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1 Introduction

For linearly elastic plate structures, the most commonly used plate models
in practical engineering applications are the Kirchhoff–Love and Reissner–
Mindlin models. The Reissner–Mindlin model is more accurate and usually
preferred for moderately thin plates, whereas the simpler Kirchhoff–Love
(or Kirchhoff) model becomes a valid option for thinner plate structures. In
general, the choice of the model should rest on the smoothness of the solution
for the loading and the boundary conditions considered, and on the goals of
computations [3, 2, 1]. Especially, if the shear stress is smooth enough and
the boundary effects are not of special interest, the Kirchhoff theory provides
a model with a reasonable accuracy for the bending problem of a thin plate.

From the strict numerical point of view, the Kirchhoff model carries two
non-negligible advantages. One is the presence of a single scalar field of un-
knowns, the deflections, without the additional vector field, the rotations,
needed in the Reissner–Mindlin model. The second advantage is the higher
regularity of the Kirchhoff solution, which allows, in principle, a more accu-
rate finite element approximation.

On the other hand, the fundamental difficulty in designing a finite element
method for the Kirchhoff plate bending problem originates from the corre-
sponding variational formulation, since the natural variational space for the
biharmonic problem is the second-order Sobolev space H2. Thus, differently
from the Reissner–Mindlin model, a conforming finite element approximation
of the Kirchhoff problem requires globally C1-continuous elements, such as
the well known Argyris triangle [14], which imply a high polynomial order.

A viable choice in order to avoid using high-order polynomial spaces is
to adopt non-standard finite elements, such as the Morley triangle [23, 14],
Hsieh–Clough–Tocher triangle or the Discrete Kirchhoff Triangle [4, 14]. An-
other type of classical approach is the mixed finite element method presented
in [15].

A natural alternative is, instead, to write the problem as a limit of the
Reissner–Mindlin problem written in mixed form. In the presence of free
boundary conditions, however, this leads to a method which is not consistent:
the solution of the Kirchhoff problem does not coincide with the solution of
the Reissner–Mindlin problem with the thickness set equal to zero [5, 6].
For the discretized problem, instead of the converge rate of order O(hk), the
inconsistency on the free boundary leads to an unexpected converge rate of
order O(h1/2), independently of the polynomial order k [24, 5].

A remedy to the boundary inconsistency is obtained in [16] by adding a
term penalizing the Kirchhoff condition along the free boundaries. However,
this approach requires a strong penalization leading to an ill-conditioned
discrete system. Another type of modern approach of using C0-continuous
approximations is based on continuous-discontinuous Galerkin methods and
stabilization techniques [17]. This approach, however, leads to bilinear forms
with additional terms for all inter-element boundaries.

In the more recent approach [6], we present a family of C0-continuous fi-
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nite elements for the Kirchhoff problem, which do not suffer from the bound-
ary inconsistency mentioned above. The inconsistency on the free boundaries
is treated by additional Nitsche-type terms in the bilinear form guaranteeing
the consistency, symmetry and the stability of the method (cf. [26] as well).
We emphasize that the additional terms concern the edges of the elements
on free boundaries alone. This finite element method is a modification of
the stabilized method for the Reissner–Mindlin plates in [25]. The family in-
cludes ”simple low-order” elements and does not suffer from the conditioning
problems of the one in [16]. The optimal convergence rate of the method,
with respect to the solution regularity and the polynomial degree, is proved
in [6] and it holds even in the presence of free boundaries. Furthermore, in
[6] a local a-posteriori error indicator is presented and it is shown to be both
reliable and efficient – reliable in the sense that it provides an upper bound
for the true error, efficient in the sense that it gives a lower bound.

Our aim in the present paper is to accomplish a comprehensive numerical
testing for the theoretical results derived in [6]. Therefore, we perform a wide
range of benchmark computations, in order to verify the theoretical a-priori
error estimates and illustrate the robustness of the residual based a-posteriori
error estimator. The numerical tests comprise different kinds of convex and
non-convex domains, boundary conditions and loadings. For this paper to be
rather self-contained, we review the main results given in [6]. In particular,
we give here a more detailed and constructive motivation for the method,
starting from the first ideas by Hughes and Franca [19] of using Galerkin-
least-squares (or stabilized) ideas for plates. Furthermore, we include the
straightforward stability proof in the present paper.

It is further to be noted that in the literature there seems to occur no other
a-posteriori error analysis for Kirchhoff plates than the one in [13] for the
mixed Ciarlet–Raviart formulation with clamped boundaries, the analysis in
[7] for the classical non-conforming Morley element [23, 14, 22] in the clamped
case and our analysis in [6] for the present formulation with clamped, simply
supported or free boundaries.

The paper is organized as follows. In the next Section, we recall the
Kirchhoff plate bending model. In Section 3, we derive and present the new
finite element family. Then, in Sections 4 and 5, respectively, we state the
main results of the theoretical a-priori and a-posteriori error analysis of [6].
In Section 6, we finally present the numerical results, divided into an a-priori
and an a-posteriori part, confirming the theory of the previous sections and
the applicability of the method.

2 The Kirchhoff plate bending problem

We consider the bending problem of an isotropic linearly elastic plate under
the transverse loading g. The midsurface of the undeformed plate is described
by a convex polygonal domain Ω ⊂ R

2. The plate is considered to be clamped
on the part ΓC of its boundary ∂Ω, simply supported on the part ΓS ⊂ ∂Ω
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and free on ΓF ⊂ ∂Ω. With V we indicate the collection of all the corner
points in ΓF corresponding to an angle of the free boundary.

2.1 The biharmonic formulation

First, we define the material constants for the model: The bending modulus
and the shear modulus, respectively, are denoted by

D =
Et3

12(1 − ν2)
and G =

E

2(1 + ν)
, (2.1)

with the Young modulus E and the Poisson ratio ν for the material. The
thickness of the plate is denoted by t.

