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Abstract A local a posteriori error indicator for the well known Morley
element for the Kirchhoff plate bending problem is presented. The error indica-
tor is proven to be both reliable and efficient. The technique applied is general
and it is shown to have also other applications.
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1 Introduction

We consider the classical Kirchhoff plate bending problem. The natural vari-
ational space for this biharmonic problem is the second order Sobolev space.
Thus, a conforming finite element approximation requires globally C1-
continuous elements which imply a high polynomial order. As a consequence,
nonconforming elements are a widely adopted choice. A well known finite ele-
ment for the Kirchhoff problem is the Morley element which uses just second
order piecewise polynomial functions (see for example [9,14]).
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In the present paper, we derive a reliable and efficient a posteriori error
estimator for the Morley element. Our analysis initially takes the steps from
the pioneering work on a posteriori estimates for nonconforming elements [11].
In particular, the error is divided into a regular and irregular part using a new
Helmholtz type decomposition.

On the other hand, as underlined for example in [5,12], a key property in
this approach is the existence of a discrete space Ṽh, such that:

1. Ṽh is contained in the adopted finite element space,

2. Ṽh is contained in the variational space of the continuous formulation,

3. Ṽh satisfies some minimal approximation properties.

In the case of the Morley element, the previous conditions do not hold. In the
present work, this difficulty is dealt with simply making a different use of the
exact and discrete variational identities. An approach similar to ours has turned
out to be independently applied for second order problems in [7].

The paper is organized as follows. In Sect. 2 we briefly review the Kirchhoff
plate bending problem and its Morley finite element approximation. The fol-
lowing, and the main, section is divided into three parts: In the first part
we introduce some preliminaries, namely, two interpolation operators and a
Helmholtz type decomposition, while in the following two subsections we prove,
respectively, upper and lower error bounds for our local error indicator.

We finally observe that the principle applied here is general; it could be
applied for example to obtain a posteriori error estimates for nonconforming
elements without relying on the aforementioned space Ṽh (see Remark 1).

For the convenience of the reader, a set of differential operators and the cor-
responding formula for integration by parts, widely used throughout the text,
are recalled in the Appendix.

2 The Kirchhoff plate bending problem

We consider the bending problem of an isotropic linearly elastic plate. Let the
undeformed plate midsurface be described by a given convex polygonal domain
� ⊂ R

2. For simplicity, the plate is considered to be clamped on its boundary
�. A transverse load F = Gt3f is applied, where t is the thickness of the plate
and G the shear modulus for the material.

2.1 The continuous variational formulation

Let the Sobolev space for the deflection be

W = H2
0(�) . (2.1)
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Let also the bilinear form for the problem be

a(u, v) = (E ε(∇u), ε(∇v))� ∀u, v ∈ W , (2.2)

where the parentheses (·, ·)� above indicate the L2(�) scalar product, and the
fourth order positive definite elasticity tensor E is defined by

E σ = E
12(1 + ν)

(
σ + ν

1 − ν
tr(σ )I

)
∀σ ∈ R

2×2 , (2.3)

with E, ν the being Young modulus and the Poisson ratio for the material,
respectively.

Then, following the Kirchhoff plate bending model, the deflection w of the
plate can be found as the solution of the following variational problem:

Find w ∈ W such that
a(w, v) = (f , v) ∀v ∈ W . (2.4)

2.2 The Morley finite element formulation

Let a regular family of triangular meshes {Ch}h on � be given. In the sequel,
we will indicate by hK the diameter of each element K, while h will indicate
the maximum size of all the elements in the mesh. Also, we will indicate with
Eh the set of all the edges and with E ′

h its subset comprising only the internal
edges. Given any e ∈ Eh, the scalar he will represent its length. Finally, to each
edge e ∈ Eh we associate a normal unit vector ne and a tangent unit vector
se, the latter given by a counter clockwise 90◦ rotation of ne; the choice of the
particular normal is arbitrary, but is considered to be fixed once and for all.

In the sequel, we will also need the definition of jumps: Let K+ and K− be
any two triangles with an edge e in common, such that the unit outward normal
to K− at e corresponds to ne. Furthermore, given a piecewise continuous scalar
function v on �, call v+ (respectively v−) the trace v|K+ (respectively v|K−) on
e. Then, the jump of v across e is a scalar function living on e, given by

�v� = v+ − v− . (2.5)

For a vector valued function also the jump is vector valued, defined as above
component by component. Finally, the jump on boundary edges is simply given
by the trace of the function on each edge.

