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List of symbols and abbreviations 

Symbols used and their SI units of measure 

Symbols in bold represent vector quantities, symbols in italic represent scalar quantities, 

underlined quantities are complex-valued. 

 
0’ rotor axis, [-] 

A magnetic vector potential, [Wb/m] 

1pA − , 1pA +  force model parameters, [H] 

B magnetic flux density, [T] 

B total magnetic flux density, [T] 

,1pB  first constituent of the fundamental magnetic flux density component 

caused by interaction of the fundamental MMF waves with constant 

permeance term, [T] 

,2pB  second constituent of the fundamental magnetic flux density component 

caused by interaction of the fundamental MMF waves with the first 

Fourier series component of the air gap permeance related to rotor 

saliency, [T] 

nB  magnetic flux density component normal to the surface, [T] 

tB  magnetic flux density component tangential to the surface, [T] 

Bx magnetic flux density component in x-direction, [T] 

By magnetic flux density component in y-direction, [T] 

Bz magnetic flux density component in z-direction, [T] 

D electric flux density, [C/m2] 

rd  outer diameter of the rotor, [m] 

E electric field strength, [V/m] 

ez unit-vector having z-direction, [-] 

F electromagnetic force, [N] 

 eF  unbalanced magnetic pull, [N] 

Frad radial component of the unbalanced magnetic pull, [N] 

Ftan tangential component of the unbalanced magnetic pull, [N] 

xF  electromagnetic force acting along the x-axis, [N] 
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f force density, [N/m3] 

G  Jacobian matrix 

H magnetic field strength, [A/m] 

J electric current density, [A/m2] 

j imaginary unit, [-] 

K  frequency response function of the unbalanced magnetic pull, [N/m] 

0k  force model parameter, [N/m] 

cr, 1pk ±  dimensionless coupling factors for p±1 current harmonics in the rotor 

winding, [-] 

cs, 1pk ±  dimensionless coupling factors for p±1 current harmonics in the stator 

winding, [-] 

L,r, 1pk ±  coefficients defining the amounts of the corresponding magnetic flux 

harmonics that pass through the damper winding from the sources other 

than rotor currents, [H] 

L,s, 1pk ±  coefficients defining the amounts of the corresponding magnetic flux 

harmonics that pass through the stator winding from the sources other 

than stator currents, [H] 

1pk − , 1pk +  force model parameters, [N·rad/(m·s)] 

r, 1pL ±  inductances of the damper winding for p±1 magnetic flux density 

harmonics, [H] 

s, 1pL ±  inductances of the stator winding for p±1 magnetic flux density 

harmonics, [H] 

el  effective air-gap length, [m] 

m wave number, [-] 

n unit-vector normal to the surface, [-] 

n wave number, [-] 

r, 1pR ±  resistances of the damper winding for p±1 current harmonics, [ Ω ] 

s, 1pR ±  resistances of the stator winding for p±1 current harmonics, [ Ω ] 

r  radius of the integration surface, [m] 

rr  inner radius of the air gap, [m] 
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sr  outer radius of the air gap, [m] 

S  area of the integration surface, [m2] 

Sag area of the air gap cross section, [m2] 

r, 1,1pS ± , r, 1,2pS ±  force model parameters, [ Ω /H] 

s, 1,1pS ± , s, 1,2pS ±  force model parameters, [ Ω /H] 

s  slip of the rotor, [-] 

t unit-vector tangential to the surface, [-] 

t time, [s] 

V  volume of the integration region, [m3] 

'W  magnetic co-energy, [J] 

1pz − , 1pz +  force model parameters, [rad/s] 

 

0δ  nominal air gap, [m] 

eccδ  rotor eccentricity, [m] 

ε  permittivity, [F/m]  

φ  reduced electric scalar potential, [V] 

ϕ  angular coordinate, [rad] 

ecc.0ϕ  initial phase angle of the rotor eccentricity, [rad]  

pϕ  phase angle between the fundamental magnetic flux density component 

and the fundamental MMF vector of the field winding, [rad] 

µ  permeability, [H/m] 

0µ  permeability of free space, [H/m] 

ν  reluctivity, [m/H] 

ρ  electric charge density, [C/m3] 

σ  conductivity, [S/m] 

τ  Maxwell stress tensor, [N/m2] 

1ω  angular frequency of the supply voltage, [rad/s] 

eccω  whirling angular velocity, [rad/s] 

r
eccω  whirling angular velocity in rotor frame of reference, [rad/s] 

Ω  mechanical angular velocity of the rotor, [rad/s] 
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ψ  magnetic scalar potential, [Wb·m] 

 

 
*x  complex conjugate of x  

 

Abbreviations 

2PP two parallel paths 

4PP four parallel paths 

FEA Finite Element Analysis 

FEM Finite Element Method 

FRF Frequency Response Function 

GA Genetic Algorithms 

MMF Magnetomotive Force 

MWFA Modified Winding Function Approach 

UMP Unbalanced Magnetic Pull 

WFA Winding Function Approach 
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1 Introduction 

1.1 Background of the study 

In an electrical machine, both radial and tangential electromagnetic forces are 

generated. However, if the motor is symmetrical with a perfectly centred rotor, the radial 

electromagnetic forces are cancelled out and the tangential ones produce a rotating torque. 

In practice, though, due to manufacturing tolerances, wear of bearings, rotor shaft bending 

and many other factors, the rotor and stator axes hardly ever coincide and, thus, most of the 

electrical motors operate with some degree of rotor eccentricity.  

When the rotor axis does not coincide with the axis of the stator bore, the 

imbalance of the electromagnetic forces acting between the rotor and stator occurs. 

Depending on the rotor axis displacement from the stator bore axis and the angular velocity 

of the eccentric rotor motion, the net electromagnetic force can be significant. Acting 

roughly in the direction of the shortest air gap, this force, also called ‘Unbalanced 

Magnetic Pull’ (UMP), tries to further increase the eccentricity magnitude and may cause 

serious damage to the electrical machine. 

There are several different types of eccentric rotor motion (also called ‘rotor 

whirling’). One common eccentricity form is cylindrical circular rotor whirling. It implies 

that the rotor axis, when displaced from the stator bore axis, remains always parallel to the 

latter and travels around it in a circular orbit with a certain radius (called ‘whirling radius’) 

and a certain angular velocity (called ‘whirling angular velocity’). The cross section of an 

electrical motor operated with the cylindrical circular rotor eccentricity is shown in Figure 

1.1. Two special cases of cylindrical circular whirling are frequently mentioned in 

scientific literature. These are static and dynamic eccentricity. The former occurs when the 

eccentric rotor displacement remains stationary with respect to the stator, i.e. the whirling 

angular velocity is zero ( ecc 0ω = ). Dynamic eccentricity implies that the whirling angular 

velocity is the same as the mechanical angular velocity of the rotor ( eccω Ω= ).  
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Figure 1.1 Cross section of electrical machine with eccentric rotor. 

 

Rotor eccentricity originates an additional permeance wave, which has two poles. 

This permeance wave, by interacting with the existing Magnetomotive Force (MMF) 

harmonics, generates magnetic field harmonics, the orders of which differ by 1±  from the 

orders of the corresponding MMF harmonics. These so-called ‘eccentricity harmonics’ 

disturb the symmetric distribution of the magnetic field and infringe the equilibrium of the 

electromagnetic forces acting upon the rotor. As a result, the UMP occurs. The UMP is 

calculated by integrating the squared magnetic flux density over the whole circumferential 

length of the machine 

( )
2π

2 jr e
 e

0 0

 e  d
4µ
d lF B ϕϕ ϕ= ∫        (1.1) 

here, rd  is outer diameter of the rotor; el  is effective air-gap length of the electrical 

machine; 0µ  is permeability of a free space; ϕ  is angular coordinate; j  is imaginary unit. 

Equation (1.1) is a simplified form of the complete expression for the total 

electromagnetic force calculation, which is presented later in Chapter 2. In Eq. (1.1), the 

magnetic field is assumed to consist entirely of the radial component, which crosses the air 

gap in radial direction, whereas the tangential magnetic field component is neglected. 

0
0’ 
δecc 

Frad 

Ftan 

Fe

Ω, ωecc 
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Note that B, in Eq. (1.1), is the total magnetic flux density containing all the 

harmonics. The UMP is assumed to be generated due to the interaction of two magnetic 

flux density harmonics  

( )
2π

j 1*r e
 e

0 0

e d  
4µ

m n
m n

d lF B B ϕ ϕ
∞ ∞

− +

−∞ −∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ∑∫     (1.2) 

here, m and n denote the wave numbers of the magnetic flux density harmonics, the asterisk 

denotes the complex conjugate; the underlined quantities are complex-valued.  

Equation (1.2) shows that a net non-zero UMP can only be produced by the 

magnetic flux density components with wave numbers satisfying the condition 1m n− = ± . 

As explained earlier, the rotor eccentricity causes additional magnetic field harmonics with 

wave numbers differing by 1±  from the orders of the magnetic field components that exist 

in a machine with a concentric rotor. Interaction between these original harmonics and 

those produced by the rotor eccentricity is the source of the UMP.  

Vibrations associated with the UMP develop excessive stress on the rotor bearings, 

deteriorate the performance and reduce the critical speed and lifetime of the motor. The 

magnitude and direction of UMP depend on the whirling radius and whirling angular 

velocity. Besides, the configuration of the stator and rotor windings and the operating point 

of the machine (supply voltage, load torque, etc.) also considerably influence the UMP.  

Magnetic field harmonics caused by the rotor eccentricity induce voltages and, 

hence, generate currents circulating in the parallel paths of the rotor and stator windings. 

These currents equalise the magnetic field distribution in the air gap and, by doing so, 

reduce the resultant UMP. 

In electrical motors, the electromagnetic forces are studied by applying analytical 

or numerical methods. Each of these techniques has its own drawbacks and benefits. By 

combining the two approaches, it is possible to exploit their advantages (speed and lucidity 

of the analytical methods and accuracy and flexibility of the numerical methods), while 

unfettering them from their shortcomings. One example of joining the analytical and 

numerical techniques is a simple parametric model representing the UMP in eccentric-rotor 

electrical machines. This force model, derived from the basic equations for electrical 

motors, with parameters estimated from the results of numerical simulation can be utilised 

for a quick, yet accurate, calculation of the UMP in a wide whirling frequency range. 

Alternatively, the model could be used in a coupled electromechanical analysis of the 

machine, thus providing substantial savings in computation time.  
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1.2 Aim of the work 

The main objective of this study was to develop and verify parametric models for 

quick and accurate calculation of the electromagnetic force acting between the stator and 

eccentric rotor. These analytical models were intended not only for induction motors but 

also for salient-pole synchronous machines. The effects of parallel windings either in the 

rotor or stator on the UMP were to be accounted for in the models. It was particularly 

important to model the electromagnetic force in the motor equipped with parallel paths 

both in the rotor and stator windings. All the models were required to perform accurately in 

a wide whirling frequency range.  

The performance of the force models was to be evaluated using the results of 

numerical simulations.  

This work was also aimed at investigating the interaction between the currents 

circulating in the parallel paths of the rotor and stator windings.  

