler believes that the analogy of travel agents is a suitable one [91]

as it implies a dialogue between the user and his agent(s) throughout the process of solving

some particular problem.

Many automated Web-based services already exist without semantics,7 but other programs,

such as software-based agents, have no way to locate services that would perform specific

functions. This process, called service discovery, can happen only when there is a common

language to describe a service in a way that lets other agents “understand” both the function

offered and how to take advantage of it. Services and agents can advertise their function by,

for example, depositing such descriptions in directories analogous to the Yellow Pages.

Some low-level service-discovery schemes are currently available [179], such as Universal Plug

7Actually, there hardly is any such thing as a Web-based service – or any software system for that matter
– without semantics. Every system has some kind of semantics (at least if the term is used loosely), but with
the advent of the Semantic Web the term “semantics” is much overused and abused, often without any clear
idea of what it means. In this dissertation, the term is used to indicate a situation where the semantics of
a system (or a formalism) are declarative and accessible to other systems in a machine-interpretable form –
this may still imply that agreements exist between said systems and/or their designers (such as agreeing on
the semantics of RDF).

29

and Play or UPnP,8 which focuses on connecting different types of devices, and Jini,9 which

aims to connect services. These initiatives, however, attack the problem at a structural or

syntactic level and rely heavily on standardization of a predetermined set of functionality

descriptions. Standardization can only go so far, because we can’t anticipate all possible

future needs, nor should we restrict the set of future interactions to those we can anticipate

today.

The Semantic Web, in contrast, is more flexible. The consumer and producer agents can reach

a shared understanding by exchanging ontologies, which provide the vocabulary needed for

discussion. Agents can even “bootstrap” new reasoning capabilities when they discover new

ontologies. Semantics also makes it easier to take advantage of a service that only partially

matches a request. A typical process will involve the creation of a “value chain” in which

subassemblies of information are passed from one agent to another, each one “adding value,”

to construct the final product requested by the end user. The creation of complicated value

chains automatically, on demand, will require some agents to exploit artificial intelligence

technologies in combination with the Semantic Web. But the Semantic Web will provide the

foundations and the framework to make such technologies more feasible.

From the practical standpoint, in order for the Semantic Web vision to be realised, we need

various mechanisms for establishing trust between communicating parties (such as agents).

Digital signatures, encrypted blocks of data that computers and agents can use to verify

that the attached information has been provided by a specific trusted source, are one of the

prerequisites. You want to be quite sure that a statement sent to your accounting program

that you owe money to an online retailer is not a forgery generated by the computer-savvy

teenager next door. Agents (as well as humans) should be skeptical of assertions that they

read on the Semantic Web until they have checked the sources of information. Generally, this

implies a requirement of (potentially sophisticated) trust models as well as mechanisms for

8http://www.upnp.org/
9http://www.jini.org/

30

introducing and enforcing various policies for access control, privacy, etc. [204, 104, 103, 130].

3.1.1 Meaning of “Meaning”

Once we know the number one, we believe that we know the number two, because

one plus one equals two. We forget that first we must know the meaning of plus.

– from Jean-Luc Godard’s movie “Alphaville” (1965)

The Semantic Web is a framework for describing the meaning of concepts and phenomena.

Here“meaning”does not necessarily refer to the metaphysical notion – after all, the Semantic

Web technologies are really about Computer Science, not about Philosophy. For the Semantic

Web, “meaning” is a means for facilitating automation by allowing objects of discourse to be

identified, described (in terms of their characteristics) and related to other objects.

First, for the Semantic Web to work – as far as the automation aspect is concerned – it is

critical to be able to distinguish terms that differ in meaning. Human languages thrive when

using the same term to mean somewhat different things, but automation does not. Imagine

that a business hires a clown messenger service to deliver balloons to its customers on their

birthdays. Unfortunately, the service transfers the addresses from a billing database to its

database, not knowing that the “addresses” in it are where invoices are sent and that many of

them are post office boxes. The hired clowns end up entertaining a number of postal workers

– not necessarily a bad thing but certainly not the intended effect. Using a different, unique

and non-conflicting identifier for each specific concept solves that problem. An address that

is a mailing address can be distinguished from one that is a street address, and both can be

distinguished from an “address” that is a speech. Another typical, illustrative example would

be the term “bridge”: are we talking about civil engineering, telecommunications, dentistry,

a card game, or perhaps metaphorically (as in “bridging the gap”)?

A basic requirement, therefore, for a formalism useful in describing things, is that it can

31

identify terms and concepts in a unique manner. The initial solution adopted for the Semantic

Web is to name concepts in a unique manner, using Universal Resource Identifiers or URIs

[20].10 Later – in Chapter 7 – it will be shown that this approach may not be sufficient,

as some objects may simply not have been named this way but can still be identified using

other means.

The characteristics (attributes) of an object can be described as elementary sentences con-

sisting of a subject, a verb and an object. These sentences, when written in a document,

allow this document to make assertions that particular things (people, Web pages or what-

ever) have properties (such as “is a sister of,”“is the author of”) with certain values (another

person, another Web page). This structure turns out to be a natural way to describe the

vast majority of the data processed by machines. The subject and the object of an assertion

are each identified by URIs. The verbs are also identified by URIs, thus enabling anyone

to define a new concept, a new verb, just by defining a URI for it somewhere on the Web.

Naturally the assertions, in addition to stating information about objects, allow objects to

be related with one another.

Of course, this is not the end of the story, because two databases may use different identifiers

for what is in fact the same concept, such as a zip code. A program that wants to compare

or combine information across the two databases has to know that these two terms are being

used to mean the same thing. Ideally, the program must have a way to discover such common

meanings for whatever databases it encounters. A solution to this problem is provided by

the use of ontologies or concept taxonomies.

A taxonomy can define classes of objects and relations among them. For example, an address

may be defined as a type of location, and zip codes may be defined to apply only to locations,

and so on. Classes, subclasses and relations among entities are a very powerful tool for Web

10These are really like the links on a Web page, except that URIs do not necessarily “point” to a derefer-
encable object. URLs, Uniform Resource Locators, are the most common type of URI.

32

use. We can express a large number of relations among entities by assigning properties to

classes and allowing subclasses to inherit such properties. If zip codes apply to locations

such as towns and towns generally have Web sites, we can discuss the Web site associated

with a zip code even if no database links a zip code directly to a Web site.

Inference rules in ontologies supply further power. An ontology may express the rule “If

a city code is associated with a state code, and an address uses that city code, then that

address has the associated state code.” A program could then readily deduce, for instance,

that a Cornell University address, being in Ithaca, must be in New York State, which is

in the U.S., and therefore should be formatted to U.S. standards. The computer doesn’t

truly “understand” any of this information, but it can now manipulate the terms much more

effectively in ways that are useful and meaningful to the human user.

With ontology pages on the Web, solutions to terminology (and other) problems begin to

emerge. The meaning of terms, or XML tags, used on a Web page can be defined by pointers

from the page to an ontology. Of course, the same problems as before now arise if we point to

an ontology that defines addresses as containing a “zip code” and you point to one that uses

a “postal code”. This kind of confusion can be resolved if ontologies (or other Web services)

provide equivalence relations: one or both of our ontologies may contain the information that

my zip code is equivalent to your postal code. This information could even be discovered

from a third ontology (perhaps provided by a third party).

The scheme for sending in the clowns to entertain customers is partially solved when the

two databases point to different definitions of address. The program, using distinct URIs

for different concepts of address, will not confuse them and in fact will need to discover

that the concepts are related at all. The program could then use a service that takes a

list of postal addresses (defined in the first ontology) and convert it into a list of physical

addresses (the second ontology) by recognizing and removing post office boxes and other

unsuitable addresses. The structure and semantics provided by ontologies make it easier for

33

an entrepreneur to provide such a service and can make its use completely transparent.

Ontologies can enhance the functioning of the Web in many ways. They can be used in a

simple fashion to improve the accuracy of Web searches – the search program could look

for only those pages that refer to a precise concept instead of all the ones using ambiguous

keywords. More advanced applications could use ontologies to relate the information on a

page to the associated knowledge structures and inference rules. For example, a person’s

home page could provide information that relate the “owner” of the page to his friends,

colleagues, employer, projects, publication, etc. in such as way that an automated agent

would understand the nature of these relations. Looking at anyone’s home page in a browser

will often make these relations clear to a human observer; a computer program, however,

would have to be very complex to guess that some of this information might be in, say, the

person’s biography and to understand the English (or other natural) language used there.

In fact, work on describing social networks using Semantic Web means is a clear step in

this direction: schemata (based on Semantic Web formalisms) such as FoaF – “Friend of a

Friend” [32, 58] – and CoaC – “Colleague of a Colleague” [138] – enable automated systems

to reason about interpersonal as well as organizational relationships.

This type of markup language makes it much easier to develop programs that can tackle

complicated questions whose answers do not reside on a single Web page. Suppose you wish

to find a certain Ms. Cook you met at a trade conference last year. You don’t remember

her first name, but you remember that she worked for one of your clients and that her son

was a student at your alma mater. An intelligent search program can sift through all the

pages of people whose name is “Cook” (sidestepping all the pages relating to cooks, cooking,

the Cook Islands, and so forth), find the ones that mention working for a company that’s

on your list of clients and follow links to Web pages of their children to track down if any

attend your old school.11

11Of course, again, the earlier remark about policies for privacy, access control, etc. applies.

34

3.2 Semantic Web Formalisms

There are several technologies, mostly various representation formalisms, that make up the

basic technological framework for the Semantic Web. The formalisms are layered on one

another, the aggregate often being referred to as the “Semantic Web layer-cake”; a more

appropriate metaphor would be that of a staircase, since the layers represent increasingly

complex “steps” towards the full-blown vision of the Semantic Web. Some of the layers are

illustrated in Figure 3.1.

The technology that is often mentioned in connection with the Semantic Web, but in many

ways is rather inconsequential, is the Extensible Markup Language or XML [31, 30], intended

as a flexible means of encoding complex structures. In reality, XML has a tree-like data model

[48] and is, as such, not ideally suited to encoding other kinds of structures. XML allows the

introduction of new markup tags and is therefore often confused as being able to introduce

“meaning” – in short, XML allows users to add arbitrary structure to their documents but

says nothing about what the structures mean.

3.2.1 Resource Description Framework

The Resource Description Framework or RDF [122, 124, 141, 13, 113, 33] is the key building

block of the Semantic Web. It is layered on XML (effectively, using XML to encode its syntax)

and introduces a graph-like data model that uses Universal Resource Identifiers or URIs [20]

to name nodes and arcs. This combination makes RDF not only reminiscent of semantic

networks of yore, but also well suited to shared representation of information. RDF graphs

can span multiple internet hosts, making it possible for one ontology or concept taxonomy

to easily refer to another one, whether the author of the former has any control over the

latter or not. RDF Schema [33] is an associated ontological vocabulary that allows simple

ontologies or concept taxonomies to be built using RDF (subsequently, this dissertation will

35

character encodingUnicode

structureXML

(shared) semanticsRDF (metamodel)

simple ontologies (taxonomies)RDF Schema

more expressive ontologiesOWL variants

queries, rules, etc.SPARQL, RIF

Se
m

an
tic

 W
eb

Figure 3.1: Semantic Web “layers”

use the name “RDF(S)” to refer to the representation formalism that uses the RDF data

model with the RDF Schema vocabulary).

RDF graphs, for the purposes of defining their semantics or implementing RDF processing,

can be thought of as consisting of subject/predicate/object -tuples (or “triples”; subject and

object are the endpoints of an arc, and predicate names the arc). Triples represent RDF

statements, asserted facts about (Web) resources. Figure 3.2 shows a fragment of an RDF

graph, with the statement 〈A,P,B〉; note that the node (i.e., “resource”) P names the arc

linking A to B – in a way you could think of P (or the things we know about P) as the

embodiment of the meaning of the types of arcs named by P .

The genesis of the W3C Resource Description Framework (RDF) dates back to 1997. W3C’s

Metadata Activity was an effort to produce a single framework for all the applications which

needed to use some type of metadata. Key influences for the design of RDF came from the

Web development community itself, in the form of HTML metadata and the Platform for

Internet Content Selection (PICS) [157, 115]. Other influences came from the library com-

munity, the structured document community (in the form of SGML and, more importantly,

XML), and the knowledge representation community. Framework design contributions also

came from object-oriented programming and modeling languages, and databases.

36

A BP

P

Figure 3.2: Statement 〈A,P,B〉

Content rating was keenly debated in the standardization community around the time RDF

work began. Attempts to balance free speech and protection of minors had resulted in PICS,

the W3C’s content rating -architecture. This is a metadata mechanism suited to simple

content description, but because attribute values could only be chosen from numeric ranges,

it had very limited use as a general metadata architecture. PICS did, however, introduce

the notion of machine-interpretable schemata for metadata. Figure 3.3 shows a typical PICS

label providing information about the content of a Web page.

Attempts to turn PICS into a general metadata mechanism led the W3C to work on “PICS-

NG,” RDF’s predecessor [123]. The original PICS application of content rating ultimately

contributed to the charter of W3C’s RDF work and the requirements specification of RDF.

Others had also worked on proposals for various frameworks for metadata (and more generally

machine-interpretable data) for the Web. These proposals included Netscape’s Meta Content

Framework [80] and Microsoft’s XML-Data [145]. In the summer of 1997, the authors of the

various metadata specifications met at MIT and started a joint Web metadata project.

Eventually this project got “blessed” by the W3C membership and was chartered as the

“RDF Model and Syntax Working Group”.

From the beginning, it was obvious that the creators of RDF had to walk a very fine line

between simplicity (and thus the ability to deploy) and the expressive power of the formal-

ism. In some sense, RDF had to be at the same time simple enough for the larger Web

community to accept and deploy, and “not too offensive” to the knowledge representation

37

(PICS-1.1 "http://www.gcf.org/v2.5"

by "John Doe"

labels on "1994.11.05T08:15-0500"

until "1995.12.31T23:59-0000"

for "http://w3.org/PICS/Overview.html"

ratings (suds 0.5 density 0 color/hue 1)

for "http://w3.org/PICS/Underview.html"

by "Jane Doe"

ratings (subject 2 density 1 color/hue 1))

Figure 3.3: Typical PICS label

(KR) community to tolerate so that more expressive formalisms could be based on it. The

relationship with the KR community was perhaps the more difficult goal, yet it has now

been realized with the introduction of the DAML+OIL and OWL ontology languages (see

Section 3.2.2).

What are RDF’s major benefits? After all, XML offers structured data that could be used

to encode and transport attribute/value pairs. In fact, RDF and XML are complementary:

RDF defines an object model for metadata, and it only superficially addresses many encoding

issues that transportation and file storage require, such as internationalization and character

sets. For these issues, RDF relies on XML. But RDF introduces functionality that XML

does not have.

One design goal for RDF was to enable metadata authors to specify semantics for data based

on XML in a standardized, interoperable manner. RDF also offers features like collection

containers and higher-order statements. RDF’s main advantage, however, is that it requires

metadata authors to designate at least one underlying schema, and that the schemata are

sharable and extensible. RDF is based on an object-oriented mindset, and schemata cor-

38

respond to classes in an object-oriented programming system. Organized in a hierarchy,

schemata offer extensibility through subclass refinement. To create a schema slightly differ-

ent from an existing one only requires that you provide incremental modifications to the base

schema. Through schemata sharability, RDF supports the reusability of definitions resulting

from the metadata work by individuals and specialized communities.

Due to RDF’s incremental extensibility, agents processing metadata will be able to trace the

origins of schemata they are unfamiliar with to known schemata. They will be able to perform

meaningful actions on metadata they weren’t originally designed to process. For example,

suppose you were to design an extension to the Dublin Core schema [57] to leverage work

done by the library community and also to allow organization-specific document metadata.

To do so, you could simply use standard tools designed for plain Dublin Core. Because of the

self-describing nature of RDF schemata, a well-designed tool would be able to do meaningful

processing for the extended properties as well.

RDF’s sharability and extensibility also allow a “mix-and-match” use of metadata and meta-

data schemata. Metadata authors will be able to use multiple inheritance to provide multiple

views to their data, leveraging work done by others. Moreover, it’s possible to create RDF

instance data based on multiple schemata from multiple sources - that is, interleaving differ-

ent types of metadata. This will lead to exciting possibilities when agents process metadata.

For example, a processing agent may know how to process several types of RDF instances

individually, but it will later also be able to reason about the combination. Effectively, the

combination is more powerful than the sum of its parts.

From an implementation standpoint, RDF offers a clean, simple object model independent

of the transport syntax of metadata. It is also important to remember that although the

RDF specification defines a serialization syntax for RDF based on XML, RDF itself is not

dependent on XML: it could also use other syntaxes, such as S-expressions (as originally

proposed by the author) or the N3 notation [17] now popular with RDF experimenters.

39

The benefit of adopting XML as the basis for RDF’s syntax, although initially driven more

by political aims rather than sound technical design goals, is slowly being justified by the

realization that “legacy” XML formats can now be transformed using XSLT [43] into RDF

(one can think of an XSLT script as embodying the semantics of the source format); this will

allow some “Web 2.0” technologies – say, microformats [109] – to interface with Semantic

Web technologies. A more rigorous effort to provide a framework for format transformations

is W3C’s GRDDL [89] that allows appropriate XSLT documents to be linked from “legacy”

XML data and thus enables Semantic Web agents to automatically transform such data into

RDF or OWL.

3.2.2 Other Formalisms

Soon after its introduction, RDF was succeeded by a more expressive knowledge representa-

tion language called DAML+OIL [201], developed within the DARPA Agent Markup Lan-

guage (DAML) research program. It is an ontology language that is based on description logic

[11]. DAML+OIL served as input to W3C’s Web Ontology Language OWL [152, 52, 173].

A great deal of work was done to establish formal foundations for the Semantic Web (it

should be noted that the original RDF specification [141] did not specify formal semantics).

KIF [70, 71] was used to specify axiomatic semantics for RDF and DAML+OIL [66]; subse-

quent work on KIF has lead to the ISO Common Logic effort.12 Furthermore, a number of

other formalisms and languages have emerged, either as part of various research activities or

through standards definition processes. These include F-Logic [112], FLORA [207], HiLog

[40], ISO Topic Maps [102], SWRL [92], and RIF.13

For reasons that are explained later, this dissertation will focus on RDF(S) as the represen-

tation formalism of choice, and will discuss how it could be extended to make it ideal for a

12http://cl.tamu.edu/
13http://www.w3.org/2005/rules/

40

broad class of Semantic Web applications.

3.3 Querying Semantic Web Data

Several different query languages have been proposed for Semantic Web representations [83].

Most of the query languages proposed for RDF use a query model based on relational algebra

[45] and essentially support “RDF-friendly” formulations of relational queries where graphs

are viewed as collections of tuples consisting of arc endpoints and the arc label (i.e., these

tuples are RDF statements). Queries can thus be expressed over a single relation, which,

we find, has both benefits and drawbacks. On the benefit side, it can be noted that these

queries (and the underlying storage of tuples) can take advantage of ubiquitous, commercial

relational database systems; as a drawback, relational queries cannot be formulated that

would adequately reflect the graph nature of the underlying data – most importantly, the

relational algebra cannot express a transitive closure of a relation [5].

Examples of relational query languages for RDF include RDQL [185] and SPARQL [176]. The

latter is of particular interest since it was defined by W3C’s Data Access Working Group,

hence there is an expectation that it will become the “officially blessed” query language

for RDF. Queries in SPARQL are expressed using a format resembling the SQL SELECT

statement:

SELECT variables WHERE condition

where condition has references to (and binds) variables that appear in variables. The

condition, also referred to as the query pattern, consists of the following:

• Triple Patterns: Patterns of the subject/predicate/object relation that RDF graphs

consist of can be specified, where any element of the tuple can either be a constant

(a reference to a URI or a literal) or a variable.

41

• Constraints: These are boolean-valued expressions that limit the values of the vari-

ables matched by the triple patterns.

• Groups: By default, a group of patterns represents a conjunctive condition.

• Disjunction Operator: Patterns can combined using a disjunction operator, to

represent alternatives.

• Optional Operator: The language allows optional results to be returned (the failure

to satisfy an optional pattern will not make a query fail; successfully satisfying an

optional pattern will bind result variables).

Additionally, the language allows queries to be limited to specific (named) graphs.

Not surprisingly, given that RDF representations are graphs, the choice of the relational

model as the basis for SPARQL has inspired lots of critical discussion [10, for example].

SPARQL is ostensibly agnostic with respect to RDF(S) entailments; the suggestion is that

SPARQL could be used to query an RDF “triple store” where entailments have already

been computed (i.e., treating the deductive closure as the graph against which queries are

executed). Although this is a reasonable approach to implementing a query engine, special

care has to be taken to avoid the conflation of the theoretical underpinnings of RDF (namely

the model) with a practical implementation (as a data structure) when the formal semantics

of such a query language are defined. It is not altogether clear whether this has been broadly

understood in the“SPARQL community”(as an illustrative example, the reader is referred to

the mailing list discussion between the author and W3C’s Dan Connolly regarding SPARQL

“last call” comments14).

Some RDF query languages, such as [107, 106] and [150], attempt to combine relational

queries with some special knowledge of (class) hierarchies to make the language better suited

14http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/2005Sep/0025.html

42

root 1a 32b c

Figure 3.4: Simple graph example

for RDF; related to this is the view that the underlying graph storage system should take

care of any reasoning related to class hierarchies so that a query language would not have

to, but obviously this approach does not address the issue of how to query other hierarchical

or repetitive structures.

