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Abstract. A new finite element formulation for the Kirchhoff plate model is presented. The
method is a displacement formulation with the deflection and the rotation vector as unknowns, and
it is based on ideas stemming from a stabilized method for the Reissner–Mindlin model [R. Sten-
berg, in Asymptotic Methods for Elastic Structures, P. Ciarlet, L. Trabucho, and J. M. Viano, eds.,
de Gruyter, Berlin, 1995] and a method to treat a free boundary [P. Destuynder and T. Nevers,
RAIRO Modél. Math. Anal. Numér., 22 (1988), pp. 217–242]. Optimal a priori and a posteriori
error estimates are derived.
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1. Introduction. A conforming finite element method for the Kirchhoff plate-
bending problem requires a C1-continuity and hence leads to methods that are rarely
used in practice. Instead, either a nonconforming method is used or the model is
abandoned in favor of the Reissner–Mindlin model. For the latter, there exist several
families of methods that have rigorously been shown to be free from locking and
optimally convergent.

A natural idea is to consider the Kirchhoff model as the limit of the Reissner–
Mindlin model when the plate thickness approaches zero and to use a good Reissner–
Mindlin element with the thickness (after a scaling, see below) representing the pa-
rameter when penalizing the Kirchhoff constraint. In this approach, there are two
obstacles. First, for a free boundary, this leads to a method which is not consistent.
This inconsistency significantly reduces the convergence rate of the method. In the
literature, this point is often ignored since mostly the clamped case is considered. A
remedy to this was developed by Destuynder and Nevers, who showed that the con-
sistency is obtained by adding a term penalizing the tangential Kirchhoff condition
along the free boundary [7]. Even if this modification has been done, there remains
a second drawback. In order for the solution to the penalized formulation to be close
to the exact solution, the penalty parameter should be large. This, however, leads to
an ill-conditioned discrete system.

The free boundary inconsistency of the limit problem is closely related to the
strong boundary layer of the Reissner–Mindlin plate problem with free boundaries.
For Reissner–Mindlin plates, the presence of free boundaries significantly reduces the
regularity of the solution and hence decreases the convergence rate of finite element
approximations [1, 10, 5]. In [5, 2], the regularity of the solution has been improved by
modifying the boundary conditions for free boundaries. These modifications imitate
the boundary conditions of the Kirchhoff model as well as couple the variational
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spaces for the deflection and the rotation through the tangential Kirchhoff constraint
along free boundaries. Adopting the modified boundary conditions on the discrete
level it has been proved in [5, 2] that a set of finite element methods maintain their
optimal order of convergence in the free boundary case. However, it can be seen as
a drawback that all of these methods follow the mixed formulation with the shear
force as an additional unknown. For positive values of the thickness parameter t, as
usual, the corresponding displacement formulations can be achieved by condensing the
shear force from the formulation. For the limit case t = 0, however, this possibility is
excluded due to the nominator t2 of the factor penalizing the Kirchhoff condition. For
this reason, applying these methods for Kirchhoff plates requires a mixed formulation
with the additional shear force degrees of freedom.

Our aim in the present paper is to present a family of Kirchhoff plate-bending
elements which follows the displacement formulation and for which the convergence
rate is optimal even in the presence of free boundaries. The method is a formula-
tion combining the ideas from the stabilized method for Reissner–Mindlin plates pre-
sented in [13] and the treatment of the free boundary presented in [7]. Altough the
method resembles the one with the linked interpolation technique in [2] for Reissner–
Mindlin plates, it has been independently derived for the Kirchhoff plate problem
with free boundaries. The family includes “simple low-order” elements, and it is well-
conditioned. In the second part [3] of this paper, we give the results of numerical tests
and a more detailed and constructive motivation for the method (cf. [4] as well).

The paper is organized as follows. In the next section, we describe the plate-
bending problem, and in section 3, we introduce the new family of finite elements. In
section 4, an a priori error analysis is derived. This analysis leads to optimal results,
with respect both to the regularity of the solution and to the polynomial degree used.
In section 5, an a posteriori error analysis is performed. We derive a local error
indicator which is shown to be both reliable and efficient.

2. The Kirchhoff plate-bending problem. We consider the problem of bend-
ing of an isotropic linearly elastic plate and assume that the undeformed plate mid-
surface is described by a given convex polygonal domain Ω ⊂ R

2. The plate is
considered to be clamped on the part ΓC of its boundary ∂Ω, simply supported on
the part ΓS ⊂ ∂Ω, and free on ΓF ⊂ ∂Ω. The deflection and transversal load are
denoted by w and g, respectively.

In what follows, we indicate with V the set of all corner points in ΓF. Moreover,
n and s represent the unit outward normal and the unit counterclockwise tangent
to the boundary, respectively. Finally, for points x ∈ V, we introduce the following
notation. We indicate with n1 and s1 the unit vectors corresponding, respectively, to
n and s on one of the two edges forming the boundary angle at x; with n2 and s2 we
indicate the ones corresponding to the other edge. Note that which of the two edges
correspond to the subscript 1 or 2 is not relevant.

The classical Kirchhoff plate-bending model is then given by the biharmonic par-
tial differential equation

(2.1) DΔ2w = g in Ω,

the boundary conditions

(2.2)

w = 0,
∂w

∂n
= 0 on ΓC,

w = 0, n · Mn = 0 on ΓS,

n · Mn = 0,
∂

∂s

(
s · Mn

)
+ (div M) · n = 0 on ΓF,
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and the corner conditions

(2.3)
(
s1 · Mn1

)
(x) =

(
s2 · Mn2

)
(x) ∀x ∈ V.

Here

(2.4) D =
Et3

12(1 − ν2)

is the bending rigidity, with E, ν being the Young modulus and the Poisson ratio for
the material, respectively. Note that for the shear modulus G it holds that

(2.5) G =
E

2(1 + ν)
.

The moment tensor is given by

(2.6) M(∇w) = D
(
(1 − ν)ε(∇w) + νdiv(∇w)I

)
,

with the symmetric gradient ε, and the shear force by

(2.7) Q = −div M .

Note that the independence of the Poisson ratio ν in the differential equation (2.1) is
a consequence of cancellations when substituting (2.6) and (2.7) into the equilibrium
equation

(2.8) −div Q = g.

For the analysis below, it will be convenient to perform a scaling of the problem by
assuming that the load is given by g = Gt3f , with f fixed. Then the differential
equation (2.1) becomes independent of the plate thickness:

(2.9)
1

6(1 − ν)
Δ2w = f in Ω.

Furthermore, we use the following scaled moment tensor m:

(2.10) M(∇w) = Gt3m(∇w),

and the shear force q is defined by

(2.11) Q = Gt3q.

The unknowns in our finite element method will be the approximations to the
deflection and its gradient, the rotation β = ∇w. With this as a new unknown, our
problem can be written as the system of partial differential equations

∇w − β = 0,(2.12)

−div q = f,(2.13)

Lβ + q = 0 in Ω,(2.14)

the boundary conditions

(2.15) w = 0, β = 0 on ΓC,
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(2.16) w = 0, β · s = 0, n · m(β)n = 0 on ΓS,

(2.17)
∂w

∂s
− β · s = 0, n · m(β)n = 0,

∂

∂s

(
s · m(β)n

)− q · n = 0 on ΓF,

and the corner conditions

(2.18)
(
s1 · m(β)n1

)
(x) =

(
s2 · m(β)n2

)
(x) ∀x ∈ V.