 

1.3 Scientific contribution of the work 

The most significant scientific contributions of this study are listed below: 

1. A parametric force model is developed for an eccentric-rotor salient-pole 

synchronous machine equipped with a damper winding. 

2. A parametric force model is developed for induction and salient-pole 

synchronous machines equipped with parallel stator windings and operated with 

rotor eccentricity.  

3. A parametric force model is developed for eccentric-rotor induction and salient-

pole synchronous machines equipped with parallel stator windings and rotor 

cage (or damper winding, in the case of a synchronous machine). All the force 

models exhibited a very good performance in a wide whirling frequency range. 

4. The parametric force models are verified using numerical simulations.  

5. Parameter estimation programs based on the fusion of soft and hard computing 

techniques are built. The programs exhibited a fine performance.  

6. The limitations of the numerical impulse response test are identified. Means are 

proposed to improve the accuracy of this method when applied to 

electromagnetic force calculation in special applications. 

7. Knowledge as to how the UMP is affected by the parallel paths in the rotor and 

stator windings in a wide whirling frequency range is broadened. It is shown 
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that parallel stator windings considerably suppress the main UMP constituents 

and, hence, significantly reduce the net UMP. Unlike the parallel paths in the 

rotor, the parallel stator windings may cause anisotropic UMP behaviour. 

According to the results of numerical analysis, parallel paths in the stator 

winding may provide a more efficient UMP mitigation than the rotor cage 

(damper winding).  

8. Comprehension of the interaction between the currents circulating in the 

parallel paths of the rotor and stator windings is improved. Of particular 

importance is a new degree of understanding of how the UMP is influenced by 

this interaction. 

 

1.4 Structure of the work 

This dissertation consists of the following major parts: 

1. Fundamentals of the electromagnetic field analysis and electromagnetic force 

calculation are surveyed in Chapter 2. This chapter also presents a 

comprehensive literature review introducing the evolution of methods for the 

analysis of eccentric-rotor electrical machines. The state-of-the-art of the 

techniques for electromagnetic force calculation is also provided. 

2. One of the developed force models is presented in Chapter 3, in which 

parameter estimation is also discussed briefly. 

3. The main results acquired over the course of this work are presented and 

discussed in Chapter 4. 

4. In Chapter 5, the accomplished work and main results are summarised 

concisely. 

Chapters 3 and 4 are based on the author’s publications, which are reprinted at the 

end of this dissertation and constitute its final part.  

 

Publication P1 

In this paper, a simple parametric force model is applied to describe the UMP 

acting on the eccentric rotor of a salient-pole synchronous machine. The force model was 

originally developed and used for a cage induction machine. 
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This publication also introduces a new parameter estimation technique, which is 

based on the fusion of soft computing and hard computing methods. The soft computing 

kind of method is represented by Genetic Algorithms (GA), whereas, the method of least 

squares represents the hard computing techniques. By combining the two approaches, the 

unknown force model parameters are estimated very quickly from the results of numerical 

calculation. The force model with the acquired parameter values demonstrates a very good 

performance. 

The main benefits of the parameter estimation technique presented are: 

1. fast acquisition of the unknown parameters. This advantage becomes especially 

apparent when the number of unknown parameters (the dimensionality of the 

search space) increases; 

2. global optimum point can be detected in the multimodal (containing numerous 

local optima) landscapes. 

The parameter estimation technique developed was later successfully tested on 

more complicated problems (force models containing many more unknown parameters) 

and proved to perform very well, even when some other estimation techniques failed.  

The paper has been written by Andrej Burakov. He has also developed and tested 

the parameter estimation procedure. The finite element model and the force model were 

developed by Professor Antero Arkkio (Arkkio et al., 2000), the supervisor of the thesis. 

Asmo Tenhunen provided help with numerical calculations of the electrical machine. 

Antero Arkkio and Asmo Tenhunen also contributed to this work through their valuable 

comments and discussions.  

 

Publication P2 

A theoretical analysis of the magnetic field in a salient-pole synchronous machine 

with eccentric rotor is carried out in this paper. The operation of the machine in a wide 

whirling frequency range is considered. The influence of the currents circulating in the 

parallel paths of the damper winding on the UMP is the main topic of this study. The 

investigation is based on the classical two-axis approach and permeance harmonic analysis.  

As a result of this study, a low-order parametric force model for an eccentric-rotor 

salient-pole synchronous machine is developed. The force model, with parameters 

estimated from the results of numerical calculations, performs very well in the whole 

whirling frequency range studied ([–100, 100] Hz).  
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A numerical impulse response test was applied to calculate the electromagnetic 

forces on the whirling rotor. These results were compared with the results from the 

conventional numerical calculation technique (forced whirling method) and yielded a very 

good agreement. Thus, the suitability of the computationally efficient impulse response test 

for the UMP analysis in a salient-pole synchronous machine was verified. 

The paper has been written by Andrej Burakov. The force model presented in the 

publication is designed by Andrej Burakov. Professor Antero Arkkio contributed to this 

work through his valuable comments and discussions. He also developed the finite element 

model of the electrical machine. 

 

Publication P3 

Parallel stator windings have been long known for their beneficial effects on the 

UMP. Nowadays, parallel stator windings are commonly used in electrical motors, as they 

ensure a lower level of vibration and noise emitted by the machine. Moreover, parallel 

connections also simplify the manufacturing of the stator winding in large electrical 

machines.  

In this publication, the influence of parallel stator windings on the UMP is 

investigated. A simple low-order parametric model to represent the eccentricity force 

acting in a salient-pole synchronous machine is developed and verified. The force model is 

designed for a machine equipped with parallel stator windings and is capable of accurately 

describing the UMP in a wide whirling frequency range. A classical permeance harmonic 

theory is applied in this work. Despite the rotor saliency, a vector representation is utilised 

in this study, instead of resorting to a conventional two-axis approach.  

The parameters of the developed force model are estimated from the results of 

numerical impulse response test. A very accurate performance of the model is observed 

throughout the whole whirling frequency range studied. The presented force model, 

without modifications to its original expression, is also applied to an induction motor with 

parallel stator windings. Again, a very good performance is recorded.  

The paper has been written by Andrej Burakov. The force model is designed by 

Andrej Burakov. Professor Antero Arkkio contributed to this work through his valuable 

comments and discussions. He also built the finite element model of the electrical 

machines involved in this study. 
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Publication P4 

In recent years, the numerical impulse response test has been successfully applied 

for the calculation of electromagnetic forces, rotor cage currents and magnetic flux density 

harmonics in electrical machines. The results acquired using this approach usually 

provided a fairly good agreement with the results from the traditionally used forced 

whirling method. The major benefit of using the impulse response test instead of the forced 

whirling method is a significant reduction of computation time. The savings in 

computation time can be as much as 95%.  

However, in certain applications, the results from the numerical impulse response 

test may differ substantially from the results provided by the traditional computation 

methods. This poses a question as to the appropriateness of the impulse response test for 

such problems. These difficulties are particularly pertinent to the UMP analysis in 

electrical machines equipped with parallel stator windings, which may render the 

electromagnetic system of electrical machine anisotropic. 

In this publication, the performance of the numerical impulse response test applied 

to the UMP calculation in an induction motor with parallel stator windings is investigated. 

Different combinations of the stator and rotor winding layouts are studied. Some 

procedures to improve the accuracy of the impulse-response-test results are put forward. 

Conclusions as to the applicability of the method for the UMP calculation in electrical 

machines with parallel windings in the stator are also drawn.  

The paper has been written by Andrej Burakov. My co-author, Professor Antero 

Arkkio, contributed to this work through his valuable comments and expertise in the field 

of finite-element-calculation techniques. 

 

Publication P5 

A rotor eccentricity engenders additional permeance wave in the air gap of an 

electrical machine. As a result, many new magnetic field harmonics arise, which disturb 

the symmetric distribution of the magnetic field. The most important of these harmonics 

are those that have the number of pole-pairs differing by one from the number of pole-pairs 

of the fundamental field. These are also referred to as “eccentricity harmonics”. When 

interacting with the fundamental field, the eccentricity harmonics produce the UMP.  

Normally, the eccentricity harmonics induce voltages in the parallel circuits of the 

stator and rotor windings, and, hence, facilitate currents circulating in the windings. The 
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circulating currents can significantly reduce the eccentricity harmonics and the resultant 

UMP, thus, improving the performance of the electrical machine and extending its lifetime.  

In this publication, the electromagnetic force acting on the eccentric rotor of a 

salient-pole synchronous machine is studied in a wide whirling frequency range. The 

machine is equipped with parallel stator windings and damper winding. A low-order 

parametric force model is developed to accurately represent the UMP in the whirling 

frequency range of interest. The proposed model accounts for the effects of circulating 

currents on the UMP. Moreover, the interactions between the currents circulating in the 

stator winding and those in the damper winding are also considered. The force model 

parameters are estimated from the results of numerical calculation, where the effects of 

stator and rotor slotting and iron-core saturation are accounted for. The model presented 

performs fairly well when applied to a salient-pole synchronous machine and to a cage 

induction motor. Moreover, the force model is also applied to synchronous and induction 

machines equipped with either parallel stator windings or rotor cage (damper winding). In 

all these cases, a very good model performance is observed. 

The paper has been written by Andrej Burakov. My co-author, Professor Antero 

Arkkio, has contributed to this work through his valuable comments, discussions and his 

expertise in the field of finite-element-calculation techniques. 

 

Publication P6 

In this publication, the performance of a cage induction motor operated with an 

eccentric rotor is investigated using Finite Element Method (FEM). A wide whirling 

frequency range is considered. The main aim of this work is to study the influence of 

parallel stator windings on the net UMP and UMP components associated with the 

eccentricity and slot harmonics.  

Using Finite Element Analysis (FEA) it is possible to resolve the total 

electromagnetic force into several constituents, originating from different sources. The 

UMP component related to the eccentricity harmonics is calculated using the fundamental 

magnetic field and magnetic flux density harmonics with wave-numbers different by one 

from the wave-number of the fundamental field. Another UMP constituent, the one 

associated with rotor and stator slotting, is computed from the magnetic flux density 

harmonics related to the number of slots in the rotor and stator. The electromagnetic force 

components are calculated while post-processing the FEA results. 
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The findings of this work show that the eccentricity and slotting harmonics 

contribute the most to the total UMP. In the whirling frequency range considered, the UMP 

constituent associated with the slotting has a very small whirling frequency dependence. 

Eccentricity harmonics, on the other hand, produce a UMP component that has prominent 

peaks at certain whirling frequencies. These peaks are also clearly seen in the total UMP. 

The parallel stator windings are shown to considerably reduce the net UMP. It is 

demonstrated that the eccentricity-harmonics-related UMP component is affected the most 

by the parallel paths, particularly in the whirling frequency range close to the mechanical 

frequency of the rotor motion. The slotting-related UMP constituent is attenuated almost 

evenly in the whole whirling frequency range studied. It is also shown that the reduction of 

the force components related to the eccentricity and slotting harmonics account for the 

major part of the UMP mitigation by the parallel stator windings.  

The paper has been written by Andrej Burakov. My co-author, Professor Antero 

Arkkio, has contributed to this work through his valuable comments, discussions and his 

expertise in the field of finite-element-calculation techniques. 

