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Low-order parametric force model for eccentric-rotor
electrical machine equipped with parallel stator
windings and rotor cage

A. Burakov and A. Arkkio

Abstract: In the paper, a new low-order parametric force model for an electrical machine with
eccentric rotor is developed and verified. The model is designed for an electrical machine equipped
with both the parallel stator windings and rotor cage, and, therefore, accounts for the equalising
currents in the stator and rotor windings separately and also for their influence on each other.
Furthermore, the model can also be used with an electrical machine having either the parallel
stator windings or the rotor cage. The presented model with parameters estimated from the numeri-
cal test results demonstrated a very good performance in a wide whirling frequency range. The pro-
posed model provides an opportunity to combine effectively the electromagnetic and mechanical
analyses of the electrical machine.

1 Introduction

An eccentric rotor motion (also called ‘rotor whirling’)
occurs when the rotor axis of an electrical machine does
not coincide with the axis of the stator bore, but, instead,
travels around the latter at a certain radius and angular
speed (called ‘whirling radius’ and ‘whirling angular
speed’, respectively). Owing to manufacturing tolerances,
wear of bearings and other reasons, some degree of rotor
eccentricity is always present. Rotor eccentricity generates
the electromagnetic force (also known as unbalanced mag-
netic pull, UMP) that acts between the rotor and stator. The
amplitude and direction of this force depend on the operat-
ing characteristics of the motor, whirling frequency and
radius. Acting roughly in the direction of the shortest air
gap, the UMP tries to further increase the eccentricity
magnitude and may cause serious damage to the machine
or even the whole drive.

The occurrence and effects of an eccentric rotor in an
electrical machine have been discussed for more than one
hundred years [1], and the beneficial effects of parallel
windings in mitigating the resultant UMP have been dis-
cussed almost as long [2]. It is common practice for manu-
facturers to use parallel stator windings in motors because
these are well known to reduce the motor noise, vibration
and UMP [3, 4]. Moreover, the parallel connections also
often simplify the manufacturing of the stator winding in
large machines. The rotor cage (or damper winding) is
also capable of effectively attenuating the force associated
with rotor eccentricity [5].

Traditionally, analytical approaches were used to study
the operation of electrical machines with eccentric rotors
[3, 6]. Later, numerical methods have also been employed

to study the UMP reduction by the currents circulating in
the parallel paths of the stator and rotor windings [7].
Using the permeance harmonic analysis presented by

Früchtenicht et al. [8], Arkkio et al. [9] developed a low-
order model to represent the electromagnetic force acting
on an eccentric rotor of an induction machine equipped
only with the rotor cage (no parallel stator windings). The
force model was not restricted to special cases of static
and/or dynamic eccentricities, as in most of the previously
published work, but instead described the UMP in a wide
whirling frequency range. In [10], Burakov and Arkkio
presented a force model for a salient-pole synchronous
machine equipped with the rotor cage. A parametric force
model for electrical machines with parallel stator windings
was presented in [11]. This model performed very well
when applied to a salient-pole synchronous machine and
also to an induction machine, which both did not have the
rotor cage.
This paper continues the previous work and puts

forward a parametric model to describe the UMP in an
eccentric-rotor electrical machine, which has both the
rotor cage and parallel stator windings. The model is orig-
inally targeted at a salient-pole synchronous machine, but,
as will be shown hereafter, it also works fine with an induc-
tion machine. The force model accounts for the effects of
the equalising currents flowing in the parallel paths of
the stator and rotor windings. Moreover, the coupling
between the stator and rotor equalising currents is also
included in the model. Force model parameters are esti-
mated from the numerical test results, where the effects of
iron core saturation, stator and rotor slotting are all taken
into account. The model with estimated parameters shows
an accurate performance in a wide whirling frequency
range. The force model proposed has the following
advantages:

1. It allows simple, quick and accurate calculation of the
electromagnetic force at a desired whirling frequency
value or in a certain range of whirling frequencies;
2. The same model parameters can be directly used at
different values of whirling radius and whirling frequency;
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3. The model offers an attractive opportunity to be inte-
grated into the mechanical analysis to study the electro-
mechanical interactions in electrical machines;
4. The model performs accurately when applied to synchro-
nous and induction machines; no changes are needed in the
model expression. Moreover, the model performs also very
well when used with electrical machines equipped with
either the parallel stator windings or the rotor cage.

However there is a necessity to re-estimate the force model
parameters every time the operating point (supply voltage,
load torque etc.) of a machine is changed.

2 Methods of analysis

In this work, a salient-pole synchronous machine operating
in steady state was studied, therefore the fundamental
component of the magnetic flux density was assumed to
be constant and unaffected by the rotor eccentricity. Only
the cylindrical circular rotor whirling was considered,
meaning that the rotor axis, when travelling at a circular
orbit around the stator bore axis, remained always parallel
to it. Instead of resorting to the classical two-axis approach,
a vector representation for the machine quantities was used,
which allowed for a considerably improved clarity, concise-
ness and simplicity of the resultant expressions.
The cross-section view of the machine studied is shown

in Fig. 1. The stator and rotor axes were assumed to be per-
pendicular to the plane of the figure and the magnetic field
in the core region was assumed to be two-dimensional and
parallel to this plane. Although the field winding magneto-
motive force (MMF) in a salient-pole synchronous machine
is constant within the angular length of a rotor pole, here-
after we used the sinusoidal distribution of the MMF. This
assumption simplified the magnetic field analysis and had
almost no effect on the spatial distribution of the resultant
magnetic flux density in the air gap. More details on this
simplification are given in Section 2.1.
The machine studied was equipped with four parallel

stator windings, connected in such a way that the neighbour-
ing pole windings were in series and the opposite pole
windings were in parallel. Motors incorporating this kind
of stator winding were reported to run more quietly than

those with neighbouring pole windings in parallel and the
opposite pole windings in series [7].

Each rotor pole shoe comprised four damper bars made of
copper, which were short-circuited by end rings. The paral-
lel paths of the field winding, which were expected to have
the UMP reduction effects similar to those by the rotor cage,
were not considered in this work.

2.1 Magnetomotive forces

The resultant MMF of the machine studied consisted of
MMFs produced by the field (rotor), armature (stator) and
damper windings.

The field winding was concentrated on the rotor poles,
therefore the MMF spectrum of this winding contained
several harmonics. For the eight-pole machine studied, the
five most prominent field winding MMF components and
their values relative to the fundamental MMF component
are listed in Table 1. These data were obtained from the
analytical model of the machine, wherein the rotor saliency
was accounted for.