In the sequel, we need the following partial differential operators: The
strain tensor ε is defined as the symmetric tensor gradient

ε(η) =
(

∇η + (∇η)T ) with ∇η =

(

∂ηx

∂x
∂ηx

∂y
∂ηy

∂x
∂ηy

∂y

)

. (2.2)

The vector gradient and the vector divergence are defined as usual, while the
tensor divergence is defined as

div σ =

(

∂σxx

∂x
+ ∂σxy

∂y
∂σyx

∂x
+ ∂σyy

∂y

)

. (2.3)

Next, we define the physical quantities for the problem: The bending
moment is defined as

M(∇w) = D
(

(1 − ν)ε(∇w) + ν div∇wI
)

, (2.4)

which implies that the shear force Q satisfies the equilibrium equation:

Q = −div M and − div Q = g . (2.5)

With these notation, and assuming that the load is sufficiently regular, the
Kirchhoff plate bending problem can be written as the well known biharmonic
problem: Find the deflection w such that

D∆2w = g in Ω ,

w = 0 , ∇w · n = 0 on ΓC ,

w = 0 , n · Mn = 0 on ΓS ,

n · Mn = 0 , ∂
∂s

(s · Mn) + n · div M = 0 on ΓF ,

(s1 · Mn1)(c) = (s2 · Mn2)(c) ∀c ∈ V ,

(2.6)

where n and s are, respectively, the unit outward normal and the unit coun-
terclockwise tangent to the boundary. By the indices 1 and 2 we denote the
sides of the boundary angle at a corner point c.
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2.2 The scaled mixed formulation

For our analysis, it is convenient to introduce the mixed formulation. First,
we assume that the loading is scaled as g = Gt3f with f fixed. Then the
problem (2.6) becomes independent of the plate thickness:

1

6(1 − ν)
∆2w = f in Ω . (2.7)

The corresponding scaled moment and shear force are, respectively,

m(∇w) =
M(∇w)

Gt3
and q =

Q

Gt3
. (2.8)

In the mixed formulation, the rotation and the shear force, respectively,
are taken as new unknowns:

β = ∇w and q = −div m(β) = −Lβ , (2.9)

where we have introduced a partial differential operator L. Now, the scaled
mixed problem reads: find the deflection w, rotation β and the shear force q

such that

−div q = f , (2.10)

Lβ + q = 0 , (2.11)

∇w − β = 0 , in Ω , (2.12)

with the boundary conditions

w = 0 , β = 0 , on ΓC , (2.13)

w = 0 , β · s = 0 , n · m(β)n = 0 , on ΓS , (2.14)

∂w

∂s
−β ·s = 0 , n ·m(β)n = 0 ,

∂

∂s
(s·m(β)n)−q ·n = 0 , on ΓF , (2.15)

and the corner conditions

(s1 · m(β)n1)(c) = (s2 · m(β)n2)(c) ∀c ∈ V . (2.16)

The function spaces for the kinematic unknowns w and β are defined as

W =
{

v ∈ H1(Ω) | v = 0 on ΓC ∪ ΓS

}

, (2.17)

V =
{

η ∈ [H1(Ω)]2 | η = 0 on ΓC , η · s = 0 on ΓS

}

. (2.18)

3 The finite element method

In this section, we will introduce our finite element method. We start by
presenting the approach introduced by Hughes and Franca [19] for Reissner–
Mindlin plates and apply it for the Kirchhoff model. Then, following our
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earlier papers [25, 20], we show how the method formulated in kinematic
variables can be obtained.

Even if our method is stable for all choices of finite element spaces, we
will, for simplicity, present it for the polynomial degrees that yield an optimal
convergence rate. Hence, let a regular family of meshes on Ω be given. For
the integer k ≥ 1, we then define the discrete spaces

Wh = {w ∈ W | w|K ∈ Rk+1(K) ∀K ∈ Ch} , (3.1)

Vh = {η ∈ V | η|K ∈ [Rk(K)]2 ∀K ∈ Ch} , (3.2)

for the approximations of the deflection and the rotation, respectively. Here
Ch represents the collection of all the elements K of the mesh. The local
polynomial spaces are defines as follows:

Rk(K) =

{

Pk(K) for triangular K
Qk(K) for quadrilateral K ,

(3.3)

where Pk(K) is the space of polynomials of degree at most k on a triangle K
and Qk(K) is the corresponding space for quadrangles. We note that mixing
triangular and quadrilateral elements in the mesh is allowed.

In the sequel, we will indicate with hK the diameter of each element
K, while h will indicate the maximum size of all the elements in the mesh.
Furthermore, we will indicate with E a general edge of the triangulation and
with hE the length of E . In the derivation of the method, we will use the
auxiliar space

Qh = {r ∈ [L2(Ω)]2 | r|K ∈ [Rl(K)]2 ∀K ∈ Ch} , (3.4)

for some l ≥ k − 1. The integer value l will be specified below.
To derive the method, in the framework of Hughes and Franca [19], we

take the inner product of the partial differential equation (2.11) with a test
function η ∈ Vh and integrate by parts yielding

a(β, η) − 〈m(β)n, η〉Γ − (q, η) = 0 , (3.5)

where
a(β, η) = (m(β), ε(η)) . (3.6)

Here and below, 〈·, ·〉Γ denotes the L2-inner product along the boundary Γ.
Using the boundary conditions (2.14) and (2.15), and the ones in (2.18)

imposed on η, we have

〈m(β)n, η〉Γ = 〈n · m(β)n, η · n〉Γ + 〈s · m(β)n, η · s〉Γ
= 〈s · m(β)n, η · s〉ΓF

. (3.7)

Hence, it holds

a(β, η) − 〈s · m(β)n, η · s〉ΓF
− (q, η) = 0 . (3.8)
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Next, we take the inner product of the equilibrium equation (2.10) with
v ∈ Wh, integrate by parts, use the boundary conditions imposed in Wh ⊂ W
and the third boundary condition in (2.15), which gives