 

Publication P7 

The rotor eccentricity introduces additional magnetic field harmonics, which 

disturb the symmetrical distribution of the magnetic field in the air gap of electrical 

motors. Because of this asymmetry, the voltages induced in the windings connected in 

parallel may differ from each other, thus giving rise to the currents circulating in these 

parallel circuits. The magnetic fields produced by the circulating currents will attenuate the 

asymmetry of the total magnetic field in the air gap and, as a result, reduce the UMP.  

It is well known that parallel circuits in the rotor and stator windings effectively 

reduce the UMP magnitude. Numerous contributions to this topic can be found in scientific 

literature dating back to the beginning of the 20-th century. However, in the early papers, 

the authors employed analytical approaches and tried to assess the influence of the parallel 

windings on the UMP by introducing corresponding coefficients into the electromagnetic 

force expression. Quite often, the analytical methods could not achieve the desired level of 

accuracy. Numerical methods were later extensively used in the analysis of electrical 

motors with rotor eccentricity. However, these studies were mainly concerned with cage 

induction motors and limited to special cases of static and/or dynamic eccentricity.  
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In this publication, the results of extensive numerical study on UMP mitigation by 

the parallel windings in the rotor and stator are presented. Two common types of electrical 

machine are investigated: cage induction motor and salient-pole synchronous machine. The 

effects of the rotor cage (damper winding) and parallel stator windings on the eccentricity 

force are examined in a wide whirling frequency range and compared to each other. The 

combined influence of parallel windings in the rotor and stator on the UMP is also studied.  

The results of this investigation revealed that, depending on the number of parallel 

circuits, the stator winding may cause uneven UMP reduction on the orthogonal axes. The 

rotor cage, owing to the large number of parallel paths, attenuated the eccentricity force 

evenly. Both the test motors equipped with four parallel stator windings experienced lower 

average UMP level than that recorded for the machines with rotor cage (damper winding) 

alone. However, as expected, the smallest eccentricity force was produced in the motors 

incorporating parallel circuits both in the rotor and stator.  

The paper has been written by Andrej Burakov. My co-author, Professor Antero 

Arkkio, has contributed to this work through valuable comments, discussions and his 

expertise in the field of finite-element-calculation techniques. 
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2 Overview of the electromagnetic field and force calculation  

In this chapter, fundamentals of the electromagnetic field analysis and 

electromagnetic force calculation are presented. The most common analytical and 

numerical techniques applied in studying the eccentric-rotor electrical machine are 

reviewed.  

 

2.1 Electromagnetic field computation  

An electrical machine converts mechanical energy into electrical energy and vice 

versa. This transformation is accomplished through the magnetic field. The 

interrelationship between the electric field, magnetic field, electric charge and electric 

current can concisely be expressed by a set of four equations. These evolved through the 

efforts of several renowned scientists, mainly during the nineteenth century, and were 

written in their well-known form as differential equations by Maxwell (Silvester and 

Ferrari, 1996). These governing laws of the electromagnetic field are  

t
∂∇ × = −
∂
BE          (2.1) 

t
∂∇ × = +
∂
DH J         (2.2) 

ρ∇ ⋅ =D          (2.3) 

0∇ ⋅ =B          (2.4) 

 

The constitutive relations describing the material properties are 

ε=D E          (2.5) 

µ=B H          (2.6) 

σ=J E          (2.7) 

 

Quite often it is more convenient to write Eq. (2.6) using reluctivity 1/ν µ=  

instead of permeability, i.e.  

ν=H B          (2.8) 

 

In the equations above, the variables are: 
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  E – electric field strength 

  H – magnetic field strength 

  D – electric flux density 

  B – magnetic flux density 

  J – electric current density 

  ρ  – electric charge density 

  ε  – permittivity  

  µ  – permeability 

  ν  – reluctivity 

  σ  – conductivity 

  t – time 

Equation (2.1) is Faraday’s law of induction; Eq. (2.2) is Ampere’s circuital law 

(with Maxwell’s extension accounting for the displacement current / t∂ ∂D ); Eq. (2.3) is 

Gauss’s law and Eq. (2.4) is Gauss’s law for magnetism. Variables E, H, D, B, J and ρ  

may each depend on the space coordinates x, y and z and also time t. The quantities ε , µ  

and σ  are not necessarily simple constants, e.g. in ferromagnetic materials, the B-H 

relationship (Eq. (2.6)) is highly nonlinear. Moreover, in anisotropic materials, the flux 

density may differ in direction from the corresponding field strength (Luomi, 1993). In 

such cases, the quantities ε  and µ  are tensors.  

Maxwell’s equations, in their complete form, are applied in the calculation of the 

radiated fields. However, in most electromechanical problems, the electromagnetic wave 

propagation can be neglected, thus allowing for the displacement current / t∂ ∂D  to be 

dropped out of Eq. (2.2). Moreover, when good conductors are involved, the current 

density J is significantly larger than the displacement current at all frequencies considered. 

Thus, a quasi-static approximation of Eq. (2.2) can be used 

∇ × =H J          (2.9) 

 

According to the fundamental result of vector analysis, the divergence of the curl of 

any twice differentiable vector vanishes identically (Chari and Silvester, 1980). Thus a 

magnetic vector potential A can be introduced,  

= ∇ ×B A          (2.10) 

which satisfies the Maxwell magnetic divergence equation (Eq. (2.4))  

( ) 0∇ ⋅ = ∇ ⋅ ∇ × ≡B A        (2.11) 
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The magnetic vector potential is not completely described by Eq. (2.10), since, 

according to the Helmholtz theorem of vector analysis, the vector is uniquely defined if, 

and only if, both its curl and divergence are known, as well as if its value is specified at 

any point in space. Adding the gradient of any twice-differentiable scalar function φ  to the 

vector potential has no effect on the final result, since ( ) 0φ∇ × ∇ ≡ . Because of this 

arbitrariness, the ∇ ⋅ A  can be specified freely. In magnetostatic field problems, the 

uniqueness of the solution is achieved using the Coulomb gauge  

0∇ ⋅ =A          (2.12) 

 

The Maxwell electric curl (Eq. (2.1)) can now be written using the magnetic vector 

potential notation 

( )
t t

∂ ∂⎛ ⎞∇ × = − ∇ × = −∇ × ⎜ ⎟∂ ∂⎝ ⎠

AE A       (2.13) 

 

This can also be written as  

0
t

∂⎛ ⎞∇ × + =⎜ ⎟∂⎝ ⎠

AE         (2.14) 

 

Keeping in mind that ( ) 0φ∇ × ∇ ≡ , the result of Eq. (2.14) is  

t
φ∂= − − ∇

∂
AE         (2.15) 

here, φ  is reduced electric scalar potential. 

Using the constitutive relation of Eq. (2.7), the current density is given by  

t
σ σ φ∂= − − ∇

∂
AJ         (2.16) 

 

The current density can also be expressed from the Maxwell magnetic curl (Eq. 

(2.9)) using Eqs. (2.8) and (2.10) 

( )ν= ∇ × ∇ ×J A         (2.17) 

 

Substituting Eq. (2.17) into Eq. (2.16) yields 

( ) 0
t

σ σν φ∂∇ × ∇ × + + ∇ =
∂
AA       (2.18) 
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An additional equation for the magnetic vector potential and electric scalar 

potential is obtained from the continuity condition  

0∇ ⋅ =J          (2.19) 

which is acquired by calculating the divergence of Eq. (2.9). Thus, substituting Eq. (2.16) 

into Eq. (2.19) results in  

( ) 0
t

σ σ φ∂⎛ ⎞∇ ⋅ + ∇ ⋅ ∇ =⎜ ⎟∂⎝ ⎠

A        (2.20) 

 

In the general case, the magnetic field problems involve four unknown quantities: 

three components of the magnetic vector potential and the electric scalar potential. The 

unknowns are functions of the three spatial coordinates and time. Solution of three-

dimensional fields requires immense computational time and is often impracticable. 

However, the great majority of the magnetic field problems are solved using a two-

dimensional approximation, which is based on the assumption that the magnetic field does 

not depend on z-coordinate (z-axis being parallel to the axis of rotor shaft). Thus, the 

magnetic field is solved in the plane of the machine’s cross section (x-y plane). The current 

density and magnetic vector potential in two-dimensional problems only have the z-

components 

( ), , zA x y t=A e         (2.21) 

( ), , zJ x y t=J e         (2.22) 

here, ez is unit-vector parallel to z-axis.  

Expressions (2.21) and (2.22) cannot, though, be used for electrical machines with 

skewed geometries. However, the effects of skewing are beyond the scope of this work.  

 

2.2 Calculation of electromagnetic force 

There are several techniques available for computing electromagnetic force. These 

are based on different formulations and can be classified into two categories (Bastos and 

Sadowski, 2003): 

• methods based on the results directly obtained by solving the magnetic vector 

potential equation; 

• methods based on the force density over the magnetic material surfaces. 
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In the second category, there are several approaches based on the application of 

equivalent sources: currents, magnetic charges and combination of magnetic charges and 

currents. The main idea of these techniques is to replace a magnetic material with a 

nonmagnetic material having a superficial distribution of currents or magnetic charges or 

both on its surface. Application of the methods based on the force density requires a bigger 

computational effort compared to the methods based on “direct formulation”. Therefore, 

the former are not considered in this work.  

The first category includes the following methods: 

1. the co-energy variation method; 

2. the Maxwell stress tensor method; 

3. the method proposed by Arkkio; 

4. the method of local Jacobian matrix derivation. 

 

The co-energy variation method 

This technique, sometimes also referred as the virtual work method, can be 

employed to calculate the electromagnetic force in electrical machines with constant 

current (Bastos and Sadowski, 2003). Therefore, it has a limited application area. As 

implied by the name of this approach, the co-energy of the magnetic field is involved  

0

' d d
H

V

W B H V
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫ ∫         (2.23) 

here, V  is integration volume. 

The force acting along the direction of virtual displacement of the body can now be 

calculated as the derivative of the magnetic co-energy of this body with respect to the 

virtual displacement 

constant

d '  
dx

i

WF
x =

=         (2.24) 

here, xF  is force acting along the x-direction. 

In order to calculate the co-energy derivative in Eq. (2.24), two magnetic field 

solutions are required. These must be obtained with a constant current value and with a 

rotor displaced by a distance dx between the two calculation points. Therefore, this 

technique becomes tedious for the calculation of the electromagnetic force in electrical 

machines supplied by the power converters. 
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The Maxwell stress tensor 

The Maxwell stress tensor is one of the most efficient general methods to calculate 

the forces on bodies placed in the magnetic field. Application of this method requires the 

body to be located in the air or within a material with permeability 0µµ = . Moreover, the 

magnetic field has to be known on the whole surface enclosing the body. Therefore, this 

technique is commonly used in conjunction with the numerical computation of the 

magnetic field.  