As seen, the fundamental component of the field winding
MMF is preponderant. As for the stator winding MMF, the
supremacy of the fundamental component was expected to
be even greater, because the winding was distributed
along the stator bore circumference. Hence, in the follow-
ing, only the fundamental MMF component is considered.
This simplification was also used in [12], where a general
model for the analysis of a salient-pole machine, as well
as for a nonsalient-pole machine was developed.

The field winding rotates with the rotor, thus its MMF can
be expressed as

F
s
f ðw; tÞ ¼ Re

Nf

2p
if

� �
e jð pw�v1tÞ

� �
¼ Re Ff ;pe

jð pw�v1tÞ
n o

ð1Þ

where, p indicates the number of pole pairs and the
corresponding wave number; Nf is the number of field
winding turns in series; if is field winding current;
v1 ¼ pVm (in the general case, Vm ¼ ð1� sÞv1=p, s is
slip) is the angular speed of the stator supply voltage; Vm

is the mechanical angular velocity of the rotor; w is the
angular co-ordinate; t denotes time; superscript ‘s’ indicate
that a stator reference frame is used. Hereafter, a general
expression for Vm has been used (s = 0), as the force
model elaborated in this work was also applied to an
induction machine.

As already mentioned, currents supplied to the stator
winding from the mains were assumed to have sinusoidal
spatial distribution. Besides that, the parallel stator wind-
ings provided paths for the circulating currents, due to
numerous magnetic flux harmonics present in the air gap.
Those having nonzero winding factors would generate the

Fig. 1 Cross-section view of synchronous machine studied

Table 1: Content of field winding MMF spectrum

Harmonic

(Number of

pole pairs)

Relative

magnitude

4 1

12 0.199

20 0.016

28 0.030

36 0.02
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corresponding MMF harmonics

Fs
s ðw; tÞ ¼

XN1

k¼1

Re
3

2

Nse;k

2p
ik

� �
e jðkw�vk tþws;k Þ

� �

¼
XN1

k¼1

Re Fs;ke
jðkw�vk tþw s;k Þ

n o
ð2Þ

where k is the wave number of the MMF harmonic; N1 is
the highest considered harmonic of the stator MMF,
Nse;k ¼ 4ksw;kNs=p is the equivalent number of the
stator winding turns in series for the kth stator current har-
monic; ksw;k is the winding factor for the corresponding
stator current harmonic; Ns is the number of stator
winding turns in series; ik is the stator current harmonic
which causes the MMF harmonic with wave number k;
ws;k is phase angle of the kth MMF harmonic with
respect to the field winding MMF.

Note that a current induced in a single parallel circuit of
the stator winding by a magnetic flux passing through it can
only produce a standing MMF wave, however, when inter-
acting with currents induced in other parallel windings, it
can cause the travelling MMF harmonics with different
wave numbers.

As this study was primarily concerned with the
steady-state operation of a synchronous machine, the
fundamental MMF component produced by the damper
winding was presumed to be absent. This assumption
was justified by the fact that, in a synchronous
machine operating in a steady-state mode, the fundamen-
tal magnetic field component passing through the damper
winding has a constant magnitude and is stationary with
respect to the winding. Thus, there are no fundamental
electromotive forces induced in the damper winding,
no fundamental currents and, hence, no fundamental
MMF produced by this winding. By taking into
account the other components of the damper winding
current, we have

Fs
r;nðw; tÞ ¼

XN2

n¼1
n=p

Re ksw;nir;ne
jðnw�vntþwr;nÞ

n o

¼
XN2

n¼1
n=p

Re Fr;ne
jðnw�vntþwr;nÞ

n o
ð3Þ

where n is the wave number of the MMF harmonic; N2

is the highest considered harmonic of the MMF pro-
duced by the damper winding; ksw;n is the winding
factor for the corresponding damper winding harmonic;
wr;n is phase angle of nth MMF harmonic with respect
to the field winding MMF.

The net MMF is the sum of the field, stator and damper
winding MMFs

F
s
ðw; tÞ ¼ Re

(
ðFf ;p þ Fs;pe

jw s;p Þe jð pw�v1tÞ

þ
XN1

k¼1;
k=p

Fs;ke
jðkw�vk tþw s;k Þ

þ
XN2

n¼1
n=p

Fr;ne
jðnw�vntþwr;nÞ

)
ð4Þ

As it was already mentioned before, the MMF of the field
winding is not sinusoidally distributed but rather constant

over the rotor pole. On the other hand, the air-gap length
over the pole shoe is varying and so is the air gap permeance.
This is done to achieve a sinusoidal distribution of the
magnetic flux density produced by the field winding.
When deriving the parametric force model, we have used
a sinusoidal distribution of the field winding MMF and a
constant air gap (if no eccentricity is present), instead of
the actual constant MMF and varying air-gap length. It
can be shown that both approaches provide very similar
distributions of the magnetic flux density in the air gap.

2.2 Air-gap permeance

In [13], it was shown that the circumferential air-gap vari-
ation in a salient-pole synchronous machine with concentric
rotor can be expressed as

dsðw; tÞ ¼ Re
d0min

cosððp=tÞwÞ
�� �� e�j2v1t

( )
ð5Þ

where pmin is the smallest air gap between the rotor pole
shoe and the stator surface (on the pole axis); t is the pole
pitch t ¼ p=p; jj denotes an absolute value.
Equation (5) can also be written as

dsðw; tÞ ¼ Re
d0min

cosð pwÞ
�� �� e�j2v1t

( )
ð6Þ

Cylindrical rotor whirling causes an additional term in the
air gap expression

dsðw; tÞ ¼ Re
d0min

cosð pwÞ
�� �� e�j2v1t þ decce

jðw�vecctþwecc:0Þ

( )
ð7Þ

where decc is whirling radius; vecc is whirling angular speed;
wecc:0 is the initial phase angle of the rotor eccentricity.
The air-gap permeance was calculated as

lsðw; tÞ ¼
m0

dsðw; tÞ
ð8Þ

where m0 is permeability of free space.
Substituting (7) into (8) resulted in a Fourier series where

the most prominent components had wave numbers 0, 1
and 2p

lsðw; tÞ ¼
m0

d0
1þ

1

d0
Re decce

jðw�vecctþwecc:0Þ
n o�

þ
1

d0
Re dpse

jð2pw�2v1tÞ
n o�

ð9Þ

where d0 is the constant term of the Fourier series, which
also accounts for the fictitious air gap increase due to

saturation, dpse
jð2pw�2v1tÞ is the first Fourier component

associated with rotor saliency.
Results of the analytical simulation based on (5)–(8) for

an eight-pole machine are presented in Fig. 2, where the
rotor eccentricity value was 20% of the air gap d0min. As
seen, the constant permeance term and those associated
with rotor saliency and rotor eccentricity are preponderant.
These observations agree with (9).