0 = (div q + f, v) = (f, v) − (q,∇v) + 〈q · n, v〉Γ
= (f, v) − (q,∇v) + 〈q · n, v〉ΓF

= (f, v) − (q,∇v) +
〈 ∂

∂s
(s · m(β)n), v

〉

ΓF

. (3.9)

Next, the last part above is treated by integration by parts and using the
corner conditions (2.16),

〈 ∂

∂s
(s · m(β)n), v

〉

ΓF

= −〈s · m(β)n,∇v · s〉ΓF
. (3.10)

Inserting this in the preceding equation we get

(q,∇v) + 〈s · m(β)n,∇v · s〉ΓF
= (f, v) . (3.11)

Now, combining (3.8) and (3.11) we see that the solution triple (w, β, q)
satisfies

a(β, η) + (q,∇v − η) + 〈s · m(β)n, [∇v − η] · s〉ΓF
= (f, v) (3.12)

for all (v, η) ∈ Wh × Vh. To symmetrize the formulation above, we add the
relation

(∇w − β, r) = 0 , (3.13)

for r ∈ Qh, obtained from (2.12), and

〈[∇w − β] · s, s · m(η)n〉ΓF
= 0 , (3.14)

obtained from (2.15).
Combining (3.12)–(3.14) we now conclude that the solution triple (w, β, q)

to (2.11)–(2.16) satisfies

a(β, η) + (q,∇v − η) + (∇w − β, r)

+ 〈s · m(β)n, [∇v − η] · s〉ΓF
+ 〈[∇w − β] · s, s · m(η)n〉ΓF

= (f, v) , (3.15)

for all (v, η, r) ∈ Wh ×Vh ×Qh. This formulation we stabilize by adding the
following ”least-squares” terms

−α
∑

K∈Ch

h2
K(Lβ + q, Lη + r)K = 0 , (3.16)

γ
∑

E∈Fh

h−1
E 〈[∇w − β] · s, [∇v − η] · s〉E = 0 , (3.17)

µ
∑

K∈Ch

h−2
K (∇w − β,∇v − η)K = 0 , (3.18)
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with α > 0, γ > 0, µ > 0. Here Fh represents the collection of all the
boundary edges on ΓF. These consistent terms are obtained from (2.11),
(2.15) and (2.12), respectively.

Hence, we conclude that the exact solution satisfies

Mh(w, β, q; v, η, r) = (f, v) ∀(v, η, r) ∈ Wh × Vh × Qh , (3.19)

with (now (w, β, q) are dummy variables)

Mh(w, β, q; v, η, r) = a(β, η) + (q,∇v − η) + (∇w − β, r)

+ 〈s · m(β)n, [∇v − η] · s〉ΓF

+ 〈[∇w − β] · s, s · m(η)n〉ΓF

− α
∑

K∈Ch

h2
K(Lβ + q, Lη + r)K

+ γ
∑

E∈Fh

h−1
E 〈[∇w − β] · s, [∇v − η] · s〉E

+ µ
∑

K∈Ch

h−2
K (∇w − β,∇v − η)K . (3.20)

The stabilized method in the spirit of Hughes and Franca [19] would then
read:

Method 3.1. Find (wh, βh, qh) ∈ Wh × Vh × Qh such that

Mh(wh, βh, qh; v, η, r) = (f, v) ∀(v, η, r) ∈ Wh × Vh × Qh . (3.21)

It is quite easy to see that this formulation is stable if 0 < µ < 1, 0 <
α < CI/4 and γ > 2/C ′

I, where CI and C ′
I are constants in inverse estimates,

see below.

Next, the shear force would be eliminated by local condensation and hence
the first conclusion would be to choose the shear space as small as possible,
but still having an optimal convergence rate. This would lead to the choice
l = k − 1.

There is, however, other alternatives that we will utilize. First, as ob-
served in [20], it turns out that when choosing the spaces so that ∇Wh ⊂ Qh,
i.e., choosing l ≥ k, then the ”µ-term”can be dropped without sacrificing sta-
bility. Furthermore, as in [20], we now note that when we further enlarge the
shear space such that Vh ⊂ Qh (i.e., l ≥ k+1), then the ”local condensation”
can be done analytically yielding

qh|K =
1

αh2
K

(∇wh − βh − αh2
KLβh)|K ∀K ∈ Ch . (3.22)

Now, substituting this into (3.21) gives our stabilized formulation of kine-
matic variables.
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Method 3.2. Find (wh, βh) ∈ Wh × Vh such that

Ah(wh, βh; v, η) = (f, v) ∀(v, η) ∈ Wh × Vh , (3.23)

where the bilinear form is defined as

Ah(z, φ; v, η) = Bh(z, φ; v, η) + Dh(z, φ; v, η) , (3.24)

where

Bh(z, φ; v, η)

= a(φ, η) −
∑

K∈Ch

αh2
K(Lφ, Lη)K

+
∑

K∈Ch

1

αh2
K

(∇z − φ − αh2
KLφ,∇v − η − αh2

KLη)K (3.25)

with

a(φ, η) =
1

6

(

(ε(φ), ε(η)) +
ν

1 − ν
(div φ, div η)

)

, (3.26)

and

Dh(z, φ; v, η) = 〈mns(φ), [∇v − η] · s〉ΓF
+ 〈[∇z − φ] · s, mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇z − φ] · s, [∇v − η] · s〉E (3.27)

for all (z, φ), (v, η) ∈ Wh × Vh, with mns = s · mn.

From the way we have arrived at our formulation, it is clear that it is
consistent.

Theorem 3.1. The exact solution (w, β) ∈ W × V satisfies

Ah(w, β; v, η) = (f, v) ∀(v, η) ∈ Wh × Vh . (3.28)

The consistency can be verified directly from the final formulation above
as well, cf. [6].