The operator L is defined as

(2.19) Lβ = div m(β),

and the scaled bending moment is considered as a function of the rotation:

(2.20) m(β) =
1

6

(
ε(β) +

ν

1 − ν
div β I

)
.

In what follows, we will often write m instead of m(β). We further denote

(2.21) a(β,η) = (m(β), ε(η)).

In order to neglect plate rigid movements and the related technicalities, we will
in what follows assume that the one-dimensional measure of ΓC is positive.

3. The finite element formulation. In this section, we will introduce our finite
element method. Even if our method is stable for all choices of finite element spaces,
we will, for simplicity, present it for triangular elements and for the polynomial degrees
that yield an optimal convergence rate. Hence, let a regular family of triangular
meshes on Ω be given. For the integer k ≥ 1, we then define the discrete spaces

Wh = {v ∈ W | v|K ∈ Pk+1(K) ∀K ∈ Ch},(3.1)

Vh = {η ∈ V | η|K ∈ [Pk(K)]2 ∀K ∈ Ch},(3.2)

with

W =
{
v ∈ H1(Ω) | v = 0 on ΓC ∪ ΓS

}
,(3.3)

V =
{
η ∈ [H1(Ω)]2 | η = 0 on ΓC , η · s = 0 on ΓS

}
.(3.4)

Here Ch represents the set of all triangles K of the mesh, and Pk(K) is the space of
polynomials of degree k on K. In what follows, we will indicate with hK the diameter
of each element K, while h will indicate the maximum size of all of the elements in
the mesh. Furthermore, we will indicate with E a general edge of the triangulation
and with hE the length of E. The set of all edges lying on the free boundary ΓF we
denote by Fh.

Before introducing the method, we state the following result which trivially follows
from classical scaling arguments and the coercivity of the form a.

Lemma 3.1. There exist positive constants CI and C ′
I such that

CI

∑
K∈Ch

h2
K‖Lφ‖2

0,K ≤ a(φ,φ) ∀φ ∈ Vh,(3.5)

C ′
I

∑
E∈Fh

hE ‖mns(φ)‖2
0,E ≤ a(φ,φ) ∀φ ∈ Vh,(3.6)
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where the operator mns(φ) = s · m(φ)n, with n, s, being the unit outward normal
and the unit counterclockwise tangent to the edge E, respectively, and with m defined
in (2.20).

Let two real numbers γ and α be assigned: γ > 2/C ′
I and 0 < α < CI/4. Then

the discrete problem reads as follows.
Method 3.1. Find (wh,βh) ∈ Wh × Vh, such that

(3.7) Ah(wh,βh; v,η) = (f, v) ∀(v,η) ∈ Wh × Vh,

where the form Ah is defined as

Ah(z,φ; v,η) = Bh(z,φ; v,η) + Dh(z,φ; v,η),(3.8)

with

Bh(z,φ; v,η) = a(φ,η) −
∑

K∈Ch

αh2
K(Lφ,Lη)K

+
∑

K∈Ch

1

αh2
K

(∇z − φ − αh2
KLφ,∇v − η − αh2

KLη)K(3.9)

and

Dh(z,φ; v,η) = 〈mns(φ), [∇v − η] · s〉ΓF + 〈[∇z − φ] · s,mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇z − φ] · s, [∇v − η] · s〉E(3.10)

for all (z,φ), (v,η) ∈ Wh × Vh. Here 〈·, ·〉ΓF and 〈·, ·〉E denote the L2-inner products
on ΓF and E, respectively.

The bilinear form Bh constitutes the Reissner–Mindlin method of [13] with the
thickness t set equal to zero, while the additional form Dh is introduced in order to
avoid the convergence deterioration in the presence of free boundaries.

Furthermore, we introduce the discrete shear force

(3.11) qh|K =
1

αh2
K

(∇wh − βh − αh2
KLβh)|K ∀K ∈ Ch.

We note that, due to (2.14) and (2.12), it holds that

(3.12) q|K =
1

αh2
K

(∇w − β − αh2
KLβ)|K ∀K ∈ Ch,

and hence it follows that the definition (3.11) is consistent with the exact shear force.
For simplicity, in the rest of this section we assume that the deflection w belongs to

H3(Ω); this is a very reasonable assumption, as discussed at the end of this section.
Note as well that, with some additional technical work involving the appropriate
Sobolev spaces and their duals, such an assumption could probably be avoided. The
following result states the consistency of the method.

Theorem 3.2. The solution (w,β) of the problem (2.14)–(2.18) satisfies

(3.13) Ah(w,β; v,η) = (f, v) ∀(v,η) ∈ Wh × Vh.
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Proof. The definition of the bilinear forms in Method 3.1, recalling (2.14) and the
expression (3.12), give

Bh(w,β; v,η) = a(β,η) −
∑

K∈Ch

αh2
K(Lβ,Lη)K

+
∑

K∈Ch

1

αh2
K

(∇w − β − αh2
KLβ,∇v − η − αh2

KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q,Lη)K +

∑
K∈Ch

(q,∇v − η − αh2
KLη)K

= a(β,η) + (q,∇v − η).(3.14)

First, by the definition (2.21), then integrating by parts on each triangle, and finally
using the regularity of the functions involved, and the boundary conditions (2.15),
(2.16) on ΓC, ΓS, respectively, we get

a(β,η) + (q,∇v − η) = (m(β), ε(η)) + (q,∇v − η)

= −(Lβ + q,η) + 〈m(β) · n,η〉ΓF − (div q, v) + 〈q · n, v〉ΓF .(3.15)

Recalling (2.14) and (2.13), the identity above becomes

a(β,η) + (q,∇v − η) = (f, v) + 〈m(β) · n,η〉ΓF + 〈q · n, v〉ΓF ,(3.16)

while using the boundary conditions of (2.17) on ΓF and integration by parts along
the boundary finally leads to

a(β,η) + (q,∇v − η) = (f, v) − 〈mns(β), [∇v − η] · s〉ΓF .(3.17)

Due to (2.17), we have

Dh(w,β; v,η) = 〈mns(β), [∇v − η] · s〉ΓF + 〈[∇w − β] · s,mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇w − β] · s, [∇v − η] · s〉E

= 〈mns(β), [∇v − η] · s〉ΓF .(3.18)

The result now directly follows from (3.14), (3.17), and (3.18).
Remark 3.1. If the Reissner–Mindlin method of [13] without the additional form

Dh is employed by setting t = 0, then in the presence of a free boundary we obtain

(3.19) Bh(w,β; v,η) = (f, v) + 〈mns(β), [∇v − η] · s〉ΓF ∀(v,η) ∈ Wh × Vh.

Therefore, this would lead to an inconsistent method. We return to this in Remark
4.1 below.

4. Stability and a priori error estimates. For (v,η) ∈ Wh×Vh, we introduce
the following mesh-dependent norms:

|(v,η)|2h =
∑

K∈Ch

h−2
K ‖∇v − η‖2

0,K ,(4.1)

‖v‖2
2,h = ‖v‖2

1 +
∑

K∈Ch

|v|22,K +
∑
E∈Ih

h−1
E

∥∥∥∥� ∂v

∂n�
∥∥∥∥

2

0,E

+
∑

E⊂ΓC

h−1
E

∥∥∥∥ ∂v∂n

∥∥∥∥
2

0,E

,(4.2)

|‖(v,η)‖|h = ‖η‖1 + ‖v‖2,h + |(v,η)|h,(4.3)
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where �·� represents the jump operator and Ih denotes the edges lying in the interior
of the domain Ω.