Several storage solutions for RDF combine a priori reasoning – i.e., generation of all possible

entailments – with subsequent querying of the generated deductive closure using various

query mechanisms that do not have to be aware of the semantic theory for RDF(S). Examples

of systems adopting this approach include Sesame [34] and Oracle 10g database server [195].

Query languages for semi-structured and graph-based data [2, 49, 155, 47] are better suited

to querying RDF as graphs, given that RDF data often contains repetitive and recursive

patterns of relations. These languages, including those defined (and standardized) for XML,

such as XPath [44, 76], typically formulate queries as paths through a graph. Path query

languages have also been developed for RDF; examples include Versa [168] and – to some

extent – the aforementioned RQL. Since paths of fixed length can also be expressed using

relational queries, true path languages can be distinguished by their ability to express rep-

etition (transitive closure); obviously there is also a “convenience factor”, since if a query

language’s syntax does not naturally support paths, they can be very cumbersome to ex-

press and result in complex conditional expressions. For example, given the simple graph in

Figure 3.4, a path from root to 3, consisting of a sequence of three arcs a, b, and c, would

result in the following SQL query:

43

SELECT t3.o FROM t t1, t t2, t t3

WHERE t1.s = root AND t1.p = a

AND t1.o = t2.s AND t2.p = b

AND t2.o = t3.s AND t3.p = c

where the graph is assumed to be stored in a table called t with columns s (for subject), p

(for predicate), and o (for object).

Some query languages for RDF have also been proposed that are essentially rule-based, or

based on the execution of a logic program [81, 18, 188]; these languages offer expressive

power beyond the relational algebra. Furthermore, query languages have been conceived for

the more expressive Semantic Web languages, such as the DAML Query Language [64] for

DAML+OIL and OWL-QL [63] for OWL; these languages, effectively, allow deductions in a

knowledge base that uses one of the aforementioned representation formalisms.

Formal foundations for querying Semantic Web formalisms (and RDF specifically) are studied

in [82] where the authors observe that challenges are introduced by blank nodes, reification

and the treatment of those parts of RDF vocabulary that have a predefined semantic theory

(they also point out that existing work on RDF query languages does not, typically, have

sound formal basis but mostly consists of ad hoc query formalisms). Treatment of “anony-

mous”resources such as blank nodes (and potentially reified statements) is further elaborated

in [208, 209].

It should further be noted that even outside the domain of the Semantic Web and RDF, there

are many real-world applications requiring data representations that are inherently recursive,

but particularly, applications involving artificial intelligence and KR have this quality. The

relational algebra has, on several occasions, been extended to accommodate more complex

representations and queries – hierarchies, transitive closure, etc. [3, 100].

44

3.4 Service-Oriented Computing and Web Services

Service-oriented computing is an emerging paradigm in information systems, and has received

a lot of attention during the last several years [172]. In order to realize and implement

service-oriented systems, the services themselves have to be “grounded” in practical, concrete

technologies. At the core of these technologies are “Web services” – functionality that can

be invoked remotely over the Web; they represent a strong recent trend in the development

of distributed information systems. Several industry standards have emerged in this area,

including SOAP [25], an invocation protocol, WSDL [42], a formalism for describing the

interfaces of Web Services, and a multitude of other specifications. All these specifications are

being offered with the promise of greater opportunity for automation of tasks and improved

interoperability of information systems.

Albeit one could argue that Web services represent progress in the right direction, the Web

services architecture falls short of the goals of improved automation and interoperability,

because it is based on heavy a priori standardization and ultimately retains humans in the

loop. Each Web service interface – whether it be expressed in WSDL or in some other

way – represents its own small vocabulary. The maintenance and management of all the

emerging vocabularies will result in a phenomenon that can only be compared to the biblical

story of the “Tower of Babble” [73]. Our true goal should be something like “serendipitous

interoperability”, the ability of software systems to discover and utilize services they have

not seen before, and that were not considered when these systems were designed [126].

3.4.1 Semantic Web Services

To mitigate some of the perceived shortcomings of the current Web service technologies,

qualitatively stronger means of representing the service semantics are required, enabling

fully automated discovery and invocation, and complete removal of unnecessary interaction

45

with human users. The Semantic Web offers means of advancing beyond the current pro-

posed architectures for Web services by allowing information systems to reason about data

sources and the functionality of other systems, and consequently allowing them to better

take advantage of these.

In the context of Web Services, the application of the Semantic Web to representing infor-

mation and its semantics will enable the following:

• Description of semantics of services to allow their automatic discovery, even if the

services offered only partially match the needs of the requester.

• Automatic composition of multiple services – possibly partially matching ones – into

a “super-service” satisfying the needs of the requester (whether the requester be a

human or an artificial agent).

Some of the Semantic Web’s original motivations were to increase automation in processing

Web-based information and to improve the interoperability of Web-based information sys-

tems. The development of representational issues and logical frameworks (such as OWL)

will take us only so far; to fully realize this vision, also behavioral issues must be tackled

(for example, interactions between “SemanticWeb agents”). Serendipitous interoperability –

that is, the unarchitected, unanticipated encounters of agents on the Web is an important

component of this realization.

Semantic Web techniques, which consist of applying knowledge representation techniques in

a distributed environment (potentially on a Web-wide scale), have proven useful in provid-

ing richer descriptions of Web resources. Semantic Web Services [174], as a new research

paradigm, is generally defined as the augmentation of Web Service descriptions through

Semantic Web annotations, to facilitate the higher automation of service discovery, compo-

sition, invocation, and monitoring in an open, unregulated, and often chaotic15 environment

15Again, in the colloquial sense of the term.

46

(that is, the Web). Several research and “pre-standardization” activities in Semantic Web

Services have emerged, the best known perhaps being the DAML-S/OWL-S work [7, 8, 149],

developed within the DAML research program, and WSMO [181, 51], developed within the

European Semantic Systems Initiative (ESSI) research program. Semantic Web Services

represent an important step toward the full-blown vision of the Semantic Web, in terms of

utilizing, managing, and creating semantic markup.

The relationship between the Semantic Web and the current Web Service architecture de-

pends on one’s viewpoint. In the near term, the deployment of Web Services is critical, and

Semantic Web techniques can enhance the current service architecture. In the longer term,

the Semantic Web vision itself will dominate, with Web Services offering a (hopefully) ubiq-

uitous infrastructure on which to build the next generation of deployed multiagent systems.

3.4.2 Agent-Based Systems

As discussed in Section 3.1, central to the Semantic Web vision – in its “full-blown” mani-

festation – is the emergence of autonomous agents that can perform tasks on behalf of their

human users. In a way, agent-based systems represent an “extreme” manifestation of the

service-oriented architecture.

From the Semantic Web viewpoint agents are interesting because the Semantic Web, when

seen as a facilitator of interoperability and automation, is an enabling technology for agent

deployment. In this regard, the representational model an agent uses is of particular interest,

as well as the agent-to-agent communication that it enables.

47

3.5 Semantic Web Use Case: Ubiquitous Computing

One can imagine that the Semantic Web will be breaking out of the “virtual” realm of

the World Wide Web and extending into our physical world. URIs can point to anything,

including physical entities, which means the Semantic Web languages can be used to describe

devices such as cell phones or home appliances. Such devices can advertise their functionality

– what they can do and how they are controlled – much like software agents. Being much

more flexible than low-level schemes such as UPnP, such a semantic approach opens up a

world of exciting possibilities.

For instance, what today is called home automation requires careful configuration for appli-

ances to work together. Semantic descriptions of device capabilities and functionality will

let us achieve such automation with minimal human intervention. A trivial example occurs

when a user answers his phone and the stereo sound is turned down. Instead of having to

program each specific appliance, he could program such a function once and for all to cover

every local device that advertises having a volume control – the TV, the DVD player and

even the media players on the laptop computer that he may have brought home from work

this one evening.

Standards have now emerged for describing functional capabilities of devices (such as screen

sizes) and user preferences. Built on RDF, these standards are the W3C Composite Capa-

bility/Preference Profile or CC/PP [114] and its derivative, the OMA User Agent Profile

or UAProf [169]. Initially, they allow cell phones and other “non-standard” Web clients to

describe their characteristics so that Web content can be tailored for them on the fly. With

the addition of mechanisms for describing functionality – OWL-S [7, 8, 149], for example

(see section 3.4.1) – and with the full versatility of languages for handling ontologies and

logic, devices could automatically seek out and employ services and other devices for added

information or functionality. It is not hard to imagine a Semantic Web -enabled microwave

oven consulting a frozen-food manufacturer’s Web site for optimal cooking parameters.

48

3.6 A Philosophical Note

Finally – to reflect on the overall vision presented in [21] – it should be noted that there is

an aspect of the Semantic Web that reaches beyond the use of the associated technologies

as a means of developing software applications. With the risk of sounding melodramatic it

could be argued that the Semantic Web can support the evolution of human knowledge as a

whole.

Human endeavor is frequently caught in a tension between the effectiveness of small groups

acting independently and the need to integrate their efforts and achievements with the wider

community. A small group can innovate rapidly and efficiently, but often in doing so pro-

duces a subculture whose concepts may not be understood by others. Conversely, coordi-

nating actions across a large group can be painfully slow and take an enormous amount

of communication. The world works across the spectrum between these extremes, with a

tendency to start small – from a personal idea – and move toward a wider understanding

over time.

An essential process is the joining together of subcultures when a wider common language

is needed. Often two groups independently develop very similar concepts, and describing

the relation between them brings great benefits. Like a Finnish-English dictionary, or a

units conversion table, the relations allow communication and collaboration even when the

commonality of concepts has not yet led to a commonality of terms. The Semantic Web,

predominantly via naming every concept by a URI, lets anyone express new concepts that

they invent with minimal effort.16 Its unifying logical language will enable these concepts

to be progressively linked with one another. This structure will open up the knowledge and

workings of humankind to meaningful analysis by software agents, providing a new class of

tools by which we can live, work and learn together.

16Later, however, it will be demonstrated that this naming mechanism may be somewhat idealistic and
may require to be supported by other means of establishing “identity” of concepts.

49

4 Challenges in Building Semantic Web Applications

Semantic Web is – in some ways – a problematic set of technologies: Any specific problem

that is presented as one lending itself well to be solved using Semantic Web technologies, will

typically also have a specific solution using some alternate (“conventional”) technologies. This

aspect of the Semantic Web makes its marketing difficult; consequently, building applications

that truly benefit from Semantic Web technologies may not be straightforward. The fact

that Semantic Web technologies are not a solution for specific, known problems suggests that

they are a solution, instead, for those problems that are yet to be (fully) defined. Semantic

Web, therefore, exhibits a strong flavor of serendipity, and applications taking advantage

of Semantic Web technologies should also be able to behave in serendipitous ways. In the

desire to move towards systems that do more on behalf of their users (rather than merely

facilitating the users to do certain things), the ability for automated systems to behave with

some autonomy and to exhibit “sensible” behavior in unanticipated situations is paramount.

It could be argued [126] that the Semantic Web is a means for achieving interoperability (of

services, of information sources, etc.), a means qualitatively stronger than the traditional a

priori standardization -based approach. With Semantic Web technologies, we predominantly

do not standardize what will be said (in a “dialogue” between two information systems, for

example); instead, we standardize how to say things. “Meaning” in an inter-system dialogue

will then arise from the use of representations that enable semantics to be expressed and

shared.

Motivating this dissertation is the desire to address some of the concrete software issues

arising from the fairly abstract description above. Specifically, the following issues will be

investigated:

• How to handle complex, declarative representations; how to “bind” procedural code

with declarative data.

50

character encodingUnicode

structureXML

(shared) semanticsRDF (metamodel)

simple ontologies (taxonomies)RDF Schema

more expressive ontologiesOWL variants

queries, rules, etc.SPARQL, RIF
Se

m
an

tic
 W

eb
“interesting” applications “applicability”

Figure 4.1: Requirement of expressive power in applications discussed in this dissertation

• How to build complex, declarative representations, particularly vis-à-vis the manage-

ment of identity of objects from multiple sources.

• How to best handle reasoning as part of a software system.

• How to build systems that exhibit a degree of serendipity in their behavior.

Recalling Figure 3.1 illustrating the various representational layers of the Semantic Web, a

simple hypothesis is adopted: Lower layers are applicable (and useful to) a larger number

of applications than the upper layers; in other words, there will be more applications that

can be implemented by using, say, RDF(S) than applications that will require, say, the more

expressive variants of OWL. This is a “common sense” hypothesis, and no attempt is made

to validate it. It should also be observed that the layers, as presented in Figure 3.1, do not

strictly correspond to a continuum of increasing expressive power, and should therefore be

considered “metaphorical”. The hypothesis, and the class of applications considered “inter-

esting” from the standpoint of this dissertation, is illustrated in Figure 4.1. In a way, this

thinking is an acknowledgment of the principle “a little semantics goes a long way.”17

17This principle is often called the “Hendler Hypothesis”; it was once a slogan of the SHOE project [90].

51

4.1 Using Complex Declarative Representations

The usage of complex, declarative data representations in software systems is by and large an

issue of access to this data. How does one query underlying representation(s) and “connect”

the queries with the (procedural) code that makes use of the results of these queries? The

mechanisms for this connection have to be simple and natural to the programming language

used. The design of said software systems also benefits from various aspects of “data house-

keeping” being taken care of by the underlying knowledge representation middleware. For

example, reasoning, hidden from the application program, can be used to perform duties

that otherwise would result in complex procedural code. Naturally the properties of the

representation language affect the ability to introduce (simple) reasoning and whether this

reasoning can be hidden.

4.1.1 “Identity Crisis” in RDF

It has already been established that RDF(S) can be seen as a simple“Web-compatible”frame-

based representation system. Essentially, representations are formed from frames referring

to other frames; integration of representations from multiple sources is not possible without

establishing the identity of the frames; RDF relies on URIs for object identity. W3C’s

“Architecture of the World Wide Web” [99, Section 2.] says:

A resource should have an associated URI if another party might reasonably

want to create a hypertext link to it, make or refute assertions about it, retrieve

or cache a representation of it, include all or part of it by reference into another

representation, annotate it, or perform other operations on it.

This principle is difficult to comply with when describing “real world” phenomena that typi-

cally do not have URIs; nor do conventions for predictably establishing URIs exist. Ways in

which RDF(S) could be extended to mitigate this impending “identity crisis” are introduced

52

later in this dissertation.

4.2 Using Reasoning

It could be argued that in order for Semantic Web technologies to become part of the

“mainstream” application development culture, they have to be presented in a way that

is comprehensible by application developers. Reasoning is a mechanism that is largely not

understood or even known by most software developers. Not only does a normal computer

science or software engineering curriculum not expose students to these mechanisms, but the

mere nature of reasoning (the fact that one does not really operate in terms of an “explicit”

data structure but more with something derived from any concrete data the system may

possess) may make this difficult. Naturally one could treat a reasoner the way most software

frameworks treat database engines – an external entity with which there is a specific means

of communication – but as can be observed from these frameworks, this may lead to further

separation of multiple representations of the same information (e.g., program internal data

structures vs. queries vs. query results vs. database schemata, etc.).

Depending on what type of semantic theory is associated with the representation used by

an application, it may be possible to largely “decouple” reasoning from other aspects of the

application logic. Later, an approach where reasoning is mostly hidden from the software

developer will be pursued.

4.3 Implementing Serendipity

How to build software with emergent qualities and the capability of “doing the right thing” in

unanticipated situations may in itself be worthy of multiple dissertations. To a large degree

this is what the multiagent paradigm is about and what the corresponding research com-

53

munity has long grappled with (see [101, for example] and Section 3.1). Without disputing

the progress that the agent research community has made, one must observe that by and

large these technologies have failed to become part of the mainstream software development

arsenal. It may therefore be warranted to ask whether there could be “simpler” ways in

approaching serendipity.

54

5 Exposing Representation to Application Logic

Software developers are constantly faced with need to represent the same data in many dif-

ferent physical or conceptual formats or models. Typical examples include mapping between

persistent storage (databases) and an application’s internal (in-memory) representations,

“marshalling” between the external wire formats of various communications protocols and

the application’s internal representations, and converting data received through user inter-

faces into structures more amenable to programmatic manipulation.

Knowledge-based applications typically need to make use of very sophisticated representa-

tions of information, and again, almost unavoidably there is a separation of the (declarative)

representation from the application’s (procedural) logic.

Having to deal with multiple representations of the same information may – and often does –

lead to mappings that are created and maintained manually. These mappings are error-prone

and by and large cause “clutter” in the concrete implementation. This clutter distracts the

developer from the problem she is trying to solve.

5.1 Traditional Approaches to Data Interfaces

A way of interfacing complex representations with software systems is a mechanism where the

applications poses queries to an external system that then responds with a set of results that,

in turn, have to be “translated” by the querying application. This architecture is typical with

systems making use of relational databases – often implemented with standardized interfaces

such as ODBC and JDBC – as well as systems interfacing with knowledge bases – with, again,

using standard interfaces such as OKBC and DIG.18

18http://www-ksl.stanford.edu/software/OKBC/ and http://dig.sourceforge.net/

55

In existing libraries and toolkits for RDF(S) data are exposed to an application program

via some Application Programming Interface (API). These APIs are not unlike the query

interfaces discussed above. All RDF(S) libraries and toolkits offer an API – typically their

own – through which the underlying data is accessible as triples. Good APIs hide details

of graph storage and allow the isolation of application logic from the storage substrate –

examples of such APIs include the Java-based Jena [151] and the C-based Redland [15].

An example of an API that fails in this regard is the programming interface for the Oracle

RDF Data Model [162] which exposes details of the underlying relational storage of the RDF

graphs.

5.2 Procedural Attachment in Frame-based Systems

In frame-based knowledge representation systems one approach to solving the “represen-

tation vs. program” -problem was to provide procedural attachment by either associating

(procedural) behavior with various parts of the representation – typically as object-oriented

“methods” – or with various transactional events that modified the representation; the latter

is generally known as access-oriented programming [194]. Many attempts to do procedural

attachment are quite clumsy, though, where the mechanisms of the programming language

are largely separate from the mechanisms of the frame-based representation system.

Attempts to truly amalgamate frame-based knowlege representation and object-oriented pro-

gramming, despite the known parallels of the two [105, 117, 140], are rare. The approach to

the integration of knowledge representation and programming presented here is in part mo-

tivated by the body of work on procedural attachment in frame systems [105, Chapter 8], and

has to be understood in the context of the succession of frame-based representation systems

developed by the author, systems that have taken various different approaches to procedu-

ral attachment and more generally program/representation integration. The “genealogy” of

56

1988

1990

1991

1992

1993

1997

1999

2004

SRL/CRL

BEEF

KEE Guardian

BONE CLOS MOP

"Well Done" BEEF

RDF

Wilbur

SCAM

PORK

Wilbur2

Figure 5.1: Genealogy of author’s frame-based representation systems

these systems is illustrated in Figure 5.1:19

BEEF: The frame system BEEF [95, 118, 144] addressed the issue of integration of pro-

gramming and representation by adding features found in object-oriented program-

ming languages into a frame-based representation system. As a KR system, BEEF

was strongly influenced by SRL/CRL [68, 69, 38] and KEE [65, 97], but went further

in its implementation of procedural attachment. BEEF was implemented in Common

19In this diagram solid lines indicate the sharing of source code, and dotted lines indicate “influence”.

57

Lisp [193] but predated the practical availability of the Common Lisp Object System

(CLOS). It introduced its own method definition and invocation mechanism that was

natural to use in Common Lisp programs yet seamlessly “glued” onto the frame-based

representation. Since it implemented typical slot daemons as methods as well, one

could argue that it provided a synthesis of object- and access-oriented procedural

attachment approaches.

BONE: In an approach to building distributed knowledge-based applications, BONE [143,

144], as a version of BEEF, introduced a Guardian-like [147] framework for distribut-

ing representation frames yet allowing them to communicate.

SCAM: Regrettably undocumented, the SCAM frame system was a simplified version of

BEEF originally built to facilitate the porting of software that depended on the CRL

frame language [38]. SCAM served as the knowledge representation substrate for the

automated planner component of the “Remote Agent” that flew with NASA’s “Deep

Space 1” probe past the Asteroid Belt in 1999 [163]. It is a demonstration that frame-

based representation systems can be designed for extremely stringent efficiency and

reliability requirements.

“Well-Done” BEEF and PORK: BEEF was built before the practical availability of

CLOS, and ideas of reimplementing BEEF on top of CLOS emerged in the form

of “Well-Done” BEEF [119], but were not realized until the inception of the PORK

system [121]. PORK added “frame-like” representation features to an object-oriented

programming language; in this, the approach it took was“inverted”from the one taken

with BEEF. In practice, PORK was a frame system implemented as a metaobject

extension [111] of CLOS. As such, it extended and modified the inner workings of the

underlying object-oriented programming language to offer frame-based features.

Wilbur and Wilbur2: In order to test ideas during the design of RDF, source code from

58

BEEF was adapted to implement a toolkit for RDF programming. Most importantly,

Wilbur extends the BEEF path query language to implement flexible low-level in-

tegration of RDF data with Common Lisp programs. Wilbur has since been re-

engineered as Wilbur2, with an implementation of a reasoner for RDF. The frame-

work for integration of declarative representation and procedural programs, presented

in this dissertation, has been developed in the context of – and has its concrete mani-

festation in – Wilbur and Wilbur2. These systems are described in more detail in

Chapter 8.

