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Abstract  

In this paper, a low-order parametric force model to represent the electromagnetic force on an eccentric 
rotor of a salient-pole synchronous machine was developed and verified. The force model with 
parameters estimated from the results of impulse method showed excellent performance. The proposed 
model allowed quick and accurate calculation of the electromagnetic force at the desired whirling 
frequency values and provided an opportunity to effectively combine the electromagnetic and 
mechanical analyses of electrical machine. Besides, results presented in this paper also verified the 
suitability of computationally efficient impulse method for the analysis of a synchronous machine. 

Keywords: salient-pole synchronous machine, rotor eccentricity, parametric force model, 

impulse method  

Abbreviations 

MMF, magnetomotive force 
FEA, finite element analysis 
FRF, frequency response function;  
 

1 Introduction  

Electrical machine belongs to a category of electro-magneto-mechanical 
devices. Thus, when designing an electrical machine and/or optimising its 
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performance it has to be analysed from mechanical, electromagnetic and also thermal 
points of view. And, preferably, these analyses must be coupled.  

To achieve accurate results an electrical machine is often studied employing the 
Finite Element Analysis (FEA) but the calculations are rather time-consuming. 
Coupling several analyses would increase the computational time even further. 
Therefore, it would be a great advantage to study the behaviour of an electrical 
machine using simpler and, hence, faster approaches. A simple parametric model 
representing the electromagnetic force acting between the eccentric rotor and stator of 
an electrical machine can be a good example. This model supplied as an input to the 
mechanical analysis of the machine can greatly reduce the computational task and 
enable the solution of a coupled electro-magneto-mechanical problem to be obtained 
with reasonable time-consumption. 

Rotor eccentricity occurs when the rotor axis does not coincide with the stator 
bore axis but instead whirls around the latter at a certain radius and angular speed 
(called whirling radius and whirling angular speed). The occurrence of eccentric rotor 
in an electrical machine is not a rare occasion: due to manufacturing tolerances, wear 
of bearings, imperfect rotor mounting on its bearings and other reasons some degree 
of rotor eccentricity is always present. Depending on the angular speed and radius of 
the whirling motion the electromagnetic force due to it can be significant. This force, 
acting roughly in the direction of the shortest air gap length, tries to further increase 
the eccentricity magnitude and may cause a serious damage to the machine or even 
the whole drive.  

Importance of the problems associated with the eccentric rotor in electrical 
machine has already been recognised more than one hundred years ago [1]. Many 
papers have been published on this subject. They mainly focus on two special cases of 
the whirling motion i.e. the static eccentricity, which occurs when the rotor axis is 
displaced from the stator bore axis but remains stationary with respect to it; and 
dynamic eccentricity, taking place when the whirling angular speed is equal to the 
mechanical angular speed of the rotor motion. The absolute majority of the papers 
published deal with an induction machine [2], [3], [4], [5], [6] and substantially fewer 
carry out the study on a salient-pole synchronous machine [7], [8], [9]. Similarly to an 
induction machine, the rotor of a synchronous machine can be equipped with the 
damper winding (called also, rotor cage), which is known to effectively attenuate the 
force associated with rotor eccentricity [10], [11]. But the rotor saliency and parallel 
connections in the stator winding render the analysis of a synchronous machine 
considerably more complicated. 

Besides the static and dynamic eccentricities, the rotor whirling may also occur 
at other angular speeds. Früchtenicht et al. [12] have presented an analytical method 
to investigate the electromagnetic forces caused by eccentric rotor in an induction 
machine. The method was based on the permeance harmonic analysis and could be 
used to study whirling motion at various angular speeds. 
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Using Früchtenicht’s achievements, Arkkio et al. [13] developed a low-order 
parametric model to represent the electromagnetic force acting on eccentric rotor of 
an induction machine in a wide whirling frequency range. Tenhunen et al. [14] have 
successfully applied an impulse method to determine the parameters of the force 
model presented by Arkkio et al. 