Remark 3.1. We have split the discrete bilinear form as Ah = Bh + Dh.
Here Bh is the one obtained from the formulation of [25] by formally setting
the (scaled) thickness t = 0. This would yield an inconsistent method with
a convergence rate O(h1/2), cf. [6]. The first term in Dh yields the method
consistent. The other two terms are for achieving the symmetry and stability.

Remark 3.2. Although the polynomial orders for the deflection and the
rotation are different, the method can be easily implemented in a software
framework providing hierarchial shape functions. Furthermore, implementing
the lowest order element with k = 1 is straightforward even in a framework
that provides only the standard nodal shape functions of equal order for
different variables. Moreover, in this case, it holds that Lη|K = 0 for all
K ∈ Ch, η ∈ V h, and we have

Bh(z, φ; v, η) = a(φ, η) +
∑

K∈Ch

1

αh2
K

(∇z − φ,∇v − η)K . (3.29)

Now, no upper limit has to be imposed on α.
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4 Stability and a-priori error estimates

Here we show that our method is optimally convergent. For the deflection and
the rotation (v, η) ∈ Wh × Vh, we introduce the following mesh dependent
norms:

|(v, η)|2h =
∑

K∈Ch

h−2
K ‖∇v − η‖2

0,K , (4.1)

‖v‖2
2,h = ‖v‖2

1 +
∑

K∈Ch

|v|22,K +
∑

E∈Ih

h−1
E ‖ J

∂v

∂n
K ‖2

0,E +
∑

E⊂ΓC

h−1
E ‖ ∂v

∂n
‖2

0,E ,

(4.2)

|||(v, η)|||h = ‖η‖1 + ‖v‖2,h + |(v, η)|h , (4.3)

where Ih represents the collection of all the edges of the triangulation lying
in the interior of the domain Ω. Here J ∂v

∂n
K|E denotes the jump of ∂v

∂n
across

the edge E .

For the error estimation of the deflection and the rotation, we use a
practical alternative to the norm (4.3) in the computations of Section 6 as
well as in the stability proof below. This auxiliar norm is equivalent to the
norm ||| · |||h:

Lemma 4.1. There exists a positive constant C such that

C|||(v, η)|||h ≤ ‖η‖1 + |(v, η)|h ≤ |||(v, η)|||h ∀(v, η) ∈ Wh × Vh . (4.4)

For the a-priori error estimate, we first prove the stability of the method.
Before this, we state the following two inverse inequalities which trivially
follow from classical scaling arguments and the coercivity of the bilinear
form a.

Lemma 4.2. Given any triangulation Ch, there exist positive constants CI

and C ′
I such that,

CI

∑

K∈Ch

h2
K‖Lφ‖2

0,K ≤ a(φ, φ) ∀φ ∈ Vh , (4.5)

C ′
I

∑

E∈Fh

hE ‖mns(φ)‖2
0,E ≤ a(φ, φ) ∀φ ∈ Vh . (4.6)

As the stability is the crucial property of the method, we repeat the proof
below. We want to stress that the proof is independent of the choice of the
local polynomial spaces.

Theorem 4.1. Let 0 < α < CI/4 and γ > 2/C ′
I. Then there exists a positive

constant C such that

Ah(v, η; v, η) ≥ C|||(v, η)|||2h ∀(v, η) ∈ Wh × Vh . (4.7)
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Proof. First, the definition (3.25) for the bilinear form and the first inverse
estimate of Lemma 4.2 gives

Bh(v, η; v, η)

= a(η, η) −
∑

K∈Ch

αh2
K‖Lη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥
(

1 − α

CI

)

a(η, η) +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K . (4.8)

Next, by using the definition (3.27), Cauchy’s and Young’s inequalities, and
the second inverse inequality of Lemma 4.2, we obtain

Dh(v, η; v, η) =
∑

E∈Fh

(

2(mns(η), [∇v − η] · s)E +
γ

hE

‖[∇v − η] · s‖2
0,E

)

≥
∑

E∈Fh

(

− γ

hE

‖[∇v − η] · s‖2
0,E − γ−1hE ‖mns(η)‖2

0,E

+
γ

hE

‖[∇v − η] · s‖2
0,E

)

= −
∑

E∈Fh

γ−1hE ‖mns(η)‖2
0,E

≥ − 1

γC ′
I

a(η, η) ≥ −1

2
a(η, η) . (4.9)

Joining (4.8) with (4.9) and using Korn’s inequality leads to

Bh(v, η; v, η) + Dh(v, η; v, η)

≥
(1

2
− α

CI

)

a(η, η) +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥ C
(

‖η‖2
1 +

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)

. (4.10)

From the triangle inequality, the first inverse estimate of Lemma 4.2, and the
boundedness of the bilinear form a, it follows

∑

K∈Ch

1

αh2
K

‖∇v − η‖2
0,K

≤ 2
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖αh2
KLη‖2

0,K

)

≤ 2
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

αh2
K‖Lη‖2

0,K

)

≤ C
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + a(η, η)
)

≤ C
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + ‖η‖2
1

)

, (4.11)
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which, combined with (4.1) and (4.10), gives

Ah(v, η; v, η) ≥ C
(

‖η‖2
1 + |(v, η)|2h

)

. (4.12)

The result then follows from the norm equivalenve of Lemma 4.1.

We then have the following a-priori error estimate, which directly follows
from the stability, consistency and the interpolation estimates, see [6].