2.3 Magnetic flux density

The magnetic flux density in the air gap was obtained as a
product of MMF and permeance

B
s
ðw; tÞ ¼ F

s
ðw; tÞ � lsðw; tÞ ð10Þ
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Substituting (4) and (9) into (10), we have the following

Bs
ðw; tÞ

¼
m0

d0
Re

(�
Ff ;pþFs;pe

jws;p

� �
e�jv1t

þ
dps

2d0

�
Ff ;pþFs;pe

�jws;p

� �
e�jv1t

þ Fs;3pe
jws;3p þFr;3pe

jwr;3p

� �
e�jðv3p�2v1Þt

�

þ
decc
2d0

�
Fs;p+1e

jws;p+1 þFr;p+1e
jwr;p+1

� �

�e�j ðvp+1+veccÞt+wecc:0ð Þ
�	

ejpw

þ

�
Fs;p�1e

jws;p�1 þFr;p�1e
jwr;p�1

� �
e�jvp�1t

þ
dps

2d0

�
Fs;3p�1e

jws;3p�1 þFr;3p�1e
jwr;3p�1

� �
e�jðv3p�1�2v1Þt

þ Fs;pþ1e
jws;pþ1 þFr;pþ1e

jwr;pþ1

� �
e jðvpþ1�2v1Þt

�

þ
decc
2d0

Ff ;pþFs;pe
jws;p

� �
e�jððv1�veccÞtþwecc:0Þ

	
e jðp�1Þw

þ

�
Fs;pþ1e

jws;pþ1 þFr;pþ1e
jwr;pþ1

� �
e�jvpþ1t

þ
dps

2d0

�
Fs;3pþ1e

jws;3pþ1 þFr;3pþ1e
jwr;3pþ1

� �
e�jðv3pþ1�2v1Þt

þ Fs;p�1e
jws;p�1 þFr;p�1e

jwr;p�1

� �
e jðvp�1�2v1Þt

�

þ
decc
2d0

Ff ;pþFs;pe
jws;p

� �
e�j



ðv1þveccÞt�wecc:0

�	
e jðpþ1Þw

þ
XN1

k¼1;
k=p;p+1

Fs;ke
jðkw�vk tþws;k Þ þ

XN2

n¼1
n=p;p+1

Fr;n e
jðnw�vntþwr;nÞ

þ
decc
2d0

�
Fs;p+1e

jws;p+1 þFr;p+1e
jwr;p+1

� �

�e j


ðp+2Þw�ðvp+1+veccÞt+wecc:0

�

þ
XN1

k¼1;
k=p;p+1

Fs;ke
j


ðk+1Þw�ðvk+veccÞtþws;k+wecc:0

�

þ
XN2

n¼1
n=p;p+1

Fr;ne
j


ðn+1Þw�ðvn+veccÞtþwr;n+wecc:0

��

þ
dps

2d0

�
Ff ;pþFs;pe

jws;p

� �
e jð3pw�3v1tÞ

þ Fs;p+1e
jws;p+1 þFr;p+1e

jwr;p+1

� �
e j


ð3p+1Þw�ðvp+1þ2v1Þt

�

þ Fs;3pe
jws;3p þFr;3pe

jwr;3p

� �
e j


5pw�ðv3pþ2v1Þt

�
þ Fs;3p+1e

jws;3p+1 þFr;3p+1e
jwr;3p+1

� �
�e j



ð5p+1Þw�ðv3p+1þ2v1Þt

�

þ
XN1

k¼1;
k=p;p+1;3p;3p+1

Fs;ke
j


ðk+2pÞw�ðvk+2v1Þtþws;k

�

þ
XN2

n¼1
n=p;p+1;3p;3p+1

Fr;ne
jððn+2pÞw�ðvn+2v1Þtþwr;nÞ

�)

ð11aÞ

In this equation, it is interesting to observe that the p21
magnetic flux density harmonic can be produced by the
interaction of pþ 1 MMF harmonics with the permeance
wave due to the rotor saliency (note the term
dps=2d0 Fs;pþ1e

jws;pþ1 þFr;pþ1e
jwr;pþ1

� �
e j ðp�1Þwþ vpþ1�2v1ð Þtð Þ).

Similarly, the product of p21 MMF harmonics and the same
permeance wave can generate a magnetic flux density harmo-
nic with wave number pþ1 (term dps=2d0ðFs;p�1e

jws;p�1þ

Fr;p�1e
jwr;p�1Þ ej ðpþ1Þwþ vp�1�2v1ð Þtð Þ). Though these constitu-

ents of p+1 magnetic flux density terms are expected to be
small and neglected hereafter, they show that there can be a
coupling between the two magnetic flux density harmonics,
commonly known as eccentricity harmonics.

Rotor eccentricity engenders mainly the magnetic flux
density terms having wave numbers p+ 1. These, interact-
ing with the fundamental field, will generate the UMP.
Hence, by taking into account only the strongest magnetic
flux density components, (11a) can be reduced to

Bs
ðw; tÞ ¼

m0

d0
Re

(�
Ff ;pþFs;pe

jws;p

� �
e�jv1t

þ
dps

2d0
Ff ;pþFs;pe

�jws;p

� �
e�jv1t

	
e jpw

þ

�
decc
2d0

Ff ;pþFs;pe
jws;p

� �
e�j



v1�veccð Þtþwecc:0

�

þ Fs;p�1e
jws;p�1 þFr;p�1e

jwr;p�1

� �
e�jvp�1t

	
e jðp�1Þw

þ

�
decc
2d0

Ff ;pþFs;pe
jws;p

� �
e�j



v1þveccð Þt�wecc:0

�

þ Fs;pþ1e
jws;pþ1 þFr;pþ1e

jwr;pþ1

� �
e�jvpþ1t

	
ejðpþ1Þw

)

ð11bÞ

Fig. 2 Air-gap permeance waves for eight-pole synchronous
machine
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Equation (11b) can be rewritten as

B
s
ðw; tÞ ¼Re B

s
pe

jpw
þB

s
p�1e

jðp�1Þw
þB

s
pþ1e

jðpþ1Þw
n o

ð12Þ

where bar underlining a quantity means that the correspond-
ing quantity is complex-valued. In this work, the complex
notation was employed to denote the time dependence of
the corresponding variables, if it is not stated otherwise.
The shortening notations in (12) are