When BEEF and PORK were used to implement large knowledge-based software systems [95,

199, 142, 190, 136, 191] they served as the principal object-oriented programming languages

for these systems.

The “near-seamless” integration of frame-based representation and object-oriented program-

ming, as implemented in BEEF and PORK, was possible because the representation language

semantics could be adjusted to correspond to the semantics of the object-oriented language.

RDF(S) can be seen as an object-oriented type system,20 but since its semantics is fixed – by

[86] – the question about the possibility of adjusting the programming language semantics is

raised. A common approach to programming Semantic Web applications (and many other

applications utilizing KR) is to either treat RDF (say) as not having polymorphic object-

oriented qualities at all (to merely look at it as a graph, for example) or to implement RDF’s

object system in a language that may also support its own “native” object system; in the lat-

ter case the two object systems remain separate, and it is not possible to use native language

features (e.g., method dispatching and invocation) with the representation system’s object

system. In other words, RDF as the knowledge representation (KR) system is typically

treated as an application of the underlying implementation language, forcing applications

to mix application logic with the manipulation of the KR formalism, as opposed to the KR

20The term object system is used to denote an object-oriented, polymorphic type system – often part of
an object-oriented programming language.

59

formalism being integrated as part of the implementation language itself.

Albeit the idea of treating RDF(S) as the object system of a programming language, as

suggested above, would be an attractive approach to building RDF-based software applica-

tions, the inevitable differences in semantics between RDF(S) (given that its semantics is

fixed) and the semantics of some object-oriented programming language present difficulties

that are hard to overcome. Possible solutions include definition of a new “RDF-compatible”

programming language – as suggested in [72] – or to provide a flexible means of querying

and accessing the underlying representation – such as the extension to C++ presented in

[148]. Some programming languages also allow altering their semantics to certain degree,

via the use of a metaobject protocol [111], and languages that don’t have sometimes been

“retrofitted” with one [41, 180, for example]. The surreptitious augmentation of an object’s

type in RDF(S) – via the assignment of the object as the object (subject) of a statement

whose predicate has a range (domain) definition – presents a problematic situation from the

programming language viewpoint. In CLOS, as an example, altering the graph that consti-

tutes a program’s data representation would require recomputation of class precedence lists.

This could happen in the middle of method invocation and alter the method combination of

that particular invocation; thus it is infeasible to write non-trivial “real-life” programs under

such conditions.21

Given that fully seamless integration is not possible, the next best alternative is to expose the

representation to the program in a way that is as “effortless” as possible from the program-

ming language viewpoint. This is the approach pursued here, with additional considerations

with respect to reasoning mechanisms.

21The situation might be different had the RDFCore Working Group of W3C not decided to alter the
treatment of domain and range from restrictive constraints to generative ones.

60

5.3 A Path Query Language

In the approach taken in this dissertation, it is proposed that RDF graphs can be exposed

through a node-centric (i.e., “frame system”) API. Central to this API is a slot access function

Alookup(f, s,G): “given graph G, give me the values of slot s of frame f”. Since this is in the

context of RDF, resources are frames and properties are slots. This type of access function

is typical of many APIs for frame-based representation systems [38, 39, for example]. This

basic API can be extended by supporting a query language which allows complex access

paths – expressed as regular expressions of slot names (i.e., RDF properties) – to be used

in place of atomic slot names. The query language proposed is an extension of the query

mechanism of the BEEF frame system [95] which, in turn, is an efficient implementation

of (a simplification of) the CRL/SRL path language [69]. It resembles query languages

constructed for semi-structured and graph-based data [2, 49, 155, 47, for example].

Path expressions can take the following forms, expressed here in an abstract syntax:

• Sequence (concatenation in [155]): seq(e1, . . . , en) matches a sequence of n steps in

the graph, consisting of subexpressions e1, . . . , en; seq+(e1, . . . , en) matches any one

of the expressions seq(e1, . . . , ei) where i ∈ [1 . . . n] (the expressions are matched in

order, with shortest sequence first); in effect,

seq+(e1, . . . , en) ≡ or(e1, seq(e1, e2), . . . , seq(e1, . . . , en)) (5.1)

• Disjunction (alternation): or(e1, . . . , en) matches any one of n subexpressions e1, . . . , en.

The subexpressions are matched in the order they are specified.

• Repetition (closure): rep(e) matches the transitive closure of subexpression e; fur-

thermore

rep+(e) ≡ seq(e, rep(e)) (5.2)

61

• Inverse: Satisfaction of inv(e) requires the path defined by the subexpression e to be

matched in reverse direction – this is similar to the inversion operator of GraphLog

[47].

• Value: value(e) causes the value e to be generated in the matching process, ignoring

any actual slot accesses. It is useful in specifying default values, typically using the

idiom

or(path, value(default)) (5.3)

• Filters: filter(s) matches only those literals (and URIs of nodes) that contain the

substring s; similarly, lang(s) matches only those literals whose xml:lang attribute

matches s. Furthermore, restrict(v) matches only the value v. For example, the

query expression

seq(e1, restrict(e2), e3)

matches arc labels (properties) e1 and e3 in sequence, but only if the node after the

step e1 is e2.

• Current node: The query language supports the token ⊥ (pronounced “self”) that

can be used as a valid query expression; it matches (and generates the value of) the

current node in the matching process, ignoring any slot accesses. It is typically used

in an idiom like

or(⊥, seq(. . .)) (5.4)

as part of a sequence where some intermediary terminals are possible (but not every

step in the sequence).

• Wildcards: The query language supports wildcards that match either any arc label

or just RDF container membership properties. In the following discussion the symbols

∗any and ∗member will be used for these wildcards.

62

Given a root node (i.e., a search start point) and a query expression, a data/program inte-

gration API should provide functions for retrieving the first reachable node, for retrieving

all reachable nodes, and for determining whether a path exists between two specified nodes.

It should also allow for multiple queries to be combined using a set algebra by supporting

the operators union, intersection and difference. Of these, the intersection operator is of

particular interest, since it can be used to implement queries with conjunctive conditions.

5.3.1 Implementing the Path Query Language

One possible implementation strategy for the query language is to transform query expres-

sions into optimized deterministic finite state automata [4, section 3.9] and use these to –

effectively – “walk” the underlying RDF graphs (which are stored as RDF triples in main-

memory databases with hashed indices). During traversal, graph nodes are marked with

DFA states as in [155, section 5] but without restricting the system to simple paths – by

marking the nodes with all applicable states Wilbur is able to find the correct answer to

the problem presented in [155, example 8].22

Before the transformation into finite state automata, query expressions are normalized; es-

sentially, operators that are considered “syntactic sugar” are expressed using a minimal set of

operators (seq, rep, and or) by the application of the following simple transformation rules

to exhaustion:

1. Unary uses of n-ary operators (seq, seq+, and or) are reduced to their single operand:

op(e)→ e (5.5)

2. Uses of n-ary operators (for n > 2) are reduced to binary versions of the same:

op(e1, . . . , en)→ op(e1, op(e2, . . . , en)) (5.6)

22In this example, an “obvious” result is not found because the algorithm marks a potentially terminal
node with a non-terminal state of the DFA before visiting a terminal state.

63

3. Occurrences of rep+ are removed:

rep+(e)→ seq(e, rep(e)) (5.7)

4. Occurrences of seq+ are removed (note that this operator is equally easy to imple-

ment by merely marking additional states as terminals during the construction of the

DFA corresponding to the query expression – in fact, in the concrete implementation

described in Chapter 8 this is the approach taken):

seq+(e1, e2)→ or(e1, seq(e1, e2)) (5.8)

5. Uses of inv are “pushed” to the leaves of the parse tree of the query expression (so

that, effectively, individual arcs are inverted), using the following transformations:

inv(rep(e))→ rep(inv(e)) (5.9)

inv(or(e1, e2))→ or(inv(e2), inv(e1)) (5.10)

inv(seq(e1, e2))→ seq(inv(e2), inv(e1)) (5.11)

This largely corresponds to the definition of inv as given in [37, section 4]. Note that

expressions of the form inv(a) where a is an atomic symbol are replaced with special

tokens that can be interpreted directly by the query engine (using the notation from

[37, section 4] these tokens would be written as a−).

6. Similarly, uses of the various filter operators (filter, restrict) are replaced with special

tokens interpreted in a special way by the query engine.

7. Subexpressions of type inv(value(e)) are simply removed, but later it will be demon-

strated how – during the calculation of query results – the inverses of default values

can be dealt with using lazy evaluation.

The query (and storage) engine can be implemented using the following functions:

64

Query Interface: Alookup(n, q,G) returns all nodes from the graph G reachable from node

n using the path q:

1 Alookup(n, q,G)

2 N ← {}, S ← {}

3 call walk(n,makedfa(q), 0,G)

4 return N

5 end Alookup

(5.12)

where walk(node, dfa, i,G) is defined as

1 walk(node, dfa, i,G)

2 if 〈i, node〉 /∈ S then

3 S ← S ∪ {〈i, node〉}

4 state← dfa[i]

5 if is terminal(state) then

6 N ← N ∪ {node}

7 end if

8 for 〈input, j〉 ∈ state do

9 for node′ ∈ expand(node, input,G) do

10 call walk(node′, dfa, j,G)

11 end for

12 end for

13 end if

14 end walk

(5.13)

Note that in this definition i is the (index of a) state of the DFA dfa, S is the set of state/node

pairs already encountered, and makedfa(q) is a function constructing the DFA corresponding

65

to the query expression q [4, algorithm 3.5]. A DFA, in this case, is a vector of states, each

of which is a set of pairs 〈input, index〉 where input is any edge label of the graph queried

(more specifically, any edge parameter e of the function expand(v, e,G), and index is a state

index of the DFA. All states also record whether they are terminal or not.

Query Step Expansion: expand(n, a,G) is used by the DFA walker to expand a query

from node n via arc a (i.e., given n, and a as the next transition, this function returns the

set of “next” nodes, if any).23 The function expand is defined for the different types of “query

atoms” (ordinary arcs a, inverse arcs inv(a), value insertions value(e), universal wildcards

‘∗any’, container membership wildcards ‘∗member’, and the “current node” token ⊥) as follows:

expand(n, a,G) = {o | 〈s, p, o〉 ∈ triple(n, a, ∗,G)} (5.14)

expand(n, inv(a),G) = {s | 〈s, p, o〉 ∈ triple(∗, a, n,G)} (5.15)

expand(n, value(e),G) = {e} (5.16)

expand(n, restrict(e),G) =

{n}, if n = e

{}, otherwise

(5.17)

expand(n, filter(s),G) =

{n}, if the URI of n contains substring s

{}, otherwise

(5.18)

expand(n,⊥,G) = {n} (5.19)

expand(n, ∗any,G) = {o | 〈s, p, o〉 ∈ triple(n, ∗, ∗,G)} (5.20)

expand(n, ∗member,G) = {o | 〈s, p, o〉 ∈ triple(n, ∗, ∗,G) ∧ p ∈ Pmember} (5.21)

where Pmember is the (potentially infinite) set of container membership properties (rdf:_1,

23Not to be confused with expand in [37, section 4] where it denotes the rewriting of query expressions.

66

rdf:_2, rdf:_3, etc.). Furthermore, there are special cases for literals λ:

expand(λ, rdf:type,G) =

{rdf:XMLLiteral}, if λ is a well-typed XML literal

{rdfs:Literal}, if λ is any other kind of literal

(5.22)

expand(λ, filter(s),G) =

{λ}, if λ contains the substring s

{}, otherwise

(5.23)

expand(λ, lang(s),G) =

{λ}, if the xml:lang attribute of λ matches s

{}, otherwise

(5.24)

Graph Storage Access: triple(s, p, o,G) returns all matching triples from the graph G.

The values of s, p, and o can either be constants (a node in the graph, or a literal value) or

wildcards ‘∗’. The function can be defined as follows:

triple(s, p, o,G) = {〈σ, π, ω〉 ∈ G | (s
∗
= σ) ∧ (p

∗
= π) ∧ (o

∗
= ω)} (5.25)

where (x
∗
= y) ≡

true if x = ∗,

x = y otherwise

(5.26)

The reader is referred to Chapter 8 for a discussion of a concrete implementation of this

path query language and specifically to Section 8.4 for an evaluation of how it performs in

comparison to other RDF query languages.

67

6 Hiding Reasoning from Application Logic

Reasoning – or logical inference – is typically not part of the “arsenal” of technologies em-

ployed in mainstream application development. Reasoning is declarative in nature and as

such largely incompatible with the traditional procedural style of programming. With the

advent and increasing acceptance of ontological technologies, the Semantic Web, and other

sophisticated representational approaches, the importance of reasoning is elevated. It is

therefore reasonable24 to ask “can we identify appropriate and convenient ways of interfacing

procedural programs with mechanisms of reasoning?” The question is not altogether different

from the one that needed to be asked (and answered) when rule-based expert systems were

gaining popularity (in the 1980’s) and developers wanted to interface rule processing with

procedural programs [9, 166, 98, 50, 148, for example].

Many approaches to RDF (and even OWL) have forced the application programmers to

worry about reasoning separately, perhaps even implement a reasoner themselves – note

that this observation is quite similar to what others have made about some other aspects

and approaches to knowledge representation, e.g., Dean & McDermott’s remarks about tem-

poral reasoning [53, Section 1.].25 In fact, most software toolkits for RDF processing merely

concentrate on producing sets of triples from XML serializations of RDF graphs, and leave

the inferential part to the application programmer. Since the implementation of the “infer-

ential component” of what the model-based semantics of RDF [86] imply is actually a basic

requirement for interoperability of RDF-based systems, support for this should be readily

available to application programmers. Not only would this ease the task of writing RDF-

savvy software, but it would improve the level of interoperability between these systems.

Without this minimal support for inference, RDF is largely relegated to mere structured

24No pun intended.
25Dean & McDermott basically make the argument that the lack of “built-in” means of temporal reasoning

in knowledge representation systems too often forces the development of (ad hoc) approaches to handling
temporal aspects of the particular domain being represented.

68

data interchange, and its utility will be seriously jeopardized.

What are the possible ways of interfacing with a reasoner? They include at least the following:

1. Treat the reasoner similarily the way we tend to treat database engines, that is, as a

separate component to which one can pose queries and get results back. The repre-

sentation of the data, when conversing with the reasoner, is completely different from

the representation of data that the procedural program uses. There is a conceptual

“binding” between the representation, in the sense that a change to one representation

forces changes to the other; sometimes (in the case of query engines) these changes

have to be propagated to the source code manually.

2. Many ontological representations, including RDF, can be viewed as (at least closely

related to) frame-based knowledge representation. As mentioned in the previous chap-

ter, frame-based KR systems and object-oriented programming systems (OOPS) have

strong parallels, and on the surface it would not be unreasonable to suggest that this

“kinship” could be exploited. Certainly the similarity between frame-based KR and

OOPS makes it easy to explain and understand the former. Even though reflect-

ing declarative representations onto an object-oriented programming language seems

doable [128], one unavoidably encounters problems because of the mismatch between

representation language semantics and programming language semantics.

3. Given a “natural” representation of the declarative data that allows this data to be

used and manipulated by procedural programs, one could envision that – in certain

cases – reasoning could be completely hidden from the application developer. In the

case of RDF and other representations whose semantics imply a unique deductive clo-

sure, one could take the approach where the procedural program (mostly) sees just

the deductive closure instead of the explicit (perhaps externally acquired) represen-

tation. It then leads to the question of how this closure is generated (and when): it

69

could be done “up front”, or it could be done “on demand”. In most cases, issues of

truth maintenance arise [56, 35].

Those RDF toolkits and libraries that offer reasoning tend to take the first approach. The

second approach was typically used by frame-based representation systems via the provision

of procedural attachment whose extreme manifestations rendered frame-based systems into

object-oriented programming languages; traditional way was to implement some typically

clumsy way of calling “methods”, but some approaches, such as BEEF and PORK went

further in attempts to integrate the KR system with the underlying programming language.

In this dissertation, the third approach is adopted, investigating whether hiding reasoning

from the application developer, by way of exposing a dynamically generated deductive clo-

sure makes sense. A method extending the use of the path query language presented in the

previous chapter is given, demonstrably a natural way of interfacing with graph-based repre-

sentations, to implement reasoning. Issues of procedural attachment still remain, but, on the

one hand, since it is not possible to design the representation language from scratch, trying

to align its semantics with the underlying programming language’s semantics is a futile task;

on the other hand, clumsy “added-on” method invocation facilities may not serve any good

purpose either. It therefore makes sense to pursue an approach where access to underlying

representations is made easy. This, combined with the reasoning mechanisms hidden from

the application developer, appears to be a promising direction.

“Semantic interoperability” of RDF-based systems has long been anticipated to materialize

because of the polymorphism of shared types and relations as defined by the RDF Schema

specification, but – as observed earlier – most software packages for RDF processing merely

treat RDF graphs as data structures and leave the inferential part to the application pro-

grammer: The model theory for RDF formalizes this notion of inference in RDF, and it could

be argued that the inferential mechanism is a basic minimum requirement for interoperabil-

ity of RDF-based systems, and support for this should be readily available for application

70

programmers. Not providing this support may compromise the interoperability between

RDF-based systems.

6.1 Exposing the Deductive Closure

This chapter26 will investigate the computational aspects of deductive closures of RDF

graphs, and pursue an implementation based on the path query language introduced in

the previous chapter.

In the previous chapter a query language was examined that operated against a graph G. In

this chapter, the notation G is used for the deductive closure of graph G. As defined earlier,

for single arc queries, the function Alookup can be defined as

o ∈ Alookup(s, p,G) ⇐⇒ 〈s, p, o〉 ∈ G (6.1)

A new function Aclosure can be introduced, such that

Aclosure(s, p,G) = Alookup(s, p,G) (6.2)

In terms of the model-theoretical formulation of RDF(S) semantics [86], Aclosure can be

defined as

o ∈ Aclosure(s, p,G) ⇐⇒ 〈s, o〉 ∈ IEXT(I(p)) (6.3)

where I(x) is the RDF(S)-interpretation of a particular graph, and IEXT(y) is a binary

relational extension of a property – i.e., the set of pairs which identify the arguments for

which the property is true – as defined in [86]. In other words, Aclosure provides a view into

G as if the deductive closure G had been generated. One approach to implementing Aclosure

will be demonstrated, given an implementation of Alookup as well as other query and update

facilities for G.
26This chapter is based on my earlier paper [127]. Since its publication, I have found an elegant solution

for handling the domain and range properties of RDF [127, Section 4.3]; this solution is explained in this
chapter, and hence the material from the said section of the original paper has been largely omitted. The
material, overall, has also been updated for a newer version of the RDF model theory [86]

71

6.2 Entailment and “RDF(S)-Closures”

The RDF Model Theory [86] defines entailment via the generation of a deductive closure

from an RDF graph. The closure is a graph G, defined as follows:

〈s, p, o〉 ∈ G ⇐⇒ 〈s, o〉 ∈ IEXT(I(p)) (6.4)

Computing this so-called “RDF(S)-closure” consists of two steps:

1. Addition of a set of axiomatic triples to the RDF graph in question. These triples

effectively define classes and properties (and their domains and ranges) in the basic

RDF ontological vocabulary.

2. Recursive application of forward-chaining rules to generate all legal triples entailed

by the graph in question. These rules could be characterized as follows:

• Type Rules assign default (“root”) types for resources (rules rdf1, rdfs4a and

rdfs4b in [85]).

• Subclass Rules generate the transitive closures of subclass→ class and instance→

class links (rules rdfs7, rdfs8 and rdfs9).

• Subproperty Rules are used to generate the transitive closures resulting from

subproperty → property links. They also propagate property values up the

subproperty chain (rules rdfs5 and rdfs6).

• Domain/Range Rules infer resource types from domain and range assignments

(rules rdfs2 and rdfs3).

The rules are highly redundant, and their brute-force, exhaustive, iterative application may

not always be a realistic way of computing the closure, although there is work that suggests

that at least in some cases this approach is feasible [35]. The nature of brute-force rule

72

application can be demonstrated via this example: given a graph with only one triple, the

rules in step 2 would generate 17 new triples (in addition to the 19 “static” triples added in

step 1), but would also result in 493 attempts to add a redundant triple (i.e., one that was

already in the database).27

6.3 Reasoning in RDF(S) via Forward-Chaining Rules

More optimized forward-chaining rule techniques – such as RETE [67] or TREAT [159, 160]

– can be used to make the generation of the deductive closure more efficient. The RETE

algorithm operates in terms of a “working memory”, a set of tuples the changes of which are

filtered through a network that minimizes the number of “checks” that have to be made to

understand which rules could fire; various strategies can then be employed to decide which

rule actually gets picked. If one thinks of the graph G as the working memory, and the

addition and removal of triples as the transactional changes to the working memory, RETE

can be conveniently adapted to work with RDF(S). For example, Pychinko [108] is a RETE

engine adapted to work with RDF graphs, as a compatible replacement to CWM [18].28

The application of forward-chaining rules to generate the deductive closure may result in the

addition of a large number of new triples in the database; most of these generated results

may never even be needed. RETE also caches lots of information about the current working

memory (i.e., the graph) in order to speed up the rule discrimination process. This approach

may therefore not be feasible in memory-constrained situations. It is therefore interesting to

investigate whether some balance could be found between computing the closure in advance

vs. defining the access function Aclosure in such a manner that it can dynamically (i.e.,

27In fact, in the aforementioned article [35] Broekstra and Kampman contest this claim, originally presented
in [127], but their reasoning may be based on the premise that most of their data sets had very simple class
structure; the only “complex” ontology used led to 207% increase in the graph size. Generally, class-rich
data (with more rdfs:subClassOf relations) would generate more inferred arcs in the deductive closure, as
suggested by work on measuring query performance under different schema sizes, e.g. [198].