In [12], the following lemma is proved.
Lemma 4.1. There exists a positive constant C such that

‖v‖2,h ≤ C
(‖η‖1 + ‖v‖1 + |(v,η)|h

) ∀(v,η) ∈ Wh × Vh.(4.4)

Using the Poincaré inequality and the previous lemma, the following equivalence
easily follows.

Lemma 4.2. There exists a positive constant C such that

(4.5) C|‖(v,η)‖|h ≤ ‖η‖1 + |(v,η)|h ≤ |‖(v,η)‖|h ∀(v,η) ∈ Wh × Vh.

We now have the following stability estimate.
Theorem 4.3. Let 0 < α < CI/4 and γ > 2/C ′

I . Then there exists a positive
constant C such that

(4.6) Ah(v,η; v,η) ≥ C|‖(v,η)‖|2h ∀(v,η) ∈ Wh × Vh.

Proof. Using the first inverse estimate of Lemma 3.1 we get

Bh(v,η; v,η)

= a(η,η) −
∑

K∈Ch

αh2
K‖Lη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥
(

1 − α

CI

)
a(η,η) +

∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K .(4.7)

Next, using locally the arithmetic-geometric mean inequality with the constant γ/hE

then the second inverse inequality of Lemma 3.1, we get

Dh(v,η; v,η)

=
∑

E∈Fh

(
2〈mns(η), [∇v − η] · s〉E +

γ

hE
‖[∇v − η] · s‖2

0,E

)

≥
∑

E∈Fh

(
− γ

hE
‖[∇v − η] · s‖2

0,E − γ−1hE ‖mns(η)‖2
0,E +

γ

hE
‖[∇v − η] · s‖2

0,E

)

= −
∑

E∈Fh

γ−1hE ‖mns(η)‖2
0,E

≥ −γ−1

C ′
I

a(η,η) ≥ −1

2
a(η,η).(4.8)

Joining (4.7) with (4.8) and using Korn’s inequality we then obtain

Bh(v,η; v,η) + Dh(v,η; v,η)

≥
(

1

2
− α

CI

)
a(η,η) +

∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥ C
(
‖η‖2

1 +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)
.(4.9)
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From the triangle inequality, again the inverse estimate of Lemma 3.1, and the bound-
edness of the bilinear form a, it follows that

∑
K∈Ch

1

αh2
K

‖∇v − η‖2
0,K

≤ 2

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖αh2
KLη‖2

0,K

)

≤ 2

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

αh2
K‖Lη‖2

0,K

)

≤ C

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + a(η,η)

)

≤ C

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + ‖η‖2
1

)
,(4.10)

which combined with (4.9) gives

(4.11) Ah(v,η; v,η) ≥ C
(‖η‖2

1 + |(v,η)|2h
)
.

The result then follows from the norm equivalence of Lemma 4.2.
We can now derive the error estimates for the method. We note that the assump-

tions of the theorem are supposed to be valid for the further results below as well and
hence are not repeated in what follows.

Theorem 4.4. Let 0 < α < CI/4 and γ > 2/C ′
I . Let (w,β) be the exact solution

of the problem, and let (wh,βh) be the approximate solution obtained with Method
3.1. Suppose that w ∈ Hs+2(Ω), with 1 ≤ s ≤ k. Then it holds that

|‖(w − wh,β − βh)‖|h ≤ Chs‖w‖s+2.(4.12)

Proof. Step 1. Let (wI ,βI) ∈ Wh × Vh be the usual Lagrange interpolants to
w and β, respectively. Using first the stability result of Theorem 4.3 and then the
consistency result of Theorem 3.2, one has the existence of a pair

(4.13) (v,η) ∈ Wh × Vh, |‖(v,η)‖|h ≤ C

such that

|‖(wh − wI ,βh − βI)‖|h ≤ Ah(wh − wI ,βh − βI ; v,η)

= Ah(w − wI ,β − βI ; v,η),(4.14)

where we recall that Ah = Bh + Dh.
Step 2. For the Bh-part, we have

Bh(w − wI ,β − βI ; v,η) = a(β − βI ,η) −
∑

K∈Ch

αh2
K(L(β − βI),Lη)K

+
∑

K∈Ch

1

αh2
K

(∇(w − wI) − (β − βI) − αh2
KL(β − βI),∇v − η − αh2

KLη)K .(4.15)
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Due to the first inverse inequality of Lemma 3.1, we get

(4.16)

( ∑
K∈Ch

h2
K‖Lη‖2

0,K

)1/2

≤ C|‖(v,η)‖|h

and

(4.17)

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)1/2

≤ C|‖(v,η)‖|h.

Using these bounds in (4.15) and recalling (4.13), we obtain

Bh(w − wI ,β − βI ; v,η)

≤ C

⎛
⎝|‖(w − wI ,β − βI)‖|h +

( ∑
K∈Ch

h2
K |β − βI |22,K

)1/2
⎞
⎠ .(4.18)

Substituting the definition of the norm (4.3) in (4.18), using the triangle inequality,
and finally applying the classical interpolation estimates, it easily follows that

Bh(w − wI ,β − βI ; v,η) ≤ Chs
(‖w‖s+2 + ‖β‖s+1

)
.(4.19)

Step 3. For the Dh-part in (4.14), we have, by the definition (3.10),

Dh(w − wI ,β − βI ; v,η) = 〈mns(β − βI), [∇v − η] · s〉ΓF

+〈[∇(w − wI) − (β − βI)] · s,mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇(w − wI) − (β − βI)] · s, [∇v − η] · s〉E

=: T1 + T2 + T3.(4.20)

Scaling arguments give

‖[∇v − η] · s‖2
0,E ≤ ‖∇v − η‖2

0,E ≤ Ch−1
K(E)‖∇v − η‖2

0,K(E)(4.21)

for all E ∈ Fh, where K(E) is the triangle with E as an edge. The l2-Cauchy–Schwarz
inequality, the bound (4.21), and the norm definition (4.3) now give

T1 ≤
( ∑

E∈Fh

hK(E)‖mns(β − βI)‖2
0,E

)1/2( ∑
E∈Fh

h−1
K(E)‖[∇v − η] · s‖2

0,E

)1/2

≤ C

( ∑
E∈Fh

hK(E)‖mns(β − βI)‖2
0,E

)1/2

|‖(v,η)‖|h.(4.22)

Recalling the bound (4.13), classical polynomial interpolation properties give

T1 ≤ C

( ∑
E∈Fh

hK(E)‖mns(β − βI)‖2
0,E

)1/2

≤ Chs‖β‖s+1.(4.23)
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Again, by scaling we have

‖mns(η)‖2
0,E ≤ h−1

K(E)|η|21,K(E) ∀E ∈ Fh.(4.24)

The l2-Cauchy–Schwarz inequality, this bound, and the norm definition (4.3) give

T2 ≤
( ∑

E∈Fh

h−1
K(E)‖∇(w − wI) − (β − βI)‖2

0,E

)1/2( ∑
E∈Fh

hK(E)‖mns(η)‖2
0,E

)1/2

≤ C

( ∑
E∈Fh

h−1
K(E)‖∇(w − wI) − (β − βI)‖2

0,E

)1/2

|‖(v,η)‖|h.(4.25)

Recalling the bound (4.13), classical polynomial interpolation estimates give

T2 ≤ C

( ∑
E∈Fh

h−1
K(E)‖∇(w − wI) − (β − βI)‖2

0,E

)1/2

≤ Chs
(‖β‖s+1 + ‖w‖s+2

)
.(4.26)

The bound for T3 follows by combining the same techniques used for T1 and T2;
we get

T3 ≤ Chs
(‖β‖s+1 + ‖w‖s+2

)
.(4.27)

Now, joining all of the bounds (4.14), (4.19), (4.20), (4.23), (4.26), and (4.27) we
obtain

|‖(wh − wI ,βh − βI)‖|h ≤ Chs
(‖β‖s+1 + ‖w‖s+2

)
.(4.28)

The triangle inequality and the classical polynomial interpolation estimates (recalling
that β = ∇w) then yield

(4.29) |‖(w − wh,β − βh)‖|h ≤ Chs
(‖β‖s+1 + ‖w‖s+2

) ≤ Chs‖w‖s+2.