Theorem 4.2. Suppose that 0 < α < CI/4 and γ > 2/C ′
I, and that the exact

solution satisfies w ∈ Hs+2(Ω), with 1 ≤ s ≤ k. Then it holds

|||(w − wh, β − βh)|||h ≤ Chs‖w‖s+2 . (4.13)

For the error analysis of the shear force, we note that the discrete shear
force defined in (3.22) is a consistent approximation since it follows from
(2.11) and (2.12) that the exact shear force satisfies

q|K =
1

αh2
K

(∇w − β − αh2
KLβ)|K ∀K ∈ Ch . (4.14)

Now, the practical norm to use is the discrete negative norm defined as

‖r‖−1,h =
(

∑

K∈Ch

h2
K‖r‖2

0,K

)1/2

. (4.15)

With the assumption w ∈ Hs+2(Ω), s ≥ 1, it holds that q ∈ L2(Ω), and we
then have the following estimate [6]:

Lemma 4.3. Suppose that 0 < α < CI/4 and γ > 2/C ′
I , and that the exact

solution satisfies w ∈ Hs+2(Ω), with 1 ≤ s ≤ k. Then it holds

‖q − qh‖−1,h ≤ Chs‖w‖s+2 . (4.16)

For an estimate in a non-discrete dual norm, we introduce the following
notation: with the space

V ∗ = {η ∈ [H1(Ω)]2 | η = 0 on ΓC, η · s = 0 on ΓF ∪ ΓS} , (4.17)

we define the dual norm as

‖r‖−1,∗ = sup
η∈V ∗

〈r, η〉
‖η‖1

. (4.18)

Now, the corresponding error estimate is the following [6]:

Lemma 4.4. It holds

‖q − qh‖−1,∗ ≤ Chs‖w‖s+2 . (4.19)

This dual norm and its local counterpart will be used in the a-posteriori
error bounds below. For further discussion on a-priori error bounds and
regularity, we refer to [6].
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5 A-posteriori error estimates

We now briefly recall the reliability and efficiency results for the a-posteriori
error estimator presented in [6]. To this end, we introduce

η̃2
K := h4

K‖f + div qh‖2
0,K + h−2

K ‖∇wh − βh‖2
0,K , (5.1)

η2
E := h3

E‖Jqh · nK‖2
0,E + hE‖Jm(βh)nK‖2

0,E , (5.2)

η2
S,E := hE‖mnn(βh)‖2

0,E , (5.3)

η2
F,E := hE‖mnn(βh)‖2

0,E + h3
E‖

∂

∂s
mns(βh) − qh · n‖2

0,E , (5.4)

where mns = s · mn, mnn = n · mn and J·K represents the jump operator
(which is assumed to be equal to the function value on boundary edges).
Then, for any element K ∈ Ch, the local error indicator is defined as

ηK :=
(

η̃2
K +

1

2

∑

E∈I(K)

η2
E +

∑

E∈S(K)

η2
S,E +

∑

E∈F (K)

η2
F,E

)1/2

, (5.5)

where I(K) denotes the edges of the element K lying in the interior of Ω,
while S(K) and F (K) represent the edges of K on ΓS and on ΓF, respectively.
Finally, the global error indicator is defined as

η :=
(

∑

K∈Ch

η2
K

)1/2

. (5.6)

For the error analysis in [6], we have assumed that a classical saturation
assumption holds. We then have the following efficiency and reliability results
for the error estimator.

Theorem 5.1. Let 0 < α < CI/4 and γ > 2/C ′
I . Then there exists a positive

constant C such that

|||(w − wh, β − βh)|||h + ‖q − qh‖−1,∗ ≤ Cη . (5.7)

For the lower bound, we define a local counterpart of the negative norm
defined in (4.18) for the shear force:

‖r‖−1,∗,ωK
= sup

η∈V∗

η=0 in Ω\ωK

〈r, η〉
‖η‖1

. (5.8)

We then have the following reliability result:

Theorem 5.2. Let 0 < α < CI/4 and γ > 2/C ′
I, and let ωK be the collection

of all the elements sharing an edge with the element K. Then it holds

ηK ≤ C
(

|||(w−wh, β−βh)|||h,ωK
+‖q−qh‖−1,∗,ωK

+h2
K‖f−fh‖0,ωK

)

, (5.9)

where fh is some approximation of the load f and |||·|||h,ωK
, ‖·‖0,ωK

represent,
respectively, the standard restrictions of the norms ||| · |||h and ‖ · ‖0 to the
domain ωK.

The proofs of these results can be found in [6].
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6 Numerical results

In this section, we consider various benchmark tests with different kinds of
domains, boundary conditions and loadings. First, we show the convergence
results concerning the a-priori error estimates for the new Kirchhoff method
and the corresponding Reissner–Mindlin limit method, i.e., respectively, with
and without the additional bilinear form Dh in (3.27) for free boundary edges.
Second, we present the results for the a-posteriori error estimator of the new
method for various benchmark problems.

6.1 Constants in the computations

In all the cases, the values E = 1 and ν = 0.3 have been used for the
material constants. The stability constants we have chosen for the lowest
order element with k = 1 are α = 0.1 and γ = 100.

For the degree k = 2, we have used local stability constants inspired by
the inverse inequalities of Lemma 4.2. For any element K, the local stability
constant αK can be defined by

1

αK
= θ−1 max

φ∈Pk(K), aK(φ,φ)6=0

h2
K‖Lφ‖2

0,K

aK(φ, φ)
, (6.1)

where aK represents the form a in (3.26) restricted to the element K, while
for the parameter θ satisfying 0 < θ < 1/4, we have used the value θ = 1/10.
Similarly, for an edge E on the free boundary, a local constant γE can be
defined by

γE = δ max
φ∈Pk(K), aK (φ,φ)6=0

hE‖mns(φ)‖2
0,E

aK(φ, φ)
, (6.2)

where for the parameter δ > 2, we have used the value δ = 3.

We emphasize that the method is not very sensitive with respect to the
stability parameters. Instead of the local parameters defined above, a wide
range of global parameters, satisfying the inequalities α < αK , γ > γK for
all K ∈ Ch, can be used in computations, see Lemma 4.2 and Theorem 4.2.