28At the time of writing, CWM used a näıve brute-force forward-chaining algorithm.

73

on-demand) generate correct results.

6.4 Reasoning in RDF(S) as Theorem-Proving

There are also several backward-chaining theorem-proving approaches to generating RDF(S)

entailments. These include Euler29 [164] as well as SiLRI and TRIPLE [54, 188]. Similarly to

the approach presented below, these approaches can be used to compute only the entailments

of interest, rather than generating all entailments as with the forward-chaining approaches.

6.5 Reasoning in RDF(S) as Query Rewriting

A scheme is proposed – a refinement of the earlier approach presented in [127] – to implement

deductive closure generation by primarily using graph-walking techniques. The basic idea

is that every inferred arc of the closure – that is, an arc that the original graph entails, as

per [86] – is expressed as an alternate path through the original graph. The general goal

of this approach is to delay the computation of entailments until they are needed, and to

only compute those results that will actually get used. There are similarities to the theorem-

proving approaches such as Euler; in the strictest sense, however, the query engine does

not guarantee that the alternative paths discovered are Eulerian (nor Hamiltonian),30 since

a node can be visited as many times as it appears in different states of the finite state

automaton directing the query.

The approach is based on the following basic assumptions:

1. Generally, the computation of the closure can be delayed (even at the expense of the

29http://eulersharp.sourceforge.net/
30An Eulerian path visits each edge in a graph exactly once, as first discussed by Euler in 1736 while

solving the famous problem exemplified by the Seven Bridges of Königsberg [61]. Similarly, a Hamiltonian
path visits each vertex in a graph exactly once [84].

74

time eventually spent in the computation) and memory consumption can be traded

for time spent in computation.

2. The computational burden is split in two: some of the work is undertaken during

every insertion into G (i.e., whenever new triples are asserted), and some during every

access of Aclosure.

3. Some features of RDF are more prevalent than others in “typical” data; the design of

the system will be based on the following perceived distribution of prevalence:

• subclassing is common,

• subproperty definitions are used but sparsely,

• subproperties of rdf:subPropertyOf are rare.

The above distribution can be justified, say, by querying UMBC’s Swoogle search

engine.31

With regard to the dynamic computation of closures, the approach is based on the query

language presented in the previous chapter and rewriting access path expressions when ac-

cessing the underlying graph. The definition of the slot access function Aclosure now takes

the form

Aclosure(n, path,G) = Alookup(n, path′,G ∪ G ′) (6.5)

where G ′ is a set of triples that have to be added to the original graph G, n is a node in the

graph, and path′ is the path expression path suitably rewritten. The reasoning algorithm

is expressed as a set of rewrite patterns of the form path
c7→ path′ (where the operator

c7→

reads as “is rewritten as”) and a definition of the set of additional statements G ′.
31These queries (run on 2006-12-01) revealed 26,008 documents with rdfs:subClassOf relations,

5,922 documents with rdfs:subPropertyOf relations, and a mere 103 documents with subproperties of
rdfs:subPropertyOf; this is not the full picture, though, since many of the documents with subclass rela-
tions had several hundreds of thousands “usages” of said relation, so the bias in the distribution is even more
dramatic than these numbers will lead us to believe.

75

Computing RDF(S) entailments via graph-theoretical means (namely via graph homomor-

phisms) has been studied in [12]. The approach to computing RDF(S) entailments via regular

expressions is considered in [6]; generally, the query rewriting approach presented is remi-

niscent of the idea of rewriting query expressions to answer queries based on a set of views

rather than the original data contained in a database [171, 37, 77] – in this case the deductive

closure is another “view” of the original RDF graph.

A partial solution is demonstrated first: it implements only the type and subclass rules

discussed in section 6.2. This solution will then be extended by adding support for the

subproperty rules; finally, the original approach presented in [127] is augmented by extending

the query language to allow the implementation of the domain/range rules.

6.5.1 Type and Subclass Rules

For the two core relations rdf:type and rdfs:subClassOf the rewritten paths (referring to

equation 6.5) are, correspondingly:

rdf:type
c7→ or(seq(rdf:type, rep(rdfs:subClassOf)),

value(rdfs:Resource))
(6.6)

rdfs:subClassOf
c7→ or(rep(rdfs:subClassOf),

value(rdfs:Resource))
(6.7)

where rewrite pattern (6.6) says that in order to find all values of rdf:type of an instance,

you first traverse the atomic rdf:type link once, and then the atomic rdfs:subClassOf

link an arbitrary number of times (including zero). Accessing all values of this relation

computes the transitive closure of rdfs:subClassOf, starting from the designated classes of

the instance being queried. Similarily, rewrite pattern 6.7 accesses the transitive closure of

rdfs:subClassOf. Note that the effects of pattern 6.7 are built into pattern 6.6 so that these

rules do not need to be applied recursively. The disjunctions in both expressions ensure that if

76

the exhaustive search (i.e., transitive closure computation) fails, a default value is generated.

Figure 6.1 shows the DFA corresponding to the rewrite rule (6.6).

Apart from rdf:type and rdfs:subClassOf, other arc labels (RDF properties) are un-

affected by the rewrite process, since there is no semantic theory for them. Complex path

expressions are rewritten by traversing them recursively, rewriting subexpressions, as follows:

op(e1, . . . , en)
c7→ op(e′1, . . . , e

′
n) where ∀i ∈ [1, n], ei

c7→ e′i (6.8)

Since the Wilbur implementation of a “triple database” always loads a basic “RDF schema”

into every newly created database, step 1 of the closure generation process (in section 6.2)

is implemented by defining the static triples in this schema.

Please note that the approach taken only makes sense for certain types of triple database

implementations. In a relational database implementation – given that queries for finding

transitive closures cannot be expressed in relational calculus (see, for example, [155]) – it

might make more sense to populate the database with additional triples. In an “in-core”

implementation like Wilbur, stepping through the graph has a relatively low cost, and

therefore the dynamic approach makes sense, particularly when combined with the potential

memory savings.

0 1rdf:type2 value(rdfs:Resource) rdfs:subClassOf

Figure 6.1: DFA corresponding to the complex path from rewrite pattern (6.6)

77

6.5.2 Subproperty Rules

The partial solution can be extended to provide support for the subproperty rules. Referring

to equation 6.5, access paths are rewritten as follows: each atomic relation r is rewritten as

r
c7→ or(r1, . . . , rn) where ri ∈ Alookup(r, rep(inv(or(p1, . . . , pm))),G) (6.9)

and where p1, . . . , pm are the relation rdfs:subPropertyOf and all of its defined subproper-

ties. Please note that this rewriting also applies to all of the atoms of the results of applying

the rewrite patterns 6.6 and 6.7. When all values of A are computed the ordering of ri

does not need to be considered. An implementation might, though, apply some specificity

ordering to the values based on the graph distance of ri to r (note that r1 = r).

To avoid redundant lookups, the set of subproperties of rdfs:subPropertyOf, Psubprop =

{pi}, can be cached. Each insert into G where the triple is of the form

〈s, pi, pj〉 where pi ∈ Psubprop ∨ pj ∈ Psubprop (6.10)

invalidates and recomputes the cache. The recomputation is effected as follows: assume

Psubpropold
is the current value of the cache, and Psubpropnew is the recomputed value of the

cache; then

Psubpropnew = Alookup(rdfs:subPropertyOf, inv(rep(or(p1, . . . , pn))),G) (6.11)

where ∀i ∈ [1, n], pi ∈ Psubpropold

In addition to caching subproperty information of rdfs:subPropertyOf, the implementa-

tion offers other opportunities for caching results. Not only could more of the subproperty

information be cached (that is, information about subproperties of all relations, not just

rdfs:subPropertyOf), but other results computed by Aclosure could be cached as well.

It should be further noted that – similarily to the rewrite rules (6.6) and (6.7) – the property

rdfs:subPropertyOf itself needs to be rewritten, as follows:

rdfs:subPropertyOf
c7→ rep(rdfs:subPropertyOf) (6.12)

78

This is done because – according to the definitions given in [86] – rdfs:subPropertyOf is

both reflexive and transitive.

6.5.3 Domain/Range Rules

The path-rewriting approach works reasonably well for the most part, but as [127, section

4.3] points out, it is not suited to implementing the domain and range rules (in fact, it

proposes a rather awkward solution where certain auxiliary triples are added to the graph

to make it possible to have a path from subjects and objects to property nodes of associated

statements). Figure 3.2 shows the statement 〈A,P,B〉 with the corresponding predicate (and

the associated property node that “names” the predicate), and it can be seen that no path

exists between either the subject or the object and the predicate of the statement.

It can be observed, however, that paths (consisting of two arcs) between a subject or object

and the property node that names the corresponding predicate are possible when state-

ments are reified (i.e., a model of these statements is built using RDF itself). In certain

types of implementations these paths can be traversed without actually building the graph

corresponding to the reifications themselves.

Earlier work related to RDF reification has often dealt with making it more convenient to

refer to reified statements and thus making it easier to treat them as first class objects. Such

research includes work on extending the RDF model [46], casting Topic Maps as RDF [165],

as well as work on several RDF query languages.

Figure 6.2 represents the graph from Figure 3.2 with the reification of the statement added,

as defined in [141, section 4.1] and [13, section 7.3]. Now – assuming that you can traverse

arcs in the reverse direction – paths exist between the property node P and nodes A and

B. The following paths of interest will be considered (these paths are expressed using the

79

A BP

P

S

rdf:Statement

rdf:subject

rdf:predicate

rd
f:o

bj
ec

t

rdf:ty
pe

Figure 6.2: Reified Statement S

abstract syntax of query patterns of the Wilbur Query Language):

predicate-of-subject ≡ seq(inv(rdf:subject), rdf:predicate) (6.13)

predicate-of-object ≡ seq(inv(rdf:object), rdf:predicate) (6.14)

Since any path in the query language has to be invertible, also the following two paths have

to be considered:

inv(predicate-of-subject) ≡ seq(inv(rdf:predicate), rdf:subject) (6.15)

inv(predicate-of-object) ≡ seq(inv(rdf:predicate), rdf:object) (6.16)

Figure 6.3 shows the path matched by the query pattern (6.13). In this dissertation these

paths will be called computed shortcuts (CSs); in the context of reified statements, CSs are

interesting and useful since one can traverse them even if the reified statements themselves

do not exist, as long as it is known that they could exist and that some other representation

that provides information about them exists.

In a “triple-store” implementation, each statement is represented as a tuple 〈s, p, o〉. Even

without reifying at the graph level, these tuples are an alternate concrete representation

80

A BP

P

S

rdf:Statement

rdf:subject

rdf:predicate

rd
f:o

bj
ec

t

rdf:ty
pe

Figure 6.3: Computed shortcut seq(inv(rdf:subject), rdf:predicate)

of (reified) statements.32 They can therefore be used to implement the CSs for virtual

reification. Using the vocabulary and framework introduced in the previous chapter, CS

traversal can be defined as follows:

expand(n, predicate-of-subject,G) = {p | 〈s, p, o〉 ∈ triple(n, ∗, ∗,G)} (6.17)

expand(n, predicate-of-object,G) = {p | 〈s, p, o〉 ∈ triple(∗, ∗, n,G)} (6.18)

expand(n, inv(predicate-of-subject),G) = {s | 〈s, p, o〉 ∈ triple(∗, n, ∗,G)} (6.19)

expand(n, inv(predicate-of-object),G) = {o | 〈s, p, o〉 ∈ triple(∗, n, ∗,G)} (6.20)

A query engine implementation can identify all these CSs while canonicalizing query ex-

pressions, and can substitute a special “query atom” for each of them; special cases of the

function expand, as defined above, then exist for each of these query atoms. Thus the cost of

traversing any one of these CSs is the same as the cost of traversing any one arc in the graph,

and the same “effect” is achieved as the awkward solution of [127, section 4.3] but without

any additional triples. The domain and range rules can now be expressed more elegantly;

32Similar approach is taken in [165] to delay concrete reification.

81

A BP

P

S

rdf:Statement

rdf:subject

rdf:predicate

rd
f:o

bj
ec

t

rdf:ty
pe

C

rd
fs:

do
main

rdf:type

Figure 6.4: Inferring the type of node A using the domain rule

consider the following rewrite pattern:

rdf:type
c7→ or(seq(rdf:type, rep(rdfs:subClassOf)),

seq(predicate-of-object, rdfs:range, rep(rdfs:subClassOf)),

seq(predicate-of-subject, rdfs:domain, rep(rdfs:subClassOf)),

value(rdfs:Resource))

(6.21)

where the definitions of predicate-of-object and predicate-of-subject are according to (6.14)

and (6.13). This rule corresponds directly to [127, rewrite pattern (8)].

Figure 6.4 illustrates how the domain rule (thick solid line), via the traversal of the graph,

can be used for inferring the type of a node (thick dashed line). Figure 6.5 illustrates the

DFA corresponding to the complex path from rewrite pattern (6.21).33 This DFA is used

for “walking” the RDF graph while making use of the query expansions (in Section 5.3.1),

to yield the rdf:type of a node (in the process, the following RDF(S) entailment rules [86,

section 7.3] are satisfied: rdfs2, rdfs3, rdfs4a, rdfs8, rdfs9, rdfs10 and rdfs11).

33Compare this with the simpler DFA in Figure 6.1.

82

0 1rdf:type2
value(rdfs:Resource)

3

predicate-of-object

4

predicate-of-subject

rdfs:subClassOf
rdfs:range

rdfs:domain

Figure 6.5: DFA corresponding to the complex path from rewrite pattern (6.21)

6.5.4 Inverting Paths with Default Values

In order to allow all possible queries to be transformed, a solution is needed for computing

the results of queries that consist of an inverse of a path that gets rewritten to something

that contains a default value (e.g., rdf:type). Generally, the default values are used to

ensure that rdfs:Resource is the class of every instance and the superclass of every class.

Computing something like Aclosure(rdfs:Resource, inv(rdf:type),G) results in the set of

all nodes in G. Since this may only be an intermediary result while computing the results

for a more complex query, the use of something akin to lazy evaluation will prevent large

intermediary data sets from being generated. The special token ∗all “represents” the set of

all nodes during the computation of intermediate results:

expand(rdfs:Resource, inv(rdf:type),G) = {∗all} (6.22)

expand(rdfs:Resource, inv(rdfs:subClassOf),G) = {∗all} (6.23)

expand(∗all, a,G) = {o | 〈s, p, o〉 ∈ triple(∗, a, ∗,G)} (6.24)

83

6.5.5 Implementation Summary and Evaluation

Table 6.1 summarizes how the approach described implements the rules of the RDF(S) Model

Theory. Going forward, one might consider using forward-chaining rules to generate those

parts of the deductive closure that cannot be generated using query rewriting (these “rules” –

cases rdf1, rdfs6, rdfs12 and rdfs13 – are currently hard-coded in the database manipulation

methods).

Table 6.1: Implementation Summary

Rule
c7→ Pattern Other Implementation

rdf1 n/a during insertions to G

rdf2 n/a special case of expand (5.22)

rdfs1 n/a special case of expand (5.22)

rdfs2 (6.21)

rdfs3 (6.21)

rdfs4a (6.21)

rdfs4b (6.21)

rdfs5 (6.9)

rdfs6 (6.9) if (6.10) holds during insertion to G then invoke (6.11)

rdfs7 (6.9)

rdfs8 (6.21)

rdfs9 (6.21)

rdfs10 (6.7)

rdfs11 (6.7)

rdfs12 n/a during insertions to G

rdfs13 n/a during insertions to G

84

The complexity of path traversal and path queries has been studied extensively; for example

[197, 210, 155, 167, 82]. Even though the general problems tend to be NP-complete [155],

several restricted variations of the problem have lower complexity. Most of the graph pro-

cessing required for the solution presented in this dissertation is reduced to the computation

of transitive closures which can be accomplished in polynomial time [210]. Beyond that,

most of the complexity considerations – such as those discussed in [82] – are considered to

be out of scope for this dissertation.

6.6 Generalization of Rewriting Approach to Reasoning

As discussed, the aforementioned RDF(S) reasoner is implemented by rewriting access queries

– expressions of the WilburQL language – to effectively make it look like the database, in

addition to the graph stored in it, contains all the entailments of this graph. Rewriting is

done by recursively substituting all occurrences of those RDF properties that have a semantic

theory (rdf :type, rdfs :subClassOf and rdfs :subPropertyOf) with a more complex query

expression that effectively constitutes something loosely resembling backward-chaining rules.

The rewritten queries create a “view” into the underlying graph database that contains the

RDF(S) closure of the original graph.

The idea of rewriting has been used as a general computational vehicle [93], in transform-

ing and optimizing (especially functional) programming languages [203, 202, 116], in various

practical software systems (such as the sendmail program34 of UNIX or the Apache web

server35) as a “customization” mechanism, and in performing service discovery and composi-

tion [16, 137]. It has also been used in query systems for semi-structured data for providing

augmented or federated views of databases [36, 171, 77].

We will generalize the rewriting mechanism used in the reasoner into a simple rule system.

34http://www.sendmail.org/
35http://httpd.apache.org/

85

Rewrite rules take the general form

p 7→ q (6.25)

where p is an atomic expression of the query language (i.e., something that conceivably

could name an RDF property), and q is an arbitrarily complex query expression that does

not contain p (with one exception that’s described below).36 The rule engine, upon seeing a

query expression, iteratively applies the rewrite rules to the expression until no rule applies.

The resulting rewritten query is then presented to the query engine that computes and

retrieves the result set.

In queries of the form (6.25) it is possible for the expression q to contain subexpressions of

the form norewrite(r) where r is an expression that may contain the atomic expression p.

The rule engine does not attempt to rewrite these expressions, and the norewrite operator

is ignored by the query engine, in the sense that from its point of view, norewrite(p) ≡ p.

This mechanism allows one to augment the behavior of existing RDF properties, for example

via the following pattern:

p 7→ or(norewrite(p), q)

Referring to (5.3), we can give property p the default value of r by using the following rule:

p 7→ or(norewrite(p), value(r)) (6.26)

In comparison to most of the aforementioned existing work on rewriting, our approach to

rewriting query expressions is rather simplistic and resembles simple macro expansion. Most

notably, our rewrite rules do not contain any variables or other types of patterns that would

require matching to determine rule applicability (apart from a simple exact matching of

names). In that sense, they resemble entity references in XML [31, section 4.1].

Virtual properties are rewrite rules that allow the values of new properties to be computed

rather than being stored in the underlying database. By expressing rewrite rules as instances

36Obviously the “closure rules” of the RDF(S) reasoner (denoted with c7→) described earlier are a special
case of the more general rules discussed here.

86

of a subclass of rdf :Property allows us to have virtual properties to have rdfs :domain

definitions, effectively associating then with classes; given a virtual property p with a domain

d, we can use this information to automatically query for values of p whenever, for example,

visualizing an instance of the class d.

The rewrite rule system is discussed in more detail in [133].

87

7 Practicality of RDF(S) in Applications

RDF is a simple representation language capable of representing taxonomies as class hier-

archies. The model theory of RDF [86] implies that RDF has a unique deductive closure,

making RDF easy to integrate with a procedural programming model since all inferencing

can be hidden from the application logic by presenting a view where the deductive closure,

instead of the explicit triples in the underlying triple store, is the actual knowledge base.

One of RDF’s shortcomings is the inability to use a reasoner to determine anything about

object equality. This has implications to the management of object identity, particularly

with respect to blank nodes. Two specific cases are particularly interesting:

• Explicitly stating that two nodes in a graph are the same node. Some might argue

that what in fact would be more useful is the equivalence of classes, but node equality

in RDF(S) is in fact a natural way to think of the graph: one merely states that two

nodes in the graph are, in fact, a single node.

• Determining node identity based on some property of the node. Instead of determining

node identity using the node’s URI, the node identity is based on a specific value of

a specific property (although the “orthodox” approach to the Semantic Web suggests

that all objects that have to be described have a URI, this is hard to achieve in

practice: in the “real world”, in fact, most objects do not have a URI).

OWL [152, 52, 173] can handle both cases; the first by allowing an equality relation between

objects (owl:sameAs), and the second by allowing properties to be defined as inverse func-

tional properties – the latter are like primary keys in a database; for these properties the

following holds:

p(r1) = p(r2)⇒ (r1 = r2) (7.1)

where p is an inverse functional property and ri are resources. It would, therefore, be worth

88

studying whether these two features would change how the language can be used.

This chapter introduces a new language, dubbed RDF++ [134], defined as RDF(S) with the

addition of the two aforementioned features. This language, like “classical” RDF, also has a

unique deductive closure and therefore can be used in the application framework described.

Through examples the utility and benefit of the new features as improved expressiveness of

the language will also be justified.

7.1 Semantic Theory for RDF++

This section defines the axiomatic semantics of RDF++. The formalization is similar to

the axiomatization of RDF and RDF(S) as given in [66] and [79], except that the KIF (or

“KIF-like”) syntax is dispensed with in favor of a more traditional first-order logic syntax.