Note that the result holds for real values of the regularity parameter s since the
interpolation results used above are valid for real values of s.

Remark 4.1. As noted in Remark 3.1, the limiting Reissner–Mindlin method
(i.e., without the additional correction Dh) is inconsistent. Regardless of the solution
regularity and the polynomial degree k, the inconsistency term can be bounded only
with the order O(h1/2). As is well known (see, for example, [10]), the inconsistency
error is a lower bound for the error of finite element methods. As a consequence,
the numerical scheme will not converge with a rate better than h1/2 if ΓF �= ∅. This
observation is also confirmed by the numerical tests shown in [3]. See [6] for other
numerical tests regarding this issue. Note further that this boundary inconsistency
term is connected not only to the formulation in [13] but is common to any other
Kirchhoff method which follows a “Reissner–Mindlin limit” approach.

For the shear force, the practical norm to use is the discrete negative norm

(4.30) ‖r‖−1,h =

( ∑
K∈Ch

h2
K‖r‖2

0,K

)1/2

.
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Since we assume that w ∈ Hs+2(Ω), with s ≥ 1, we have q ∈ [L2(Ω)]2, and from the
estimates above the lemma immediately follows.

Lemma 4.5. It holds that

‖q − qh‖−1,h ≤ Chs‖w‖s+2.(4.31)

From this follows a norm estimate in the dual to the space

(4.32) V∗ =
{
η ∈ [H1(Ω)]2 | η = 0 on ΓC, η · s = 0 on ΓF ∪ ΓS

}
,

i.e., in the norm

(4.33) ‖r‖−1,∗ = sup
η∈V∗

〈r,η〉
‖η‖1

.

We have the following result.
Lemma 4.6. It holds that

(4.34) ‖q − qh‖−1,∗ ≤ Chs‖w‖s+2.

Proof. The proof is essentially an application of the “Pitkäranta–Verfürth trick”
(see [11, 14]). By the definition of the norm ‖ · ‖−1,∗ there exists a function η ∈ V∗
such that

(4.35) ‖q − qh‖−1,∗ ≤ (q − qh,η), ‖η‖1 ≤ C.

Using a Clément-type interpolant we can find a piecewise linear function ηI ∈ V∗
such that it holds that

(4.36) hs−1
K ‖η − ηI‖s,K ≤ C‖η‖1,K ≤ C ′, s = 0, 1,

for all K ∈ Ch. Using the Cauchy–Schwarz inequality, the bound (4.36) with s = 0,
and the definition (4.30), it follows that

(q − qh,η) = (q − qh,η − ηI) + (q − qh,ηI)

≤ C‖q − qh‖−1,h + (q − qh,ηI).(4.37)

Note that ηI is in both Vh and V∗; moreover, LηI = 0 on each element K of Ch. As
a consequence, using (3.7), (3.11), (3.12), and Theorem 3.2, it follows that

(q − qh,ηI) = a(β − βh,ηI) + 〈[∇wh − βh)] · s,Mns(ηI)〉ΓF

=: T1 + T2.(4.38)

Due to the continuity of the bilinear form and using bound (4.36) with s = 1, it
immediately follows that

(4.39) T1 ≤ C‖β − βh‖1 ≤ C|‖(w − wh,β − βh)‖|h.
Using first the Cauchy–Schwarz inequality, then the Agmon inequality, and finally the
bound (4.36) with s = 1, Lemma 3.1, and the definition (4.3), we get

T2 ≤
( ∑

E∈Fh

h−1
E ‖∇wh − βh)‖2

0,E

)1/2( ∑
E∈Fh

hE‖Mns(ηI)‖2
0,E

)1/2

≤
( ∑

K∈Ch

h−2
K ‖∇wh − βh)‖2

0,K

)1/2

‖ηI‖1

≤ C|‖(w − wh,β − βh)‖|h,(4.40)
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where in the last inequality we implicitly used the relation ∇w − β = 0. Combining
(4.35), (4.37) with (4.38), (4.39), and (4.40), it follows that

(4.41) ‖q − qh‖−1,∗ ≤ C
(‖q − qh‖−1,h + |‖(w − wh,β − βh)‖|h

)
.

Joining (4.41) and (4.31) and using Theorem 4.4 the proposition immediately
follows.

The regularity of the solution to the Kirchhoff plate problems for convex polygonal
domains, with all three main types of boundary conditions, is very case-dependent. We
refer, for example, to the work [9], in which a rather complete study is accomplished.
Note that if f ∈ H−1(Ω), in most cases of interest, the regularity condition w ∈ H3(Ω)
is indeed achieved.

Note further that with classical duality arguments and technical calculations it is
possible to derive the error bound

‖w − wh‖1 ≤ Chs+1‖w‖s+2,(4.42)

if the regularity estimate

‖w‖3 ≤ C‖f‖−1(4.43)

holds. Moreover, if k ≥ 2 and the regularity estimate

‖w‖4 ≤ C‖f‖0(4.44)

is satisfied, then it holds that

‖w − wh‖0 ≤ Chs+2‖w‖s+2.(4.45)

5. A posteriori error estimates. In this section, we prove the reliability and
the efficiency for an a posteriori error estimator for our method. To this end, we
introduce

η̃2
K := h4

K‖f + div qh‖2
0,K + h−2

K ‖∇wh − βh‖2
0,K ,(5.1)

η2
E := h3

E‖�qh · n�‖2
0,E + hE‖�m(βh)n�‖2

0,E ,(5.2)

η2
S,E := hE‖mnn(βh)‖2

0,E ,(5.3)

η2
F,E := hE‖mnn(βh)‖2

0,E + h3
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
2

0,E

,(5.4)

where hE denotes the length of the edge E and �·� represents the jump operator
(which is assumed to be equal to the function value on boundary edges). Further, for
a triangle K ∈ Ch we denote the sets of edges lying in the interior of Ω, on ΓS, and
on ΓF, by I(K), S(K), and F (K), respectively. By Sh we denote the set of all edges
on ΓS and by Ih the ones lying in the interior of the domain.

Given any element K ∈ Ch, let the local error indicator be

ηK :=

⎛
⎝η̃2

K +
1

2

∑
E∈I(K)

η2
E +

∑
E∈S(K)

η2
S,E +

∑
E∈F (K)

η2
F,E

⎞
⎠

1/2

.(5.5)

Finally, the global error indicator is defined as

η :=

( ∑
K∈Ch

η2
K

)1/2

.(5.6)
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Remark 5.1. It is worth noting that, by the definition (3.11),

(qh + Lβh)|K =
1

αh2
K

(∇wh − βh)|K ∀K ∈ Ch,(5.7)

which is the reason why there appear no terms of the kind ‖qh+Lβh‖0,K in the error
estimator. We note as well that scaling arguments give∑

E∈Fh

h−1
E ‖∇wh − βh‖2

0,E ≤ C
∑

K∈Ch

h−2
K ‖∇wh − βh‖2

0,K ,(5.8)

which is the reason why there appear no boundary terms of the kind ‖∇wh−βh‖0,E .