In this paper, we develop and verify a low-order parametric force model for a 
salient-pole synchronous machine with eccentric rotor. Only the circular rotor 
whirling in steady state is considered. The machine is equipped with the rotor cage 
and the stator winding is assumed to have no parallel paths. The model accounts for 
the saturation of iron core, effects of slotting and equalising currents in the rotor cage. 
Force model parameters are calculated from the results provided by the 
computationally efficient impulse method applied in the FEA. The force model with 
estimated parameters shows an excellent performance in a wide whirling frequency 
range. The proposed force model has several major advantages: 

1) It allows simple, quick and accurate calculation of the electromagnetic 
force at a desired whirling frequency value or in a certain range of whirling 
frequencies 

2) The same model parameters can be directly applied to calculate the 
electromagnetic force at different whirling radius and whirling angular 
speed values 

3) The model offers an attractive opportunity to be integrated into the 
mechanical analysis to study the electromechanical interaction in electrical 
machines.  

 
There also are limitations of this force model: 
1) Every time the operating point (supply voltage, load torque, etc.) of a 

machine is changed a new set of force model parameters has to be 
established  

2) This force model cannot be applied for a synchronous machine with 
parallel paths in the stator winding.  

Additionally, results presented in this paper verified the suitability of the 
computationally efficient impulse method for the analysis of a synchronous machine. 

The paper is organised as follows: the introductory part is followed by Methods 
of analysis where the force model expression is developed starting from the basic two-
axis equations for a synchronous machine. The performance of the force model is 
shown in Results part. The main achievements and a concise summary of the work 
accomplished are presented, respectively, in Discussions and Conclusions, at the end 
of the paper. 
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2 Methods of analysis  

2.1 Two-axis model of a salient-pole synchronous machine 

In this work, only the steady state operation mode of a synchronous machine is 
studied. Due to the rotor saliency the air gap length between the rotor and stator is not 
constant along the circumference of a machine: it is much smaller on the axis of a 
rotor pole (direct or d-axis) than between the neighbouring poles (quadrature or q-
axis). Therefore, a synchronous machine is studied in rotor reference frame where the 
air gap permeance values for d- and q-axis are constant, independent of rotor position 
(if no eccentricity is present). The origin of the rotor reference frame is fixed to the 
stator bore axis and rotates at an angular speed of the rotor. The stator and rotor are 
assumed to be perpendicular to the d-q plane and the magnetic field in the core region 
is assumed to be two-dimensional and parallel to this plane. Although, the field 
winding magnetomotive force (MMF) in a salient-pole synchronous machine is 
constant within the angular length of a rotor pole, hereafter, we will use the sinusoidal 
distribution of this MMF. This will simplify the magnetic field analysis and have 
almost no effect on the spatial distribution of the magnetic flux density in the air gap. 
More details on this simplification are given in section 2.2. 

Using the aforementioned assumptions the voltage equations for a salient-pole 
synchronous machine in rotor frame of reference are 
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∂
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∂
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∂
∂Ψ

= + =
∂

, (1) 

here, subscripts d, q refer to the stator windings on d- and q-axis respectively, D and 
Q refer to the damper winding quantities. Subscript f corresponds to the field winding 
quantities. Superscript r refers to the rotor frame of reference. Ra is the armature 
resistance, p is the number of pole-pairs of a machine, ωm is the mechanical angular 
speed of the rotor motion. 

Equations for magnetic flux linkages are  
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( )

( )
( )
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The terms r

fD DL i  and r
fD fL i  show that there exists a magnetic coupling between 

the damper and field windings caused by the mutual flux component, which is not 
linked with the stator winding. In the following, these terms are neglected.  

We define the equivalent number of turns in series of the stator winding as 

se sw s4 / πN k N= , where Ns is the number of turns in series and ksw is the winding 

factor of the stator winding.  
The damper winding in the rotor can be transformed into two equivalent 

windings located on d- and q- axis separately. Moreover, the equivalent damper 
windings currents can be referred to as having the same number of equivalent turns in 
series as the stator current 
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=
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here, r,DQ  and r,QQ  are the numbers of rotor cage bars on d- and q- axis respectively. 