We can now introduce the discrete Morley space

Wh =
⎧⎨
⎩v ∈ M2,h |

∫

e

�∇v · ne� = 0 ∀e ∈ Eh

⎫⎬
⎭ , (2.6)
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where M2,h is the space of the second order piecewise polynomial functions on
Ch which are continuous at the vertices of all the internal triangles and zero at
all the triangle vertices on the boundary.

A set of degrees of freedom for this finite element space is given by the nodal
values at the internal vertices of the triangulation plus the value of ∇v · ne at
the midpoints of the internal edges.

The finite element approximation of the problem (2.4) with the Morley ele-
ment reads:

Method Find wh ∈ Wh such that

ah(wh, vh) = (f , vh) ∀vh ∈ Wh , (2.7)

where
ah(uh, vh) =

∑
K∈Ch

(E ε(∇uh), ε(∇vh))K ∀uh, vh ∈ Wh . (2.8)

The bilinear form ah is definite positive on the space Wh, therefore there is a
unique solution to the problem (2.7).

Let, here and in the sequel, C indicate a generic positive constant indepen-
dent of h, possibly different at each occurrence. Introducing the discrete norm

|||v|||2h =
∑

K∈Ch

|v|2H2(K) +
∑
e∈Eh

h−3
e ‖�v�‖2

L2(e)

+
∑
e∈Eh

h−1
e ‖�∇v · ne�‖2

L2(e) (2.9)

on Wh + H2, the following a priori error estimate holds (see [13,16]).

Proposition 1 Let w be the solution of the problem (2.4) and wh the solution of
the problem (2.7). Then it holds

|||w − wh|||h ≤ Ch
(|w|H3(�) + h‖f‖L2(�)

)
. (2.10)

3 A posteriori error estimates

In this section we derive reliable and efficient a posteriori error estimates for
the Morley element. After some preliminaries, we will show the reliability and
efficiency, up to a higher order load approximation term, of the error estimator

η =
( ∑

K∈Ch

η2
K

)1/2
, (3.1)
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where

η2
K = h4

K‖fh‖2
L2(K) +

∑
e∈∂K

ceh−3
e ‖�wh�‖2

L2(e)

+
∑

e∈∂K

ceh−1
e ‖�∇wh · ne�‖2

L2(e) (3.2)

and fh is some approximation of f , while ce = 1/2 if e ∈ E ′
h and 1 otherwise.

Other a posteriori error estimates for Kirchhoff finite elements can be found
for instance in [2,8].

Remark 1 As noted in the Introduction, the following a posteriori analysis does
not rely on the existence of a subspace Ṽh ⊂ W ∩ Wh having some minimal
approximation properties. The same idea can be generalized to other elements
as well. One example is the nonparametric nonconforming quadrilateral ele-
ment of [15] which does not satisfy such a property. In [12], the authors develop
an a posteriori analysis for the element of [15], but are forced to add artificial
bulb functions to the method in order to recover the existence of a space Ṽh.
As the authors underline, a different proving technique should be found. Fol-
lowing the same path that follows, it is easy to check that reliable and efficient
a posteriori error estimates can be obtained for the nonparametric element of
[15] in a straightforward—at least in the affine mapped quadrilaterals case—
manner, and without the additional bulb functions. For a similar approach to
such elements see also [7].

3.1 Preliminaries

We start by introducing the following interpolant:

Definition 1 Given any v ∈ H2(�), we indicate with vI the only function in Wh
such that

vI(p) = v(p) for every vertex p of the mesh Ch, (3.3)∫

e

(∇v − ∇vI) · ne = 0 ∀e ∈ Eh. (3.4)

We note that it holds

‖v − vI‖L2(K) ≤ Ch2
K|v|H2(K) ∀K ∈ Ch, v ∈ H2(�). (3.5)

Moreover, a simple integration by parts along the edges gives
∫

e

(∇v − ∇vI) · se = 0 ∀e ∈ Eh, (3.6)

which will be also needed in the sequel.
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Let now �C indicate the classical Clément interpolation operator from
H1(�) to the space of continuous piecewise linear functions (see for instance
[3,4,10]). Given any v ∈ H1(�), the following properties are well known:

‖v −�C(v)‖Hm(K) ≤ Ch1−m
K ‖v‖H1(K̃) ∀K ∈ Ch, m = 0, 1, (3.7)

‖v −�C(v)‖L2(e) ≤ Ch1/2
K ‖v‖H1(K̃) ∀e ∈ ∂K, K ∈ Ch, (3.8)

where K̃ indicates the set of all the triangles of Ch with a nonempty intersection
with K ∈ Ch.