5.1. Upper bound. In order to derive the reliability of the method we need the
following saturation assumption.

Assumption 5.1. Given a mesh Ch, let Ch/2 be the mesh obtained by splitting each
triangle K ∈ Ch into four triangles connecting the edge midpoints. Let (wh/2,βh/2)
be the discrete solution corresponding to the mesh Ch/2. We assume that there exists
a constant ρ, 0 < ρ < 1, such that

|‖(w − wh/2,β − βh/2)‖|h/2 + ‖q − qh/2‖−1,∗

≤ ρ
(|‖(w − wh,β − βh)‖|h + ‖q − qh‖−1,∗

)
,(5.9)

where by ‖|·‖|h/2 we indicate the mesh-dependent norm with respect to the new mesh
Ch/2.

In what follows, we will need the following result.
Lemma 5.1. Let, for v ∈ Wh/2, the local seminorm be

|v|2,h/2,K =

⎛
⎝ ∑

K′∈Ch/2, K′⊂K

|v|22,K′

⎞
⎠

1/2

.(5.10)

Then there is a positive constant C such that for all v ∈ Wh/2 there exists vI ∈ Wh

with the bound

‖v − vI‖0,K + h
1/2
K ‖v − vI‖0,∂K ≤ Ch2

K |v|2,h/2,K ∀K ∈ Ch.(5.11)

Moreover, vI interpolates v at all of the vertices of the triangulation Ch/2.
Proof. We choose vI as the only function in H1(Ω) such that

vI|K ∈ P2(K) ∀K ∈ Ch,
vI(x) = v(x) ∀x ∈ Vh/2,(5.12)

where Vh/2 represents the set of all of the vertices of Ch/2. Note that it is trivial to
check that vI ∈ Wh for all k ≥ 1. Observing that

|v|2,h/2,K +
∑

x∈Vh/2∩K

|v(x)|, v ∈ Wh/2,K ∈ Ch,(5.13)

is indeed a norm on the finite-dimensional space of the functions v ∈ Wh/2 restricted
to K, the result follows applying the classical scaling argument.
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For simplicity, in what follows we will treat the case ΓS = ∅, the general case
following with identical arguments as the ones that follow. We have the following
preliminary result.

Theorem 5.2. It holds that

|‖(wh/2 − wh,βh/2 − βh)‖|h/2 ≤ Cη.(5.14)

Proof. Step 1. Due to the stability of the discrete formulation, proved in Theorem
4.3, there exists a couple (v,η) ∈ Wh/2 × Vh/2 such that

|‖(v,η)‖|h/2 ≤ C(5.15)

and

|‖(wh/2 − wh,βh/2 − βh)‖|h/2 ≤ Ah/2(wh/2 − wh,βh/2 − βh; v,η).(5.16)

Furthermore, we have

Ah/2(wh/2,βh/2; v,η) = (f, v).(5.17)

Step 2. Simple calculations and the definition (3.11) give

Bh/2(wh,βh; v,η) = a(βh,η) −
∑

K∈Ch/2

αh2
K(Lβh,Lη)K

+
∑

K∈Ch/2

1

αh2
K

(∇wh − βh − αh2
KLβh,∇v − η − αh2

KLη)K

= a(βh,η) −
∑

K∈Ch/2

(∇wh − βh,Lη)K +
∑

K∈Ch/2

(qh,∇v − η)K

+R1(wh,βh; v,η)

= Bh(wh,βh; v,η) + R1(wh,βh; v,η),(5.18)

where qh is defined as in (3.11), i.e., based on the coarser mesh, and

R1(wh,βh; v,η) =
∑

K∈Ch/2

1

αh2
K

(∇wh − βh,∇v − η)K

−
∑

K∈Ch

1

αh2
K

(∇wh − βh,∇v − η)K .(5.19)

The last term on the right-hand side is well defined since ∇v − η is piecewise L2-
regular.

Let now Fh/2 indicate the set of all edges of Ch/2 lying on ΓF. Adding and
subtracting the difference between the two forms, it then follows that

Dh/2(wh,βh; v,η) = Dh(wh,βh; v,η) + R2(wh,βh; v,η),(5.20)

where

R2(wh,βh; v,η) =
∑

E∈Fh/2

γ

hE
〈[∇wh − βh] · s, [∇v − η] · s〉E

−
∑

E∈Fh

γ

hE
〈[∇wh − βh] · s, [∇v − η] · s〉E(5.21)
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and where the first member on the right-hand side is indeed well defined due to the
piecewise regularity of (v,η). We will denote

(5.22) R(wh,βh; v,η) = R1(wh,βh; v,η) + R2(wh,βh; v,η).

Joining (5.17)–(5.21) then yields

(5.23) Ah/2(wh,βh; v,η) = Ah(wh,βh; v,η) + R(wh,βh; v,η).

Step 3. Let vI ∈ Wh be the interpolant defined in Lemma 5.1, and let ηI ∈ Vh

be the piecewise linear interpolant to η. First, we have

(5.24) Ah(wh,βh; vI ,ηI) = (f, vI).

This, together with (5.17) and (5.23), gives

Ah/2(wh/2 − wh,βh/2 − βh; v,η)

= Ah/2(wh/2,βh/2; v,η) −Ah/2(wh,βh; v,η)

= Ah/2(wh/2,βh/2; v,η) −Ah(wh,βh; v,η) −R(wh,βh; v,η)

= (f, v − vI) −Ah(wh,βh; v − vI ,η − ηI) −R(wh,βh; v,η).(5.25)

Step 4. Next, we bound the last terms above. Recalling that Ch/2 is a subdivision
of Ch, the Cauchy–Schwarz inequality, (4.3), and (5.15) give

|R1(wh,βh; v,η)| ≤ 2

∣∣∣∣∣∣
∑

K∈Ch/2

1

αh2
K

(∇wh − βh,∇v − η)K

∣∣∣∣∣∣

≤ 2

⎛
⎝ ∑

K∈Ch/2

1

h2
K

‖∇wh − βh‖2
0,K

⎞
⎠

1/2⎛
⎝ ∑

K∈Ch/2

1

h2
K

‖∇v − η‖2
0,K

⎞
⎠

1/2

≤ C

⎛
⎝ ∑

K∈Ch/2

1

h2
K

‖∇wh − βh‖2
0,K

⎞
⎠

1/2

.(5.26)

Using scaling and arguments similar to those already adopted in (5.26) it can be
checked that

|R2(wh,βh; v,η)| ≤ C

⎛
⎝ ∑

K∈Ch/2

1

h2
K

‖∇wh − βh‖2
0,K

⎞
⎠

1/2

.(5.27)

Combining (5.26) and (5.27) we get

|R(wh,βh; v,η)| ≤ |R1(wh,βh; v,η)| + |R2(wh,βh; v,η)| ≤ Cη.(5.28)
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Step 5. Next, we expand, substitute the expression (3.11) for qh, and regroup the
terms:

(f, v − vI) −Ah(wh,βh; v − vI ,η − ηI)

= (f, v − vI) −
{
a(βh,η − ηI) −

∑
K∈Ch

αh2
K

(
Lβh,L(η − ηI)