Application of the Maxwell stress tensor facilitates understanding of the 

relationships between the magnitudes and directions of the magnetic fields and the forces 

they generate. The stress tensor expressed in terms of the flux density components is 

(Luomi, 1993) 

2 2

2 2

0

2 2

1
2

1 1
µ 2

1
2

x x y x z

y x y y z

z x z y z

B B B B B B

B B B B B B

B B B B B B

τ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

     (2.25) 

here, Bx, By and Bz are components of the magnetic flux density in x-, y- and z-directions, 

respectively.  

The Maxwell stress tensor is defined in such a way that the force density f is 

obtained as its divergence  

f τ= ∇ ⋅          (2.26) 

 

The total electromagnetic force is calculated by integrating the force density over 

the region containing the body 

 d
V

f V= ∫F          (2.27) 

 

Substituting Eq. (2.26) into Eq. (2.27) and applying Gauss’s theorem yields 

 d  d  d
V V S

f V V Sτ τ= = ∇ ⋅ = ⋅∫ ∫ ∫F n       (2.28) 

here, n is unit-vector normal to the boundary S of the region V.  

The force is now evaluated as an integral over the boundary S of the region V. 

When studying radial-flux electrical machines, it is often assumed that the magnetic flux 

density does not have a z-component. Thus, in the cross section of the machine, the 
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magnetic flux density can be resolved into two orthogonal components: Bn, which is 

normal to the boundary S and Bt, which is tangential to the boundary S. Thus, the magnetic 

flux density vector becomes  

n tB B= +B n t          (2.29) 

here, t is unit-vector tangential to the boundary S. 

Expression (2.28) can now be rewritten 

( )2 2 2

0 0 0 0

1 1 1 1 d  d
µ 2µ 2µ µn n t n t

S S

B B S B B B B S
⎛ ⎞ ⎛ ⎞

= − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫F B n n t   (2.30) 

 

For two-dimensional analysis of an electrical machine, Eq. (2.30) can also be 

written in another form, wherein the surface integral is reduced to the line integral 

( )
2π

2 2
e

0 00

1 1 d
2µ µn t n tl r B B B B ϕ
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦
∫F n t      (2.31) 

here, r is radius of the integration contour.  

In radial-flux electrical machines, it is often assumed that the normal magnetic flux 

density component is significantly larger than the tangential one and the latter is, therefore, 

ignored. Thus, Eq. (2.31) can be simplified  
2π

2e

0 0

 d
2µ n
l r B ϕ= ∫F n         (2.32) 

 

Method proposed by Arkkio 

In theory, the solution of Eq. (2.31) should be independent of the choice of the 

integration-path radius r , as long as the latter is within the confines of the inner ( rr ) and 

outer ( sr ) radii of the air gap. In practice, though, the result of Eq. (2.31) can vary 

substantially as a function of r  (Arkkio, 1987). To overcome this problem, Arkkio 

suggested the computation of the electromagnetic force as the surface integral, limited by 

the radii rr  and sr  

( )
s

r

s r d
r

r

r r r− = ∫F F         (2.33) 

 

Using Eq. (2.31) in Eq. (2.33) and noting that e d dl r Sϕ =  yields 
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( ) ( )
ag

2 2e

s r 0 0

1 1 d
2µ µn t n t

S

l B B B B S
r r

⎡ ⎤
= − +⎢ ⎥− ⎣ ⎦

∫F n t     (2.34) 

here, Sag is area of the air gap cross section.  

 

The method of local Jacobian matrix derivation 

This technique, developed by Coulomb (1983), is based on the principle of virtual 

work and is implemented in the FEA. Similarly to the Maxwell stress tensor, this approach 

applies to a movable body surrounded with free space. The co-energy functional of the 

domain discretised into the finite elements is computed 
H

c r
0

d d d
V S

W V B Sψ
⎛ ⎞

= ⋅ + ⋅⎜ ⎟
⎝ ⎠
∫ ∫ ∫B H       (2.35) 

here, ψ  is magnetic scalar potential.  

The force in x-direction is calculated as the derivative of the functional with respect 

to the virtual displacement in x-direction 

cd
dx
WF
x

=          (2.36) 

 

Substituting Eq. (2.35) into Eq. (2.36) and using local coordinates instead of the 

global ones for the subset of virtually distorted finite elements (elements between the 

movable and fixed parts) yields 

e

1T 1

e 0

d d
H

x
V

F V
x x

−−⎡ ⎤∂∂= − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦
∑ ∫ ∫

GGB G H B H G    (2.37) 

here, G  is the Jacobian matrix ( [ ]
T

, , , ,x y z
u v w
∂ ∂ ∂⎡ ⎤= ⎢ ⎥∂ ∂ ∂⎣ ⎦

G ) coupling the local coordinates 

to the global ones, |G | is the determinant of the Jacobian matrix.  

In Eq. (2.37), the summation is performed over the air gap elements that can be 

virtually deformed by the motion of mobile parts.  

 

Accuracy of the numerical methods for electromagnetic force calculation 

Each of the FEM-based force computation techniques offers its own advantages. To 

attain the same accuracy, the classical virtual work method can use a much coarser mesh 

than the one required for the Maxwell stress method (Mizia et al., 1988). Besides, the 

accuracy of latter technique depends also on the choice of the integration contour. On the 



 30 

other hand, numerical differentiation of the co-energy can introduce significant errors. 

Technique developed by Coulomb (1983) can avoid this round-off error of the virtual work 

method. The method developed by Arkkio eliminates the dependence of the solution on the 

choice of the integration contour. 

As the Maxwell stress tensor is commonly applied for the electromagnetic force 

calculation in electrical motors, some techniques to improve the accuracy of this finite-

element-based method are summarized below: 

1. high order finite elements are applied, especially at the interfaces of different 

magnetic media; 

2. it is advisable to decrease the element size, i.e., increase the number of finite 

elements, especially at the corners of iron parts and in the air gap (Wignall et 

al., 1988). Particularly, in the regions where the magnetic flux density varies in 

magnitude and direction a denser finite-element mesh should be applied;  

3. a magnetic vector potential formulation of the magnetic field is more suitable 

for the calculation of the normal component of the magnetic force, while the 

scalar magnetic potential formulation is more appropriate to compute the 

tangential force or torque (Cai et al., 2001); 

4. in the ascending order of accuracy of the magnetic force calculation, the finite 

elements can be grouped as: first-order triangular elements, second-order 

triangular elements, first-order quadrilateral elements, second-order 

quadrilateral elements (Tarnhuvud and Reichert, 1988). Wignall et al. (1988) 

recommend to choose as rectangular finite-element shape as possible. A 

technique to generate the triangular elements from the rectangular ones is 

discussed in (Sadowski et al., 1992); 

5. integration contour should pass through the element’s central point as the 

values at this point are more accurate than at the other points within the finite 

element (Reichert et al., 1976.); 

6. integration contour should lie as far as possible from the iron parts or 

laminations (Mizia et al., 1988). Moreover, integration contour should not lie 

on the boundaries dividing the finite element layers in the air gap. The 

integration contour is best chosen halfway between the stator and rotor surfaces. 

Thus, using at least three layers of finite element in the air gap is recommended 

(Cai et al., 2001). 
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2.3 Literature review  

During the history of electrical motors, many different approaches were developed 

for magnetic field analysis and electromagnetic force calculation in electrical machines 

with eccentric rotors. These can generally be grouped into two main categories:  

• analytical methods; 

• numerical methods. 

Evolution of each of these approaches is presented in detail below. 

 

2.3.1 Analytical methods 
According to DeBortoli et al. (1993), problems related to rotor eccentricity in 

electrical machines have been discussed for more than a century (Fisher-Hinnen, 1899). 

Rosenberg (1918) mentioned that imperfect erection or bending of the machine’s shaft, or 

slight subsidence of the foundations with consequent distortion of the bedplate, may cause 

a displacement of the rotor and stator centres. Even if they are perfectly concentric while 

the machine is cold, the uneven thermal expansion may cause a distortion of the frame and 

shifting of the stator centre. To evaluate the UMP in eccentric-rotor machines, Rosenberg 

used the difference in the magnetic flux densities over the opposite poles. The magnetic 

flux densities were established from the magnetisation curves of the machine.  

Robinson (1943) attempted to analytically describe the UMP due to the static rotor 

eccentricity in induction and synchronous motors. For induction machines, the UMP was 

simply expressed as a product of stator bore area and squared magnetic flux density 

multiplied by a certain factor. To account for sinusoidal flux distribution, tooth-tip 

saturation and the influence of parallel stator windings the corresponding factors were 

applied. As for the synchronous motor, the UMP was calculated using the equation 

developed for an induction machine, where another factor, accounting for the different 

shape of the magnetic field, was introduced.  

It has also been long known that parallel windings effectively mitigate the UMP 

(Hellmund, 1907). Robinson (1943) and Krondl (1956) tried to analytically model the 

effects of parallel stator paths on the UMP. Schuisky (1971) stated that the rotating 

magnetic fields are damped by the rotor cage to varying degrees, depending on their pole 

number.  

Summers (1955) began to develop the theory of UMP based on the rotating 

magnetic field components. Using the rotating field theory, Robinson (1963) showed 
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mathematically, and also by physical reasoning, that in alternating-current machines with 

rotating magnetic field in the air gap, the rotor can vibrate at the line frequency and twice 

the line frequency. Frohne (1967) explained the occurrence of the UMP as a result of the 

interaction between the magnetic field harmonics with numbers of pole-pairs differing by 

one.  

Theoretical studies of the UMP generated by the fundamental magnetic field 

component together with magnetic field harmonics having a lower and higher number of 

poles were presented by Freise and Jordan (1962) and Jordan et al. (1967). The occurrence 

of the magnetic field harmonics is explained by the modulation of the fundamental MMF 

wave by the air gap permeance, consisting of a constant component and a series of 

sinusoidal waves. It was pointed out that, in two-pole motors, a homopolar flux, which 

crosses the air gap only once and returns through the shaft, bearings and casing, can occur. 

Therefore, some authors did not consider two-pole machines as these presented a special 

case (Binns and Dye, 1973). Covo (1954), however, did not make any distinction between 

the machines having two or more poles. Yet, he concluded that his findings were not valid 

for two-pole motors. 

The homopolar flux and the resultant UMP in two-pole induction motors were 

further investigated by Haase et al. (1972), Kovacs (1977), Belmans et al. (1982a, 1982b). 

The relationship between the UMP and homopolar flux generated by a statically eccentric 

rotor was also considered by Belmans et al. (1987). The authors showed that, due to this 

kind of eccentricity, a homopolar flux is generated having the supply frequency and 

yielding a vibrational component of the UMP with two-times the supply frequency. 

Yang (1975) employed rotating field theory to investigate the acoustic noise 

emitted from two-pole single-phase induction motors, primarily due to radial vibrations. 

He also studied the effects of homopolar flux caused by the static and dynamic 

eccentricities on the noise and vibration. He showed that the homopolar flux waves play a 

key role in generating a series of radial force waves having the amplitudes pulsating at 

twice the slip frequency. The author also pointed out that a number of other low-frequency 

radial force waves are produced by the homopolar flux. His conclusions are often quoted in 

the literature and sometimes applied in the analysis of noise and vibration in single-phase 

machines having more than two poles (Timar, 1989). Zhu and Howe (1997) generalised 

the theory presented by Yang (1975) to be applicable to the machines having any number 

of poles and also to account for the effects of magnetic circuit saturation. Based on their 

experimental results, they stated that the acoustic noise generated by the fan in their 



 33 

motor/fan assembly is not as important as the electromagnetically induced noise. However, 

the fans do amplify the effect of the rotor unbalance due to its eccentricity, and, hence, 

serve to increase the electromagnetic noise and vibration emitted by the motor.  