Considering only the fundamental components the system of equations (1) is rewritten 
as 
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and the system of equations (2) 
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here, subscript p besides referring to the number of pole-pairs of the machine 
represents also the corresponding order of the space-harmonic. 

The rotor cage consists of a number of short-circuited bars and, thus, numerous 
current harmonics are induced in it. Applying the discrete Fourier transform the cage 
ring currents can be represented as 

 
( )

( )

max

max

r r
D   D, 

1

r r
Q   Q, 

1

Re

Re

N

m
m
N

m
m

i i

i i

=

=

=

=

∑

∑
, (6) 

here, Nmax is the highest order of rotor cage current harmonic. It has to be mentioned 
that not all of the current harmonics between the first and Nmax are induced in the rotor 
cage. Some of them, with zero winding factors, will be missing. Due to the rotor cage 
asymmetry, winding factors of the individual circuits consisting of two neighbouring 
bars connected by the end-ring segments can differ from each other. This would allow 
for different current frequency spectra of the individual rotor cage circuits. 

 

2.2 Magnetomotive forces (MMFs) 

MMF on d-axis consists of MMFs created by the stator, damper and field 
winding currents  

 r r r r
dt  d D  fF F F F= + + . (7) 

 
q-axis MMF consists of contributions by the stator and damper windings only  

 r r r
qt  q QF F F= + .  (8) 

 
We assume that the stator is equipped with a symmetrical three-phase winding 

and an integral number of slots per pole per phase. This type of winding produces the 
harmonic currents with ordinal numbers ( )1 6 ,   = 0, 1, 2, ... p c cυ = ± The 

fundamental component, c = 0, is the most important and the MMF produced by it 
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will be studied in this section. The spatial distribution of the MMF produced by the 
fundamental stator current component can be written as  

( ) ( ) ( )

( ) ( ) ( )

r r j r j rse
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r r j r j rse
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⎧ ⎫⎛ ⎞= ⋅ = ⋅ =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

,  (9) 

here, r
 d, pF  is the fundamental MMF component in the direction of d-axis, and ϕ is the 

angular coordinate in the rotor reference frame.  
As this study is primarily concerned with the steady state operation mode the 

presence of the fundamental MMF component produced by the damper winding is 
eliminated. This elimination is justified by the fact that in synchronous machine 
operating in a steady state mode the fundamental magnetic field component passing 
through the damper winding has a constant magnitude and is stationary with respect to 
the winding. Thus, there are no fundamental voltages induced in the damper winding, 
no fundamental currents and, hence, no fundamental MMF produced by this winding. 
Taking into account the other components of the rotor cage current (equation (6)) 
yields  
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Distribution of MMF produced by the field winding current is expressed as  

( ) ( ) ( )r r j r j rf
 f, f,  f,  f, Re e Re e Re

2
p p

p p p p
NF i F F

p
ϕ ϕϕ
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⎝ ⎠⎩ ⎭

 . (11) 

 
As it was already mentioned before, the MMF of the field winding is not 

sinusoidally distributed but rather constant over the rotor pole. On the other hand side, 
the air gap length over the pole-shoe is varying and so is the air gap permeance. This 
is done for the purpose to achieve the sinusoidal distribution of the magnetic flux 
density produced by the field winding. In this work, we have used a sinusoidal 
distribution of the field winding MMF and a constant air gap length (if no eccentricity 
is present) instead of actual constant MMF and varying air gap length. It can be 
shown that both approaches provide very similar distributions of the magnetic flux 
density in the air gap.  

Total MMFs acting on d- and q-axis are  
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2.3 Air gap permeance with eccentric rotor 

For a cylindrical stator with cylindrical but eccentrically placed rotor the radial 
air gap length can be fairly accurately approximated as  

( ) ( )r r j
0 eccRe e ϕδ ϕ δ δ= − , (13) 

here, 0δ  is the effective air gap length including the effects of slotting and saturation, 

( ) ( ){ }ecc m ecc.0jr
ecc ecce

tω ω ϕδ ϕ δ − − +=  is the position of the rotor axis displacement (eccentric 

rotor shift) with respect to the coordinate system origin, ecc.δ  is the whirling radius 

(eccentricity magnitude), ecc.ω  is the whirling angular velocity, ecc.0ϕ  is the initial 

phase angle of the rotor displacement.  
Air gap variation due to the rotor saliency can be modelled by applying different 

values of 0δ  to the effective air gap length on d- and q-axis. Thus, we have  
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r r j
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Re e p
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⎛ ⎞
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⎝ ⎠
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here, 0,dδ  < 0,qδ , and π
2 p

 is the angle between the d- and q-axis. 