)
K

+
∑

K∈Ch

1

αh2
K

(∇wh − βh − αh2
KLβh,∇(v − vI) − (η − ηI) − αh2

KL(η − ηI)
)
K

+
〈
mns(βh), [∇(v − vI) − (η − ηI)] · s

〉
ΓF

+
〈
[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

+
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI) − (η − ηI)] · s

〉
E

}

= (f, v − vI) −
{
a(βh,η − ηI) −

∑
K∈Ch

αh2
K

(
Lβh + qh,L(η − ηI)

)
K

+
(
qh,∇(v − vI) − (η − ηI)

)
+
〈
mns(βh), [∇(v − vI) − (η − ηI)] · s

〉
ΓF

+
〈
[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

+
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI) − (η − ηI)] · s

〉
E

}

=
{

(f, v − vI) −
(
qh,∇(v − vI)

)− 〈mns(βh), [∇(v − vI)] · s
〉
ΓF

−
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI)] · s

〉
E

}

−
{
a(βh,η − ηI) −

∑
K∈Ch

αh2
K

(
Lβh + qh,L(η − ηI)

)
K
− (qh,η − ηI

)

−〈mns(βh), [η − ηI ] · s
〉
ΓF

+
〈
[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

−
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [η − ηI ] · s

〉
E

}

=: A−B.

(5.29)

Step 6. In the part A above, integration by parts and using the fact that v(x) =
vI(x) at the corner points x ∈ V yields

(f, v − vI) −
(
qh,∇(v − vI)

)− 〈mns(βh), [∇(v − vI)] · s
〉
ΓF

= (f + div qh, v − vI) +

〈
∂

∂s
mns(βh) − qh · n, v − vI

〉
ΓF

.(5.30)

The separate terms are then estimated as follows, using the Cauchy–Schwarz inequal-
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ity and Lemma 5.1:

∣∣(f + div qh, v − vI)
∣∣ =

∣∣∣∣∣
∑

K∈Ch

(fh + div qh, v − vI)K

∣∣∣∣∣
≤
( ∑

K∈Ch

h4
K‖f + div qh‖2

0,K

)1/2( ∑
K∈Ch

h−4
K ‖v − vI‖2

0,K

)1/2

≤ C

( ∑
K∈Ch

h4
K‖f + div qh‖0,K

)1/2( ∑
K∈Ch

|v|22,h/2,K
)1/2

≤ C

( ∑
K∈Ch

η̃2
K

)1/2

(5.31)

and ∣∣∣∣∣
〈

∂

∂s
mns(βh) − qh · n, v − vI

〉
ΓF

∣∣∣∣∣ =
∣∣∣∣∣
∑

E∈Fh

〈
∂

∂s
mns(βh) − qh · n, v − vI

〉
E

∣∣∣∣∣
≤
( ∑

E∈Fh

h3
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
2

0,E

)1/2( ∑
E∈Fh

h−3
E ‖v − vI‖2

0,E

)1/2

≤ C

( ∑
E∈Fh

η2
F,E

)1/2( ∑
K∈Ch

|v|22,h/2,K
)1/2

≤ C

( ∑
E∈Fh

η2
F,E

)1/2

.(5.32)

The last term in A is readily estimated by scaling estimates and Lemma 5.1:∣∣∣∣∣
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI)] · s

〉
E

∣∣∣∣∣
≤
( ∑

E∈Fh

h−1
E ‖∇wh − βh‖2

0,E

)1/2( ∑
E∈Fh

h−1
E ‖∇(v − vI)‖2

0,E

)1/2

≤ C

( ∑
K∈Ch

h−2
K ‖∇wh − βh‖2

0,K

)1/2( ∑
E∈Fh

h−3
E ‖v − vI‖2

0,E

)1/2

≤ C

( ∑
K∈Ch

η̃2
K

)1/2( ∑
K∈Ch

|v|22,h/2,K
)1/2

≤ C

( ∑
K∈Ch

η̃2
K

)1/2

.(5.33)

Collecting (5.30)–(5.33) we obtain

(5.34)
∣∣A∣∣ ≤ Cη.
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Step 7. We will now estimate the term B. The following terms are directly
estimated as the similar terms above:

∣∣∣〈[∇wh − βh] · s,mns(η − ηI)
〉
ΓF

∣∣∣+
∣∣∣∣∣
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [η − ηI ] · s

〉
E

∣∣∣∣∣
≤ Cη.(5.35)

Since ηI is piecewise linear, it holds that LηI|K = 0. The inverse estimate then gives

∣∣∣∣∣
∑

K∈Ch

αh2
K

(
Lβh + qh,L(η − ηI)

)
K

∣∣∣∣∣ =
∣∣∣∣∣
∑

K∈Ch

αh2
K

(
Lβh + qh,Lη

)
K

∣∣∣∣∣
≤ C

( ∑
K∈Ch

αh2
K‖Lβh + qh‖2

0,K

)1/2

‖η‖1

≤ Cη,(5.36)

where we in the last step used (5.7). The final step in estimating the term B is to
integrate by parts, use the Cauchy–Schwarz inequality, interpolation estimates, and
again (5.7):∣∣a(βh,η − ηI) −

(
qh,η − ηI

)− 〈mns(βh), [η − ηI ] · s
〉
ΓF

∣∣
=

∣∣∣∣∣−
∑

K∈Ch

(Lβh + qh,η − ηI) +
∑
E∈Ih

〈�m(βh)n�,η − ηI〉E

+〈mnn(βh), [η − ηI ] · n〉ΓS∪ΓF

∣∣∣∣∣
≤
∑

K∈Ch

‖Lβh + qh‖0,K‖η − ηI‖0,K +
∑
E∈Ih

‖�m(βh)n�‖0,E‖η − ηI‖0,E

+
∑

E∈Sh∪Fh

‖mnn(βh)‖0,E‖η − ηI‖0,E

≤ Cη.(5.37)

Collecting (5.35)–(5.37) we obtain

(5.38)
∣∣B∣∣ ≤ Cη.

Step 8. The asserted estimate now follows from (5.16), (5.25), (5.28), (5.29),
(5.34), and (5.38).

We also have the following lemma for the shear force.
Lemma 5.3. It holds that

(5.39) ‖qh/2 − qh‖−1,∗ ≤ C
(|‖(wh/2 − wh,βh/2 − βh)‖|h/2 + η

)
.

Proof. We start by observing that, referring to the definition (3.11) and its “h/2”
counterpart, qh and qh/2 are defined on different meshes and therefore with different

h2
K coefficients. However, recalling that the size ratio between the two meshes is

bounded, it is easy to check that an opportune splitting and the triangle inequality
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give

‖qh/2 − qh‖2
−1,h ≤ C

⎛
⎝ ∑

K∈Ch/2

‖∇(wh/2 − wh) − (βh/2 − βh)‖2
0,K

+
∑

K∈Ch

‖∇wh − βh‖2
0,K +

∑
K∈Ch/2

h2
K‖Lβh/2 − Lβh‖2

0,K

⎞
⎠ .(5.40)

The first and the last term in (5.40) can be bounded in terms of the |‖ · ‖|h/2 norm,
simply using the definition (4.3) and the inverse inequality

(5.41) h2
K‖Lβh/2 − Lβh‖2

0,K ≤ C‖βh/2 − βh‖2
1,K .