Bs
p ¼

m0

d0

�
Ff ;pþFs;pe

jw s;p

� �

þ
dps

2d0
Ff ;pþFs;pe

�jw s;p

� �	
e�jv1t

Bs
p�1 ¼

m0

d0

�
decc
2d0

Ff ;pþFs;pe
jw s;p

� �
e�j v1�veccð Þtþwecc:0ð Þ

þ Fs;p�1e
jw s;p�1 þFr;p�1e

jwr;p�1

� �
e�jvp�1t

	

Bs
pþ1 ¼

m0

d0

�
decc
2d0

Ff ;pþFs;pe
jw s;p

� �
e�j v1þveccð Þt�wecc:0

þ Fs;pþ1e
jw s;pþ1 þFr;pþ1e

jwr;pþ1

� �
e�jvpþ1t

	
ð13Þ

Equations (13) can also be written in another form, wherein
the p+1 magnetic flux densities are expressed in terms of
the fundamental field and corresponding currents in the
stator and rotor windings

Bs
p ¼ Bp;1e

jwp þBp;2e
�jwp

� �
e�jv1t

Bs
p�1 ¼

decc
2d0

Bp;1e
�j v1�veccð Þt�wpþwecc:0ð Þ

þ
m0

d0
kcs;p�1i

s
s;p�1þ kcr;p�1i

s
r;p�1

� �

Bs
pþ1 ¼

decc
2d0

Bp;1e
�j v1þveccð Þt�wp�wecc:0ð Þ

þ
m0

d0
kcs;pþ1i

s
s;pþ1þ kcr;pþ1i

s
r;pþ1

� �

ð14Þ

where Bp,1 is caused by the interaction of the
fundamental MMF components and constant permeance
term; Bp,2 is the product of the fundamental MMF
components with the first Fourier-series component of
the air-gap permeance related to rotor saliency; wp

accounts for the phase angle shift of the magnetic-flux-
density harmonics with respect to the MMF vector of the
field winding; kcs;p+1 and kcr;p+1 are dimensionless coup-
ling factors related to the stator and rotor windings,
respectively.

2.4 Magnetic fluxes through the stator and
rotor windings

In the rotor frame of reference, the p+1 magnetic
field waves through the damper winding can be expressed as

fr

r;p�1
¼ Lself ;r;p�1i

r
r;p�1 þ kL;r;p�1

�
decc
2m0

Bp;1e
�j sv1�vr

eccð Þt�wpþwecc:0ð Þ þ kcs;p�1i
r
s;p�1

� �

fr

r;pþ1
¼ Lself ;r;pþ1i

r
r;pþ1 þ kL;r;pþ1

�
decc
2m0

Bp;1e
�j sv1þvr

eccð Þt�wp�wecc:0ð Þ þ kcs;pþ1i
r
s;pþ1

� �
ð15Þ

where vr
ecc is whirling angular speed in the rotor reference

frame (vr
ecc ¼ vecc �Vm), coefficients kL;r;p+1 have the

unit of henry (H) and define the amounts of the correspond-
ing magnetic flux harmonics that pass through the damper
winding from the sources other than rotor currents,
Lself ;r;p+1 are self-inductances of the damper winding for
the corresponding magnetic field waves. According to [8],
the self-inductances are defined as

Lself ;r;p+1 ¼ m0

pdrleKw;p+1

Zbarsde

where dr is the diameter of the damper winding, le is equiv-
alent axial length of the damper winding, Kw,p+1 are
winding factors for the corresponding harmonics, Zbars is
number of damper bars and de is equivalent air gap includ-
ing the effect of slotting.
Similarly, the magnetic-flux harmonics linking the stator

winding can be expressed as

cs

s;p�1
¼ Lself ;s;p�1i

s
s;p�1 þ kL;s;p�1

�
decc
2m0

Bp;1e
�j ðv1�veccÞt�wpþwecc:0ð Þ þ kcr;p�1i

s
r;p�1

� �

cs

s;pþ1
¼ Lself ;s;pþ1i

s
s;pþ1 þ kL;s;pþ1

�
decc
2m0

Bp;1e
�j ðv1þveccÞt�wp�wecc:0ð Þ þ kcr;pþ1i

s
r;pþ1

� �
ð16Þ

where Lself ;r;p+1 are self-inductances of the stator winding
for the corresponding magnetic field waves, coefficients
kL;s;p+1 define the amounts of the corresponding magnetic
flux harmonics that pass through the stator winding from
the sources other than stator currents. Note that in (16) the
stator reference frame was used.

2.5 Voltage equations for the stator and
rotor windings

The damper winding can be considered as a number of
loops consisting of two neighbouring bars short-circuited
by the end rings. Owing to the short-circuit, the voltages
induced by the p+1 magnetic field harmonics in each
loop vanish

Rr;p�1 þ L�or;p�1

d

dt

� �
irr;p�1 þ

dfr

r;p�1

dt
¼ 0

Rr;pþ1 þ L�or;pþ1

d

dt

� �
irr;pþ1 þ

dfr

r;pþ1

dt
¼ 0

ð17Þ
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where L�or;p+1 are damper winding leakage inductances for
the corresponding harmonic, Rr;p+1 are resistances of the
damper winding loops for the corresponding harmonic.
As mentioned, the stator connection type, with the neigh-

bouring pole windings connected in series and opposite
pole windings in parallel, was considered in this work. The
analysis is also suitable for amachine having asmany parallel
stator windings as there are poles. The flux linkages through
the parallel paths of such a winding have the samemagnitude,
but are phase-shifted with respect to each other. For a mag-
netic flux harmonic having wave number v, the phase shift
between the neighbouring parallel windings is given as

gv ¼
2pv

Npp

ð18Þ

where Npp is the number of parallel paths in the stator
winding.
Now, it can be readily verified that p+1 magnetic flux

harmonics through every parallel stator winding are phase-
shifted by an angle of 2p=Npp with respect to each other and
their net vector sum gives zero, therefore, assuming the
impedances of the parallel windings to be identical, the
stator winding can be studied as a symmetric balanced
Npp-phase circuit. Thus, the voltage equations for p+1
harmonics in the stator winding are