We also introduce the following operator: Given any edge e ∈ Eh, let Be
indicate the globally continuous, piecewise second order polynomial function
which is equal to 1 at the midpoint of e and zero at all the other vertices and
edge midpoints of the mesh. Moreover, let VB indicate the discrete space given
by the span of all Be, e ∈ Eh. We then introduce the operator �B defined by

�B : H1(�) → VB ,
∫

e

(v −�B(v)) = 0 ∀e ∈ Eh . (3.9)

Using the definition (3.9), inverse inequalities and the Agmon inequality (see
[1]), it is easy to check that�B satisfies the following property for all v ∈ H1(�)

‖�B(v)‖Hm(K) ≤ Ch1−m
K

(
h−1

K ‖v‖L2(K) + |v|H1(K)

)
∀K ∈ Ch. (3.10)

We are now able to introduce our second interpolant:

Definition 2 Given any v ∈ H1(�), we indicate with vII the continuous piece-
wise polynomial function of second order given by

vII = �C(v)+�B(v −�C(v)). (3.11)

Using the properties (3.7), (3.8) and (3.10) we easily get

‖v − vII‖Hm(K) ≤ Ch1−m
K ‖v‖H1(K̃) ∀K ∈ Ch , m = 0, 1 (3.12)

for all v ∈ H1(�).
Moreover, directly from (3.9) and Definition 2, it follows

∫

e

(v − vII) = 0 ∀e ∈ Eh , v ∈ H1(�). (3.13)

We finally need the following Helmholtz decomposition for second order
tensors with components in L2(�). Let in the sequel the space H̃m(�), m ∈ N,
indicate the quotient space of Hm(�) where the seminorm | · |Hm(�) is null.
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Moreover, let L2
0(�) indicate as usual the space of functions in L2(�) with

zero average over �. The differential operators used below are defined in the
Appendix.

Lemma 1 Let σ be a second order tensor field in L2(�; R2×2). Then, there exist
ψ ∈ H2

0(�), ρ ∈ L2
0(�) and φ ∈ [H̃1(�)]2 such that

σ = E ε(∇ψ)+ ρ + Curl φ , (3.14)

where the second order tensor

ρ =
(

0 −ρ
ρ 0

)
. (3.15)

Moreover,
‖ψ‖H2(�) + ‖ρ‖L2(�) + ‖φ‖H1(�) ≤ C‖σ‖L2(�) . (3.16)

Proof The proof will be shown briefly. Let ψ be the solution of the following
problem:

Find ψ ∈ H2
0(�) such that

(E ε(∇ψ), ε(∇v)) = (σ , ε(∇v)) ∀v ∈ H2
0(�) . (3.17)

Note that the problem above has a unique solution due to the coercivity of the
considered bilinear forms on the respective spaces. From (3.17) it immediately
follows

div div (σ − E ε(∇ψ)) = 0 (3.18)

in the distributional sense. As a consequence of (3.18), there exists a scalar
function ρ ∈ L2

0(�) such that

div (σ − E ε(∇ψ)) = curl ρ , (3.19)

‖ρ‖L2(�) ≤ C‖σ‖L2(�) + ‖ψ‖H2(�). (3.20)

Now we observe that, by definition,

curl ρ = div ρ, (3.21)

which, recalling (3.19), implies

div (σ − E ε(∇ψ)− ρ) = 0 . (3.22)

Identity (3.22) implies the existence of a vector function φ ∈ [H̃1(�)]2 such that

σ − E ε(∇ψ)− ρ = Curl φ, (3.23)

‖φ‖H1(�) ≤ C‖σ − E ε(∇ψ)− ρ‖L2(�) . (3.24)
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The second part of the proposition follows from the stability of the problem
(3.17), and the bounds (3.20), (3.24). ��

Remark 2 We note that, due to the boundary conditions required onψ , we can-
not obtain a similar result simply combining Lemma 3.1 in [6] with the classical
Helmholtz decomposition.