Therefore, recalling the definition (5.1), we get

‖qh/2 − qh‖−1,h ≤ C
(|‖(wh/2 − wh,βh/2 − βh)‖|h/2 + η

)
.(5.42)

The transition from the ‖qh/2 − qh‖−1,h norm to the ‖qh/2 − qh‖−1,∗ norm is accom-
plished by using the “Pitkäranta–Verfürth trick” with steps almost identical to those
used in Lemma 4.5, which are therefore omitted.

Joining Theorem 5.2 and Lemma 5.3 gives the following a posteriori upper bound
for the method.

Theorem 5.4. It holds that

(5.43) |‖(w − wh,β − βh)‖|h + ‖q − qh‖−1,∗ ≤ Cη.

Proof. Theorem 5.2 combined with Lemma 5.3 trivially gives

(5.44) |‖(wh/2 − wh,βh/2 − βh)‖|h/2 + ‖qh/2 − qh‖−1,∗ ≤ Cη.

From the saturation assumption it follows that

|‖(w − wh,β − βh)‖|h/2 + ‖q − qh‖−1,∗

≤ 1

1 − ρ

(|‖(wh/2 − wh,βh/2 − βh)‖|h/2 + ‖qh/2 − qh‖−1,∗
)
,(5.45)

and hence the assertion follows from (5.44).

5.2. Lower bound. In this section, we prove the efficiency of the error esti-
mator. Given any edge E of the triangulation, we define ωE as the set of all of the
triangles K ∈ Ch that have E as an edge. Given any K ∈ Ch, we define ωK as the set
of all of the triangles in Ch that share an edge with K. We then have the following
lemma [8].

Lemma 5.5. Given any edge E of the triangulation Ch, let Pk(E) be the space of
polynomials of degree at most k on E. There exists a linear operator

(5.46) ΠE : Pk(E) −→ H2
0 (ωE)

such that for all pk ∈ Pk(E) it holds that

C1‖pk‖2
0,E ≤ 〈pk,ΠE(pk)〉E ≤ ‖pk‖2

0,E ,(5.47)

‖ΠE(pk)‖0,ωE
≤ C2h

1/2
E ‖pk‖0,E ,(5.48)
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where the positive constants Ci above depend only on k and the minimum angle of the
triangles in Ch.

Next, we define a local counterpart of the negative norm defined in (4.33) for the
shear force.

(5.49) ‖r‖−1,∗,ωK
= sup

η∈V∗
η=0 in Ω\ωK

〈r,η〉
‖η‖1

.

We then have the following reliability result.
Theorem 5.6. It holds that

(5.50) ηK ≤ C
(|‖(w − wh,β − βh)‖|h,ωK

+ ‖q − qh‖−1,∗,ωK
+ h2

K‖f − fh‖0,ωK

)
,

where fh is some approximation of the load f . Here |‖ · ‖|h,ωK
and ‖ · ‖0,ωK

represent,
respectively, the standard restrictions of the norms |‖ · ‖|h and ‖ · ‖0 to the domain
ωK .

Proof. The proof of the theorem consists of bounding separately all of the addenda
of ηK in (5.5).

Step 1. We first bound the terms of η̃2
K in (5.1). Considering the right-hand side

of (5.50), the triangle inequality immediately shows that it is sufficient to bound the
term h2

K‖fh + div qh‖0,K .
Given any K ∈ Ch, let bK indicate the standard third-order polynomial bubble

function on K, scaled such that ‖bK‖L∞(K) = 1. Given K ∈ Ch, let now ϕK ∈ H2
0 (K)

be defined as

(5.51) ϕK = (fh + div qh) b2K .

The standard scaling arguments then easily show that

‖fh + div qh‖2
0,K ≤ C(fh + div qh, ϕK)K ,(5.52)

‖ϕK‖0,K ≤ C‖fh + div qh‖0,K .(5.53)

For the first term in η̃2
K , the equilibrium equation (2.13) and integration by parts

give

h2
K‖fh + div qh‖2

0,K ≤ Ch2
K(fh + div qh, ϕK)K

= Ch2
K

(
(f + div qh, ϕK)K + (fh − f, ϕK)K

)
= Ch2

K

(
(−div q + div qh, ϕK)K + (fh − f, ϕK)K

)
= Ch2

K

(
(qh − q,∇ϕK)K + (fh − f, ϕK)K

)
.(5.54)

We note, in particular, that ∇ϕK ∈ V∗ and ∇ϕK = 0 in Ω\K. Therefore, the duality
inequality and the Cauchy–Schwarz inequality followed by the inverse inequality and
the bound (5.53) lead to the estimate

Ch2
K

(
(qh − q,∇ϕK)K + (fh − f, ϕK)

)
≤ C‖q − qh‖−1,∗,K h2

K‖∇ϕK‖1,K + Ch2
K‖f − fh‖0,K‖ϕK‖0,K

≤ C
(‖q − qh‖−1,∗,K + h2

K‖f − fh‖0,K

)‖fh + div qh‖0,K .(5.55)

Combining now (5.54) with (5.55) gives

(5.56) h2
K‖fh + div qh‖0,K ≤ C

(‖q − qh‖−1,∗,K + h2
K‖f − fh‖0,K

)
.
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The second term of η̃2
K in (5.1) can be directly bounded by using the Kirchhoff

condition (2.12) with the definitions (4.1)–(4.3):

h−1
K ‖∇wh − βh‖0,K = h−1

K ‖∇(w − wh) − (β − βh)‖2
0,K

≤ |‖(w − wh,β − βh)‖|h,K .(5.57)

Step 2. We next bound the terms of η2
E in (5.2). Given now E ∈ I(K), an edge

of the element K lying in the interior of Ω, let

(5.58) ϕE = ΠE(�m(βh)n�),

where, with a little abuse of notation, the operator ΠE is intended as applied on each
single component. Then, from (5.47) with integration by parts, it follows that

h
1/2
E ‖�m(βh)n�‖2

0,E ≤ Ch
1/2
E 〈�m(βh)n�,ϕE〉E

= Ch
1/2
E

(
(Lβh,ϕE)ωE

+ (m(βh),∇ϕE)ωE

)
,(5.59)

where we recall that ωE was defined at the start of this section. Integration by parts
and the equation (2.14) immediately lead to the identity

(5.60) (m(β),∇ϕE)ωE
= −(Lβ,ϕE)ωE

= (q,ϕE)ωE
,

which, applied to (5.59), gives

h
1/2
E ‖�m(βh)n�‖2

0,E

≤ Ch
1/2
E

(
(Lβh + q,ϕE)ωE

+ (m(βh) − m(β),∇ϕE)ωE

)
= Ch

1/2
E

(
(Lβh + qh,ϕE)ωE

+ (q − qh,ϕE)ωE

+(m(βh) − m(β),∇ϕE)ωE

)
.(5.61)

Next, we bound the three terms on the right-hand side of (5.61). For the first
term, the identity (5.7), the Cauchy–Schwarz inequality, the definition (5.58), and the
bound (5.48) give

h
1/2
E (Lβh + qh,ϕE)ωE

≤ C

( ∑
K⊂ ωE

h−2
K ‖∇wh − βh‖2

0,K

)1/2

‖�m(βh)n�‖0,E

≤ C |‖(w − wh,β − βh)‖|h,ωE
‖�m(βh)n�‖0,E .(5.62)

For the second term on the right-hand side of (5.61), we note that ϕE ∈ V∗ and
ϕE = 0 in Ω\ωE . Therefore, the duality inequality and the definition (5.58) combined
with the bound (5.48) give

h
1/2
E (q − qh,ϕE)ωE

≤ h
1/2
E ‖q − qh‖−1,∗,ωE

‖ϕE‖1,ωE

≤ C‖q − qh‖−1,∗,ωE
‖�m(βh)n�‖0,E .(5.63)

For the third term of (5.61), the Cauchy–Schwarz inequality, then the inverse inequal-
ity, and finally (5.58) combined with the bound (5.48) lead to the estimate

h
1/2
E (m(βh) − m(β),∇ϕE)ωE

≤ C‖β − βh‖1,ωE
h
−1/2
K ‖ϕE‖0,ωE

≤ C‖β − βh‖1,ωE
‖�m(βh)n�‖0,E .(5.64)
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Now, by combining (5.62), (5.63), and (5.64) with (5.61) it follows that

(5.65) h
1/2
E ‖�m(βh)n�‖0,E ≤ C

(|‖(w − wh,β − βh)‖|h,ωE
+ ‖q − qh‖−1,∗,ωE

)
.