A novel analytical approach to studying the UMP was developed by Smith and 

Dorrell (1996). Their technique was based on the generalised harmonic analysis 

(Williamson, 1983), which earlier proved successful in studying faults in the stator 

winding, rotor cage, end- and inter-rings (Williamson and Smith, 1982), (Williamson and 

Mirzoian, 1985), (Williamson and Abdel-Magied, 1987) and (Williamson and Adams, 

1989). The generalised harmonic analysis relies on the calculation of coupling impedances, 

which relate voltages applied across any winding to the currents flowing in various circuits 

within the machine. Therefore, this approach could be applied to the analysis of any 

series/parallel-winding connections. Dorrell and Smith (1994) also used this method, 

together with the conformal transformation technique (Swann, 1963), to calculate the UMP 

in induction motors with parallel stator windings. They showed that parallel stator 

windings shift the direction of the UMP from the direction of rotor eccentricity.  

Ellison and Moore (1968) and Heller and Jokl (1969) applied a permeance 

harmonic analysis to straightforwardly model the magnetic fields in the air gap of an 

electrical machine. According to Vandevelde and Melkebeek (1994), this technique allows 

the effortless incorporation of the effects of rotor eccentricity, saturation and slotting into 

the magnetic field analysis. Based on the permeance harmonic theory, Fruchtenicht et al. 

(1982) presented an analytical method to investigate the electromagnetic forces in 

induction machines with rotor whirling at various frequencies. Berman (1993) applied a 

classical permeance harmonic analysis to study the effects of equalising connections in the 

stator winding of induction machines with static and dynamic rotor eccentricities. His 

calculations revealed that the radial magnetic forces can be significantly reduced by means 

of equalising connections in the stator winding. These findings were also confirmed by the 

experiments. Stavrou and Penman (2001) also applied the permeance harmonic theory to 

develop a general model of induction machines with dynamic rotor eccentricity. In order to 

calculate the MMF, winding distribution was modelled by the so-called winding variable. 

They proposed to use an effective dynamic eccentricity value in order to account for the 

circulating currents, saturation, internal current redistribution and flux fringing in open 

slots. 

There also are numerous contributions in which the rotor eccentricity was studied 

using techniques based on the Winding Function Approach (WFA) presented by Lipo 
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(1987). WFA is based on the fundamental geometry and winding layout of an arbitrary n-

phase machine. The stator and rotor circuits are assumed to be independent and can be 

connected in any fashion to form the stator winding phases and rotor bar/end-ring 

configuration to be investigated. WFA allows all the space harmonics to be taken into 

account when calculating the inductances. This method was successfully applied to model 

the induction machine with arbitrary winding layout and/or unbalanced operating 

conditions (Luo et al., 1995), (Toliyat and Lipo, 1995), (Milimonfared et at., 1999) and 

(Nandi and Toliyat, 2002). Joksimovic and Penman (2000) employed WFA to address the 

rotor bar skewing. The influence of rotor bar skewing and linear MMF rise across the slots 

on the motor’s inductances was investigated by Joksimovic et al. (1999). However, in its 

original formulation, the WFA could only be applied to those machines where there existed 

a symmetry in the radial air gap and where the air gap was uniform, i.e. motors without the 

rotor eccentricity (Al-Nuaim and Toliyat, 1997). To overcome this problem, a Modified 

Winding Function Approach (MWFA) was developed (Toliyat and Al-Nuaim, 1997). In 

the MWFA, the difference of MMF drop in the air gap on both sides of the eccentric rotor 

was taken into account when computing the inductances. This technique was applied to 

model a salient-pole synchronous machine with dynamic rotor eccentricity (Al-Nuaim and 

Toliyat, 1998) and an induction machine with static, dynamic and mixed eccentricities 

(Nandi et al., 1997), (Nandi et al., 1998), (Nandi et al., 2001). Rotor skewing and linear 

rise of the MMF over the slot in an induction machine with dynamic eccentricity were 

studied by Joksimovic et al. (2000). Another method of addressing the axial non-

uniformity due to the rotor skewing in induction machines with static and dynamic 

eccentricity was presented by Bossio et al. (2004). All these techniques were based on the 

WFA. However, the radial forces due to the rotor eccentricity were not studied using 

WFA-based techniques. It has mainly been applied to calculate the inductances and 

currents of electrical machines. 

The static and dynamic rotor eccentricities in a switched reluctance motor were 

investigated by Garrigan et al. (1999). They developed a magnetic equivalent circuit 

approach that allowed accurate and quick force prediction. The authors showed that, in a 

switched reluctance machine, the unbalanced force grows almost linearly with the 

increasing relative rotor eccentricity (up to 20-25% of the nominal air gap). At a larger 

rotor axis displacement from its centred position, the rate of the force increase drops off. 

This UMP reduction was associated with the onset of saturation in the region where the air 

gap is reduced. The authors also mentioned that the eccentric rotor may whirl forwards, 
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backwards, synchronously, sub- and super-synchronously. The parallel connected 

windings were found to naturally and significantly reduce (by a factor of three or even 

four) the UMP.  

Kim and Lieu (1998) developed an analytical technique to calculate the 

instantaneous magnetic field distribution in the air gap of a permanent magnet motor with 

rotor eccentricity. Li et al. (2007) applied a conformal transformation technique (Swann, 

1963) to analytically calculate the magnetic field in the air gap of a permanent magnet 

motor. Applying the rotating field theory, Dorrell et al. (2003) presented a mathematical 

model to compute the radial force on the eccentric rotor of an interior permanent magnet 

motor equipped with the levitation and main windings. The results of these analytical 

methods compared well with numerical simulation results. 

Dorrell (1995a, 1996) examined the effects of rotor cage skewing on the UMP 

magnitude. He showed that skewing increases the UMP in a loaded machine, but has little 

effect at no load. These findings compared well to the measurements.  

A study on the UMP reduction due to iron saturation in eccentric-rotor induction 

machines was presented by Dorrell (1999). He also reviewed and explained in simple 

terms other circumstances affecting the UMP magnitude, such as parallel connections in 

the stator and rotor windings and transient and variable-frequency operation of the 

machine.  

Using rotational field theory, Dorrell (2000) presented an analytical method to 

investigate the non-uniform rotor eccentricities, i.e. the eccentricities with the rotor and 

stator axes not being parallel to each other. 

Electromagnetic forces in eccentric-rotor motors were also considered from the 

mechanical point of view. Kovacs (1977) mentioned that UMP behaves as a spring force 

with a negative spring constant. Fruchtenicht et al. (1982) showed that, due to the currents 

in the rotor cage, a tangential UMP component is produced. This component, which has 

often been neglected in the past, behaves as a damping force and can assume both positive 

and negative values. Belmans et al. (1985) showed that UMP due to the rotor eccentricity 

has to be taken into consideration when analysing the electromechanical vibrational 

behaviour of the flexible-shaft machine. They also used a negative electromagnetically 

induced spring constant and introduced a negative electromagnetically induced damping 

coefficient. It was pointed out that a negative spring constant lowers the critical speed of 

the machine. The negative electromagnetically induced damping coefficient has to be 



 36 

subtracted from the positive mechanical damping coefficient; this might yield unstable 

rotor vibrations if the value of the former exceeds the value of the latter. 

As long ago as 1918, a review of the bibliography on the subject of UMP in 

electrical machines was published by Gray and Pertsch (1918). More recent literature 

surveys related to this topic were presented by von Kaehne (1963) and Binns and Dye 

(1973). The latest work is reviewed by Dorrell (1993) and Tenhunen (2003). A fresh 

literature survey from the perspective of electromechanical interaction in electrical 

machines has been written by Holopainen (2004).  

 

2.3.2 Numerical methods 
Finite Element Method (FEM) is a general numerical technique, which is used for 

finding an approximate solution of partial differential equations as well as of integral 

equations. FEM finds applications in various engineering areas, such as structural analysis, 

fluid dynamics, electromagnetism, thermal analysis, etc. Other common numerical 

methods are: Boundary Element Methods, Finite Difference Methods, Finite Volume 

Methods, and Spectral methods. Meshless (also called “meshfree”) methods are a recently 

developed class of numerical methods. However, FEM remains the dominating method in 

engineering analysis for several reasons: 

• FEM formulation handles complex geometry and varying boundary conditions 

well; 

• it is easy to develop a general code, handling several problem types; 

• there exists a large amount of tested and efficient codes with easy to use 

interfaces. 

According to Felippa (2001), the best summary of the early history of FEM from 

circa 1800 B.C. through 1970, is given in Chapter 1 of the textbook by Martin and Carey 

(1973). The basic principles of FEM and its application for the analysis of electromagnetic 

fields in electrical machines are given by Chari and Silvester (1980), Arkkio (1987), 

Silvester and Ferrari (1996) and Luomi (1993). A three-dimensional FEA of the 

electromagnetic field is presented in (Chari et al., 1982).  

The wide spread use of the numerical calculation techniques is closely related to 

the evolution of digital computers. However, even with such powerful computers as are 

available today, the FEA of three-dimensional, time-dependent problems involving 

complex geometries (such as those of electrical machines, for example) is quite a time 
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consuming task. It is, therefore, a common practice to solve the magnetic field in two 

dimensions, assuming it to be independent of the coordinate parallel to the machine’s shaft. 

In this case, the three-dimensional effects such as the rotor-cage skewing and end-windings 

fields must be separately accounted for in the two-dimensional formulation (Arkkio, 1987).  

Using a two-dimensional magnetic field formulation, Arkkio and Lindgren (1994) 

calculated the electromagnetic forces acting on an eccentric rotor of a high-speed induction 

machine. The magnetic field and electrical circuit equations for the windings were solved 

together as a system of equations. The forces were calculated from the air-gap field using a 

method based on the principle of virtual work. The calculation was accomplished by the 

time-stepping FEA. Research has revealed that non-symmetric flux distribution caused by 

eccentricity induces eddy currents in the rotor conductors. These currents reduce the UMP 

significantly. It was noticed that the increasing supply voltage frequency decreases the 

magnitude of the total electromagnetic force and changes its direction. Later on, Arkkio 

(1996) extended the numerical analysis of the electromagnetic forces due to the static and 

dynamic rotor eccentricities to the conventional cage induction motors. The effects of 

parallel branches in the stator winding, iron saturation and loading of the machine were 

given more attention. As a result, it was shown that the iron bridges of closed rotor slots 

provide a path for the non-symmetric flux, along which it can flow without generating 

equalising currents in the rotor cage. Thus, at no load, a motor with closed rotor slots may 

produce a larger unbalanced pull than the motor with semi-open slots. A FEA-based study 

of the UMP due to the broken rotor bar(s), end-ring, improper number of rotor slots and 

static and dynamic rotor eccentricities in cage induction motors is reported in (Arkkio, 

1997). The influence of parallel stator windings, iron saturation and motor loading on the 

UMP was also investigated. It was shown that the eccentricity forces increase with the 

load. Dorrell (1995b) found that this phenomenon is caused by the higher magnetic field 

harmonics in the air gap.  