The definition of RDF++ semantics has the following three parts:

1. “Shorthand” axioms, to be used to make later axioms easier to write:37

type(x, y) ⇐⇒ holds(rdf :type, x, y)

class(x) ⇐⇒ type(x, rdfs :Class)

property(x) ⇐⇒ type(x, rdf :Property)

2. Axiomatic triples (definitions of the core classes and properties); these establish an

initial, minimal schema (there are other axiomatic triples but they are not strictly

37Note that RDF “triples” are expressed using holds, a ternary relation such that each RDF statement
with any predicate p, any subject s, and any object o is translated into the relational sentence holds(p, s, o).
This is a well-known technique for embedding a higher-order syntax in first-order logic. An alternative
approach would be the use of relational extensions as adopted for Lbase in [79, Section 2.3]; this approach
would allow variables in relation positions, making the language appear as higher-order, yet keeping the
language semantics as first-order.

89

necessary from the standpoint of the other axioms presented here):

class(rdfs :Resource)

property(rdf :type)

holds(rdfs :domain, rdf :type, rdfs :Resource)

holds(rdfs :range, rdf :type, rdfs :Class)

property(rdfs :subClassOf)

holds(rdfs :domain, rdfs :subClassOf, rdfs :Class)

holds(rdfs :range, rdfs :subClassOf, rdfs :Class)

property(rdfs :subPropertyOf)

holds(rdfs :domain, rdfs :subPropertyOf, rdf :Property)

holds(rdfs :range, rdfs :subPropertyOf, rdf :Property)

property(rdfs :domain)

holds(rdfs :domain, rdfs :domain, rdf :Property)

holds(rdfs :range, rdfs :domain, rdfs :Class)

property(rdfs :range)

holds(rdfs :range, rdfs :domain, rdf :Property)

holds(rdfs :range, rdfs :range, rdfs :Class)

3. Finally, axioms that establish the semantics of those elements of the RDF++ vocabu-

lary that have special semantics. Axioms (7.2)–(7.6) are, in essence, the same as the

axioms presented in [66], except that axioms (7.5) and (7.6) use an implication instead

of equivalence as in [66, range axiom 3 & domain axiom 2]; axioms (7.7) and (7.8)

90

represent the additional semantics for RDF++ that has been borrowed from OWL:

holds(p, s, o) =⇒ property(p) (7.2)

holds(rdfs :subClassOf, x, y) ⇐⇒ (7.3)

class(x) ∧ class(y) ∧ [∀z : type(z, x) =⇒ type(z, y)]

holds(rdfs :subPropertyOf, x, y) ⇐⇒ (7.4)

property(x) ∧ property(y) ∧ [∀o, v : holds(x, o, v) =⇒ holds(y, o, v)]

holds(rdfs :domain, p, c) =⇒ (7.5)

property(p) ∧ class(c) ∧ [∀x, y : holds(p, x, y) =⇒ type(x, c)]

holds(rdfs :range, p, c) =⇒ (7.6)

property(p) ∧ class(c) ∧ [∀x, y : holds(p, x, y) =⇒ type(y, c)]

holds(owl :sameAs, x, y) ⇐⇒ x = y (7.7)

holds(p, x, z) ∧ holds(p, y, z) ∧ type(p, owl :InverseFunctionalProperty) =⇒

holds(owl :sameAs, x, y) (7.8)

By not requiring that RDF semantics be defined independently of RDF(S) semantics, one

can state (as the “axiomatic triples”) things that otherwise would have to be “bootstrapped”

in RDF since the RDF(S) vocabulary is not available.38 For example, the rdfs :domain and

rdfs :range for rdf :type, allowing the elimination of [66, Type axiom 2] – this is because

axioms (7.5) and (7.6) allows one to infer the same information.

Essentially, the semantic conditions defined for RDF++ are those also defined for RDF and

RDF Schema [86, sections 3.1 and 4.1], with the specific features that have been added are

essentially “borrowed” from OWL, adapted from [173, section 5].

38In fact, even [66, Resource axiom 1] conflates the two by asserting class(rdf:Resource).

91

8 Concrete Semantic Web Platform

“Any sufficiently complicated C or Fortran program contains an ad hoc, informally-

specified, bug-ridden, slow implementation of half of Common Lisp.”

– Philip Greenspun39

In this chapter Wilbur, a software library and framework based on the ideas presented

in Chapters 5–7, will be described. Wilbur [125, 127, 128, 129] is a platform on which

Semantic Web applications can be built.

Wilbur (and its re-implementation Wilbur2) have been written in Common Lisp [193] and

were initially based on the BEEF [95, 118, 120] source code. Common Lisp is an expressive

programming language particularly well suited to exploring a data-oriented programming

paradigm. Its associated metaobject protocol [111] allows substantial changes to be intro-

duced to the “inner workings” of the language.

One view of Wilbur is that it takes a low-level approach to integration, by allowing manip-

ulation of RDF graphs (as suggested in Chapter 5). As a fundamental principle, it strives

for tight integration between RDF data and the intrinsic features of Common Lisp; the

integration focuses on the following areas:

1. Ease of use of Common Lisp data structures with RDF – this is achieved via a sim-

ple yet flexible query language WilburQL, based on the abstract query language

described in section 5.3. The query mechanism is thought of as “glue” between the

programming language and the representation language.

2. Input and output of RDF data in a “Common Lisp -friendly” manner – Wilbur takes

the read/print consistency rules of Common Lisp [193, section 11.1.] very seriously,

39This is Greenspun’s Tenth Rule; see http://en.wikipedia.org/wiki/Greenspun’s_Tenth_Rule

92

making it possible to use literal RDF data (nodes and literals) in Common Lisp source

files.

3. Use of the Common Lisp condition mechanism for signaling unexpected situations –

Wilbur’s condition class hierarchy is quite elaborate, allowing precise detection and

handling of anomalous situations.

In addition (and perhaps most importantly), Wilbur hides reasoning from the application

programmer, using the technique described in Chapter 6.

8.1 Toolkit Concepts

Like other RDF toolkits, Wilbur offers an API for manipulating RDF data (graphs, nodes,

etc.). It implements the RDF data model by providing five abstract interfaces (and their

concrete implementations):

1. A class is provided to represent nodes of an RDF graph. Each node may have a URI

(Universal Resource Identifier) string associated with it, in which case the node is

considered to be named; nodes without a URI are called blank or anonymous.

2. A mapping from URI strings to nodes is provided by dictionaries. The system uses

a single default dictionary where all named nodes are placed. The unique mapping

from URI strings to node instances allows the implementation of strict read/print

correspondence for nodes.

3. Triples represent the labeled arcs of an RDF graph. A triple consists of a subject (a

node), a predicate (also a node), and an object (either a node or a literal); each triple

also has an associated source (again, a node), designating the file or HTTP URL from

which the triple was originally parsed.

93

4. Collections of triples are stored in databases. The system can assume a default

database, but also exposes a lower-level API where the database can be specified ex-

plicitly. Simple query functionality is provided for selecting triples from a database,

similar (at least in spirit) to the “find” interface of the Stanford RDF API [154] or

the SimpleSelector interface of Jena [151] – the interface corresponds roughly to the

function triple(s, p, o,G) described in section 5.3.1. Wilbur databases also imple-

ment the full query language based on path patterns; by default (and as illustrated in

section 5.3.1), the implementation of the full query language is based on the low-level

interface exemplified in triple(s, p, o,G).

5. Literals represent literal values (as opposed to description nodes) present in an RDF

graph. Literals have an (optional) associated datatype (an XSD primitive datatype)

and an (optional) language tag.

Wilbur’s high-level query language, WilburQL, is based on the discussion of a path query

language (in Section 5.3). As for its expressive power, it fared well in comparison to the many

“mainstream”query languages proposed for RDF, as demonstrated when a recent RDF query

language comparison [83] is extended to cover WilburQL [129].

8.2 Hidden Reasoner

A complementary view of Wilbur is that its databases can be used to hide reasoning from

the application developer (as suggested in Chapter 6). A special database class is provided

that implements query rewriting and exposes a (virtual) view of the deductive closure of the

graphs loaded into the database. The reasoner implements the extended RDF(S) language

RDF++ described in Chapter 7.

94

8.3 Input and Output of Data

In order to facilitate access to data, Wilbur offers a mechanism for “populating” databases

from local (file system) and global (HTTP) sources, as well as a query language for flexible,

selective access to the data stored in these databases. Populating databases (called loading

in Wilbur) involves various parsing functionality (parsers for XML, RDF, etc.) and a

simple HTTP client API for accessing remote URLs for the same reason. Both the data

source loading functionality as well as the parsing functionality are packaged as extensible

“protocols” that allow new data sources and new parsers to be easily added.

The URI shorthand syntax allows one to use XML QNames that are mapped to the cor-

responding node instances. The (normally unassigned) macro character ! is used. For

example, under the default namespace mappings established by the class dictionary, writ-

ing !rdf:type would – at “read time” [193, Section 22.1.5.] – map into a node whose URI is

“http://www.w3.org/1999/02/22-rdf-syntax-ns#type”. It is possible to use this notation

in source files, compile those files, and later load the binaries into a Common Lisp system;

because the node mappings are then resolved at “load time”, two separately compiled binary

files that make a reference to similarily named nodes can expect these nodes to be eq. This

makes it possible to use the !-notation in, say, eql-specializers [193, Section 28.1.6.2.] and

in a way allowing for simple procedural attachment. Note that the node shorthand works

even if the nodes are unresolved; resolution happens whenever a namespace mapping is es-

tablished, and that way “unresolvable” QNames (ones for which a namespace mapping is yet

to be established) act as “forward references” to the desired node objects.

8.4 Practical Evaluation of Expressive Power of WilburQL

The query language WilburQL is the central component of Wilbur. This section will

provide an evaluation of its expressive power, specifically in comparison to other RDF query

95

languages. The comparison is based on an earlier comparison from University of Karlsruhe

[83] and its extension to cover Wilbur [129]. In addition, results for SPARQL have been

added. This is a practical evaluation of expressive power, without attempts to formalize the

semantics of the language(s).

Since the original comparison [129] was published, filtering and restriction operators were

added to WilburQL, hence the results are now better. Specifically, the use of the idiom:

seq(inv(rdf :type), restrict(X)) (8.1)

combined with rdfs :Resource as the root allows us to force (part of) any query to start

from a particular node X. As explained in Section 6.5.4 the computation of the results

of this query does not generate – as an intermediate result – all the nodes in the graph.

As an example, the “union” test (“return the labels of all topics and union the titles of all

publications”) can be satisfied with the following – admittedly somewhat contrived – query

(with rdfs :Resource as the root):

seq(inv(rdf :type), or(seq(restrict(acm :Topic), inv(rdf :type), rdfs :label), (8.2)

seq(restrict(q :Publication), inv(rdf :type), q :title)))

The results are shown in Table 8.1, as follows:

1. There are 14 distinct tests; the reader is referred to the original comparison article

[83] for a description of these tests.

2. There were eight query languages in the original comparison; the column“Pass” shows

the percentage of the query languages that passed a particular test. In subsequent

columns, a blank entry denotes failure, • denotes a successful test, and ◦ denotes a

partially satisfied test (called “restricted” in the original comparison).

3. RDQL [185] as an example of a relational query language, and Versa [168] as a path

query language were included from the original comparison.

96

4. The results in the column for SPARQL were produced by the author, based on the

SPARQL specification [176].

5. Two different “versions” of WilburQL were included: “plain” WilburQL as well as

WilburQL enhanced with Common Lisp (one could think of this as a combination

of “plain” WilburQL queries with Common Lisp used as a scripting language; this

is possible due to the integration of WilburQL with the underlying programming

language).

Perhaps unsurprisingly, SPARQL fares better than most query languages. Most notably,

SPARQL does a lot better than RDQL, its predecessor. Due to its relational nature, SPARQL

fails those tests that involve recursive or repetitive traversal of the graph. The overall average

pass rate of the original comparison was 53% – some languages did quite well, but they have

not been deployed; it should be noted that no language in the original comparison achieved

100% pass rate

Despite its simplicity, WilburQL does well, comparatively speaking, and when combined

with simple Common Lisp programs is able to satisfy all 14 tests – this is acceptable and

even desirable, considering that the aim of WilburQL was integration with the underlying

programming language.40 It should further be noted that even SPARQL could be made to

pass all tests when combined with a programming language or scripting language, but the

recursive/repetitive tests would require the execution of an arbitrary number of SPARQL

queries by the program; this was not the case in any of the combined WilburQL+CL tests,

where the programs were merely used to post-process query results – the reader is referred

to [129] for details.

40You could also think of Common Lisp as a scripting language here, a notion probably quite horrifying
to most hard-core Common Lisp aficionados.

97

Table 8.1: Comparison of RDF Query Languages

Test Pass RDQL Versa SPARQL WilburQL WilburQL+CL

Path Expression 100% • • • • •

Optional Path 38% • • • •

Union 88% • • • • •

Difference 50% ◦ • •

Quantification 38% •

Aggregation 63% • •

Recursion 63% • • •

Reification 25% ◦ ◦ • • •

Collections & Containers 13% ◦ ◦ ◦ • •

Namespace 63% ◦ • • •

Language 38% • • •

Lexical Space 100% • • • •

Value Space 50% ◦ • •

Entailment 38% ◦ • •

21% 43% 64% 64% 100%

98

9 Exploiting Reasoning and Serendipity in Applications

In this section some applications and systems built using Wilbur are described, as illus-

trative examples of the challenges outlined earlier (and the proposed solutions to those).

Because Wilbur is a framework for Common Lisp, all source code examples are naturally

written in Common Lisp; the reader is advised to study a textbook on the language – such

as [186] – to become familiar with some of the finer details. It should be noted that because

of the expressive power of Common Lisp, some aspects of Wilbur may not translate to

other programming languages all that well.

9.1 Trivial Example: An RSS Formatter

First, a trivial example is presented for converting syndicated (news) feeds formatted in RSS

1.041 into XHTML viewable in a web browser. Basically, the program, when given a URL

and an output stream, will read the contents of the URL into a triple store, and then format

the RSS profile found therein into the output stream as XHTML.42

It should be noted that the program supports reasoning “under the hood”, by virtue of using

Wilbur’s triple-store class that performs RDF++ reasoning. The source code is shown as

Figure 9.1.

41http://web.resource.org/rss/1.0/spec
42When I originally wrote this example around 2000 it made more sense, but now many Web browsers

directly support reading RSS-formatted feeds. It serves, however, to illustrate what a really simple Wilbur
program will look like. It has also been updated for Wilbur2 (which has XML output support). An astute
reader will also naturally observe that this program will not support newer versions of RSS because they
are not based on RDF. Vis-à-vis Wilbur, the general thinking is that these types of situations requiring
syntactic transformations can be handled using a mechanism like GRDDL [89].

99

(defun rss->xhtml (url stream)

(let* ((db (make-instance ’edb :populate-with (list url)))

(channel (first (db-get-values db !rss:channel ’(:inv !rdf:type)))))

(flet ((value (f s) (literal-value (first (db-get-values db f s)))))

(with-tags (stream "html" "body")

(format stream "<h1>News: ~A</h1>"

(value channel !rss:link)

(value channel !rss:title))

(dolist (item (db-get-values db channel ’(:seq !rss:items :members)))

(format stream "<h2>~A</h2>~%~A~%"

(value item !rss:link)

(value item !rss:title))

(value item !rss:description))))))

Figure 9.1: RSS-to-XHTML formatter

9.2 Browsing Semantic Data

In the case of “spontaneous” information integration – a task well suited to Semantic Web

technologies – it is vital for the users to see their data. This section will present a tool that

allows users to explore Semantic Web data via a mechanism they already know well, namely

browsing.

As observed earlier, RDF is the fundamental building block of the Semantic Web, and can be

thought of as directed, labeled graphs that can easily be presented as hypertext; at its simplest

the presentation only has to rely on the RDF metamodel, making any RDF data “browsable”

without any special knowledge of the schema(ta) involved. More specialized, schema-aware

presentations can then be built on top of the basic solution. Enabling browsing is further

encouraged by the fact that, despite its simple data model, users and developers are often

put off by RDF’s cryptic XML-based syntax.

100

Many tools have been constructed for searching, exploring and querying complex informa-

tion spaces such as semistructured data representations or collections with rich metadata.

These tools often offer a mixture of features such as faceted search, clustering of search

results, etc. Examples of such systems include Lore [74, 75], Flamenco [211], and others.

More specifically, recent years have also seen a number of “Semantic Web browsers” emerge;

examples of this type of software include mSpace [161], Haystack [177], Magnet [187], DBin

[200], semantExplorer [184], Tabulator [19], and others. These systems allow the browsing of

Semantic Web data and provide various ways of searching and visualizing this data. Many of

them combine semantic data with “classical” Web content or other human-oriented content

in order to provide the user a comprehensive access to information.

More recently, the idea of a “Semantic Desktop” has emerged [55, 182, 183]; these systems

largely focus on personal information management, and demonstrate the utility of exposing

“legacy” data in Semantic Web formalisms, often involving transformations from both file-

based data as well as databases. The large body of work on mapping data between relational

databases and Semantic Web formalisms is described in [14].

Yet another twist on the browsing theme is Piggy Bank [96]. It allows semantic data to

be collected while browsing “ordinary” Web pages. This data can originate either in some

Semantic Web format, or it can be “scraped” or transformed from a number of known page

formats.

9.2.1 Browsing RDF Data

Since the pervasive mainstream adoption of the World Wide Web, browsing has become a

natural user interface paradigm. This section introduces a Wilbur application constructed

to enable users to browse RDF graphs, a simple tool called OINK43 [132]. It provides a node-

oriented view of graphs, visualizing each node as a Web page. These pages show the various

43“Open Integration of Networked Knowledge”

101

Figure 9.2: A typical page from OINK

ways of identifying the node in question, as well as a list of properties and their values.

Figure 9.2 shows a typical page from OINK, as rendered in a Web browser. OINK allows

the simultaneous viewing and exploration of any number of RDF graphs, thus supporting

the use of RDF in information integration (technically, all documents loaded into OINK

form a single graph; OINK’s reasoner supports not only RDF(S) but also inverse functional

properties – allowing, say, automatic integration of FoaF [32] profiles).

In addition to visualizing the outbound edges, OINK shows the inbound edges as well. This

allows users to navigate the edges of a graph in the reverse direction (a typical example of

this would be when one wants to navigate from an RDF class to any of its subclasses). Since

OINK is based on the RDF metamodel – where everything has a representation in RDF

102

itself – all items on an OINK page may be navigated to (this includes the definitions of the

RDF properties and their values). The simple metamodel translates directly to a clear and

understandable user interface model.

OINK was originally envisioned as a lightweight tool primarily for “debugging” RDF data,

but subsequent use of the system has encouraged its development as a platform for building

customized browsing solutions for complex data. The use of the underlying reasoning engine

also allows automatic integration of data from multiple sources, further reinforcing the idea

that Semantic Web technologies can be used for “spontaneous” end-user tasks.

9.2.2 Architecture and Implementation of OINK

The overall architecture of the OINK system is illustrated in Figure 9.3. In broad strokes,

OINK is built around a storage and query engine for RDF graphs. An HTTP servlet queries

the data in the RDF store, and renders it as XHTML. The current prototype implementation

of OINK is written in Common Lisp [193] on top of the Wilbur Semantic Web toolkit

[125, 127], and uses the Portable AllegroServe web application server [186, chapter 26].

The main-memory RDF database (= “triple store”), acting as a cache, is the central com-

ponent of OINK.44 The user registers data sources that are loaded into the cache; various

facilities are available to the user to maintain this cache:

• Data sources can be “refreshed” manually. OINK relies on the underlying Wilbur

mechanism where “old” data is replaced by freshly parsed “new” data as an atomic

transaction of the database. Every RDF statement in OINK is linked to the data

source(s) that asserted it. Sources are treated as nodes, and any statements about

these show up in OINK as well.

44So as not to confuse the reader, it should be pointed out that this is a lower-level caching mechanism
than the “Semantic cache” reported on earlier [110].

103

OINK servlet
& cache

HTML browsers

transformation
proxy

SQL

LDAP

HTTP

HTTP

HTTP

file access

other
applications

XML-RPC

Figure 9.3: The overall architecture of OINK

• Data sources can also be automatically refreshed using two different methods. The

user or the document itself can designate an interval after which the data in the cache

is considered “old”; refreshing can also rely on the HTTP caching semantics, based on

the HTTP headers from the response when the data was loaded.

The OINK cache merely remembers where the data comes from, so reinitializing the cache

causes all the data sources to be loaded anew from their original locations.45 The cache also

provides an XML-RPC interface through which other applications can control the loading

of data sources.

The cache can be searched for substring matches on literals or queried using WilburQL

path queries [127]. Current work on OINK involves a mechanism where queries are generated

automatically from the user’s paths through the graph; these queries, in turn, can be used

to find similarly related items [133].

45In one of the early demonstrations of OINK someone asked to see the XML corresponding to some RDF
data. OINK is of little help here, since it does not “care” about any syntactic representations of data, and
discards any such representations after they are successfully parsed.

104

Based on the Wilbur triple store, the OINK cache supports RDF(S) entailments [86] via

on-demand generation of the deductive closure of the graph stored in the cache. Reasoning

is based on a technique where access queries to the triple store are rewritten so that they

reflect the “virtual” deductive closure [127]. In addition to RDF(S), the reasoner supports

integration-related features such as owl:sameAs and inverse functional properties [173].