Rs;p�1 þ L�os;p�1

d

dt

� �
iss;p�1 þ

dcs

s;p�1

dt
¼ 0

Rs;pþ1 þ L�os;pþ1

d

dt

� �
iss;pþ1 þ

dcs

s;pþ1

dt
¼ 0

ð19Þ

where L�os;p+1 are parallel stator winding leakage induc-

tances for a corresponding harmonic, Rs;p+1 are parallel

stator winding resistances for a corresponding harmonic.
The mains voltage connected to the stator terminals was

assumed to consist of the fundamental component only. The
path through the stator terminals for nonfundamental
current harmonics was considered as a short circuit (the
grid, to which the machine was connected, usually has
quite small impedance).
By inserting the flux linkage equations into the corre-

sponding voltage equations, the expressions for the
current harmonics were obtained. Thus, the currents in the
damper winding followed the equations

Rr;p�1 þ Lr;p�1

d

dt

� �
i
r
r;p�1

¼ j sv1 � vr
ecc


 � kL;r;p�1

2m0

deccBp;1

� e�jððsv1�vr
eccÞt�wpþwecc:0Þ � kcs;p�1kL;r;p�1

dirs;p�1

dt

Rr;pþ1 þ Lr;pþ1

d

dt

� �
irr;pþ1

¼ jðsv1 þ vr
eccÞ

kL;r;pþ1

2m0

deccBp;1

� e�jððsv1þvr
eccÞt�wp�wecc:0Þ � kcs;pþ1kL;r;pþ1

dirs;pþ1

dt

ð20Þ

where Ls;p+1 ¼ L�or;p+1 þ Lself ;r;p+1 are complete induc-

tances of the damper winding for the corresponding
magnetic-flux-density waves.

The currents in the parallel stator windings were
expressed as

Rs;p�1 þ Ls;p�1

d

dt

� �
i
s
s;p�1

¼ jðv1 � veccÞ
kL;s;p�1

2m0

deccBp;1

� e�jððv1�veccÞt�wpþwecc:0Þ � kcr;p�1kL;s;p�1

d

dt
isr;p�1

Rs;pþ1 þ Ls;pþ1

d

dt

� �
iss;pþ1

¼ jðv1 þ veccÞ
kL;s;pþ1

2m0

deccBp;1

� e�jððv1þveccÞt�wp�wecc:0Þ � kcr;pþ1kL;s;pþ1

d

dt
i
s
r;pþ1

ð21Þ

where Ls;p+1 ¼ L�os;p+1 þ Lself ;s;p+1 are complete induc-
tances of the parallel stator windings for the corresponding
magnetic-flux-density waves.

Note that (20) and (21) show that there exists a coupling
between the corresponding current harmonics flowing in the
stator and damper windings.

2.6 Solving the current harmonics

To solve the current harmonics flowing in the damper
winding, the corresponding current harmonics in the stator
winding have to be expressed in the rotor frame of reference
and substituted into the expression for the damper winding
currents. Whereas, the stator current harmonics can be
solved using the rotor current harmonics expressed in the
stator reference frame. The co-ordinate system transform-
ation was performed according to these rules

i
s
r;p+1 ¼ i

r
r;p+1e

�jð p+1ÞVmt

irs;p+1 ¼ iss;p+1e
jð p+1ÞVmt

disr;p+1

dt
¼

dirr;p+1

dt
e�jð p+1ÞVmt � jð p+ 1ÞVmi

s
r;p+1

dirs;p+1

dt
¼

diss;p+1

dt
e jð p+1ÞVmt þ jð p+ 1ÞVmi

r
s;p+1

ð22Þ

Using (22) and Laplace transform, the p21 current harmo-
nic in the damper winding was solved. The steady-state
solution was

irr;p�1 ¼ sv1 � vr
ecc


 �
ðv1 � veccÞ



Ls;p�1 � kcs;p�1kL;s;p�1

��
þ jRs;p�1

�
kL;r;p�1deccBp;1

2m0Ap�1 Sr;p�1;1 þ j sv1 � vr
ecc


 �� �
Sr;p�1;2 þ j sv1 � vr

ecc


 �� �
� e�j sv1�vr

eccð Þt�wpþwecc:0ð Þ

ð23Þ

where Sr;p�1;1 and Sr;p�1;2 are the roots of the characteristic

equation Ap�1S
2
þ Br;p�1S þ Cr;p�1 ¼ 0, S denotes the

variable in Laplace domain. Coefficients Ap�1;Br;p�1, and
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Cr;p�1 are explicitly written as follows

Ap�1 ¼ Lr;p�1Ls;p�1 � kcr;p�1kcs;p�1kL;r;p�1kL;s;p�1

Br;p�1 ¼ Lr;p�1Rs;p�1 þ Ls;p�1Rr;p�1 þ jð p� 1ÞVm

� kcr;p�1kcs;p�1kL;r;p�1kL;s;p�1 � Lr;p�1Ls;p�1

� �
Cr;p�1 ¼ Rr;p�1Rs;p�1 � jð p� 1ÞVmLs;p�1Rr;p�1

ð24Þ

In (23) and (24), the complex notation is employed to
denote the complex-valued coefficients, note that these are
time-invariant.

The p2 1 current harmonic in the stator winding was

iss;p�1 ¼ v1 � vecc


 �
sv1 � vr

ecc


 �

Lr;p�1 � kcr;p�1kL;r;p�1

��
þ jRr;p�1

�
kL;s;p�1deccBp;1

2m0Ap�1 Ss;p�1;1 þ j v1 � vecc


 �� �
Ss;p�1;2 þ j v1 � vecc


 �� �
� e�j v1�veccð Þt�wpþwecc:0ð Þ

ð25Þ

where Ss;p�1;1 and Ss;p�1;2 were obtained from the equation

Ap�1S
2
þ Bs;p�1S þ Cs;p�1 ¼ 0, with coefficients

Bs;p�1 ¼ Lr;p�1Rs;p�1 þ Ls;p�1Rr;p�1 þ jð p� 1ÞVm

� Lr;p�1Ls;p�1 � kcr;p�1kcs;p�1kL;r;p�1kL;s;p�1

� �
Cs;p�1 ¼ Rr;p�1Rs;p�1 þ jð p� 1ÞVmLr;p�1Rs;p�1

ð26Þ

whereas coefficient Ap�1 was the same as in (24).