Extensive numerical studies on the UMP reduction by various combinations of 

parallel stator windings in an induction machine were undertaken by Salon et al. (1992) 

and DeBortoli et al. (1993). They considered both static and dynamic rotor eccentricities 

and showed that currents circulating between the parallel stator windings lessen the UMP 

considerably. Moreover, the researchers observed that the circulating currents also 

diminish or eliminate other vibration-producing magnetic force harmonics generated by the 

rotor eccentricity. 
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Numerical analysis into the vibrational behaviour of the switched reluctance motor 

is given in (Neves et al., 1998). Forces acting upon the stator were evaluated using the 

local force density method. The authors concluded that a two-dimensional model is 

sufficient for analysing mechanical vibrations created by electromagnetic phenomena in a 

switched reluctance motor. 

Salon et al. (2001) studied the influence of rotor eccentricity on the torque ripple in 

a surface mounted brushless DC motor. Using the numerical simulation, authors observed 

that the torque ripples were virtually unaffected by small eccentricities (relative rotor 

eccentricity up to 30% were studied). In surface mounted permanent magnet motors, the 

magnets significantly increase the effective air gap. Therefore, small changes in the actual 

air gap due to the rotor eccentricity translate to negligible changes in the effective air gap 

of the motor. As a result, the surface mounted permanent magnet motors are less 

susceptible to the air gap asymmetry compared to induction motors.  

Using FEA, Kyung-Tae Kim et al. (2001) studied the magnetic field and the 

electromagnetic force in interior- and surface mounted permanent magnet motors with 

rotor eccentricity. Authors concluded that in the interior permanent magnet motor, rotor 

eccentricity causes a substantially stronger magnetic field asymmetry and unbalanced 

magnetic force, compared to the surface mounted permanent magnet motor. 

Using the FEA, Lundstrom et al. (2007) have calculated the electromagnetic force 

caused by the rotor eccentricity in a large synchronous hydrogenerator. Authors reported 

that the damper winding substantially reduced the unbalanced electromagnetic force and 

also introduced a force component perpendicular to the eccentricity axis. The stability and 

eigenfrequencies of the rotor were also shown to be affected by the damper winding.  

Applying FEM-based simulations, Perers et al. (2007) showed that iron saturation 

has a significant impact on the magnetic field harmonics and UMP in a large salient-pole 

synchronous machine with static rotor eccentricity. As the saturation increases, when the 

machine is loaded, the eccentricity harmonics and the unbalanced electromagnetic force 

are reduced. 

Lantto et al. (2000) investigated the induction motor with eccentric rotor whirling 

at different whirling frequencies. They validated the finite element model of the motor by 

measurements.  

Schlensok and Henneberger (2004) built FEM models of an induction machine 

with concentric and eccentric rotors to calculate the torque, total force acting on the rotor 

and surface force density on the stator teeth. The results showed that dynamic rotor 
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eccentricity has a minor effect on the average torque of the machine: the average torque 

magnitude was slightly reduced due to the rotor eccentricity. However, the eccentricity 

exhibited a strong impact on the surface force density distribution on the stator inner 

surface.  

Cylindrical and conical rotor eccentricities were investigated by Tenhunen (2001), 

who developed a so-called multi-slice FEM model of an induction machine. He used a 

two-dimensional field formulation, however, to account for the axial variation in the 

geometry of the motor. The magnetic field was calculated on a set of cross sections of the 

motor perpendicular to the stator shaft. The UMP and equalising currents in the parallel 

stator windings were computed for static and dynamic eccentricities.  

Using the FEA, Tenhunen et al. (2003a) studied the UMP in an induction machine 

as a function of whirling frequency. They developed a numerical impulse response test to 

calculate the frequency response of the electromagnetic forces, from which the UMP in a 

wide whirling frequency range could readily be established. The impulse response test was 

realised in the numerical simulation by moving the rotor from its centred position for a 

short period of time and recording the excitation and response signals of the system. From 

these, the frequency response of the electromagnetic force was calculated by applying 

spectral analysis techniques. The forces calculated by this method were compared with 

those from the conventional FEA technique (forced whirling method) and showed a very 

good agreement. Using the impulse test, the UMP in a required whirling frequency range 

was calculated from the results of a single FEM simulation, thus providing up to 95% 

savings in the computation time. The accuracy of the method also seemed to be very good. 

After its introduction, the numerical impulse response test was applied to study the 

effects of equalizing currents in the rotor cage and parallel stator windings on the UMP in 

eccentric-rotor induction motor (Tenhunen et al., 2003b). Using this technique, Tenhunen 

et al. (2003c, 2003d) analysed the cylindrical circular whirling motion, symmetric conical 

whirling motion and the combination of these two basic eccentricity modes, whereas 

Tenhunen (2005) calculated the eccentricity harmonics of the magnetic flux density in the 

air gap of an induction motor. Tenhunen et al. (2004) applied the numerical impulse 

response test to investigate the effects of magnetic saturation on the UMP in induction 

machines with cylindrical circular rotor eccentricity. 

To validate the finite-element models, the numerically computed electromagnetic 

forces were compared with the measured ones. Tenhunen et al. (2003d) showed that FEA 

calculation results agreed very well with the measurements. In his study, he considered a 
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standard 15 kW induction motor with different types of rotor eccentricities. Arkkio et al. 

(2000) and Lantto et al. (2000) reported a very good agreement between the computed and 

measured electromagnetic forces in a 15 kW induction motor with cylindrical circular rotor 

eccentricity. 

 

2.3.3 Combining the analytical and numerical methods 
Both analytical and numerical methods have their own benefits and drawbacks in 

studying electrical machines. The beauty of analytical approaches lies in their capability to 

provide the results promptly and in a form that is simple to interpret. However, problems 

arise when the effects of magnetic saturation, circulating currents, stator and rotor slotting 

need to be evaluated accurately. Numerical techniques, on the other hand, offer a high 

degree of accuracy in the final solution and provide convenient means to address the 

saturation and other non-linear complicated phenomena encountered in electrical motors. 

However, they place substantial requirements on the computational power of computers 

and are time consuming. Moreover, when the phenomenon involved is not transparent, the 

output of FEM computation is not always lucid and understandable. By combining 

analytical and numerical techniques, it is possible to build on their strengths and break 

through their limitations.  

Arkkio et al. (2000) investigated numerically the UMP in a standard cage induction 

motor. The operation of the motor was studied in a wide whirling frequency range using 

so-called harmonics excitation of the rotor, i.e. the eccentric rotor was forced to whirl 

around the stator bore axis at a certain whirling frequency. Besides, the rotor also rotated 

around its own axis. The authors named this technique ‘forced whirling method’. Based on 

the numerical simulation results and theoretical analysis of induction motor presented in 

(Fruchtenicht et al., 1982), the authors concluded that a relationship between the UMP and 

eccentric motion of the rotor can be expressed in a simple parametric form 

( ) ( ) ( ) e ecc ecc ecc eccj j jF Kω ω δ ω=       (2.38) 

here,  eF  is UMP, K  is Frequency Response Function (FRF) of the UMP, eccδ  is rotor 

eccentricity, eccω  is whirling angular speed.  
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here, k parameters are real-valued variables proportional to the square of fundamental 

magnetic flux density; z parameters are complex-valued variables, whose imaginary parts 

are defined by the supply and whirling motion frequencies.  

The unknown parameters were estimated from the numerical calculation of the 

machine. Thus, the effects of magnetic saturation, stator and rotor slotting and equalising 

currents flowing in the rotor cage were addressed in the UMP model (Eq. (2.38)). UMP 

obtained from the numerical simulation results was fitted into this model, demonstrating a 

very good agreement. The calculation results agreed also very well with measurements.  

The work was continued by Holopainen et al. (2005a), who studied a transient 

operation of a cage induction motor with rotor eccentricity of arbitrary trajectory and 

various whirling frequencies. Using the classical permeance harmonic theory, they 

presented a parametric UMP model, which was then simplified for the constant flux 

steady-state operation and cylindrical rotor eccentricity. Unlike the earlier model, the 

parameters in this model had a physical background, i.e. they were directly related to 

electrical properties and the geometry of the machine. A more efficient procedure to 

estimate the model parameters from the numerical calculation results was presented by 

Holopainen et al. (2005b). This technique was based on implementing the impulse 

excitation instead of traditional harmonic excitation of the rotor during the time-stepping 

FEM simulation.  

 

2.4 Need for further research 

According to the literature survey presented above, the researchers concentrated 

their efforts on the induction machines and investigated mainly two special cases of the 

cylindrical circular rotor whirling: the static and dynamic eccentricity. It is well known that 

the rotor cage (damper winding) and parallel stator windings reduce the UMP. However, 

the influence of parallel stator windings on the UMP needs to be investigated further, not 

only at two special whirling frequency values, but rather in a wide whirling frequency 

range. It would also be interesting to compare how the UMP is affected by the parallel 

paths in the rotor and by the parallel paths in the stator. A combined influence of the rotor 

cage (damper winding) and parallel stator windings has to be investigated deeper as well. 

The parametric force models presented by Arkkio et al. (2000) and Holopainen et 

al. (2005a) allow the convenient assessment of the UMP in a wide whirling frequency 

range. These models, however, were developed for cage induction motors operated without 
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the parallel stator windings. Thus, their application is quite limited, since many electrical 

machines do contain parallel paths in the stator winding. Therefore, there is a need for 

parametric force models, which could be applied to electrical machines equipped with 

parallel stator windings. Besides, a cage induction motor represents only one common type 

of electrical machine. A salient-pole synchronous machine, which belongs to another 

major category of electrical machines, should also be taken into consideration. Moreover, 

special force models are needed for electrical machines with parallel paths both in the rotor 

and stator windings.  

 

2.5 Conclusions 

The basic laws of electromagnetism describing the interrelationships between the 

electric field, magnetic field, electric current and electric charge are surveyed in this 

chapter. Different approaches applied for magnetic field analysis and electromagnetic force 

calculation in rotating electrical machines are briefly reviewed. The origins of the UMP are 

indicated and the evolution of various analytical and numerical techniques for the analysis 

of electrical motors operated with rotor eccentricity is also surveyed. An approach 

combining the strengths of the theoretical and FEM-based methods is described at the end 

of the chapter. This novel technique allows for accurate, yet quick, calculation of the 

electromagnetic force in a wide whirling frequency range. It also enables several analyses 

to be combined effectively in order to investigate simultaneously the electrical machine 

from electromagnetic, mechanical and thermal points of view.  

The parametric models developed so far are only applicable to cage induction 

motors without the parallel stator windings. The latter not only significantly reduce the 

UMP magnitude, but also notably alter its whirling frequency dependence. Moreover, the 

currents circulating in the parallel circuits of the stator may interact with those circulating 

in the rotor cage, thus introducing additional phenomena that cannot be described by the 

existing models.  