The OINK servlet merely responds to HTTP requests by querying the cache and producing

pages – one per each node in the graph, on demand – that reflect the graph structure. Essen-

tially, the generation of a page for an RDF resource (node) is divided into three components:

1. The node is identified: if present, the value of rdfs:label property (or some subproperty

thereof) is used. A link is also provided to the Web resource itself: this is useful, for

example, if the node described is a real Web page or some other document that can

be rendered in the Web browser.

2. The properties are visualized. The properties of the node are split into clusters cor-

responding to the most specific non-overlapping classes of the node, using associated

domain specifications. Any “leftover” properties are assumed to be associated with

rdfs:Resource and are visualized last. The classes that are considered include both

asserted and inferred classes of the node. Finally, inbound arcs are visualized sepa-

rately.

Each cluster of properties can be associated with a special markup generator that can

emit class-specific visualizations. The markup generator associated with rdfs:Resource

is assumed to be the default. A subset of the Fresnel vocabulary [23] for customized

presentations will be implemented later.

3. OINK tracks the path the user has taken to navigate to any specific node; this history

is shown and allows the user to invoke queries generated automatically from the

navigational path (Figure 9.4).

105

Any statements that have been reified [141, section 4] have an indicator next to them (as if

a footnote or endnote had been associated with them). Clicking the indicator takes one to

the page representing the reified statement.

Finally, the servlet will be able to generate structurally simplified pages when it detects that

the requesting client is a limited, small device, such as a mobile phone.46 Browsing semantic

data on a low-bandwidth, small-screen device is appealing, since the information is in a more

compact and possibly more succinct form.

In order to be able to load various “legacy” data into OINK, a transformation engine is used

that allows data format transformations to be written in XSLT or as CGIs. In a loose sense

the engine takes the form of an HTTP proxy. OINK makes HTTP requests to the proxy,

designating not only the original data source but also the desired transformation. The proxy

loads the data, applies the transformation, and hands the resulting RDF to OINK. The

purpose of the transformation engine, from the architectural viewpoint, is to separate data

format conversions from the rest of the system. OINK is a “pure” RDF application in the

sense that it does not know anything about other data formats.

9.2.3 Lessons Learned from OINK

In a metaphorical sense, OINK brings the Semantic Web “closer” to the user. Various tools

can be applied to the data in the cache, without concern of the “outside world” (e.g., one

could locally close the world with respect to reasoning). Generally, the cache separates issues

of data access and cache management from higher-level considerations such as reasoning and

other “ontological” mechanisms.

OINK has proven useful in visualizing RDF data. Despite the typical Semantic Web focus

on machine interpretation of information, there are benefits to letting users explore semantic

46The current prototype only knows about Nokia S60 phones.

106

Figure 9.4: Visualization of navigation history and automatically generated queries

representations. These benefits extend beyond tasks like debugging ontologies; with suitable

visualization, data integrated from multiple sources can be used for building new applications.

OINK was originally created as an easy-to-use debugging tool for RDF data; subsequent de-

velopment towards customized visualizations suggests that it could be seen as an application

platform. There is a large class of applications that are little more than queries to Semantic

Web data, associated with suitable visualization.

9.3 Social Networks and Organizational Structures

There are information integration applications that can be built using Wilbur and OINK

that are entirely data-driven and in a sense require no customizations to either software

package to make the specific scenarios work – that is, any semantics of the applications are

encapsulated within the data they use.

107

Figure 9.5: Exporting a FoaF profile from the phone

The following application scenario demonstrates the merging of data to identify participants

in a teleconference [139]. The following data sources were used:

• Zakim,47 a Semantic Web agent, helps facilitate W3C meetings using IRC and an

audio teleconference bridge. When a phone call is made into the conference bridge,

Zakim registers the participant’s presence and identifies the participant by the caller’s

telephone number. If the telephone number was previously known to Zakim, it identi-

fies the participant using a previously given name (if available). Zakim makes available

as RDF the data it collects about active teleconferences and participants. This data

includes the name of each participant and a hash (for privacy reasons) of the caller’s

telephone number.

• OinkIt, an application that creates FoaF [32] profiles from the contact book on a

Nokia S60 phone. OinkIt uses the foaf:knows relationship for the entries in the

contact book and uses the same hash function as Zakim to include the contacts’

telephone numbers. OinkIt exports the resulting RDF from the phone to OINK via

the XML-RPC interface. OINK’s XML-RPC interface returns a URI of a page in

OINK from which the user can start browsing the loaded data (see Figure 9.5).

47http://www.w3.org/2001/12/zakim-irc-bot.html

108

OINK’s integrated view of data from Zakim and the FoaF profiles (from some of the par-

ticipants) helps in identifying participants who were not previously known to Zakim. The

RDF++ reasoning support in OINK makes this possible; the semantics of the hashed tele-

phone number property are declared to be OWL inverse functional; that is, two contacts who

share the same hashed telephone number are declared to be the same individual.48 OINK

can therefore merge data about individuals from the phone contact books with data about

individuals in Zakim’s teleconference participant list.

In another experiment, an extension of the FoaF schema was created, dubbed “CoaC” (for

“Colleague-of-a-Colleague”), suited for representing corporate organizational structures. Sub-

sequently, corporate LDAP directory for employees’ contact information was queried, and

the query results transformed (using a simple script) into RDF data that uses the CoaC

schema; URIs, based on “employee ID” numbers, were generated for all people. Wilbur’s

query language WilburQL now allows (arbitrarily deep) organizational hierarchies to be

queried. For example, assuming that the URI http://www.nokia.com/coac?id=10050531

represents a person with the name “Ora Lassila”, the following Wilbur query can be used

to retrieve the names of all people who report to Ora (directly or indirectly):

(all-values !"http://www.nokia.com/coac?id=10050531"

’(:seq (:rep+ (:inv !coac:reportsTo)) !foaf:name))

Similarily, the following query retrieves the names of the secretaries of all the people above

Ora in the reporting line:

(all-values !"http://www.nokia.com/coac?id=10050531"

’(:seq (:rep+ !coac:reportsTo) !coac:hasSecretary !foaf:name))

The combination of data transformations (embodied in a transformation proxy as illustrated

in Figure 9.3) and WilburQL queries allows legacy data to be queries in ways most tradi-

tional tools do not allow.
48This works well enough in practice today and is getting more accurate as more and more people rely

exclusively on their mobile phones for voice communications.

109

9.4 Service Composition and Substitution

The ability to automatically discover, compose and invoke Web services is an important com-

ponent (and benefit) of the Semantic Web, and a key enabler of the anticipated “serendipity”

of agent behavior on the Semantic Web. Upper ontologies for semantic annotation of Web

services have started to appear, making it possible to apply Web services in the Semantic

Web context. One of these is OWL-S49 [8] which in itself is quite complex, and motivates

the question whether a simpler ontology could be sufficient for some uses of Semantic Web

services [137].

The attempts to simplify the OWL-S/DAML-S model have predominantly been based on

a single assumption, namely that the concept of complex process could be eliminated. In

practice, this means that all described services are in effect “black boxes”, i.e., they have

input and output parameters, but nothing more is known of their internal workings, and

their potential components cannot be invoked separately. Services were further restricted

to only have a single input parameter and a single output parameter (extending to multiple

inputs will make the search algorithm a bit more complicated, but will generally not change

the principle presented).

An approach to Web service composition for simple workflows can now be proposed, con-

sisting of the aforementioned services with a single input and a single result – typically

these services would be what [153] refers to as “information-providing services” (conversions,

queries, etc.) but the possibility of some type of (real world) side effects is not excluded.

The principal aim is to provide for service substitution in the face of changing availability of

services used.

It is assumed that the following services and ontologies exist and are available:

• A service discovery mechanism that accepts partial OWL-S service descriptions as

49Previously called “DAML-S”.

110

queries, and returns complete descriptions of services discovered. No assumptions are

made about how this mechanism actually finds services nor where the descriptions of

these services would be located; details of this mechanism are beyond the scope of

this thesis.

• One or more ontologies for classifying services; that is, classification taxonomies de-

scribing what services actually do.

• Ontologies defining concepts and datatypes in the domains relevant to the services

used (for example, when interested in services that deal with geographical phenomena

– such as various map services – one would assume the existence of an ontology that

defines concepts such as address, GPS coordinates, region, containment of regions,

etc.).

It is further assumed that the ontologies and knowledge representation used could rely on

(some form of) logic for simple expression of concept subsumption, specifically because of

the assumption that the “quality” of the discovery results (i.e., the degree of the match)

can be classified according to the discrete scale presented in [170]: exact, plugin, subsumes,

and fail.50 It is anticipated that more complex logical relations will not be needed. In

this particular approach, only RDF(S) was used for describing services, albeit it has certain

shortcomings.

9.4.1 “DAML-S Lite” – a Subset of OWL-S/DAML-S

For service description a highly simplified subset of OWL-S, written in RDF, is used. The

rough idea is that the concept of a complex process is eliminated. Each service described is

assumed to be a black box, with inputs and outputs which are described in terms of their

datatypes (expressed using RDF classes). Effectively this simplification eliminates process

50The additional match category of intersects as described in [146] is not considered.

111

models from the ontology. Each service is also classified using some hypothetical service

taxonomy; in practice this means that each service profile is an instance of an appropriate

service class (this is a marked difference from OWL-S, since service classification now hap-

pens by subclassing the ServiceProfile class, as opposed to using a separate value for the

serviceCategory property of service profiles). Furthermore, for the purposes of the pro-

totype described in this thesis, it is assumed that each service only has one input and one

output. Compositions of services like this form linear sequences of operations.

9.4.2 Service Substitution

The particular “use case”of interest is that of service substitution, that is, a situation where a

service needs to be replaced with an “equivalent” service (given some notion of equivalence).

For example, imagine a system that makes use of a service x which then becomes unavailable

for one reason or another; what if the system was now automatically able to discover a set

of substituting services {yi} which, when assembled into a linear workflow would provide

an equivalent service comparable to x (“linear workflow” is understood to mean a situation

where the output of service yi is “fed” to the input of service yi+1, for 1 ≤ i ≤ n − 1)? A

typical situation is one where many of the services in the workflow perform conversions or

other mediation of input and output parameters.

With the emerging mainstream deployment of architectures for service-oriented computing

[172], the availability of services will be of critical importance. In scenarios where near-100%

availability cannot be guaranteed, the idea of automatic substitution of services (that have

become unavailable) becomes very compelling.

There can naturally be several reasons for a service to become unavailable. In addition to a

service going “off-line” for one reason or another (server crash, partial network outage, etc.),

the preconditions for invoking a particular service may become invalid. For example, a service

112

may be tied to a specific geographical location, and when the invoking terminal moves – it

could be a mobile phone – a new service has to be discovered. More generally, in a software

framework that supports context awareness, services could be tied to a particular usage

context, and substitutions have to be made whenever there are relevant changes in context.

Furthermore, service substitution could be used to opportunistically take advantage of the

best available services (given some criteria to determine what “best” means – criteria such

as cost, quality, speed, etc. could be used).

9.4.3 Composing Workflows

Given the basic use case of service substitution, a single service may be replaced by a slightly

different service that potentially needs input and output parameter conversions. These con-

versions may be performed using either internal functions or by external services; in either

case they constitute additional “workflow” to be performed before and after the invocation

of the “main” service. From the viewpoint of DAML-S, whether the functionality is internal

or external is only a matter of expressing the proper grounding of the particular service.

Workflows are composed using a breadth-first search, starting with the description of the

service to be replaced. Based on the degree of match – as in [170] – in the results of service

discovery, the search proceeds as follows:

• For exact and plugin, the result of the query is accepted.

• For subsumes, the service found is accepted, but the mismatch between the original

query and its result will be used to construct further queries to convert input and

output parameters, in order to compose a service that exactly matches the original.

For example, given a discovered service whose output parameter has a type “temper-

ature” and whose unit is “Celsius” when one was looking for results to be returned

in “Fahrenheit”, this implies that one will have to find a conversion from “Celsius” to

113

“Fahrenheit”.

• For fail, re-perform the query with relaxed input and output parameter descriptions,

implying that a resulting successful match will have to be further augmented with

input and/or output parameter conversions (a relaxed parameter description is one

that is more general in the classification sense).

This analysis is performed for the results of each query – also when these queries are con-

ducted as a result of previous analyses – resulting in a recursive descent tree traversal. The

intermediate results of the algorithm consist of workflows expressed in terms of services and

queries (the reader is here reminded that queries and concrete services – that is, results

of queries – are expressed the same way). As long as an intermediate result contains “un-

expanded” queries, the algorithm will keep “rewriting” the result. Any number of parallel

intermediate results (=“hypotheses”) may be pursued; a null result from a query causes a hy-

pothesis to be eliminated from the search.51 An example of how a particular weather-related

information service is substituted is illustrated in Figure 9.6.

In case of large fan-out of the search – that is, when a large number of services match a

query – some type of heuristic pruning could be applied on the intermediate hypotheses.

The heuristic applied could be based on similar criteria as when the algorithm is used for

opportunistically finding the best available services.

9.4.4 Practical Implementation Using RDF(S)

A proof-of-concept prototype of the composition algorithm has been constructed that uses

RDF(S) as its description language. Because of the use of RDF(S), the actual matching

of service descriptions is partially based on procedurally expressed semantics: service clas-

51Effectively, search happens in a breadth-first manner, and resembles some approaches to HTN-planning
[60, 59]. The interested reader is referred to [137] for a formal description of the algorithm.

114

Service: TemperatureAtGPS

Query

Service: TemperatureAtZip

Service: TemperatureAtZip

Service: TemperatureAtZip

Query

Service: GPStoZip

Step 1: Find a substitute for a service

Step 2: Formulate an initial query

Step 3: Mismatch!

Step 4: Formulate a "repair query"

Step 5: done

Input type mismatch is used
to formulate a new query

Figure 9.6: Substitution of a Weather Information Service

sification, input and output are considered separately52 – two service descriptions match if

all three components, correspondingly, are “compatible”, where compatibility is defined in

terms of the degree of match. As matching ultimately comes down to the comparison of

RDF datatypes, the following logic is used:

match(a, b) =



exact if a = b

subsumes if b ⊂ a

plugin if a ⊂ b

fail otherwise

Relaxation is in this implementation performed by “walking” up the RDF class tree; it

can also be done in a single step by replacing any type with the root of the class tree

rdfs:Resource. Furthermore, given that sequences of conversions can result in loops, the

prototype also performs simple pattern matching of hypotheses and eliminates those where

loops are seen forming.

52The use of a more expressive language (say, OWL DL) would allow one to express service descriptions
(including parameters) as single class expressions, in turn allowing one to rely more on the reasoning engine
for matching.

115

9.4.5 Lessons Learned from Service Substitution

The ability to automatically replace services in the event of service failure (due to server or

connectivity outage, or change in service invocation preconditions) is an important aspect

of building robust and autonomous agents for the Semantic Web. The approach described

achieves this for limited services and linear workflows. Useful compositions can be created

without sophisticated planning technologies given the limitations described earlier (including

the use of a subset of the OWL-S ontology).

The prototype implementation naturally has some shortcomings (perhaps most notably the

lack of heuristic pruning during search). The use of (mere) RDF in this experiment reveals

that certain DL features would be useful, especially the availability of class expressions –

this would have allowed expression of entire service descriptions as classes, without the need

to resort to a procedurally encoded extra logic for service interface matching.

116

10 Conclusions

“I need new ideas for the web. People are already getting sick of reading the

words ‘Some Pig!’”

– Charlotte A. Cavatica53

This dissertation has discussed the use of complex representational structures in software;

specifically, the“representational structures”are data that uses the formalisms and principles

developed for the Semantic Web.

The Semantic Web is a field of study inspired – in the long term – to have computers

work on their human users’ behalf. This is a lofty goal and a vision whose realization may

take a long time. In the shorter term, technologies associated with the Semantic Web can

be used to ease the implementation of automation and automated tasks (on the Web) as

well as improve the interoperability of information systems – especially the “unscripted”,

unanticipated interoperability that today largely eludes automated systems.

In many ways, the “story” of this dissertation applies more generally to knowledge represen-

tation (KR) techniques and their application; it could also be argued that the Semantic Web

is little else besides the application of KR techniques, on a Web-wide scale or merely in the

context of Web technologies (i.e., either for Web technologies or using Web technologies).

The challenge with KR techniques in general – and Semantic Web technologies in particu-

lar – is that they are foreign to most developers of mainstream software applications, and

consequently the adoption of these technologies presents an uphill battle. The peculiar char-

acteristic of the Semantic Web where any problem, when sufficiently elaborated, may not

need Semantic Web technologies as its solution, makes it even harder to convince the soft-

ware community to adopt these technologies. The approach adopted in this dissertation,

53From Charlotte’s Web [205]; special thanks to Marcia Lassila for coming up with this.

117

therefore, has been to not only make it easy to programmatically access complex representa-

tional structures, but also to the extent possible hide associated reasoning mechanisms from

application logic.

The approach presented consists of three parts, and is applied in the context of the RDF(S)

language and its data model of directed, labeled graphs:

1. A query language is introduced for expressing complex relationships within a graph

and consequently useful in “reaching” vertices of interest in the graph (Chapter 5).

2. A mechanism is presented where queries in the aforementioned query language can

be transformed in a way that their results reflect not only the original graph but also

all the entailments of the graph (Chapter 6).

3. Extensions are introduced to RDF(S) that mitigate certain shortcomings of the lan-

guage (Chapter 7). These extensions maintain the characteristic of the original lan-

guage where no contradictions can be introduced via reasoning. Ultimately, this

characteristic allows us to present a view into an RDF(S) graph where the program

logic accessing the graph does not have to know that entailed edges are also included.

The main shortcoming of RDF(S), as implied by item 3 above, is that Semantic Web repre-

sentations are largely predicated on objects being identified using URIs. Albeit a convenient

mechanism, we are forced to admit that most “real-world” objects that we might want to

describe do not have URIs, and that no unambiguous process for the selection of URIs for

these objects exists. Data integration, one of the great promises of Semantic Web technology,

is largely not possible unless the identity of objects can be established. Our approach essen-

tially introduces the use of unique keys for identifying objects, and consequently operations

corresponding to relational joins can be accomplished across independent data sets.

A concrete implementation of the approach has been presented (Chapter 8), as well as

118

examples of the usage of the approach and the corresponding implementation (Chapter 9).

As for possible directions of future work, there are two clear areas of improvement for the

approach (and the corresponding software platform) described in this dissertation, both

related to the expressive power of the representation and query languages. They are:

1. The expressive power of the query language could be increased to allow conjunctive

queries. This, effectively, would push the language past SPARQL as a means of

accessing Semantic Web representations. One possible approach could be to express

queries as intersections of sub-queries, then optimize the query engine to not have to

compute the intermediate results. More generally, as SPARQL is expected to gain

popularity as the “official” query language for RDF, migration towards compatibility

with this language could be seen as desirable.

2. An approach should be devised that would allow programs to deal with contradictions

in the underlying knowledge representation. Most typically, representing disjointness

of concepts is a very powerful modeling construct that would benefit many applications

(e.g., the class “man” could be defined as being disjoint from the class “woman”).

As a possible solution, the reasoner could raise an exception for every contradiction

detected; the application program could then choose to reconcile the contradiction(s)

– or accept the ramifications.

We should also consider developing similar programming abstractions for languages other

than Common Lisp as the ones introduced in this dissertation.

Hypothetically, as the Semantic Web gains popularity and acceptance, the underlying mech-

anisms will become better known in the software community. With respect to the challenges

for adoption of Semantic Web technologies, whether the outcome of the increased popularity

is that the proverbial “bar” is lowered (as one might consider obvious) or raised (e.g., devel-

opers migrating towards representation languages of higher expressive power) is unclear.

119

References

[1] Serge Abiteboul. 1997. Querying Semi-Structured Data. In: ICDT ’97: Proceedings

of the 6th International Conference on Database Theory, pages 1–18. Springer-Verlag,

London, UK. ISBN 3-540-62222-5.

[2] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.

Wiener. 1997. The Lorel Query Language for Semistructured Data. International

Journal on Digital Libraries 1, no. 1, pages 68–88.

[3] Rakesh Agrawal. 1988. Alpha: An Extension of Relational Algebra to Express a Class

of Recursive Queries. IEEE Transactions on Software Engineering 14, no. 7, pages

879–885.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,

Techniques and Tools. Addison-Wesley.

[5] Alfred V. Aho and Jeffrey D. Ullman. 1979. Universality of data retrieval languages.

In: POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Prin-

ciples of programming languages, pages 110–119. ACM Press.

[6] Faisal Q. Alkhateeb, Jean-François Baget, and Jérôme Euzenat. 2005. Complex Path

Queries for RDF Graphs. In: Riichiro Mizoguchi (editor), ISWC 2005 Poster &

Demonstration Proceedings.

[7] Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David Martin,

Sheila A. McIllraith, Srini Narayanan, Massimo Paolucci, Terry Payne, Tran Cao

Son, Katia Sycara, and Honglei Zeng. 2002. DAML-S: A Semantic Markup Language

for Web Services. In: Isabel F. Cruz, Stefan Decker, Jérôme Euzenat, and Deborah L.

McGuinness (editors), The Emerging Semantic Web, Selected Papers from the First

120

Semantic Web Working Symposium, volume 75 of Frontiers in Artificial Intelligence

and Applications. IOS Press.

[8] Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, Drew McDermott,

David Martin, Sheila A. McIllraith, Srini Narayanan, Massimo Paolucci, Terry Payne,

and Katia Sycara. 2002. DAML-S: Web Service Description for the Semantic Web.