The pþ 1 current harmonics were

i
r
r;pþ1 ¼ sv1 þvr

ecc


 �
v1 þvecc


 �
Ls;pþ1 � kcs;pþ1kL;s;pþ1

� ��
þ jRs;pþ1

�
kL;r;pþ1deccBp;1

2m0Apþ1 Sr;pþ1;1 þ j sv1 þvr
ecc


 �� �
Sr;pþ1;2 þ j sv1 þvr

ecc


 �� �
� e�j sv1þvr

eccð Þt�wp�wecc:0ð Þ

iss;pþ1 ¼ v1 þvecc


 �
sv1 þvr

ecc


 �
Lr;pþ1 � kcr;pþ1kL;r;pþ1

� ��
þ jRr;pþ1

�
kL;s;pþ1deccBp;1

2m0Apþ1 Ss;pþ1;1 þ j v1 þvecc


 �� �
Ss;pþ1;2 þ j v1 þvecc


 �� �
� e�j v1þveccð Þt�wp�wecc:0ð Þ

ð27Þ

where Sr;pþ1;1, Sr;pþ1;2; Ss;pþ1;1 and Ss;pþ1;2 can be obtained

by solving the equations Apþ1S
2
þ Br;pþ1S þ Cr;pþ1 ¼ 0

and Apþ1S
2
þ Bs;pþ1S þ Cs;pþ1 ¼ 0, respectively, where

the coefficients are given in (24) and (26) with (p2 1)
replaced by (pþ 1) in every occasion (indices and multi-
pliers). Note that (27) only contains the steady-state
current components.

2.7 Electromagnetic force on the rotor

To calculate the electromagnetic force acting on the rotor,
the expression for the radial component of the Maxwell
stress tensor was used

sðw; tÞ ¼
1

2m0

½Bðw; tÞ�2 ¼
1

2m0

X1
v¼0

Re BvðwÞe
jvw

� 
" #2

ð28Þ

The total electromagnetic force was obtained by integrating
the Maxwell stress over the whole circumference of a
machine

Fe ¼
dRle
2

ð2p
0

sðw; tÞ � e jw dw ð29Þ

where dR is the outer diameter of the rotor.
The force on the rotor was assumed to be generated by

interaction of two magnetic flux density harmonics:

Fe ¼
dRle
8m0

ð2p
0

BvB
�
we

jðv�wþ1Þw
þ B

�
vBwe

�jðv�w�1Þw
� �

dw

ð30Þ

where symbol ‘ * ’ designates a complex conjugate.
From (30) it is seen that the net force can only be pro-

duced by the magnetic-flux-density components with
wave numbers satisfying the condition v2 w ¼ +1. The
rotor eccentricity mainly causes the magnetic flux waves
with wave numbers p+1 (see (11b)). These, together with
the fundamental field, satisfy the aforementioned condition
for the net force generation, therefore the electromagnetic
force due to the rotor eccentricity can be expressed as

F
s
e ¼

pdRle
4d0

Bp;1

m0

Bp;1 þ Bp;2cos 2wp

� �� ��

� decce
j vecct�wecc:0ð Þ þ Bp;1e

�jwp þ Bp;2e
jwp

� �
� kcr;p�1i

s
r;p�1 þ kcs;p�1i

s
s;p�1

� �
� e jv1t þ Bp;1e

jwp þ Bp;2e
�jwp

� �

� kcr;pþ1i
s�
r;pþ1 þ kcs;pþ1i

s�
s;pþ1

� �
e�jv1t

�

ð31Þ

Substituting the current harmonics from (23), (25) and (27)
into (31) yielded the expression of the electromagnetic
force. Note that in (31) the stator reference frame is used
throughout, therefore the rotor current harmonics have to
be transformed to this reference frame before being substi-
tuted into (31). This can be done using (22), thus the
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electromagnetic force can be represented as

F
s
e ¼

pdRle
4m0 d0

Bp;1

� Bp;1 þ Bp;2 cosð2wpÞ

� �
þ
Bp;1 þ Bp;2e

j2wp

2Ap�1

2
666666664

� ðsv1 � vr
eccÞ

ððv1 � veccÞ

ðLs;p�1 � kcs;p�1kL;s;p�1Þ

þ jRs;p�1Þkcr;p�1kL;r;p�1

Sr;p�1;1 þ jðsv1 � vr
eccÞ

� �
� Sr;p�1;2 þ jðsv1 � vr

eccÞ

� �

0
BBBBBBBB@

þ ðv1 � veccÞ

ððsv1 � vr
eccÞ

ðLr;p�1 � kcr;p�1kL;r;p�1Þ

þ jRr;p�1Þkcs;p�1kL;s;p�1

Ss;p�1;1 þ jðv1 � veccÞ

� �
� Ss;p�1;2 þ jðv1 � veccÞ

� �

1
CCCCCCCCA

þ
Bp;1 þ Bp;2e

�j2wp

2Apþ1

� ðsv1 þ vr
eccÞ

ððv1 þ veccÞ

ðLs;pþ1 � kcs;pþ1kL;s;pþ1Þ

� jRs;pþ1Þkcr;pþ1kL;r;pþ1

S�r;pþ1;1 � jðsv1 þ vr
eccÞ

� �
� S

�
r;pþ1;2 � jðsv1 þ vr

eccÞ

� �

0
BBBBBBBB@

þ ðv1 þ veccÞ

ððsv1 þ vr
eccÞ

ðLr;pþ1 � kcr;pþ1kL;r;pþ1Þ

�jRr;pþ1Þkcs;pþ1kL;s;pþ1

S�s;pþ1;1 � jðv1 þ veccÞ

� �
� S�s;pþ1;2 � jðv1 þ veccÞ

� �

1
CCCCCCCCA

3
777777775
decce

jðvecct�wecc:0Þ ð32Þ

Equation (32) is a parametric model representing the elec-
tromagnetic force on the whirling rotor, as a function of
whirling radius and whirling angular speed. The model
has twenty real-valued physical parameters (the term @dR
le/4m0d0 was regarded as an unknown parameter), which
can be estimated from numerical simulation results. Thus,
the model accounts for the effects of iron core saturation,
slotting and equalising currents in the damper winding
and parallel stator windings, because all these phenomena
were considered in the simulation. The force model can