Air gap permeance per unit area is expressed as  

( ) ( )
0µλ ϕ

δ ϕ
= , (15) 

here, 7
0µ 4π 10−= ⋅  is the permeability of an empty space. 

Neglecting the higher order components the air gap permeance can be written  
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2.4 Magnetic flux density in the air gap 

Magnetic flux density distribution in the air gap is obtained by multiplying the 
MMF by the corresponding air gap permeance  
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Thus, the magnetic flux density on d-axis is  
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here, symbol “ * ” is used to denote the complex conjugate.  
The fundamental components of the MMF are assumed to be preponderant. Due 

to their large magnitude the p ± 1 MMF harmonics produced by the damper winding 
currents have also to be taken into account. The rest of the MMF harmonics are 
neglected hereafter. Thus, the magnetic flux density on d-axis is  

( ) ( ) ( )( )j 1 j 1r r j r r
 dt  dt,  dt, 1  dt, 1Re e e ep pp

p p pB B B Bϕ ϕϕϕ − +
− += + + , (19) 

here, the components are  
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Similarly, the magnetic flux density on q-axis is 
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Applying the simplifying assumptions yields  
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The total magnetic flux density can be considered as a sum of the magnetic flux 
densities on d- and q-axis. Thus, the spatial distribution of the total magnetic flux 
density in the air gap is  
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The flux density components can also be expressed in terms of the fundamental 

field and current harmonics  
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here, D, 1pk ±  are the additional coupling factors due to the leakage flux and saturation 

[15].  
Similar expressions can also be written for the q-axis magnetic flux density 

components 
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. (26) 

 
Thus, combining equations (24), (25) and (26) yields 
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2.5 Rotor cage fluxes 

Rotor cage fluxes of the orders p ± 1 acting on d- and q-axis can be expressed as 
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                  , (28) 

here, LD,p±1 and LQ,p±1 are the self-inductances of the rotor cage mesh on the 
corresponding axes.  
 

2.6 Voltage equations for the rotor cage 

For p ± 1 voltage harmonics in the rotor cage we can write 
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(29) 

here, D, 1 D, 1 Q, 1 Q, 1, ,  ,  p p p pR R R R− + − +  consist of the damper bar and end-ring segments 

resistances for the corresponding current harmonics on the corresponding axes; 

D , 1 D , 1 Q , 1 Q , 1, , , p p p pL L L Lσ σ σ σ− + − +  take into account the effects of the slot- and tooth-tip 

leakage inductance of a damper bar and the end-leakage inductance of a ring segment 
for the corresponding harmonics on the corresponding axes. 
 

2.7 Total magnetic force on the rotor 

To calculate the electromagnetic force acting on the rotor we apply Maxwell 
stress tensor  

( ) ( ){ }
2
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1 1 Re e
2µ 2µ
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υ
σ ϕ ϕ

∞

=
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∑ . (30) 

 
The total electromagnetic force is obtained by integrating the Maxwell stress 

tensor over the whole circumferential length of a machine 

( )
2π

r r jr e
 e

0

e  d
2

d lF ϕσ ϕ ϕ−= ⋅∫ , (31) 

here rd  is the outer diameter of the rotor, el  is the equivalent axial length of the 

machine.  
Assuming that the force on the rotor is generated due to the product of two 

magnetic flux density harmonics we can write 

( ) ( )( )
2π

j 1 j 1r r r* r * rr e
 e

0 0

e e  d
8µ

m n m n
m n m n

d lF B B B Bϕ ϕ ϕ− − − − += +∫ . (32) 