In: Ian Horrocks and James Hendler (editors), The Semantic Web - ISWC 2002, 1st

International Semantic Web Conference, volume 2342 of Lecture Notes in Computer

Science, pages 348–363. Springer Verlag.

[9] Jari Arkko, Vesa Hirvisalo, Juha Kuusela, Esko Nuutila, and Markku Tamminen.

1989. Rule-Based Expression Mechanisms for Procedural Languages. Computational

Intelligence 5, no. 4.

[10] Danny Ayers. 2005. SPARQL Query Language for RDF. Article and discussion on the

Programming Languages Weblog“Lambda the Ultimate”(available at http://lambda-

the-ultimate.org/node/view/549).

[11] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter

Patel-Schneider (editors). 2003. The Description Logic Handbook – Theory, Imple-

mentation and Applications. Cambridge University Press. ISBN 0521781760.

[12] Jean-François Baget. 2005. RDF Entailment as a Graph Homomorphism. In: Yolanda

Gil, Enrico Motta, V. Richard Benjamins, and Mark A. Musen (editors), The Seman-

tic Web – ISWC 2005, 4th International Semantic Web Conference, number 3729 in

Lecture Notes in Computer Science, pages 82–96. Springer-Verlag.

[13] Dave Beckett. 2004. RDF/XML Syntax Specification (Revised). W3C

Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/rdf-syntax-grammar/.

121

[14] Dave Beckett and Jan Grant. 2003. Mapping Semantic Web Data with RDBM-

Ses. SWAD-Europe Deliverable 10.2, World Wide Web Consortium. URL

http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/.

[15] David Beckett. 2001. The Design and Implementation of the Redland RDF Applica-

tion Framework. In: WWW ’01: Proceedings of the 10th international conference on

World Wide Web, pages 449–456. ACM Press, New York, NY. ISBN 1-58113-348-0.

[16] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey, and Farouk Toumani.

2003. Request Rewriting-Based Web Service Discovery. In: Dieter Fensel, Katia

Sycara, and John Mylopoulos (editors), The Semantic Web - ISWC 2003, 2nd In-

ternational Semantic Web Conference, volume 2870 of Lecture Notes in Computer

Science, pages 242–257. Springer-Verlag.

[17] Tim Berners-Lee. 1998. Notation 3. Design Note, World Wide Web Consortium. URL

http://www.w3.org/DesignIssues/Notation3.html.

[18] Tim Berners-Lee. 2000. cwm – a general purpose data processor for the semantic

web. URL http://www.w3.org/2000/10/swap/doc/cwm.html.

[19] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James

Hollenbach, Adam Lerer, and David Sheets. 2006. Tabulator: Exploring and Analyz-

ing linked data on the Semantic Web. In: Proceedings of the The 3rd International

Semantic Web User Interaction Workshop (SWUI06). Athens, GA.

[20] Tim Berners-Lee, Roy Fielding, and Larry Masinter. 1998. Uniform Resource Identi-

fiers (URI): Generic Syntax. Internet Draft Standard RFC 2396, IETF.

[21] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The Semantic Web. Scientific

American 284, no. 5, pages 34–43.

122

[22] Robert Biddle and Ewan Tempero. 1996. Explaining Inheritance: A Code Reusability

Perspective. In: SIGCSE ’96: Proceedings of the twenty-seventh SIGCSE technical

symposium on Computer science education, pages 217–221. ACM Press, New York,

NY. ISBN 0-89791-757-X.

[23] Christian Bizer, Ryan Lee, and Emmanuel Pietriga. 2005. Fresnel – A Browser-

Independent Presentation Vocabulary for RDF. In: End User Semantic Web Interac-

tion Workshop at the 4th International Semantic Web Conference. Galway, Ireland.

[24] Alex Borgida and Peter Patel-Schneider. 1994. A Semantics and Complete Algorithm

for Subsumption in the CLASSIC Description Logic. Journal of Artificial Intelligence

Research 1, pages 277–308.

[25] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,

S. Thatte, and D. Winer. 2000. Simple Object Access Protocol (SOAP)

1.1. W3C Note, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

[26] Ronald J. Brachman. 1977. A Structural Paradigm for Representing Knowledge.

Ph.D. thesis, Harvard University.

[27] Ronald J. Brachman. 1979. On the Epistemological Status of Semantic Networks. In:

N.V. Findler (editor), Associative Networks: Representation and Use of Knowledge

by Computers, pages 3–50. Academic Press, New York, NY.

[28] Ronald J. Brachman and Hector J. Levesque (editors). 1985. Readings in Knowledge

Representation. Morgan Kaufmann, San Mateo, CA.

[29] Ronald J. Brachman and James G. Schmolze. 1985. An Overview of the KL-ONE

Knowledge Representation System. Cognitive Science 9, no. 2, pages 171–216.

123

[30] Tim Bray, Dave Hollander, and Andrew Layman. 1999. Namespaces in

XML. W3C Recommendation, World Wide Web Consortium. URL

http://www.w3.org/TR/REC-xml-names/.

[31] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. 1998. Extensible Markup Lan-

guage (XML) 1.0. W3C Recommendation, World Wide Web Consortium. URL

http://www.w3.org/TR/1998/REC-xml-19980210.

[32] Dan Brickley and Libby Miller. 2004. FOAF Vocabulary Specification.

http://xmlns.com/foaf/0.1/.

[33] Daniel Brickley and R.V. Guha. 2003. RDF Vocabulary Description Language 1.0:

RDF Schema. W3C Working Draft, World Wide Web Consortium.

[34] Jeen Broekstra. 2005. Storage, Querying and Inferencing for Semantic Web Lan-

guages. Ph.D. thesis, Vrije Universiteit, Amsterdam, Netherlands.

[35] Jeen Broekstra and Arjohn Kampman. 2003. Inferencing and Truth Maintenance in

RDF Schema: Exploring a naive practical approach. In: Workshop on Practical and

Scalable Semantic Systems (PSSS). Sanibel Island, FL.

[36] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.

1999. Rewriting of Regular Expressions and Regular Path Queries. In: PODS ’99:

Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, pages 194–204. ACM Press, New York, NY, USA. ISBN

1-58113-062-7.

[37] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.

2000. Query Processing using Views for Regular Path Queries with Inverse. In: Pro-

ceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems (PODS 2000), pages 58–66. ACM Press, New York.

124

[38] 1986. Knowledge Craft User’s Manual. Technical report, Carnegie Group, Inc., Pitts-

burgh, PA.

[39] Vinay Chaudhri, Adam Farquhar, Richard Fikes, Peter Karp, and James Rice. 1998.

OKBC: A Programmatic Foundation for Knowledge Base Interoperability. In: Pro-

ceedings of the National Conference on Artificial Intelligence (AAAI).

[40] Weidong Chen, Michael Kifer, and David S. Warren. 1993. HiLog: a Foundation for

Higher-Order Logic Programming. Journal of Logic Programming 15, no. 3, pages

187–230.

[41] Shigeru Chiba. 1995. A Metaobject Protocol for C++. In: Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’95), pages 285–299.

[42] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. 2001. Web Services

Description Language (WSDL) 1.1. W3C Note, World Wide Web Consortium, Cam-

bridge, MA. URL http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[43] James Clark. 1999. XSL Transformations (XSLT) Version 1.0. W3C

Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/xslt.

[44] James Clark and Steve DeRose. 1999. XML Path Language (XPath) Ver-

sion 1.0. W3C Recommendation, World Wide Web Consortium. URL

http://www.w3.org/TR/1999/REC-xpath-19991116.html.

[45] E. F. Codd. 1970. A relational model of data for large shared data banks. CACM 13,

no. 6, pages 377–387.

[46] Wolfram Conen, Reinhold Klapsing, and Eckhart Köppen. 2001. RDF M&S revisited:

125

From Reification to Nesting, from Containers to Lists, from Dialect to pure XML. In:

Proceedings of the First Semantic Web Working Symposium.

[47] Mariano P. Consens and Alberto O. Mendelzon. 1990. GraphLog: a visual formalism

for real life recursion. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems. ACM Press.

[48] John Cowan and Richard Tobin. 2004. XML Information Set (Second Edition).

W3C Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[49] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A graphical query

language supporting recursion. In: Proceedings of the ACM SIGMOD Annual Con-

ference on Management of Data, pages 323–330.

[50] Bogdan Czejdo, Christoph F. Eick, and Malcolm Taylor. 1993. Integrating Sets, Rules,

and Data in an Object-Oriented Environment. IEEE Expert: Intelligent Systems and

Their Applications 8, no. 1, pages 59–66.

[51] Jos de Brujin, Dieter Fensel, Uwe Keller, Michael Kifer, Holger Lausen, Reto Krum-

menacher, Axel Polleres, and Livia Predoiu. 2005. Web Service Modeling Language

(WSML). W3C Member Submission, World Wide Web Consortium, Cambridge, MA.

URL http://www.w3.org/Submission/WSML/.

[52] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian

Horrocks, Deborah McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

2004. OWL Web Ontology Language Reference. W3C Recommendation, World Wide

Web Consortium, Cambridge, MA. URL http://www.w3.org/TR/owl-ref/.

[53] Thomas L. Dean and Drew McDermott. 1987. Temporal Data Base Management.

Artificial Intelligence 32, no. 1, pages 1–55.

126

[54] Stefan Decker, Dan Brickley, Janne Saarela, and Jürgen Angele. 1998. A query and

inference service for RDF. In: W3C Query Languages Workshop (QL’98).

[55] Stefan Decker and Martin Frank. 2004. The Social Semantic Desktop. Technical

Report DERI-TR-2004-05-02, DERI.

[56] J. Doyle. 1987. A Truth Maintenance System. In: Readings in Nonmonotonic Reason-

ing, pages 259–279. Morgan Kaufmann Publishers, San Francisco, CA, USA. ISBN

0-934613-45-1.

[57] 2004. Dublin Core Metadata Element Set, Version 1.1: Reference De-

scription. DCMI Recommendation, Dublin Core Metadata Initiative. URL

http://dublincore.org/documents/dces/.

[58] Edd Dumbill. 2002. XML Watch: Finding friends with XML and RDF. URL

http://www-106.ibm.com/developerworks/xml/library/x-foaf.html.

[59] Kutluhan Erol, James Hendler, and Dana Nau. 1994. Semantics for Hierarchical Task

Network Planning. Technical report, Department of Computer Science, University of

Maryland - College Park.

[60] Kutluhan Erol, James Hendler, and Dana S. Nau. 1994. HTN Planning: Complexity

and Expressivity. In: Proceedings of the Twelfth National Conference on Artificial

Intelligence (AAAI-94), volume 2, pages 1123–1128. AAAI Press/MIT Press, Seattle,

Washington, USA. ISBN 0-262-51078-2.

[61] Leonhard Euler. 1736. Solutio problematis ad geometriam situs pertinentis. Comment.

Academiae Sci. I. Petropolitanae 8, pages 128–140.

[62] Adam Farquhar, Richard Fikes, and James Rice. 1997. The Ontolingua Server: a Tool

for Collaborative Ontology Construction. International Journal of Human-Computer

127

Studies 46.

[63] Richard Fikes, Pat Hayes, and Ian Horrocks. 2004. OWL-QL: A Language for Deduc-

tive Query Answering on the Semantic Web. KSL Technical Report 03-14, Knowledge

Systems Laboratory, Stanford University.

[64] Richard Fikes, Pat Hayes, Ian Horrocks, Harold Boley, Mike Dean, Benjamin

Grosof, Frank van Harmelen, Sandro Hawke, Jeff Heflin, Ora Lassila, Deb McGuin-

ness, Peter Patel-Schneider, and Lynn Andrea Stein. 2003. DAML Query Lan-

guage. Technical report, DARPA Agent Markup Language Program. URL

http://www.daml.org/2003/04/dql/.

[65] Richard Fikes and Tom Kehler. 1985. The Role of Frame-Based Representation in

Reasoning. Communications of the ACM 28, no. 9, pages 904–920.

[66] Richard Fikes and Deborah L. McGuinness. 2001. An Axiomatic Se-

mantics for RDF, RDF Schema, and DAML+OIL. Technical Report

KSL-01-01, Knowledge Systems Laboratory, Stanford University. URL

http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-01.html.

[67] Charles L. Forgy. 1982. A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence 19, no. 1, pages 17–37.

[68] Mark S. Fox. 1983. Constraint-Directed Reasoning: a Case Study of Job-Shop

Scheduling. Ph.D. thesis, Computer Science Department, Carnegie Mellon Univer-

sity., Pittsburgh, PA.

[69] Mark S. Fox. 1985. Knowledge Representation for Decision Support. In: Methlie and

Sprague (editors), Knowledge Representation for Decision Support Systems. Elsevier.

128

[70] Michael R. Genesereth. 1995. Knowledge Interchange Format Specification. ANSI

X3T2 working draft, American National Standards Institute.

[71] Matthew L. Ginsberg. 1991. Knowledge interchange format: the KIF of death. AI

Magazine 12, no. 3, pages 57–63.

[72] Chris Goad. 2001. Describing Computation within RDF. In: Proceedings of the First

Semantic Web Working Symposium. Stanford University.

[73] “The Dispersion of the Nations at Babel”. Genesis 11:1–9.

[74] Roy Goldman and Jennifer Widom. 1997. DataGuides: Enabling Query Formulation

and Optimization in Semistructured Databases. In: VLDB ’97: Proceedings of the

23rd International Conference on Very Large Data Bases, pages 436–445. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA. ISBN 1-55860-470-7.

[75] Roy Goldman and Jennifer Widom. 1999. Interactive Query and Search in Semistruc-

tured Databases. In: WebDB ’98: Selected papers from the International Workshop

on The World Wide Web and Databases, pages 52–62. Springer-Verlag, London, UK.

ISBN 3-540-65890-4.

[76] Georg Gottlob, Christoph Koch, and Reinhard Pichler. 2002. Efficient Algorithms for

Processing XPath Queries. In: Proc. VLDB 2002.

[77] Gösta Grahne and Alex Thomo. 2003. Query Containment and Rewriting Using

Views for Regular Path Queries under Constraints. In: PODS ’03: Proceedings

of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 111–122. ACM Press, New York, NY, USA. ISBN 1-58113-

670-6.

129

[78] T. R. Gruber. 1993. A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition 5, no. 2, pages 199–220.

[79] R. V. Guha and Patrick Hayes. 2003. LBase: Semantics for Languages of the Semantic

Web. W3C Working Group Note, World Wide Web Consortium, Cambridge, MA.

URL http://www.w3.org/TR/lbase/.

[80] R.V. Guha and Tim Bray. 1997. Meta Content Framework Using XML. W3C

Member Submission, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/NOTE-MCF-XML-970624/.

[81] R.V. Guha, Ora Lassila, Eric Miller, and Dan Brickley. 1998. Enabling Inferencing.

In: W3C Query Languages Workshop (QL’98). World Wide Web Consortium. URL

http://www.w3.org/TandS/QL/QL98/pp/enabling.html.

[82] Claudio Gutierrez, Carlos Hurtado, and Alberto O. Mendelzon. 2004. Foundations

of Semantic Web Databases. In: PODS ’04: Proceedings of the twenty-third ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages

95–106. ACM Press, New York, NY, USA. ISBN 158113858X.

[83] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. 2004. A Com-

parison of RDF Query Languages. Technical report, Institute AIFB, University of

Karlsruhe.

[84] William Rowan Hamilton. 1856. Memorandum respecting a new system of roots of

unity. Philosophical Magazine 12.

[85] Patrick Hayes. 2003. RDF Semantics. W3C Working Draft, World Wide Web Con-

sortium. URL http://www.w3.org/TR/2003/WD-rdf-mt-20030123/.

130

[86] Patrick Hayes. 2004. RDF Semantics. W3C Recommendation, World Wide Web

Consortium. URL http://www.w3.org/TR/rdf-mt/.

[87] Patrick J. Hayes. 1974. Some Problems and Non-Problems in Representation Theory.

In: Proceedings of the AISB Summer Conference, pages 63–79. University of Sussex.

[88] Patrick J. Hayes. 1979. The Logic of Frames. In: D. Metzing (editor), Frame Con-

ceptions and Text Understanding, pages 46–61. Walter de Gruyter and Co.

[89] Dominique Hazaël-Massieux and Dan Connolly. 2005. Gleaning Re-

source Descriptions from Dialects of Languages (GRDDL). W3C Team

Submission, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TeamSubmission/2005/SUBM-grddl-20050516/.

[90] Jeff Heflin. 2001. Towards the Semantic Web: Knowledge Representation in a Dy-

namic, Distributed Environment. Ph.D. thesis, University of Maryland, College Park,

MD.

[91] James Hendler. 2001. Agents and the Semantic Web. IEEE Intelligent Systems 16,

no. 2, pages 30–37.

[92] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,

and Mike Dean. 2004. SWRL: A Semantic Web Rule Language Combining OWL

and RuleML. W3C Member Submission, World Wide Web Consortium. URL

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[93] Gerard Huet and Derek C. Oppen. 1980. Equations and Rewrite Rules: A Survey.

Technical Report CS-TR-80-785, Stanford University, Stanford, CA.

[94] Edmund Husserl. 1900/01. Logische Untersuchungen. Niemeyer.

131

[95] Juha Hynynen and Ora Lassila. 1989. On the Use of Object-Oriented Paradigm in a

Distributed Problem Solver. AI Communications 2, no. 3, pages 142–151.

[96] David Hyunh, Stefano Mazzocchi, and David Karger. 2005. Piggy bank: Experi-

ence the Semantic Web Inside Your Web Browser. In: Yolanda Gil, Enrico Motta,

V. Richard Benjamins, and Mark A. Musen (editors), The Semantic Web – ISWC

2005, 4th International Semantic Web Conference. Springer-Verlag.

[97] 1985. KEETM Software Development System User’s Manual. Technical report, Intel-

liCorp, Inc., Mountain View, CA.

[98] R. J. K. Jacob and J. N. Froscher. 1990. A Software Engineering Methodology for

Rule-Based Systems. IEEE Transactions on Knowledge and Data Engineering 2,

no. 2, pages 173–189.

[99] Ian Jacobs and Norman Walsh. 2004. Architecture of the World Wide Web, Volume

One. W3C Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/webarch/.

[100] H. V. Jagadish. 1989. Incorporating hierarchy in a relational model of data. In:

SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD international conference on

Management of data, pages 78–87. ACM Press. ISBN 0-89791-317-5.

[101] Nicholas R. Jennings and Michael J. Wooldridge. 1998. Agent Technology: Founda-

tions, Applications, and Markets. Springer-Verlag.

[102] ISO/IEC JTC1/SC34. 1999. Topic Maps. ISO/IEC International Standard 13250,

International Organization for Standardization.

[103] Lalana Kagal. 2004. A Policy-Based Approach to Governing Autonomous Behavior

in Distributed Environments. Ph.D. thesis, Department of Computer Science and

132

Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD.

[104] Lalana Kagal, Jim Parker, Harry Chen, Anupam Joshi, and Tim Finin. 2003. Security,

Privacy and Trust in Mobile Computing Environments, chapter Security and Privacy

Aspects. CRC Press.

[105] P. D. Karp. 1992. The Design Space of Frame Knowledge Representation Systems.

Technical Report 520, SRI International Artificial Intelligence Center.

[106] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. 2002.

RQL: A Declarative Query Language for RDF. In: Proceedings of the 11th Interna-

tional Conference on the World Wide Web.

[107] G. Karvounarakis, A. Magganaraki, S. Alexaki, V. Christophides, D. Plexousakis,

M. Scholl, and K. Tolle. 2003. Querying the Semantic Web with RQL. Computer

Networks 42, no. 5, pages 617–640.

[108] Yarden Katz, Kendall Clark, and Bijan Parsia. 2005. Pychinko: A Native Python

Rule Engine. In: International Python Conference 05.

[109] Rohit Khare. 2006. Microformats: The Next (Small) Thing on the Semantic Web?

IEEE Internet Computing 10, no. 1, pages 68–75.

[110] Deepali Khushraj and Ora Lassila. 2005. Ontological Approach to Generating Person-

alized User Interfaces for Web Services. In: Yolanda Gil, Enrico Motta, V. Richard

Benjamins, and Mark A. Musen (editors), The Semantic Web – ISWC 2005, 4th In-

ternational Semantic Web Conference, number 3729 in Lecture Notes in Computer

Science, pages 916–927. Springer-Verlag, Galway, Ireland.

[111] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. 1991. The Art of the

Metaobject Protocol. MIT Press.

133

[112] Michael Kifer, Georg Lausen, and James Wu. 1995. Logical Foundations of Object-

oriented and Frame-based Languages. Journal of the ACM 42, no. 4, pages 741–843.

[113] Graham Klyne and Jeremy J. Carroll. 2004. Resource Description Framework (RDF):

Concepts and Abstract Syntax. W3C Recommendation, World Wide Web Consor-

tium, Cambridge, MA. URL http://www.w3.org/TR/rdf-concepts/.

[114] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto, Jo-

han Hjelm, Mark H. Butler, and Luu Tran. 2004. Composite Capa-

bility/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C

Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/.

[115] Tim Krauskopf, Jim Miller, Paul Resnick, and Win Treese. 1996. PICS La-

bel Distribution Label Syntax and Communication Protocols – Version 1.1.

W3C Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/REC-PICS-labels.