6.2 An a-priori test

We consider the following Kirchhoff bending problem of a semi-infinite plate.
The midsurface and the boundary of the plate, respectively, are described by
the sets

Ω = {(x, y) ∈ R
2 | y > 0} and Γ = {(x, y) ∈ R

2 | y = 0} . (6.3)

The plate is assumed to be free on the boundary Γ and subjected to the
transverse loading f(x) = cos x/G. The exact x-periodic solution of this
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problem is given in [1]:

w =
(

1/A + be−y + dye−y
)

cos x ,

βx =
(

− 1/A − be−y − dye−y
)

sin x , (6.4)

βy =
(

− be−y + d(1 − y)e−y
)

cos x ,

where A = G/(6(1 − ν)). The coefficients b and d, depending on G and ν,
are given in the reference [1] for different types of boundary conditions on Γ.

Due to the smoothness of the solution, from Theorem 4.2 and Lemma 4.1
it immediately follows the convergence rate

‖β − βh‖1 + |(w − wh, β − βh)|h = O(hk) . (6.5)

On the contrary, according to the observations in [6, 5], the convergence rate
for the Reissner–Mindlin limit method, without the additional bilinear form
Dh, should be of order O(h1/2).

We discretize the domain D = (0, π/2)× (0, 3π/4) and set the symmetry
conditions on the vertical boundaries {x = 0, 0 ≤ y ≤ 3π/4} and {x =
π/2, 0 ≤ y ≤ 3π/4}, while on the upper horizontal boundary {y = 3π/4, 0 ≤
x ≤ π/2} we use the non-homogeneus Dirichlet conditions adopting the exact
solution as a reference. Some sample meshes are shown in Figure 1.

Let Db represent the boundary domain [0, π/2] × [0, π/4], see Figure 1.
First, in Figure 2 (left), we show the error convergence for the moment com-
ponent mns in the norm L2(Db), for the polynomial degrees k = 1, 2. The
dashed line represents the convergence graph for the Reissner–Mindlin limit
method, i.e., without the correction Dh in (3.27), while the solid line refers
to the new formulation, Method 3.2. As predicted by the theory, the con-
vergence rate for the Reissner–Mindlin limit method is O(h1/2), while the
modified method follows the rate O(hk). In Figure 2 (right), the error is
measured in the norm of (6.5) which is equivalent to the norm ||| · |||h (cf.
Lemma 4.1). In this norm as well, the convergence rate for Method 3.2 is of
the correct order O(hk). For the Reissner–Mindlin limit method with k = 1,
only a slight deterioration of the convergence rate is visible, while the case
k = 2 again clearly follows the rate O(h1/2).

6.3 A-posteriori tests

In this section, we illustrate the robustness of the local error estimator by
means of convergence graphs and meshes obtained from adaptively and uni-
formly refined computations. We restrict ourselves to the case of the lowest
order element with k = 1, i.e., with a linear rotation and a quadratic deflec-
tion.

For the first three problems, with convex rectangular domains, the exact
solution can be found in the form of a trigonometric-hyperbolic series which
we have used as a reference solution. In these problems, we compare the
behavior of the estimated and true error, reported as the effectivity index,
i.e., the ratio between these two errors. With these problems, we show that
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the effectivity index remains on a certain almost constant level, uniformly in
the mesh size.

We then consider a set of problems with nonconvex domains, for which
the behavior of the estimated errors are reported alone, due to the lack of
exact solutions. In these problems, we focus on the comparison between
the estimated errors for uniform and adaptive refinements. These problems
comprise different types of boundary conditions as well.

6.3.1 The adaptive solution strategy

For the adaptive computations, we have implemented Method 3.2 in the
open-source finite element software Elmer [18]. For adaptivity, we have used
the following strategy. In the beginning, we prescribe a coarse starting mesh.
Then, after computing the approximate solution and the corresponding error
estimators, a complete remeshing is done by using Delaunay triangulations.
The refining–coarsening strategy is based on the local error indicators and
on the assumption that the local error is of the form

ηK = CKhpK

K , (6.6)

for some constants CK and pK . The new mesh is then built with the aim of
having the error uniformly distributed over the elements. This approach is
usually called the error balancing strategy.

The stopping criteria for the adaptive process is either a given tolerance
for the maximum local estimator or the number of refinement steps. Between
two subsequent adaptive steps we have used the value 1.5 for the change of
the relative local mesh density ratio. For example, a subdomain currently
covered by six elements is after the next remeshing step covered by four to
nine elements. For the element size, neither a maximum nor a minimum have
been prescribed.

6.3.2 Convex rectangular domains

For the first three problems, we compare the behavior of the estimated and
true error, finally reported as the effectivity index, i.e., the ratio between
these two errors.

Rectangle with simply supported boundaries. We consider the
simply supported rectangle Ω = (0, 1) × (−1, 1) with the uniform loading
f = 1. The exact solution for the problem can be found by writing the
load as a trigonometric series in which the constants Lx and Ly denote the
side lenghts of the rectangle, in the x- and y-direction, respectively. For the
uniform load, it holds

f =
∑

i,j∈N

χi,j sin(
iπ

Lx
x) sin(

jπ

Ly
y) , χi,j =

16f

π2ij
, (6.7)
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where the sum is only for odd indices i, j. After some calculation, we get for
the solution [27]

w =
∑

i,j∈N

$i,j sin(
iπ

Lx
x) sin(

jπ

Ly
y) , $i,j =

6χi,j

π4(1 − ν)( i2

L2
x

+ j2

L2
y
)2

. (6.8)

In our tests, it has been enough to take into account the first ten terms from
the series of the reference solution (6.8).

According to [21, 8], the critical corner regularity is now w ∈ H3(Ω). This
implies, by Theorem 4.2 and Lemma 4.1, the convergence rate O(hσ) with
σ = min{1, k} = 1. We note that for quasiuniform meshes, it holds that
h ∼ N−1/2, where N denotes the number of elements in the mesh.

The convergence graphs for the adaptively refined meshes are shown in
Figure 4 (right). The two upper graphs (solid lines) represent, respectively,
the global error estimator (asterisks) and the global true error (squares), while
the lower ones (dashed lines) are, respectively, the maximum local estimator
(asterisks) and the maximum of the local true errors (squares). For clarity,
the convergence rate O(h) is indicated in the same figure as well (dashed
line).