also be represented as

KðjveccÞ ¼
Fs
e

decce
jðvecct�wecc:0Þ

¼
pdRle
4m0 d0

Bp;1 Bp;1 þ Bp;2 cosð2wpÞ

� �
2
666666664

þ
Bp;1 þ Bp;2e

j2wp

2Ap�1

� ðsv1 � vr
eccÞ

ððv1 � veccÞ

ðLs;p�1 � kcs;p�1kL;s;p�1Þ

þ jRs;p�1Þkcr;p�1kL;r;p�1

Sr;p�1;1 þ jðsv1 � vr
eccÞ

� �
� Sr;p�1;2 þ jðsv1 � vr

eccÞ

� �

0
BBBBBBBB@

þ ðv1 � veccÞ

ððsv1 � vr
eccÞ

ðLr;p�1 � kcr;p�1kL;r;p�1Þ

þ jRr;p�1Þkcs;p�1kL;s;p�1

Ss;p�1;1 þ jðv1 � veccÞ

� �
� Ss;p�1;2 þ jðv1 � veccÞ

� �

1
CCCCCCCCA

þ
Bp;1 þ Bp;2e

�j2wp

2Apþ1

� ðsv1 þ vr
eccÞ

ððv1 þ veccÞ

ðLs;pþ1 � kcs;pþ1kL;s;pþ1Þ

�jRs;pþ1Þkcr;pþ1kL;r;pþ1

S�r;pþ1;1 � jðsv1 þ vr
eccÞ

� �
� S

�
r;pþ1;2 � jðsv1 þ vr

eccÞ

� �

0
BBBBBBBB@

þðv1 þ veccÞ

ððsv1 þ vr
eccÞ

ðLr;pþ1 � kcr;pþ1kL;r;pþ1Þ

� jRr;pþ1Þkcs;pþ1kL;s;pþ1

S
�
s;pþ1;1 � jðv1 þ veccÞ

� �
� S�s;pþ1;2 � jðv1 þ veccÞ

� �

1
CCCCCCCCA

3
777777775
ð33Þ

where K jvecc


 �
is a frequency response function (FRF) of

the electromagnetic force. Note that K jvecc


 �
is independent

of time and the complex notation only signifies that it is
complex-valued.

2.8 Numerical calculation

The numerical calculation of the magnetic field was based
on the transient time-stepping finite-element analysis
(FEA) [14]. The magnetic field and circuit equations were
discretised and solved together as a system of equations.
The time-dependence of the variables was modelled by
Crank-Nicholson method. The forces were calculated at
each time-step using a method developed by Coulomb [15].
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Several simplifications were made to keep the amount of
computation at a reasonable level. The magnetic field in the
core region was assumed to be two-dimensional. The lami-
nated iron core was treated as a nonconducting magnetically
nonlinear medium, and the nonlinearity was modelled by a
single-valued magnetisation curve. Modelling of the air gap
regions also was two-dimensional. The rotor motion was
facilitated by changing the shapes of the finite elements
(FE) in the air gap.

The impulse method [16] was implemented in the FEA,
which allowed the FRF of the force, in the whole studied
whirling frequency range ([2100, 100] Hz), to be obtained
using the results of a single numerical simulation, thus
significantly reducing the computation time.

All numerical calculations were carried out on a
PC powered by AMD Athlon 64 3000þ processor. The
synchronous machine was simulated using first-order FE.
The FE model contained 7344 nodes. Two seconds of the
machine performance required three hours of computation
time. The induction machine was simulated using second-
order FE; its model contained 16 953 nodes. To simulate
one second of the machine operation required approxi-
mately five hours of computation time.

3 Results

To estimate the force model parameters, the aforementioned
salient-pole synchronous machine was simulated using the
FEA. The main parameters of the machine are listed in
Table 2.

The machine was operated in a steady-state generator
mode and connected to a balanced line voltage. The mech-
anical angular velocity of the rotor was kept constant. The
machine had four parallel stator windings and the damper
winding.

The FRF of the force obtained from the numerical simu-
lation is shown in Fig. 3. This complex-valued FRF was
resolved into real and imaginary parts, which correspond
to radial (continuous curve) and tangential (dashed curve)
force components, respectively. The radial force component
acts in the direction of the shortest air gap and the tangential
one is directed orthogonally to it. The radial and tangential
force components rotate together with the point of the
shortest air gap. The tangential component of the electro-
magnetic force due to the rotor eccentricity must be
distinguished from the tangential force responsible for the
machine’s torque generation during the normal operation.

The force model parameters were calculated from these
results employing a genetic-algorithms-based estimation
program. The estimated force model parameters are listed

in Table 3 which also contains the estimated parameters
for the other test motor.
To evaluate the performance of the presented force

model, these parameters were substituted into the force
model expression (33). By doing this, the estimated FRF
of the force was obtained. Comparison of the estimated
FRF and the original FRF from the FEA is shown in Fig. 4.
The performance of the parametric force model, when

applied to an induction machine, was also studied.
Table 4 lists the main parameters of the second test-motor,
which had six parallel stator windings and the rotor cage.
In this machine, the fundamental field was generated by
the stator winding and rotor cage, and the rotor surface
was cylindrical (no saliency), therefore the magnetic flux
density term Bp,2 (in (33)) was equal to zero and the force
model expression became slightly simpler. By forcing
Bp,2 ¼ 0, the term (pdRle/4m0d0)Bp,1

2 can be estimated as
a single parameter, thus reducing the number of unknown

Table 2: Main parameters of simulated synchronous
machine

Parameter Value

Number of pole-pairs 4

Number of parallel stator windings 4

Frequency of the voltage supplied

to the stator winding, Hz

50

Stator winding supply voltage, V 6300

Field winding supply voltage, V 150

Stator winding connection Star

Apparent power, kVA 8400

Power factor 0.83 Cap.

Fig. 3 FRF of electromagnetic force obtained from a numerical
simulation

Table 3: Estimated force model parameters

Synchronous machine Induction machine

Parameter Value Value

pdrle/4m0d0 5.18 � 106 —

Lr,pþ1 8.99 � 1022 29.70 � 1023

Ls,pþ1 1.72 � 1022 2.70 � 1022

Lr,p21 6.52 � 1022 22.25 � 1022

Ls,p21 23.89 � 1022 1.23 � 1022

Rr,pþ1 4.37 � 102 6.53 � 101

Rs,pþ1 1.72 � 1021 2.49

Rr,p21 5.78 22.04

Rs,p21 23.58 � 1021 1.44

kcr,pþ1 3.32 � 1021 22.14 � 1022

kcs,pþ1 5.72 24.31

kcr,p21 1.30 3.52 � 1021

kcs,p21 3.38 � 1021 23.95 � 1022

kL,r,pþ1 2.57 � 1022 1.12 � 1021

kL,s,pþ1 3.65 � 1023 23.14 � 1023

kL,r,p21 1.42 � 1022 24.71 � 1023

kL,s,p21 3.52 � 1023 22.95 � 1022

Bp,1 1.74 —

Bp,2 9.93 � 1022 —

wp 23.51 � 1021 —

(pdrle/4m0d0)Bp,1
2 — 2.26 � 106
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parameters to seventeen. Table 3 lists the estimated force
model parameters for this machine. Fig. 5 demonstrates
the performance of the force model with the estimated
parameters.