The remaining term of η2
E is bounded with similar arguments; with the notation

(5.66) ϕE = ΠE(�qh · n�),

the identity

(5.67) −(div q, ϕE)ωE
= (q,∇ϕE)ωE

with (5.54) implies

h
1/2
E ‖�q · n�‖2

0,E ≤ Ch
1/2
E 〈�q · n�, ϕE〉E

≤ Ch
1/2
E

(
(f − fh, ϕE)ωE

+ (qh − q,∇ϕE)ωE

)
.(5.68)

Finally, we note that ∇ϕE ∈ V∗ and ∇ϕE = 0 in Ω\ωE . Therefore,

(5.69) h
3/2
E ‖�qh · n�‖0,E ≤ C

(‖q − qh‖−1,∗,ωE
+ h2

K‖f − fh‖0,ωE

)
.

Step 3. Third, we bound the only term of η2
S,E in (5.3) which appears in η2

F,E as
well. Given now a triangulation edge E in S(K) ∪ F (K), let

(5.70) ϕE = ΠE(mnn(βh)).

Due to (5.47) and (2.19), integration by parts gives (here ∇ denotes the tensor-valued
gradient applied to a vector-valued function)

h
1/2
E ‖mnn(βh)‖2

0,E ≤ h
1/2
E 〈mnn(βh − β), ϕE〉E

= h
1/2
E 〈mn(βh − β), ϕEn〉E

= h
1/2
E

(
(m(βh − β),∇(ϕEn))ωE

+ (L(βh − β), ϕEn)ωE

)
,(5.71)

where n is, as usual, the chosen normal unit vector to E. For the first term, using the
Cauchy–Schwarz inequality, then the inverse inequality, and finally the bound (5.48),
we easily get

h
1/2
E (m(βh − β),∇(ϕEn))ωE

≤ h
1/2
E ‖β − βh‖1,ωE

‖∇(ϕEn)‖0,ωE

≤ C‖β − βh‖1,ωE
‖mnn(βh)‖0,E .(5.72)

For the second term in (5.71), recalling (2.14) we have

h
1/2
E (L(βh − β), ϕEn)ωE

= h
1/2
E (Lβh + qh, ϕEn)ωE

+ h
1/2
E (q − qh, ϕEn)ωE

.(5.73)

Observing now that ϕEn ∈ V∗ and ϕEn = 0 in Ω\ωE , the two terms on the right-
hand side of (5.73) can be bounded with the same arguments used above, respectively,
in (5.62) and (5.63). Omitting the details, we therefore get

h
1/2
E (L(βh − β), ϕEn)ωE

≤ C
(|‖(w − wh,β − βh)‖|h,ωE

+‖q − qh‖−1,∗,ωE

)‖mnn(βh)‖0,E .(5.74)
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From (5.71), (5.72), and (5.74) we get

(5.75) h
1/2
E ‖mnn(βh)‖0,E ≤ C

(|‖(w − wh,β − βh)‖|h,ωE
+ ‖q − qh‖−1,∗,ωE

)
.

Step 4. Finally, we bound the last term of η2
F,E in (5.4). Given now a triangulation

edge E in F (K), let

(5.76) ϕE = ΠE

(
∂

∂s
mns(βh) − qh · n

)
.

Using (5.47) and recalling (2.17), we obtain

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
2

0,E

≤ h
3/2
E

(〈
∂

∂s
mns(βh − β), ϕE

〉
E

+ 〈[q − qh] · n, ϕE〉E
)
.(5.77)

For the first term, integration by parts on the edge and simple algebra give

h
3/2
E

〈
∂

∂s
mns(βh − β), ϕE

〉
E

= h
3/2
E 〈mns(β − βh),∇ϕE · s〉E

= h
3/2
E

(〈m(β − βh)n,∇ϕE〉E − 〈mnn(β − βh),∇ϕE · n〉E
)
.(5.78)

Using again integration by parts, the first term in (5.78) can be written as

h
3/2
E 〈m(β − βh)n,∇ϕE〉E
= h

3/2
E

(
L(β − βh),∇ϕE)ωE

+ 〈m(β − βh),∇∇ϕE)ωE

)
.(5.79)

The second term in (5.77), again due to integration by parts and recalling (2.13), is
instead equivalent to

h
3/2
E 〈[q − qh] · n, ϕE〉E = h

3/2
E

(
q − qh,∇ϕE)ωE

−(fh + div qh, ϕE)ωE
− (f − fh, ϕE)ωE

)
.(5.80)

For the first term, due to (2.14) and (3.11), we now have

h
3/2
E (q − qh,∇ϕE)ωE

= h
3/2
E

(
L(βh − β),∇ϕE)ωE

− 1

αh2
ωE

(∇wh − βh,∇ϕE

)
ωE

,(5.81)

where hωE
is the size of the triangle ωE . Combining all of the identities from (5.77)

to (5.81), it follows that

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
2

0,E

≤ h
3/2
E

(
(m(β − βh),∇∇ϕE)ωE

− (mnn(β − βh),∇ϕE · n〉E

− 1

αh2
ωE

(∇wh − βh,∇ϕE)ωE
− (fh + div qh, ϕE)ωE

− (f − fh, ϕE)ωE

)
.(5.82)
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For the second term on the right-hand side of (5.82), recalling (2.17), using the
Cauchy–Schwarz inequality and the bound (5.75), we have

h
3/2
E 〈mnn(β − βh),∇ϕE · n〉E ≤ h

1/2
E ‖mnn(βh)‖0,E hE‖∇ϕE‖0,E

≤ C
(|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE

)
hE‖∇ϕE‖0,E ,(5.83)

which, using the inverse inequality and the bound (5.48), gives

h
3/2
E 〈mnn(β − βh),∇ϕE · n〉E ≤ C

(|‖(w − wh,β − βh)‖|h,ωE

+‖q − qh‖−1,∗,ωE

) ∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
0,E

.(5.84)

The remaining terms on the right-hand side of (5.82) can all be bounded using the
Cauchy–Schwarz inequality, the inverse inequality, and the bounds (5.56), (5.48) as
already shown for the similar previous cases. Without showing all of the details, we
finally get

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
2

0,E

≤ C
(|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE

+h2
K‖f − fh‖0,K

) ∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
0,E

(5.85)

or, trivially,

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
0,E

≤ C
(|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE
+ h2

K‖f − fh‖0,K

)
.(5.86)

Recalling now the definitions for ηK in (5.1) and the local negative norm in (5.49),
the proposition is proved.
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