In this thesis, the influence of parallel stator windings on the UMP is investigated 

numerically. Simple parametric force models are developed for an induction machine and 

also for a salient-pole synchronous machine equipped with parallel paths in the stator 

windings. A special UMP model is derived for the motors with parallel circuits both in the 

rotor and stator windings. The performance of the force models is evaluated based on the 

comparison with numerical simulation results. This work is also aimed at investigating the 
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interaction between the currents circulating in the parallel paths of the rotor and stator 

windings.  
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3 Methods of analysis  

As mentioned in the previous chapter, the parallel stator windings considerably 

reduce the UMP magnitude and also have a potent impact on its whirling frequency 

dependence. This is shown in Figure 3.1, where the FRFs of the electromagnetic force are 

calculated numerically for a standard cage induction motor operated at the rated load. The 

continuous curves represent the radial (upper curve) and tangential (lower curve) 

components of the UMP when the stator winding is connected in series. The dashed curves 

show the correspondent UMP components when four parallel paths (4PP) are provided in 

the stator winding. Corresponding simulation results for a salient-pole synchronous 

generator operated at the rated load are displayed in Figure 3.2. The main parameters of the 

simulated machines are listed in Tables 3.1 and 3.2. More data on both the simulated 

machines can be found in Publication P3.  

Table 3.1 Main parameters of the induction motor. 

Parameter Value 

Number of pole-pairs 2 

Rated frequency, Hz 50 

Rated voltage, V 380 

Rated power, kW 15 

Connection Delta 

 

Table 3.2 Main parameters of the synchronous machine. 

Parameter Value 

Number of pole-pairs 4 

Frequency of the voltage supplied to the stator winding, Hz 50 

Stator winding supply voltage, V 6300 

Field winding supply voltage, V 150 

Apparent power, kVA 8400 

Stator winding connection Star 
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Figure 3.1 Influence of parallel stator windings on the UMP: four-pole, 50 Hz 

induction motor at the rated load. 

 

 
Figure 3.2 Influence of parallel stator windings on the UMP: eight-pole, 50 Hz 

salient-pole synchronous generator at the rated load. 

 

As seen in Figures 3.1 and 3.2, the two FRFs differ significantly from each other. 

The parametric force models presented earlier in (Arkkio et al., 2000) and (Holopainen et 
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al., 2005a) are only meant for the induction motors with series-connected stator windings. 

However, numerous electrical machines do have parallel connections in the stator. 

Moreover, salient-pole synchronous machines were also beyond the scope of the previous 

research. In publications P2, P3 and P5, simple UMP models are developed for a salient-

pole synchronous machine. The effect of parallel stator windings are included into the 

force model presented in publication P3. Publication P5 puts forward a parametric force 

model for electrical machines with parallel windings both in the rotor and stator.  

 

3.1 Parametric force model  

The developed force models were derived starting from the basic voltage and 

magnetic flux equations for the rotor and stator windings. Using the classical permeance 

harmonic analysis, the influence of rotor eccentricity was introduced through additional 

magnetic flux density harmonics in the air gap. These harmonics were expressed as 

functions of fundamental magnetic field, whirling radius, whirling angular speed and 

corresponding current harmonics flowing in the rotor and/or stator windings. The latter 

were then solved by substituting the expressions of magnetic flux harmonics into the 

voltage equations for the corresponding windings and harmonics. Finally, the expression 

for UMP was derived using Eq. (2.32). In the stationary frame of reference, the parametric 

model of the UMP in a salient-pole synchronous machine with parallel stator windings and 

the damper winding is  
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here, ecc.0ϕ  is initial phase angle of the rotor eccentricity; 0δ  is nominal air gap; ,1pB  is the 

first constituent of the fundamental magnetic flux density component caused by interaction 

of the fundamental MMF waves with constant permeance term; ,2pB  is the second 

constituent of the fundamental magnetic flux density component caused by interaction of 

the fundamental MMF waves with the first Fourier series component of the air gap 

permeance related to rotor saliency; pϕ  is phase angle between the fundamental magnetic 

flux density component and the fundamental MMF vector of the field winding; s  is slip of 

the rotor; 1ω  is angular frequency of the supply voltage; r
eccω  is whirling angular velocity 

in rotor frame of reference; cr, 1pk ±  are dimensionless coupling factors for p±1 current 

harmonics in the damper winding; cs, 1pk ±  are dimensionless coupling factors for p±1 

current harmonics in the stator winding; L,r, 1pk ±  are coefficients defining the amounts of the 

corresponding magnetic flux harmonics that pass through the damper winding from 

sources other than rotor currents; L,s, 1pk ±  are coefficients defining the amounts of the 

corresponding magnetic flux harmonics that pass through the stator winding from sources 

other than stator currents; r, 1pL ±  are inductances of the damper winding for p±1 magnetic 

flux density harmonics; s, 1pL ±  are inductances of the stator winding for p±1 magnetic flux 

density harmonics; r, 1pR ±  are resistances of the damper winding for p±1 current harmonics; 

s, 1pR ±  are resistances of the stator winding for p±1 current harmonics; 1pA ± , r, 1,1pS ± , 

r, 1,2pS ± , s, 1,1pS ±  and s, 1,2pS ± are force model parameters, which can be expressed in terms of 

the physical machine parameters listed above.  

A synchronous machine in steady state operates with zero slip. However, in 

expression (3.1), the slip symbol was kept in order to apply this force model to the 

induction motor as well. To do so, the second constituent of the fundamental magnetic flux 

density ,2pB  has to be equated to zero, as this term is related to the rotor saliency. Thus, the 

force model expression for induction machines becomes a little simpler than Eq. (3.1).  

The detailed derivation of the force model (Eq. (3.1)) is given in Publication P5. As 

can be seen, there are many unknown parameters in the force model expression. Estimation 

of parameter values is a non-trivial task, which is briefly discussed in the following sub-

chapter.  
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3.2 Parameter estimation  

FEM-based simulations of electrical machines provide sufficient data for the 

estimation of unknown force model parameters. However, as several parameters are 

encountered in the denominators, a direct application of the least-square method is not 

possible. For this reason, a hybrid parameter estimation technique was elaborated 

(Publication P1), which effectively combined the method of least squares with the GA-

based approach. The estimation task was shared between the two methods so that the 

parameters located in the numerators were estimated using the least-square technique, 

whereas the remaining parameters were estimated using GA. This approach showed 

superior performance in comparison to the technique where the least-square method was 

accompanied by the so-called sequential exhaustive search scheme. The supremacy was 

especially evident when the number of unknown parameters in the denominators was 

increased. An estimation procedure solely based on the GA was also implemented, 

demonstrating fairly good performance. However, it required a longer computation time.  

 

3.3 Conclusions  

In this chapter, a parametric force model for electrical machines with parallel stator 

windings and rotor cage (damper winding) is presented. The model is applicable to salient-

pole synchronous machines as well as to induction machines. It can also be used for other 

electrical machines, which feature the parallel paths either in the rotor or stator winding. 

The technique developed for the estimation of force model parameters is briefly discussed.  
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4 Discussion of the results  

In this chapter, the performance of the parametric force models developed is 

presented and discussed. Some phenomena arising from the interactions of the currents 

circulating in the parallel circuits of the rotor and stator are highlighted. The influence of 

the parallel stator windings on the net UMP and its components is examined. The effects of 

parallel circuits in the rotor and those in the stator on the eccentricity force are compared. 

The chapter is based on the data documented in Publications P2-P7.  

 

4.1 Verification of the force models 

As mentioned earlier, force models were developed for: 

• salient-pole synchronous machines without the parallel stator windings 

(Publication P2);  

• induction and synchronous motors with parallel stator windings, but without the 

rotor cage (damper winding) (Publication P3); 

• induction and synchronous motors with parallel circuits both in the stator and 

rotor windings (Publication P5). 

The first two parametric force models with parameters estimated from the 

numerical calculation results showed excellent performance. Figure 4.1 demonstrates a 

very good agreement between the FRF calculated using the FEA and the FRF obtained by 

substituting the estimated parameters into the force model. These FRFs of the force were 

computed for the synchronous machine with damper winding only. The performance of the 

force model applied to synchronous machine with four parallel paths in the stator winding 

is shown in Figure 4.2. Similar results for the 15 kW cage induction motor with four 

parallel stator windings are presented in Figure 4.3. In this motor, the influence of the rotor 

cage on the UMP was annulled in the numerical simulation by using “air” as the material 

of the rotor cage.  
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Figure 4.1 FRF calculated numerically vs. FRF obtained using the parametric force 

model: eight-pole, 50 Hz salient-pole synchronous generator with damper 

winding and series-connected stator winding at the rated load. 

 

 
Figure 4.2 FRF calculated numerically vs. FRF obtained using the parametric force 

model: eight-pole, 50 Hz salient-pole synchronous generator with parallel 

stator windings but without damper winding at the rated load. 
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Figure 4.3 FRF calculated numerically vs. FRF obtained using the parametric force 

model: four-pole, 50 Hz induction motor with parallel stator windings but 

without rotor cage at no load. 

 

The performance of the force model developed for electrical machines with parallel 

circuits both in the rotor and stator windings was somewhat worse compared to the two 

models discussed above; however, it still was very good. In Figures 4.4 and 4.5, FRFs 

computed using the FEA and parametric force model are compared to each other. The 

results for the synchronous machine are shown in Figure 4.4 and those for the induction 

machine – in Figure 4.5. Both the test motors had four parallel stator windings and were 

operated at the rated load.  

As seen in Figure 4.4, there is a small peak in the FRF of the force at whirling 

frequency –37.5 Hz, which is not accounted for in the force model. The phenomena behind 

this peak are not clear yet. However, the interaction between the currents circulating in the 

parallel circuits of the rotor and stator could provide a possible explanation.  
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Figure 4.4 FRF calculated numerically vs. FRF obtained using the parametric force 

model: eight-pole, 50 Hz salient-pole synchronous generator with four 

parallel stator windings and damper winding at the rated load. 

 

 
Figure 4.5 FRF calculated numerically vs. FRF obtained using the parametric force 

model: four-pole, 50 Hz induction motor with four parallel stator 

windings and rotor cage at the rated load. 

 

The force model developed for electrical machines with parallel circuits both in the 

rotor and stator windings was also applied to the motors that were equipped with either the 
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parallel stator windings or the rotor cage (damper winding). In all these tests, the model 

performed very well. 

It is worth mentioning that the estimated set of force model parameters corresponds 

to a certain operating point (supply voltage, load torque, etc.) of an electrical machine. Slot 

harmonics are considered as one of the main reasons for the dependence of the 

electromagnetic force on the loading. These have a very small whirling frequency 

dependence in the range considered, but can vary significantly due to the load changes. 

Moreover, as shown above, the configuration of the stator winding may influence 

profoundly the shape of FRF of the UMP; therefore, different sets of parameters may have 

to be used for a machine of the same geometry, but with different stator winding 

connections.  

 

4.2 Influence of parallel stator windings on the UMP constituents 

The rotor eccentricity disturbs the symmetric distribution of the magnetic field in 

the air gap of the motor by introducing many new magnetic field harmonics. The orders of 

these harmonics differ by one (±1) from the orders of the harmonics, which already existed 

in the machine with a concentric rotor. The interaction between these magnetic fields 

causes the UMP. Of key importance are the harmonics related to the fundamental magnetic 

field and those associated with slotting, as they constitute the major part of the UMP. 