4 Discussion

UMP analysis in electrical machines, equipped with both
the parallel stator windings and damper winding (rotor
cage), becomes especially complicated, as the effects of
the equalising currents flowing in the stator and rotor have
to be accounted for. Moreover, the coupling between the
stator and rotor equalising currents also needs to be
considered.
As the frequency of the electromagnetic force associated

with rotor eccentricity is often lower than that of the funda-
mental field [16], the whirling frequency range of interest
was chosen to be [2100, 100] Hz.
As the rotor eccentricity engenders mainly the magnetic

fields having wave numbers p+ 1, only these interacting
with the fundamental field were considered in the analytical
part and included in the force model. The effects of the
remaining magnetic field harmonics, e.g. slot harmonics,
were approximately taken into account by the term
(pdrle/4m0d0)Bp,1 (see (33)), which is independent of the
whirling frequency.
According to (25) and (27), the p+1 stator current

harmonics vanish as the whirling frequency approaches
+50 Hz, respectively. Hence, at these particular whirling
frequency values, the parallel stator windings do not
damp the corresponding magnetic-flux-density harmonics
and only the damper winding affects their magnitude.

At –50 Hz, where the pþ 1 stator current harmonic is
zero, the radial force component has the maximum value
(see Fig. 3). Thus, it can be concluded that the pþ 1 mag-
netic field harmonic plays a more important role in the
UMP generation than the p2 1 harmonic. As for the
p2 1 magnetic field harmonic, although at 50 Hz the
stator winding does not affect it, the damper winding
seems to have a very strong influence on this magnetic
field wave. Therefore, the radial UMP component does
not peak at this whirling frequency value.

According to (23) and (27), the p+1 eccentricity fields
become stationary with respect to the damper winding
when, respectively

vecc ¼ v1

1

p
� s

1

p
+ 1

� �� �

For synchronous machines (and for induction machines at
no-load), this condition is simply vecc ¼ v1=p, therefore,
in Fig. 3 at 12.5 Hz (8-pole synchronous machine, 50 Hz
supply frequency) the radial force component peaks.

In the case of a synchronous machine, there was observed
a small sharp peak in the radial force component at
237.5 Hz (see Fig. 3). The phenomenon behind this peak
is not clear yet, but we suppose that it could be due to the
coupling between eccentricity fields with other magnetic
field harmonics, which are produced by the currents in the
parallel stator windings.

Fig. 4 shows that the FRF of the force, obtained by sub-
stituting the estimated parameters into the force model
expression (33), agrees very well with the FRF calculated
by the FEA. This excellent model performance is exhibited
throughout the whole studied whirling frequency range. The
peak at 237.5 Hz is not described by the estimated FRF as
its origins were not considered in the force model presented.

Inspecting (33) it is seen that the only term pertinent to
the rotor saliency is the constituent of the fundamental mag-
netic flux density Bp,2. Thus, eliminating the influence of
the rotor saliency would only have a minor influence on
the parametric force model, therefore the model was also
applied to an induction machine, having parallel stator
windings and the rotor cage. It is worth noting that, in a
loaded induction machine, the fundamental field is also
being produced by the corresponding current in the rotor
cage. If this current was included into the analysis, it
would become a constituent of Bp,1 in (14) and have no
effect on the remaining equations.

When studying the induction machine (Fig. 5), interest-
ing phenomena were observed:

Fig. 4 Comparing estimated FRF against FRF from numerical
simulation for synchronous machine

Table 4: Main parameters of induction machine

Parameter Value

Number of pole-pairs 3

Rated frequency, Hz 50

Rated voltage, V 400

Rated power, kW 18.5

Rated slip 0.0145

Connection type Delta

Skew of the rotor slots 0

Number of parallel stator

windings

6

Fig. 5 Comparing estimated FRF against FRF from numerical
simulation for induction machine
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1. Peaks in the radial FRF component due to the eccentri-
city fields p+1 being stationary with respect to the stator
are not anymore located at +50 Hz.
2. Peaks in the radial FRF component due to the eccentri-
city fields p+1 being stationary with respect to the rotor
do not occur at the whirling angular speeds:

vecc ¼ v1

1

p
� s

1

p
+ 1

� �� �

The authors believe that these phenomena are due to the
interactions occurring between the currents induced by
the eccentricity fields in the parallel stator windings and
the currents induced by the same fields in the rotor cage.
In induction machines, these interactions could be stronger
than they are in synchronous machines due to the smaller
air gap (that provides larger mutual inductances between
the stator and rotor windings) and different structure of
the rotor cage.

As seen in Fig. 5, the performance of the developed force
model is also very good when applied to an induction
machine. The force model developed has also been
applied to the same synchronous and induction machines
that were now equipped with either the parallel stator wind-
ings or the rotor cage. In all those tests, the model also
performed very well, however these results are not
presented in this paper.

It is also worth mentioning that the estimated set of force
model parameters corresponds to a certain operating point
(supply voltage, load torque etc.) of a machine. Slot harmo-
nics are considered as one of the main reasons for the elec-
tromagnetic force dependence on the loading. These have a
very small whirling frequency dependence in the range con-
sidered, but can vary significantly due to the load changes.
Moreover, the configuration of the stator winding may have
a profound effect on the shape of FRF of the force, therefore
different sets of parameters may have to be used for the
same machine with different stator winding connections.

5 Conclusions

A low-order parametric force model, for the electro-
magnetic force in eccentric rotor electrical machines
equipped with both the parallel stator windings and
damper winding (rotor cage), was developed and verified
in this paper using two example motors. The model was
based on permeance harmonic analysis and included the
effects of equalising currents flowing in the stator and
rotor windings separately, and also the effects of the inter-
action between these currents. Moreover, the model
accounted also for the effects of iron core saturation and
stator and rotor slotting. In the whole whirling frequency
range studied, results from the force model agreed very
well with the results from numerical calculations, when
applied to synchronous machines as well as to induction
machines.

The proposed force model has the following advantages:

1. It allows simple, quick and accurate calculation of the
electromagnetic force at a desired whirling frequency
value or in a certain range of whirling frequencies;
2. The same model parameters can be directly used at
different values of whirling radius (as the force has a

linear dependence on the rotor displacement [17]) and whir-
ling frequency;
3. The model offers an attractive opportunity to be inte-
grated into the mechanical analysis to study electromecha-
nical interactions in electrical machines;
4. The model can be successfully used with synchronous
machines and induction machines. Moreover, the model
proved to be very accurate when applied to electrical
machines equipped with either the parallel stator windings
or the rotor cage.

If the operating point (supply voltage, load torque etc.) of
a machine is changed, or if the stator winding configuration
is modified, the force model parameters have to be
re-estimated.
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