 
Thus, the net force acting on the rotor can only be produced by the magnetic 

flux density components with wave numbers satisfying the condition 1m n− = ± . 
Rotor eccentricity mainly causes the magnetic flux components of the orders p, 

p – 1 and p + 1 (see equation (24)). Therefore, the total electromagnetic force in rotor 
frame of reference can be represented as  
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This equation shows that there are several force components: firstly, there is a 

force component produced by the fundamental magnetic flux density waves and rotor 
eccentricity; secondly, there are force components due to the interactions of the 
fundamental magnetic field and p ± 1 current harmonics on d-axis; and finally, there 
are force components due to the interactions of the fundamental magnetic field and p 
± 1 current harmonics on q-axis. Since the effective air gap length on d-axis is 
substantially smaller than that on q-axis ( 0,d 0,qδ δ< ) and the rotor cage currents on d-

axis are stronger than those on q-axis, it would be reasonable to assume that the force 

component { } { } )( *r r r r r rr e
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2.8 Circular whirling of the rotor during the operation at a constant 

flux 

Circular whirling of the rotor is described as the rotor axis motion about the 
stator bore axis at a constant distance with a certain angular speed. Mathematically 
this is expressed as  
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Operation at a constant flux assumes that the fundamental fluxes on d- and q-

axis have constant magnitudes and are stationary in the rotor frame of reference  
r
dt, dt, 

r
 qt, qt, 

const

const
p p

p p

B B

B B

= =

= =
. (35) 
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It is also assumed that the fundamental components of the magnetic flux density 
are not affected by the eccentric rotor motion.  

The total electromagnetic force acting on the rotor of a machine is described by 
equation (33). In this equation, the current harmonics of the rotor cage can be 
expressed in terms of the fundamental magnetic flux density components and rotor 
eccentricity. For this purpose, equation (28) is substituted into equation (29) yielding 
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here, Dt, 1 D , 1 D, 1 Qt, 1 Q , 1 Q, 1 Dt, 1 D , 1 D, 1,  ,   p p p p p p p p pL L L L L L L L Lσ σ σ− − − − − − + + += + = + = +  and 

Qt, 1 Q , 1 Q, 1p p pL L Lσ+ + += +  are the total harmonic inductances associated with d- and q-

axis. 
Using this system of equations the rotor cage currents r r r
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By substituting equations (37) into equation (33) the expression for the total 

electromagnetic force exerted on the eccentric rotor of a salient-pole synchronous 
machine can be rewritten 
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In this equation, electromagnetic force on the eccentric rotor of a salient-pole 

synchronous machine is represented as a function of whirling radius and whirling 
angular speed. Using complex- and real-valued parameters equation (38) can be 
rewritten as  
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ecc.

r
dp qm qp e dm

ecc. 0 r r r rjr
dm ecc. dp ecc. qm ecc. qp ecc.ecc.

j
j j j je t
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ω
ω ω ω ωδ −

= = + + + +
− − − −

 , 

 (39) 

here, ( )ecc.jK ω  is the Frequency Response Function (FRF) of the electromagnetic 

force, c – are the complex-valued parameters and r – are the real-valued parameters. 
Equation (39) is a low-order parametric model of the electromagnetic force on 

an eccentric rotor of a salient-pole synchronous machine. Model parameters can be 
estimated using the data obtained from impulse method applied in FEA. Thus, the 
model accounts for the effects of iron core saturation, slotting and equalising currents 
in the rotor cage because all these are considered in the FEA. 

 

2.9 Brief description of impulse method 

The impulse method is applied in the FEA by moving the rotor from its central 
position for a short period of time [14]. This displacement excitation disturbs the 
magnetic field by creating the permeance harmonics in the air gap and, by doing this, 
produces the force between the rotor and stator.  

Displacement magnitude has to be large enough to enable the separation of 
eccentricity caused force from the noise or error of the finite element calculation. On 
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the other hand, in the region of excessively large eccentricity values the dependence 
of force magnitude on the eccentricity becomes non-linear. The questions related to 
linearity of the electromagnetic force are discussed in [16]. 