All the convergence curves are in agreement with the theoretical results.
Moreover, we emphasize that, in this problem with simply supported bound-
aries, the behavior of the estimated error is almost identical with the true
error, up to a multiplicative constant, cf. the effectivity index reported below.
Finally, the deflection of the problem is illustrated in Figure 4 (left).

Rectangle with simply supported and free boundaries. Second,
we consider the rectangle Ω = (0, 1)× (−1, 1) with the simply supported left
and right boundaries {x = 0,−1 ≤ y ≤ 1}, {x = 1,−1 ≤ y ≤ 1} and free
bottom and top boundaries {y = −1, 0 ≤ x ≤ 1}, {y = 1, 0 ≤ x ≤ 1}. As
above, the loading is constant, f = 1. The exact solution for the problem can
be found by writing the load as a trigonometric series in which the constant
Lx denotes the side length of the rectangle in the x-direction. For the uniform
loading,

f =
∑

i∈N

χi sin(
iπ

Lx
x) , χi =

4f

πi
, (6.9)

where the sum is only for odd indices i. Then, the solution is written in the
form w = w0 + wf , where ∆2w0 = 0 and ∆2wf = 6(1 − ν)f . Now, we have

wf =
∑

i∈N

$i sin(
iπ

Lx

x) , $i =
6(1 − ν)χi

( iπ
Lx

)4
, (6.10)

and

w0 =
∑

i∈N

(
Lx

iπ
)2
(

ξi cosh(
iπ

Lx
y) + ϕi

iπ

Lx
y sinh(

iπ

Lx
y)
)

sin(
iπ

Lx
x) . (6.11)

The constants ξi and ϕi are determined by the boundary conditions on the
free boundaries (for more details, see [27]).
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According to [21, 8], the regularity in the corners is again w ∈ H3(Ω)
which implies the convergence rate O(hσ) = 1.

The convergence graphs for the adaptively refined meshes are plotted in
Figure 5 (left), the two upper graphs (solid lines) are for the global errors,
the lower ones (dashed lines) for the maximum local errors.

Again, the convergence rate of the global errors is the same as the theo-
retical value of this problem. We note that, in this problem, including free
boundaries as well, the behavior of the estimated error is almost identical
with the true error, up to a multiplicative constant, cf. the effectivity index
below.

Square with clamped boundaries. Third, we consider the clamped
square Ω = (−1, 1) × (−1, 1) with the uniform loading f = 1. In order
to find the exact solution, we apply the following steps given with details
in [27]. First, we take a solution wS, in a form of a trigometric series, for
the same problem but with simply supported boundaries. This gives us the
corresponding rotation βS. Then, enforcing boundary moments along the
boundaries, we derive the corresponding particular deflection wM and the
corresponding rotation βM . Finally, the rotation β = βS +βM has to vanish
on the clamped boundaries, which gives the final form for the rotation, and
for the deflection w = wS + wM as well.

According to [21, 8, 9], the regularity in the corners is now w ∈ H4.74(Ω).
This implies the convergence rate O(hσ), σ = min{2.74, k} = 1 for k = 1.

The convergence graphs for the adaptively refined meshes are shown in
Figure 5 (right), together with the convergence rate O(h). The same com-
ments as in the two previous problems apply for this problem as well.

Effectivity index for the different problem types. The effectivity
index for the adaptive error estimator, i.e., the ratio between the estimated
and true error, is shown in Figure 3 for the previous test problems.

The reported steps, between 8 and 9335 elements, are taken from the
adaptive refinements. As can be seen in the figure, the effectivity index lies
between 0.4 and 1.2; the dashed line representing the value 1. In all the test
cases, the effectivity index first decreases (between 8 and 200 elements) but
then remains in the range 0.4 ... 0.8 (between 200 and 9335 elements). More
precisely, in the problem with clamped boundaries (squares) the value for
the effectivity index remains around 0.5, while for the simply supported and
free boundaries (circles, triangles) it stays around 0.7 after the first steps.

The numerical computations above show that the effectivity index re-
mains on a certain almost constant level uniformly in the mesh size for all
the different types of problems. We emphasize that although we have used
here the practical norm of (6.5), the effectivity index with respect to the
norm ||| · |||h is different only up to a constant level, due to the equivalence
of these two norms. These observations indicate that the error estimator can
be used as an reliable and efficient error measure.
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6.3.3 Non-convex domains

In the sequel, we use the error estimator as the only error measure, due to
the lack of exact solutions for the following benchmark problems. A similar
approach has been applied for Reissner–Mindlin plates in [11, 12, 10].

L-shaped domain with simply supported boundaries. The first
nonconvex problem is the L-shaped domain Ω with the corners (0, 0), (2, 0),
(2, 1), (1, 1), (1, 2) and (0, 2). The plate is uniformly loaded, f = 1, and all
the boundaries are simply supported.

According to [21, 8], the regularity in the critical L-corner is now w ∈
H7/3(Ω). This implies, by Theorem 4.2 and Lemma 4.1, the convergence
rate O(hσ), σ = min{1/3, k} = 1/3.

The convergence graphs for the uniformly (circles) and adaptively (trian-
gles) refined meshes are shown in Figure 6 (right). The two upper graphs
(solid lines) represent the global error estimator, while the lower ones (dashed
lines) indicate the maximum local estimator. Moreover, we show in the same
figure the convergence rates O(h) and O(h1/3) (dashed lines). For the lowest
order element with k = 1, the convergence rate would be of order O(h) if
there was no corner singularity in the solution. Now, due to the singularity
in the simply supported L-corner, the convergence rate should be of order
O(h1/3). Finally, two example meshes from the adaptive process are depicted
in Figure 7 and the deflection is illustrated in Figure 6 (left).