3.2 Reliability

We have the following lower bound for the error estimator:

Theorem 1 Let w be the solution of the problem (2.4) and wh the solution of the
problem (2.7). Then it holds

|||w − wh|||h ≤ C

⎛
⎝ ∑

K∈Ch

η2
K +

∑
K∈Ch

h4
K‖f − fh‖2

L2(K)

⎞
⎠

1/2

. (3.25)

Proof Recalling that w ∈ H2
0(�), it immediately follows

|||w − wh|||2h =
∑

K∈Ch

|w − wh|2H2(K) +
∑
e∈Eh

h−3
e ‖�wh�‖2

L2(e)

+
∑
e∈Eh

h−1
e ‖�∇wh · ne�‖2

L2(e) . (3.26)

Therefore, due to the definition of ηK in (3.2) and the norm (2.9), what needs
to be proved is

∑
K∈Ch

|w − wh|2H2(K) ≤ C

⎛
⎝ ∑

K∈Ch

η2
K +

∑
K∈Ch

h4
K‖f − fh‖2

L2(K)

⎞
⎠ . (3.27)

For convenience, we divide the proof of (3.27) into three steps.
Step 1. Let in the sequel eh represent the error w − wh. First due to the positive
definiteness and symmetry of the fourth order tensor E , then applying Lemma 1
to the tensor field E ε(∇eh), we have

∑
K∈Ch

|eh|2H2(K) ≤ Cah(eh, eh)

=
∑

K∈Ch

(ε(∇eh), E ε(∇eh))K = T1 + T2 + T3 , (3.28)



A posteriori error estimates for the Morley plate bending element 173

where

T1 =
∑

K∈Ch

(ε(∇eh), E ε(∇ψ))K , (3.29)

T2 =
∑

K∈Ch

(ε(∇eh), ρ)K , (3.30)

T3 =
∑

K∈Ch

(ε(∇eh), Curl φ)K . (3.31)

We note that, recalling (3.16), it holds

‖ψ‖2
H2(�)

+ ‖φ‖2
H1(�)

≤ C
∑

K∈Ch

|eh|2H2(K) . (3.32)

Step 2. We now bound the three terms T1, T2, T3 above. Due to the symmetry
of E , from (2.4) we get

T1 = (f ,ψ)� −
∑

K∈Ch

(E ε(∇wh), ε(∇ψ)))K . (3.33)

Let now ψI ∈ Wh be the approximation of ψ defined in Definition 1. Recalling
(2.7) and integrating by parts on each triangle, from (3.33) it follows

T1 = (f ,ψ − ψI)� −
∑

K∈Ch

(E ε(∇wh), ε(∇(ψ − ψI)))K

= (f ,ψ − ψI)� −
∑

K∈Ch

∑
e∈∂K

(E ε(∇wh)nK, ∇(ψ − ψI)))e , (3.34)

where, here and in the sequel, nK indicates the outward unit normal to each
edge of K ∈ Ch.

Observing that E ε(∇wh)nK is constant on each edge, then the properties
(3.4) and (3.6) applied to (3.34) imply

T1 = (f ,ψ − ψI)� = (f − fh,ψ − ψI)� + (fh,ψ − ψI)� . (3.35)

Two Hölder inequalities and the interpolation property (3.5) therefore give

T1 ≤ C
( ∑

K∈Ch

h4
K‖f − fh‖2

L2(K) +
∑

K∈Ch

h4
K‖fh‖2

L2(K)

)1/2‖ψ‖H2(�) . (3.36)
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Regarding the term T2, it is sufficient to observe that, due to the symmetry
of ε(∇eh) and the definition of ρ in (3.15), it follows immediately

T2 =
∑

K∈Ch

(ε(∇eh), ρ)K = 0 . (3.37)

We now bound the term in (3.31). Recalling that w ∈ H2
0(�) and the fact that

div div Curl φ = 0, integration by parts (see the Appendix) for the w part in T3
gives