The results obtained from the impulse method are the electromagnetic force 
resolved into two orthogonal components and the position of the eccentric rotor at 
every sample of the simulation time. Thus, the FRF of the force can be readily 
calculated by dividing the cross-spectral density of the response (electromagnetic 
force) and excitation (rotor displacement) signals by the auto spectral density of the 
excitation signal [14].  

Force model parameters can be estimated from the FRF of the force by 
combining the method of least squares and sequential exhaustive search.  

As the impulse method was never before applied to the analysis of a 
synchronous machine the results obtained had to be verified using another approach. 
For this purpose numerous simulations were carried out using the conventional forced 
whirling method. In this method, the rotor was forced to move along a circular orbit at 
a constant velocity in the time-stepping FEA. More details on this method can be 
obtained from [13].  

 

3 Results  

To assess the performance of the force model developed, a salient-pole 
synchronous machine was simulated using the impulse method in FEA. The main 
parameters of the machine are listed in Table 1.  

The machine was operated in a generator mode and connected to a constant line 
voltage. The mechanical angular velocity of the rotor was kept constant. The machine 
was equipped with rotor cage, the stator winding did not have parallel paths. The 
cross-section view of the machine is given on Figure 1. 

 
Table 1. Main parameters of the simulated machine. 

Parameter Value 
Number of pole-pairs 4 
Frequency of the voltage supplied to the stator winding, Hz 50 
Stator winding supply voltage, V 6300 
Stator winding connection Star 
Field winding supply voltage, V 150 
Apparent power, kVA 8356.6 
Power factor 0.83 Cap. 

 

 

 

97



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impulse excitation was introduced in FEA by displacing the rotor axis from 
the centred position for a short period of time. Rotor displacement had a shape 

( ) 1 2
2π1 cos ,  tt t t t
T

ε ε ⎛ ⎞= − < <⎜ ⎟
⎝ ⎠

. The amplitude of the excitation pulse ε was set to 

10% of the air gap length. The period of the pulse was T = 0.01 s. The starting and 
ending time instants of the pulse were t1 = 0.04 s and t2 = 0.05 s. Two first seconds of 
the machine performance were simulated with a time step of 0.1 ms. 

Using the results of impulse method the FRF of the force was calculated. This 
FRF is plotted on Figure 2. These results were also compared against the results from 
conventional forced whirling method.  

Force model parameters estimated from the FRF of the force are listed in Table 
2. 

Figure 1. Cross-section view of the simulated machine. 

98



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Estimated force model parameters. 

Parameter Value 

c0 1.43e+07 – j7.57e+04 

cdm –1.85e+08 + j7.86e+05 

cdp –2.01e+08 – j5.53e+06 

cqm –1.45e+08 – j2.45e+05 

cqp –5.07e+06 + j7.62e+03 

rdm –30.41 

rdp –176.69 

rqm –12.50 

rqp –1.89 

 
To evaluate the accuracy of the presented force model these parameters were 

substituted into the force model expression (39). By doing this, the estimated FRF of 
the force was obtained. Comparison of the estimated FRF against the original FRF 
from the impulse method is shown on Figure 3.  

Figure 2. FRF of the force calculated using the impulse method results and 

comparison against the results from the forced whirling method. 
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The error between absolute values of the two FRFs is presented on Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparing the FRF obtained using the parametric force model with 

estimated parameters against the FRF obtained from impulse method. 

Figure 4. Error between the two FRF curves.
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4 Discussions 

The FRF of the force obtained from the impulse method (Figure 2) is resolved 
into two components: the radial one – acting in the direction of the shortest air gap 
length; and the tangential one, which is perpendicular to the radial one. The tangential 
component of the electromagnetic force due to the rotor eccentricity must be 
distinguished from the tangential force responsible for the machine’s torque 
generation in normal operation. In this paper, the term “tangential component” will 
only refer to the electromagnetic force produced due to the rotor eccentricity. 

As seen, the radial force component, being substantially stronger than the 
tangential component, provides the largest contribution to the net electromagnetic 
force. 