First, we recall that for quasiuniform meshes, it holds that h ∼ N−1/2,
with N denoting the number of elements in the mesh. With the uniform
refinements (circles), the convergence rate of the error estimator clearly fol-
lows the value O(h1/3). This holds for both the global error estimator and
the maximum local estimator. Differently, after the first adaptive steps, the
method shows its robustness in finding the corner singularity of the solution
and refining locally near the L-corner. This is seen in both the convergence
graphs (triangles), and it is clear as well when looking at the meshes in
Figure 7.

L-shaped domain with a free corner. In this case, the two edges
forming the reentrant corner are free, while the remaining ones are simply
supported.

According to [21, 8], the regularity in the corner is now w ∈ H2.64(Ω).
This implies the convergence rate O(hσ), σ = min{0.64, k} = 0.64.

The convergence graphs for the uniformly (circles) and adaptively (trian-
gles) refined meshes are plotted in Figure 8 (right), together with the con-
vergence rates O(h) and O(h0.64) (dashed lines). Now, due to the singularity
in the free L-corner, the convergence rate should be of order O(h0.64). Two
example meshes from the adaptive process are depicted in Figure 9. Finally,
the deflection is illustrated in Figure 8 (left).

First, in the coarse mesh of Figure 9 (left), the error is concentrated near
to the free boundaries. However, after some adaptive steps the error and
refinements concentrate locally near to the L-corner, see Figure 9 (right).

L-shaped domain with a clamped corner. In this test problem, the
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two edges forming the reentrant corner are clamped, while the remaining
ones are again simply supported.

According to [21, 8, 9], the regularity in the corner is now w ∈ H2.54(Ω)
which implies the convergence rate O(hσ) with σ = 0.54.

The convergence graphs for the uniformly (circles) and adaptively (tri-
angles) refined meshes are presented in Figure 10 (right), together with the
convergence rates O(h) and O(h0.54) (dashed lines). Now, due to the sin-
gularity in the clamped L-corner, the convergence rate should be of order
O(h0.54). Two example meshes from the adaptive process are depicted in
Figure 11, and the deflection is illustrated in Figure 10 (left). The same
comments as for the simply supported L-shaped domain above apply for the
results of this problem as well.

K-shaped domain with clamped boundaries. To conclude the tests
for the Kirchhoff–Love plate, we consider a uniformly loaded, f = 1, K-
shaped ”corridor”domain with clamped boundaries. The corner points of the
domain Ω are now (0, 0), (1, 0), (1, 1), (2, 0), (2+

√
2, 0), (1.5, 2), (2+

√
2, 4),

(2, 4), (1, 3), (1, 4) and (0, 4).

According to [21, 8, 9], the regularity in the straight L-corner is again w ∈
H2.54(Ω), while in the V-corners w ∈ H2.50(Ω). This implies by Theorem 4.2
and Lemma 4.1 the convergence rate O(hσ), σ = min{0.54, 0.50, k} = 0.50.

The convergence graphs for the uniformly (circles) and adaptively (tri-
angles) refined meshes are shown in Figure 12 (right), together with the
convergence rates O(h), O(h0.54) and O(h0.50) (dashed lines). For the low-
est order element with k = 1, due to the singularities in the V-corners, the
convergence rate should be of order O(h0.50). Two example meshes from the
adaptive process are shown in Figure 13 and the deflection is illustrated in
Figure 12 (left).

In this case, there appears corner singularities of two different orders. Af-
ter the first steps, the global convergence rate for the uniform refinements
seems to follow the correct value O(h0.50). Again, after the first adaptive
steps, the method finds and clearly distinguishes all the separate corner sin-
gularities and refines locally near the L-corner and the two V-corners.
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Figure 1: Samples of the adopted meshes and the boundary domain Db.
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Figure 2: Free boundary: Convergence of the error for the moment compo-
nent mns(β) in the norm L2(Db) with k = 1, 2; Convergence of the error in
the norm ||β − βh||1,Db

+ |(w − wh, β − βh)|h,Db
with k = 1, 2; Dashed lines

for the Reissner–Mindlin limit method, solid lines for the new method.
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Figure 3: Effectivity index for the adaptive refinements: Clamped (squares),
simply supported (circles), simply supported and free (triangles) boundaries.
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Figure 4: Simply supported boundary: Deflection distribution for the first
mesh; Convergence of the true error (squares) and the error estimator (aster-
isks) for adaptive refinements; Solid lines for the global values, dashed lines
for the local maximums.
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Figure 5: Simply supported and free boundary (left); Clamped boundary
(right): Convergence of the true error (squares) and the error estimator (as-
terisks) for adaptive refinements; Solid lines for the global values, dashed
lines for the local maximums.
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Figure 6: Simply supported L-corner: Deflection distribution for the first
mesh; Convergence of the global estimator (solid lines) and the maximum
local estimator (dashed lines); Circles for the uniform refinements, triangles
for the adaptive refinements.

Figure 7: Simply supported L-corner: Distribution of the error estimator for
two different refinement steps.
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Figure 8: Free L-corner: Deflection distribution for the first mesh; Conver-
gence of the global estimator (solid lines) and the maximum local estimator
(dashed lines); Circles for the uniform refinements, triangles for the adaptive
refinements.

Figure 9: Free L-corner: Distribution of the error estimator for two different
refinement steps.
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Figure 10: Clamped L-corner: Deflection distribution for the first mesh;
Convergence of the global estimator (solid lines) and the maximum local
estimator (dashed lines); Circles for the uniform refinements, triangles for
the adaptive refinements.

Figure 11: Clamped L-corner: Distribution of the error estimator for two
different refinement steps.
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Figure 12: Clamped K-domain: Deflection distribution for the first mesh;
Convergence of the global estimator (solid lines) and the maximum local
estimator (dashed lines); Circles for the uniform refinements, triangles for
the adaptive refinements.

Figure 13: Clamped K-domain: Distribution of the error estimator for two
different refinement steps.
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