[116] David Lacey and Oege de Moor. 2001. Imperative Program Transformation by Rewrit-

ing. In: CC ’01: Proceedings of the 10th International Conference on Compiler Con-

struction, pages 52–68. Springer-Verlag, London, UK. ISBN 3-540-41861-X.

[117] Ora Lassila. 1990. Frames or Objects, or Both? In: Workshop Notes from the 8th Na-

tional Conference on Artificial Intelligence (AAAI-90): Object-Oriented Programming

in AI. American Association for Artificial Intelligence. Also published as Technical

Report HTKK-TKO-B67, Department of Computer Science, Helsinki University of

Technology.

[118] Ora Lassila. 1991. BEEF Reference Manual – A Programmer’s Guide to the BEEF

Frame System. Technical Report HTKK-TKO-C46, Department of Computer Sci-

134

ence, Helsinki University of Technology.

[119] Ora Lassila. 1992. Oliojärjestelmän laajentaminen metaobjektiprotokollan avulla (Ex-

tending an Object System using a Metaobject Protocol; in Finnish). Unpublished

design document, Helsinki University of Technology.

[120] Ora Lassila. 1992. The Design and Implementation of a Frame System. Master’s

thesis, Faculty of Technical Physics, Helsinki University of Technology.

[121] Ora Lassila. 1995. PORK Object System Programmers’ Guide. Technical Report

CMU-RI-TR-95-12, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

[122] Ora Lassila. 1997. Introduction to RDF Metadata. W3C

Note, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/NOTE-rdf-simple-intro-971113.html.

[123] Ora Lassila. 1997. PICS-NG Metadata Model and Label Syntax.

W3C Note, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/NOTE-pics-ng-metadata.

[124] Ora Lassila. 1998. Web Metadata: A Matter of Semantics. IEEE Internet Computing

2, no. 4, pages 30–37.

[125] Ora Lassila. 2001. Enabling Semantic Web Programming by Integrating RDF and

Common Lisp. In: Proceedings of the First Semantic Web Working Symposium.

Stanford University.

[126] Ora Lassila. 2002. Serendipitous Interoperability. In: Eero Hyvönen (editor), The

Semantic Web Kick-off in Finland – Vision, Technologies, Research, and Applications,

HIIT Publications 2002-001. University of Helsinki.

135

[127] Ora Lassila. 2002. Taking the RDF Model Theory Out for a Spin. In: Ian Horrocks

and James Hendler (editors), The Semantic Web - ISWC 2002, 1st International

Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science, pages

307–317. Springer-Verlag.

[128] Ora Lassila. 2003. Common Lisp Support for Semantic Web Programming. Invited

talk at the International Lisp Conference (ILC 2003).

[129] Ora Lassila. 2004. Wilbur Query Language Compari-

son. Technical report, Nokia Research Center. URL

http://wilbur-rdf.sourceforge.net/2004/05/11-comparison.shtml.

[130] Ora Lassila. 2005. Applying Semantic Web in Mobile and Ubiquitous Computing:

Will Policy-Awareness Help? In: Lalana Kagal, Tim Finin, and James Hendler (edi-

tors), Proceedings of the Semantic Web Policy Workshop, 4th International Semantic

Web Conference, pages 6–11. Galway, Ireland.

[131] Ora Lassila. 2005. Using the Semantic Web in Mobile and Ubiquitous Comput-

ing. In: Max Bramer and Vagan Terziyan (editors), Proceedings of the 1st IFIP

WG12.5 Working Conference on Industrial Applications of Semantic Web, pages 19–

25. Springer.

[132] Ora Lassila. 2006. Browsing the Semantic Web. In: 17th International Conference

on Database and Expert Systems Applications (DEXA’06), pages 365–369. IEEE

Computer Society, Krakow, Poland.

[133] Ora Lassila. 2006. Generating Rewrite Rules by Browsing RDF Data. In: Proceedings

of the Second International Conference on Rules and Rule Markup Languages for the

Semantic Web (RuleML 2006). IEEE Computer Society.

[134] Ora Lassila. 2006. Identity Crisis and Serendipity. Invited talk at

136

the W3C Advisory Committee meeting in Edinburgh, Scotland. URL

http://www.w3.org/2006/05/IdentityCrisisAndSerendipity.pdf.

[135] Ora Lassila and Mark Adler. 2003. Semantic Gadgets: Ubiquitous Computing Meets

the Semantic Web. In: Dieter Fensel, James Hendler, Wolfgang Wahlster, and Henry

Lieberman (editors), Spinning the Semantic Web, pages 363–376. MIT Press.

[136] Ora Lassila, Marcel Becker, and Stephen Smith. 1996. An Exploratory Prototype for

Air Medical Evacuation Re-Planning. Technical Report CMU-RI-TR-96-03, Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA.

[137] Ora Lassila and Sapna Dixit. 2004. Interleaving Discovery and Composition for Simple

Workflows. In: Semantic Web Services, AAAI Spring Symposium Series. AAAI.

[138] Ora Lassila and Deepali Khushraj. 2005. Contextualizing Applications via Semantic

Middleware. In: The Second Annual International Conference on Mobile and Ubiq-

uitous Systems: Networking and Services (MobiQuitous). IEEE Computer Society.

[139] Ora Lassila, Deepali Khushraj, and Ralph R. Swick. 2006. Spontaneous Collaboration

via Browsing of Semantic Data on Mobile Devices. In: Stefan Decker, Jack Park,

Leo Sauermann, Sören Auer, and Siegfried Handschuh (editors), Proceedings of the

Semantic Desktop and Social Semantic Collaboration Workshop (SemDesk 2006),

number 202 in CEUR Workshop Proceedings. CEUR-WS.org, Athens, GA.

[140] Ora Lassila and Deborah L. McGuinness. 2001. The Role of Frame-

Based Representation on the Semantic Web. Technical Report KSL-

01-02, Knowledge Systems Laboratory, Stanford University. URL

http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-02.html.

[141] Ora Lassila and Ralph R. Swick. 1999. Resource Description Framework (RDF) Model

and Syntax Specification. W3C Recommendation, World Wide Web Consortium.

137

[142] Ora Lassila, Markku Syrjänen, and Seppo Törmä. 1991. Coordinating Mutually De-

pendent Decisions in a Distributed Scheduler. In: Eero Eloranta (editor), Proceedings

of the 4th IFIP TC5/WG5.7 International Conference on Advances in Production

Management Systems – APMS’90, pages 257–264. Elsevier Science Publishers.

[143] Ora Lassila and Seppo Törmä. 1991. Using a Distributed Frame System to Implement

Distributed Problem Solvers. Technical Report HTKK-TKO-B68, Department of

Computer Science, Helsinki University of Technology.

[144] Ora Lassila, Seppo Törmä, and Markku Syrjänen. 1992. Designing a Distributed

Frame System. In: Eero Hyvönen (editor), New Directions in Artificial Intelligence,

volume 1, pages 183–192. Finnish Artificial Intelligence Society, Espoo, Finland.

[145] Andrew Layman, Edward Jung, Eve Maler, Henry S. Thompson, Jean Paoli,

John Tigue, Norbert H. Mikula, and Steve De Rose. 1998. XML-Data. W3C

Member Submission, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/1998/NOTE-XML-data-0105/Overview.html.

[146] Lei Li and Ian Horrocks. 2003. A Software Framework for Matchmaking based on

Semantic Web Technology. In: Proceedings of the 12th International Conference on

the World Wide Web.

[147] Barbara Liskov and Robert Scheifler. 1982. Guardians and Actions: Linguistic Sup-

port for Robust, Distributed Programs. In: Proceedings of the Ninth ACM Sym-

posium on the Principles of Programming Languages. Association for Computing

Machinery.

[148] Diane J. Litman, Peter F. Patel-Schneider, Anil K. Mishra, James M. Crawford, and

Daniel L. Dvorak. 2002. R++: Adding Path-Based Rules to C++. IEEE Transactions

on Knowledge and Data Engineering 14, no. 3, pages 638–658.

138

[149] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila A.

McIllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren

Sirin, Naveen Srinivasan, and Katia Sycara. 2004. OWL-S: Semantic Markup for

Web Services. W3C Member Submission, World Wide Web Consortium. URL

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[150] Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura.

2005. A Path-based Relational RDF Database. In: CRPIT ’39: Proceedings of the

sixteenth Australasian conference on Database technologies, pages 95–103. Australian

Computer Society, Inc., Darlinghurst, Australia, Australia. ISBN 1-920-68221-X.

[151] Brian McBride. 2001. Jena: Implementing the RDF Model and Syntax Specification.

In: Proceedings of the First Semantic Web Working Symposium. Stanford University.

[152] Deborah L. McGuinness and Frank van Harmelen. 2004. OWL Web Ontology Lan-

guage Overview. W3C Recommendation, World Wide Web Consortium, Cambridge,

MA. URL http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[153] Sheila A. McIllraith, T. Son, and H. Zeng. 2001. Mobilizing the Web with DAML-

Enabled Web Services. In: The Second International Workshop on the Semantic Web

(SemWeb’2001) at WWW-10.

[154] Sergey Melnik. 2001. RDF API Draft. Stanford University working draft. URL

http://www-db.stanford.edu/~melnik/rdf/api.html.

[155] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in

Graph Databases. SIAM Journal on Computing 24, no. 6, pages 1235–1258.

[156] 1998. Merriam-Webster’s Collegiate Dictionary. Merriam-Webster.

[157] Jim Miller, Paul Resnick, and David Singer. 1996. Rating Services and

139

Rating Systems (and Their Machine Readable Descriptions) – Version 1.1.

W3C Recommendation, World Wide Web Consortium, Cambridge, MA. URL

http://www.w3.org/TR/REC-PICS-services.

[158] Marvin Minsky. 1975. A Framework for Representing Knowledge. In: Patrick Henry

Winston (editor), Psychology of Computer Vision. McGraw-Hill, New York.

[159] Daniel P. Miranker. 1987. TREAT: A Better Match Algorithm for AI Production

Systems. In: Kenneth Forbus and Howard Shrobe (editors), Proceedings of the Sixth

National Conference on Artificial Intelligence (AAAI-87), pages 42–47. AAAI Press.

[160] Daniel P. Miranker. 1990. TREAT: a New and Efficient Match Algorithm for AI

Production Systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

ISBN 0-934613-71-0.

[161] monica schraefel, Maria Karam, and Shengdong Zhao. 2003. mSpace: interaction de-

sign for user-determined, adaptable domain exploration in hypermedia. In: AH2003:

Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems.

[162] Chuck Murray, Nicole Alexander, Souri Das, George Eadon, and Siva Ravada. 2005.

Oracle® Spatial Resource Description Framework (RDF), 10g Release 2 (10.2). Tech-

nical Report B19307-03, Oracle Corporation.

[163] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian Williams. 1998.

Remote Agent: To Boldly Go Where No AI System Has Gone Before. Artificial

Intelligence 103, no. 1–2, pages 5–48.

[164] Guido Naudts. 2003. An Inference Engine for RDF. Master’s thesis, Open University

of the Netherlands.

[165] Steven R. Newcomb. 2002. Preemptive Reification. In: Ian Horrocks and James

140

Hendler (editors), The Semantic Web - ISWC 2002, 1st International Semantic Web

Conference, volume 2342 of Lecture Notes in Computer Science, pages 414–418.

Springer-Verlag. ISBN 3-540-43760-6.

[166] Esko Nuutila. 1990. Combining Rule-Based and Procedural Programming in the XC

and XE Programming Languages. Licentiate’s thesis, Helsinki University of Technol-

ogy.

[167] Esko Nuutila. 1994. An Efficient Transitive Closure Algorithm for Cyclic Digraphs.

Information Processing Letters 52, no. 4, pages 207–213.

[168] Uche Ogbuji. 2002. Versa, the RDF query language. URL

http://uche.ogbuji.net/tech/rdf/versa/.

[169] 2003. User Agent Profile – Version 20-May-2003. Technical Report OMA-UAProf-

v2 0-20030520-C, Open Mobile Alliance.

[170] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. 2002. Semantic Matching

of Web Services Capabilities. In: Ian Horrocks and James Hendler (editors), The

Semantic Web - ISWC 2002, 1st International Semantic Web Conference, volume

2342 of Lecture Notes in Computer Science. Springer Verlag.

[171] Yannis Papakonstantinou and Vasilis Vassalos. 1999. Query Rewriting for Semistruc-

tured Data. In: SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD international

conference on Management of data, pages 455–466. ACM Press, New York, NY, USA.

ISBN 1-58113-084-8.

[172] M.P. Papazoglou and D. Georgakopoulos. 2003. Service-Oriented Computing. Com-

munications of the ACM 46, no. 10, pages 25–28.

[173] Peter F. Patel-Schneider, Patrick J. Hayes, and Ian Horrocks. 2004. OWL Web Ontol-

141

ogy Language Semantics and Abstract Syntax. W3C Recommendation, World Wide

Web Consortium, Cambridge, MA.

[174] Terry Payne and Ora Lassila. 2004. Semantic Web Services (guest editors’ introduc-

tion). IEEE Intelligent Systems 19, no. 4, pages 14–15.

[175] David Provost. 2004. Hurdles in the Business Case for the Semantic Web. Master’s

thesis, Sloan School of Management, Massachusetts Institute of Technology, Cam-

bridge, MA.

[176] Eric Prud’hommeaux and Andy Seaborne. 2005. SPARQL Query Language

for RDF. W3C Working Draft, World Wide Web Consortium. URL

http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/.

[177] Dennis Quan and David Karger. 2004. How to Make a Semantic Web Browser. In:

Proceedings of the 13th International Conference on the World Wide Web, pages

255–265. ACM Press.

[178] M. Ross Quillian. 1967. Word Concepts: A Theory and Simulation of Some Basic

Semantic Capabilities. Behavioral Science 12, pages 410–430.

[179] Golden G. Richard III. 2000. Service Advertisement and Discovery: Enabling Uni-

versal Device Cooperation. IEEE Internet Computing 4, no. 5.

[180] P. Rogers and A.J. Wellings. 2000. OpenAda: A Metaobject Protocol for Ada 95.

Technical Report YCS-2000-331, Department of Computer Science, University of

York. URL citeseer.nj.nec.com/431663.html.

[181] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael

Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. 2005.

Web Service Modeling Ontology. Applied Ontology 1, no. 1, pages 77–106.

142

[182] Leo Sauermann. 2005. The Gnowsis Semantic Desktop for Information Integration.

In: 1st Workshop on Intelligent Office Appliances.

[183] Leo Sauermann and Sven Schwartz. 2005. Gnowsis Adapter Framework: Treating

Structured Data as Virtual RDF Graphs. In: Yolanda Gil, Enrico Motta, V. Richard

Benjamins, and Mark A. Musen (editors), The Semantic Web – ISWC 2005, 4th

International Semantic Web Conference, number 3729 in Lecture Notes in Computer

Science, pages 1016–1028. Springer-Verlag.

[184] Simon Scerri, Charlie Abela, and Matthew Montebello. 2005. semantExplorer: A

Semantic Web Browser. In: Pedro Isáıas and Miguel Baptista Nunes (editors), IADIS

International Conference WWW/Internet 2005, pages 35–42.

[185] Andy Seaborne. 2004. RDQL - A Query Language for RDF. W3C Member Submis-

sion, HP Labs.

[186] Peter Seibel. 2005. Practical Common Lisp. APress, Berkeley, CA. ISBN 1590592395.

[187] Vineet Sinha and David R. Karger. 2005. Magnet: Supporting Navigation in

Semistructured Data Environments. In: SIGMOD ’05: Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages 97–106. ACM Press,

New York, NY, USA. ISBN 1-59593-060-4.

[188] Michael Sintek and Stefan Decker. 2002. TRIPLE—A Query, Inference, and Trans-

formation Language for the Semantic Web. In: Ian Horrocks and James Hendler

(editors), The Semantic Web - ISWC 2002, 1st International Semantic Web Confer-

ence, volume 2342 of Lecture Notes in Computer Science. Springer Verlag.

[189] Barry Smith. 1998. Basic Concepts of Formal Ontologies. In: Nicola Guarino (editor),

Formal Ontology in Information Systems. IOS Press.

143

[190] Stephen F. Smith and Ora Lassila. 1994. Configurable Systems for Reactive Produc-

tion Management. In: E. Szelke and R.M.Kerr (editors), Knowledge-Based Reactive

Scheduling, volume B-15 of IFIP Transactions. Elsevier Science Publishers.

[191] Stephen F. Smith, Ora Lassila, and Marcel Becker. 1996. Configurable, Mixed-

Initiative Systems for Planning and Scheduling. In: Austin Tate (editor), Advanced

Planning Technology: Technological Achievements of the ARPA/Rome Laboratory

Planning Initiative. AAAI Press, Menlo Park, CA.

[192] Richard Soley. 2000. Model Driven Architecture. White Paper, Object Management

Group.

[193] Guy L. Steele. 1990. Common Lisp the Language, 2nd edition. Digital Press.

[194] Mark J. Stefik, Daniel G. Bobrow, and Kenneth M. Kahn. 1986. Integrating Access-

oriented Programming into a Multiparadigm Environment. IEEE Software 3, no. 1,

pages 10–18.

[195] Susie Stephens. 2005. Semantic Data Integration in the Life Sciences. White Paper,

Oracle Corporation.

[196] Katia P. Sycara. 1997. James Bond and Michael Ovitz: The Secret Life of Agents. In:

Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI

97), pages 770–773. American Association for Artificial Intelligence.

[197] Robert Endre Tarjan. 1981. Fast Algorithms for Solving Path Problems. Journal of

the ACM 28, no. 3, pages 594–614.

[198] Yannis Theoharis, Vassilis Christophides, and Grigoris Karvounarakis. 2005. Bench-

marking Database Representations of RDF/S Stores. In: Yolanda Gil, Enrico Motta,

V. Richard Benjamins, and Mark A. Musen (editors), The Semantic Web – ISWC

144

2005, 4th International Semantic Web Conference, number 3729 in Lecture Notes in

Computer Science, pages 685–701. Springer-Verlag.

[199] Seppo Törmä, Ora Lassila, and Markku Syrjänen. 1991. Adapting the Activity-

Based Scheduling Method to Steel Rolling. In: G.Doumeingts, J.Browne, and

M.Tomljanovich (editors), Computer Applications in Production and Engineering:

Integration Aspects (CAPE’91). Elsevier Science Publishers.

[200] Giovanni Tummarello, Christian Morbidoni, Paolo Puliti, and Francesco Piazza. 2005.

The DBin Semantic Web Platform: An Overview. In: Workshop on the Semantic

Computing Initiative (SeC 2005). Chiba, Japan.

[201] Frank van Harmelen, Peter Patel-Schneider, and Ian Horrocks. 2001. Ref-

erence description of the DAML+OIL (March 2001) ontology markup lan-

guage. Technical report, DARPA Agent Markup Language Program. URL

http://www.daml.org/2001/03/reference.

[202] Eelco Visser. 2001. Stratego: A Language for Program Transformation Based on

Rewriting Strategies. In: RTA ’01: Proceedings of the 12th International Conference

on Rewriting Techniques and Applications, pages 357–362. Springer-Verlag, London,

UK. ISBN 3-540-42117-3.

[203] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998. Building Program

Optimizers with Rewriting Strategies. In: Proceedings of the third ACM SIGPLAN

International Conference on Functional Programming (ICFP’98), pages 13–26. ACM

Press. URL http://citeseer.ist.psu.edu/visser98building.html.

[204] Daniel J. Weitzner, Jim Hendler, Tim Berners-Lee, and Dan Connolly. 2005. Creating

a Policy-Aware Web: Dicretionary, Rule-based Access for the World Wide Web. In:

E. Ferrari and B. Thuraisingham (editors), Web and Information Security. IOS Press.

145

[205] E. B. White. 1952. Charlotte’s Web. HarperCollins.

[206] William A. Woods. 1975. What’s in a Link: Foundations of Semantic Networks. In:

D.G.Bobrow and A.M.Collins (editors), Representation and Understanding: Studies

in Cognitive Science, pages 35–82. Academic Press, New York.

[207] Guizhen Yang and Michael Kifer. 2000. FLORA: Implementing an Efficient DOOD

System Using a Tabling Logic Engine. In: CL ’00: Proceedings of the First Interna-

tional Conference on Computational Logic, number 1861 in Lecture Notes in Com-

puter Science, pages 1078–1093. Springer-Verlag, London, UK. ISBN 3-540-67797-6.

[208] Guizhen Yang and Michael Kifer. 2002. On the Semantics of Anonymous Iden-

tity and Reification. In: On the Move to Meaningful Internet Systems, 2002 -

DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS

and ODBASE 2002, pages 1047–1066. Springer-Verlag, London, UK. ISBN 3-540-

00106-9.

[209] Guizhen Yang and Michael Kifer. 2003. Reasoning about Anonymous Resources and

Meta Statements on the Semantic Web. In: Stefano Spaccapietra, Sal March, and

Karl Aberer (editors), Journal of Data Semantics I, volume 2800 of Lecture Notes in

Computer Science, pages 69–97. Springer-Verlag.

[210] Mihalis Yannakakis. 1990. Graph-theoretic methods in database theory. In: Pro-

ceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 230–242.

[211] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. 2003. Faceted Meta-

data for Image Search and Browsing. In: CHI ’03: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 401–408. ACM Press, New

York, NY, USA. ISBN 1-58113-630-7.

	ora-dr-thesis-cover-online
	ora-dr-thesis-final-online.pdf