According to Figure 2, the radial component of the electromagnetic force has a 
sharp peak at a whirling frequency of 12.5 Hz, which, for an eight-pole synchronous 
machine, is exactly the mechanical frequency of the rotor motion. This phenomenon 
is explained by the fact that at this particular whirling frequency value the p ± 1 
magnetic field harmonics due to the rotor eccentricity become stationary with respect 
to the damper winding and do not induce any voltage in it. As a result, p ± 1 current 
harmonics in the damper winding vanish (see equations (37)). Thus, without being 
damped by the rotor currents the p ± 1 components of the magnetic field are increased 
significantly causing the peak in the electromagnetic force curve at a whirling 
frequency of 12.5 Hz. Figure 2 also demonstrates that the damper winding very 
effectively attenuates the electromagnetic force due to the eccentric rotor, except at 
the whirling frequency of 12.5 Hz. It is also interesting to note that the tangential 
force component changes its sign at this whirling frequency value. In Figure 2, the 
results from impulse method are also verified by comparing them against the results 
from the conventional forced whirling method. A good agreement between the results 
demonstrates the suitability of the impulse method for the analysis of a synchronous 
machine. The main benefit of using the impulse method is the considerable saving of 
computational time. This method requires less than 5% of the computational time 
consumed by the conventional forced whirling method [14]. 

Figure 3 shows that the FRF obtained by substituting the estimated parameters 
into the force model expression closely follows the FRF provided by the impulse 
method. Figure 4 reveals that the maximal error between the absolute values of the 
two FRFs is about 0.3 %. The average error in the whirling frequency range from –
100 to +100 Hz is less than 0.09 %, which is a fairly good result. 

The presented force model has several advantages: 
1) Simple, quick and accurate calculation of the electromagnetic force – By 

substituting the estimated parameters into the model expression the force 
at a certain whirling frequency value or in a certain range of whirling 
frequencies can be calculated in a matter of seconds. 

101



2) Applicability at different whirling radius and whirling frequency values – 
When creating the force model it was assumed that the force is a linear 
function of the rotor displacement. Since the FRF represent the force per 
whirling radius in a certain range of whirling frequencies, the same model 
parameters can be used at different values of rotor eccentricity in that 
whirling frequency range. Again, there is no need to carry out the time-
consuming finite element calculations.  

3) An attractive opportunity to study the electromechanical interaction in 
electrical machines – The parametric force model integrated into the 
mechanical analysis of the machine would only marginally increase the 
computational burden of the calculations.  

The presented force model has also several limitations. Firstly, the estimated set 
of force model parameters corresponds to a certain operating point of a machine. 
Once the operating point (supply voltage, load torque, etc.) is changed the FRF of the 
force must be recalculated and new parameters established. As it was said earlier the 
developed force model is valid for a synchronous machine, which is equipped with a 
rotor cage and has no parallel paths in the stator winding. The parallel paths in the 
stator winding having a very strong influence on the resultant magnetic field 
distribution in the air gap would considerably affect the shape of the FRF and, 
therefore, need a different force model to be applied. This is the topic for future 
research. 

 

5 Conclusions 

In this paper, the magnetic field in a salient-pole synchronous machine with 
eccentric rotor was studied. Based on the theory elaborated and results acquired a 
low-order parametric force model for the machine has been developed and verified. 
Force model parameters were calculated from the results provided by the impulse 
method applied in the FEA. The force model with estimated parameters showed an 
excellent performance in a wide whirling frequency range.  

The proposed force model has the following advantages: 
1) It allows simple, quick and accurate calculation of the electromagnetic 

force at a desired whirling frequency value or in a certain range of whirling 
frequencies 

2) The same model parameters can be directly used at different values of 
whirling radius and whirling frequency 

3) The model offers an attractive opportunity to be integrated into the 
mechanical analysis to study the electromechanical interaction in electrical 
machines.  

 
The limitations of the force model are: 
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1) Every time the operating point (supply voltage, load torque, etc.) of a 
machine is changed the FRF of the force has to be recalculated and a new 
set of force model parameters established 

2) The model is not applicable for a synchronous machine with parallel paths 
in the stator winding.  

Besides, results presented in this paper have also verified the suitability of the 
computationally efficient impulse method for the analysis of a synchronous machine. 
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