T3 =
∑

K∈Ch

(ε(∇wh), Curl φ)K . (3.38)

We have

T3 =
∑

K∈Ch

(ε(∇wh), Curl φ)K

=
∑

K∈Ch

(
ε(∇wh), Curl (φ − φII)

)
K +

∑
K∈Ch

(
ε(∇wh), Curl φII

)
K , (3.39)

where φII is the approximation of φ, component by component, introduced in
Definition 2. Integrating by parts triangle by triangle and recalling (3.13), we
have

∑
K∈Ch

(
ε(∇wh), Curl (φ − φII)

)
K

=
∑

K∈Ch

∑
e∈∂K

(
ε(∇wh)sK, φ − φII

)
e = 0, (3.40)

where sK represents the unit vector which is the counter clockwise rotation of
nK at each edge of K ∈ Ch.

Again integrating by parts and observing that

Curl φIInK = −∇φIIsK (3.41)

is continuous across edges, it follows

∑
K∈Ch

(
ε(∇wh), Curl φII

)
K = −

∑
K∈Ch

∑
e∈∂K

(∇wh, ∇φIIsK
)

e

= −
∑
e∈Eh

(
�∇wh�, ∇φIIsK

)
e . (3.42)
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First Hölder inequalities, then the Agmon and the inverse inequality, and finally
the property (3.12) with m = 1 give

∑
e∈Eh

(
�∇wh�, ∇φIIsK

)
e

≤
⎛
⎝∑

e∈Eh

h−1
e ‖�∇wh�‖2

L2(e)

⎞
⎠

1/2 ⎛
⎝∑

e∈Eh

he‖∇φIIsK‖2
L2(e)

⎞
⎠

1/2

≤ C

⎛
⎝∑

e∈Eh

h−1
e ‖�∇wh�‖2

L2(e)

⎞
⎠

1/2 ⎛
⎝ ∑

K∈Kh

‖φII‖2
H1(K)

⎞
⎠

1/2

≤ C

⎛
⎝∑

e∈Eh

h−1
e ‖�∇wh�‖2

L2(e)

⎞
⎠

1/2

‖φ‖H1(�) . (3.43)

Combining the bound (3.43) with the identities (3.39), (3.40) and (3.42) grants

T3 ≤ C

⎛
⎝∑

e∈Eh

h−1
e ‖�∇wh�‖2

L2(e)

⎞
⎠

1/2

‖φ‖H1(�)

≤ C

⎛
⎝∑

e∈Eh

h−1
e ‖�∇wh · ne�‖2

L2(e)

+
∑
e∈Eh

h−1
e ‖�∇wh · se�‖2

L2(e)

⎞
⎠

1/2

‖φ‖H1(�). (3.44)

Observing that

�∇wh · se� = ∂

∂s
�wh� ∀e ∈ Eh , (3.45)

where s represents the coordinate along the edge e, standard scaling arguments
give ∑

e∈Eh

h−1
e ‖�∇wh� · se‖2

L2(e) ≤ C
∑
e∈Eh

h−3
e ‖�wh�‖2

L2(e) . (3.46)

Combining (3.44) with (3.46) finally gives

T3 ≤ C

⎛
⎝∑

e∈Eh

h−1
e ‖�∇wh · ne�‖2

L2(e)

+
∑
e∈Eh

h−3
e ‖�wh�‖2

L2(e)

⎞
⎠

1/2

‖φ‖H1(�) . (3.47)
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Step 3. Combining (3.28) with (3.36), (3.37), (3.47) and recalling (3.32), it follows

∑
K∈Ch

|eh|2H2(K)

≤ C
( ∑

K∈Ch

h4
K‖f − fh‖2

L2(K) +
∑

K∈Ch

η2
K

)1/2( ∑
K∈Ch

|eh|H2(K)

)1/2
, (3.48)

which implies (3.27). ��

3.3 Efficiency

We have the following upper bound for the error estimator:

Theorem 2 Let w be the solution of the problem (2.4) and wh the solution of the
problem (2.7). Then it holds

ηK ≤ |||w − wh|||h,K + h2
K‖f − fh‖L2(K) , (3.49)

where ||| · |||h,K represents the local restriction of the norm ||| · |||h to the triangle
K:

|||v|||2h,K = |v|2H2(K) +
∑

e∈∂K

ceh−3
e ‖�v�‖2

L2(e)

+
∑

e∈∂K

ceh−1
e ‖�∇v · ne�‖2

L2(e) . (3.50)

Proof As already observed, it holds

|||eh|||2h,K = |eh|2H2(K) +
∑

e∈∂K

ceh−3
e ‖�wh�‖2

L2(e)

+
∑

e∈∂K

ceh−1
e ‖�∇wh · ne�‖2

L2(e) , (3.51)

where we recall that eh = w − wh.
Therefore, due to the definition of ηK in (3.2), it is sufficient to prove that

h2
K‖fh‖L2(K) ≤ C

(
|||eh|||h,K + h2

K‖f − fh‖L2(K)

)
. (3.52)

Let now K be any fixed triangle in Ch. We indicate with bK the standard third
order polynomial bubble on K, scaled such that ‖bK‖L∞(K) = 1. Moreover, let
ϕK ∈ H2

0(K) be defined as
ϕK = fhb2

K. (3.53)
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Standard scaling arguments then easily show that

‖fh‖2
L2(K) ≤ C(fh,ϕK)K, (3.54)

‖ϕK‖L2(K) ≤ C‖fh‖L2(K). (3.55)

Furthermore, noting that ϕK ∈ H2
0(K) and E ε(∇wh) is constant on K, integra-

tion by parts gives
(E ε(∇wh), ε(∇ϕK))K = 0 . (3.56)

Applying the bound (3.54) and using (2.4), we get

h2
K‖fh‖2

L2(K) ≤ Ch2
K(fh,ϕK)K

= Ch2
K ((f ,ϕK)K + (fh − f ,ϕK)K)

= Ch2
K ((E ε(∇w), ε(∇ϕK))K + (fh − f ,ϕK)K) . (3.57)

First applying the identity (3.56), then the Hölder and inverse inequalities, and
finally using the bound (3.55), it follows

h2
K(E ε(∇w), ε(∇ϕK))K = h2

K(E ε(∇eh), ε(∇ϕK))K

≤ C|eh|H2(K)h
2
K‖ε(∇ϕK)‖L2(K)

≤ C|eh|H2(K)‖ϕK‖L2(K)

≤ C|eh|H2(K)‖fh‖L2(K) . (3.58)

For the second term in (3.57), the Hölder inequality and the bound (3.55) give

h2
K(fh − f ,ϕK)K ≤ Ch2

K‖f − fh‖L2(K)‖fh‖L2(K) . (3.59)

Combining (3.57) with (3.58) and (3.59) we get (3.52), and the proposition is
proved. ��

Appendix

Let v indicate a sufficiently regular scalar field � → R. Analogously, let φ and
σ represent, respectively, a vector field� → R

2 and a second order tensor field
� → R

2×2, both sufficiently regular. Finally, a subindex i after a comma will
indicate a derivative with respect to the coordinate xi, i = 1, 2.
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We then have the following definitions for the differential operators:

∇v =
(

v,1
v,2

)
, curl v =

(−v,2
v,1

)
,

∇φ =
(
φ1,1 φ1,2
φ2,1 φ2,2

)
, Curl φ =

(−φ1,2 φ1,1
−φ2,2 φ2,1

)
,

div φ = φ1,1 + φ2,2, rot φ = φ2,1 − φ1,2,

div σ =
(
σ11,1 + σ12,2
σ21,1 + σ22,2

)
, rot σ =

(
σ12,1 − σ11,2
σ22,1 − σ21,2

)
.

Finally, the strain tensor is defined as the symmetric gradient,

ε(φ) =
⎛
⎜⎝

φ1,1
φ1,2 + φ2,1

2
φ1,2 + φ2,1

2
φ2,2

⎞
⎟⎠ .

The corresponding formula for integration by parts are, for a scalar v and a
vector φ,

(∇v, φ)� = −(v, div φ)� + (v, φ · n)∂� ,

(curl v, φ)� = −(v, rot φ)� + (v, φ · s)∂� ,

and for a vector φ and a tensor σ ,

(∇φ, σ )� = −(φ, div σ )� + (φ, σn)∂� ,

(Curl φ, σ )� = −(φ, rot σ )� + (φ, σ s)∂� .
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