Figure 4.6 shows that the UMP due to these two components accounts for ¾ of the total 

UMP.  

In Publication P6, the influence of parallel stator windings on the total UMP and its 

constituents is studied using the FEA. The results of this study showed that the parallel 

stator windings effectively attenuate the net eccentricity force by suppressing significantly 

the eccentricity harmonics related to the fundamental magnetic field. The slotting 

harmonics are mitigated almost evenly in the whole whirling frequency range studied, 

although not to such a great degree as the harmonics associated with the fundamental 

magnetic field. It was shown that the reduction of the harmonics related to the fundamental 

field and slotting accounts for the major part of the UMP mitigation by the parallel stator 

windings. 
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Figure 4.6 Total UMP vs. the sum of two UMP constituents: four-pole, 50 Hz 

induction motor with rotor cage and series-connected stator windings at 

the rated load. 

 

4.3 Other issues related to the parallel stator windings 

Although, both the parallel stator windings and rotor cage tend to reduce the 

eccentricity force, their effects on the UMP are still very different. Thus, the rotor cage, 

containing usually a large number of parallel paths uniformly distributed around the rotor 

circumference, evenly decreases the UMP magnitude, independently of the rotor-

eccentricity phase angle. The stator winding, on the other hand, contains normally fewer 

parallel paths. Therefore, the degree of the UMP reduction by the stator winding may 

depend on the position of the rotor axis displacement, causing the electromagnetic system 

of the motor to behave anisotropically. Moreover, the degree, to which the UMP is affected 

by the stator winding, may also depend heavily on the number of parallel paths. As seen in 

Figure 4.7, the trace of the eccentricity force vector in the induction motor containing two 

parallel paths in the stator winding (2PP) differs significantly from the UMP trace in the 

same motor with four parallel paths (4PP). Unlike the latter trace, which is almost circular, 

the former trace has considerably different values on the orthogonal axes. In both cases 
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simulated, the cylindrical circular rotor eccentricity was used, the whirling radius was 20% 

of the nominal air gap and whirling frequency was –25 Hz.  

This anisotropic UMP behaviour causes the results of numerical impulse response 

test to deviate noticeably from the results of conventional FEM technique (forced whirling 

method). In Publication P4, the performance of the impulse response test with different 

combinations of stator and rotor windings layouts is investigated and some conclusions as 

to the applicability of the method are drawn. 

 
Figure 4.7 Traces of UMP in four-pole, 50 Hz induction motor with parallel stator 

windings but without rotor cage at no load. 

 

4.4 Parallel stator windings vs. rotor cage vs. parallel stator windings + rotor cage  

Parallel connections in the rotor and stator windings have long been known to 

effectively reduce the UMP. As the rotor cage (damper winding) usually contains many 

more parallel circuits than the stator winding, it is natural to assume that motors equipped 

with the rotor cage alone would experience a lower level of eccentricity force than those 

where only the parallel stator windings are provided. Furthermore, motors with parallel 

circuits both in the rotor and stator are expected to vibrate less than those with parallel 

paths either in the rotor or stator.  
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According to the numerical calculation results presented in Figure 4.8, two parallel 

stator windings indeed provide weaker UMP mitigation than the rotor cage alone. These 

findings correspond to a standard 15 kW induction motor at no load. Besides, two parallel 

stator windings may also cause the uneven UMP mitigation discussed above. 

 

 
Figure 4.8 Comparison of FRFs of the UMP in four-pole, 50 Hz induction motor at 

no load. 

 

However, contrary to what was anticipated, an even lower average level of UMP 

was attained in the whirling frequency range considered when the motor had four parallel 

stator windings. Similar results were also observed in a salient-pole synchronous machine 

operated at the rated load. As seen in Figure 4.9, the UMP when four parallel circuits are 

provided in the stator winding is substantially lower than that in the machine equipped with 

the damper winding only. These results show that already four parallel stator windings can 

have a stronger impact on the UMP than the rotor cage (damper winding).  

As expected, the smallest eccentricity forces are produced in the motors 

incorporating parallel circuits both in the rotor and stator (see Figure 4.9).  
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Figure 4.9 Comparison of FRFs of the UMP in eight-pole, 50 Hz salient-pole 

synchronous generator. 

 

4.5 Conclusions 

In this chapter, the main results of the thesis are presented and discussed in brief. 

The presented parametric force models are verified using the numerical simulations of the 

test motors. All force models exhibited a very good performance throughout the whole 

whirling frequency range considered.  

In this work, three electrical machines with different combinations of the rotor and 

stator winding layouts were employed to investigate the performance of the force models 

developed. In addition to the machines described in Tables 3.1 and 3.2, a six-pole, 50 Hz, 

18.5 kW cage induction motor was used. Although the force models performed very well 

with all these test machines, the applicability of the models to every type of electrical 

machine cannot be guaranteed. However, these models continue the work started earlier by 

Arkkio et al. (2000) and Holopainen et al. (2005a) and extend significantly the area of the 

force models applicability by addressing the following electrical machines: 

• salient- and non-salient-pole synchronous machines equipped with damper 

winding and with series-connected stator windings; 
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• salient- and non-salient-pole synchronous machines equipped with parallel 

stator windings and with no damper winding; 

• induction motors equipped with parallel stator windings and with no rotor cage 

(e.g., wound-rotor induction motor, blank-rotor induction motor); 

• salient- and non-salient-pole synchronous machines equipped with damper 

winding and with parallel stator windings; 

• induction motors equipped with rotor cage and parallel stator windings. 

Interaction between the currents circulating in the parallel circuits of the rotor and 

stator may influence the UMP and alter the shape of its FRF to some extent. Although 

being relatively small, the effects of this interaction could still be investigated further in 

order to improve the accuracy of the parametric force models. 

It was shown that the magnetic field harmonics associated with the fundamental 

magnetic field and slotting contribute the most to the total UMP. The parallel stator 

windings may considerably suppress these UMP constituents and, hence, reduce the net 

UMP. 

Parallel stator windings were shown to cause anisotropic UMP behaviour, 

especially in electrical machines without the rotor cage (damper winding). These findings 

conform well to the results presented by Robinson (1943). The author stated that there is 

no damping of the UMP along the line between the two parallel stator windings. Due to 

this UMP anisotropy, care should be exercised when applying the numerical impulse 

response test to analyse such motors.  

Parallel paths in the stator winding may provide a more efficient UMP mitigation 

than the rotor cage (damper winding), even if the number of parallel circuits in the stator is 

substantially lower than the number of parallel circuits in the rotor. Using parallel 

connections in the rotor and stator simultaneously ensures the lowest level of the UMP. 

The last statement agrees well with the results presented by Arkkio (1996). 

The FEA results acquired in this work were not verified by measurements. 

However, the employed finite-element models and numerical techniques for the 

electromagnetic force calculation were previously validated by Arkkio et al. (2000), Lantto 

et al. (2000) and Tenhunen et al. (2003d). The authors studied the electromagnetic forces 

in a 15 kW induction motor with different types of rotor eccentricity using the technique 

presented by Coulomb (1983). Antila et al. (1998) used Coulomb’s approach and the 

method presented by Arkkio to calculate the electromagnetic forces in the radial active 
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magnetic bearings. In all these contributions, the authors reported a very good agreement 

between the computed and measured results. 

The force models developed were only tested with induction motors and a salient-

pole synchronous machine. However, the application area of the models could be extended 

to other types of rotating electrical machines, especially if their construction is similar to 

the construction of the motors studied in this work. Thus, by equating the term Bp,2 to zero, 

the force model described by Eq. (3.1) can straightforwardly be applied to a cylindrical-

rotor synchronous machine. In permanent magnet synchronous motors, eccentricity 

harmonics can induce eddy-currents in the permanent magnets located on the rotor surface. 

The eddy-currents would reduce the magnetic field asymmetry and the resultant UMP. In 

this way, the permanent magnets could be viewed as a rotor cage. Thus, the proposed force 

models could also be applied to these electrical machines. 

Although the developed force models were only tested on the electrical machines 

with cylindrical circular rotor whirling, the models are also anticipated to perform well 

with other types of rotor eccentricity. According to the results by Tenhunen et al. (2003d), 

in electrical motor, the rotor motion of which can be described as the combination of 

symmetric conical whirling and cylindrical circular whirling, the resultant electromagnetic 

force on the rotor is almost the same as in the case of cylindrical circuit whirling, provided 

the radii of symmetric conical whirling and cylindrical circular whirling are equal. Thus, 

the developed force models could also be applied to describe the UMP in electrical motors 

with such rotor whirling motion. 

The rotors of both machines simulated were not skewed. The rotor skewing can 

significantly affect the voltages induced in the rotor bars by the magnetic field harmonics, 

especially the voltages induced by the magnetic field harmonics with short wavelengths 

(e.g., harmonics related to stator and rotor slotting). The voltages induced in the rotor bars 

by the eccentricity harmonics, which have relatively long wavelengths, remain virtually 

unaltered by the skewing. Voltages induced in the rotor bars by a certain magnetic field 

harmonic define the amount of damping of this harmonic produced by the rotor cage. Thus, 

it is expected that the damping of slot harmonics by the skewed rotor cage can 

substantially differ from the damping produced by the rotor cage with straight bars. 

According to the results presented in Publication P6, slot harmonics contribute 

significantly to the total unbalanced force. However, the UMP component related to 

slotting has very small whirling frequency dependence, in the whirling frequency range 

considered. As shown in Publication P6, peaks in the FRF of the electromagnetic force are 
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caused primarily by the eccentricity harmonics. Thus, rotor skewing, by affecting the 

voltages induced in the rotor bars by the slot harmonics, can alter the average level of the 

FRF of the electromagnetic force. Yet, the location of the peaks in the FRF of the force and 

their elevation above the average FRF level are expected to be almost the same as in the 

machine with straight rotor bars. Therefore, the force models developed are also expected 

to be applicable to the machines with skewed rotors. 



 61 

5 Summary  

In this thesis, the UMP caused by the eccentric rotor is investigated in a wide 

whirling frequency range. Two common types of electrical machine are considered: cage 

induction motor and salient-pole synchronous machine. Special attention is drawn to the 

effects of parallel stator windings on the UMP.  

Simple analytical models describing the UMP are developed and verified using the 

FEA. The parametric force models are built for: salient-pole synchronous machines 

without the parallel stator windings; electrical motors with parallel circuits in the stator 

only; and electrical machines with parallel paths both in the rotor and stator. The two force 

models mentioned last were applied to the induction and synchronous motors. All the 

presented models exhibited a very good performance throughout the whole whirling 

frequency range considered.  

Parallel stator windings, similarly to the rotor cage (damper winding), effectively 

reduce the UMP. Especially the UMP constituents related to the fundamental magnetic 

field and slotting are strongly affected by the parallel paths in the stator. However, unlike 

the rotor cage, the parallel stator windings may instigate anisotropy in the UMP. In such 

cases, the results of the numerical impulse response test may differ significantly from the 

conventional calculation results.  

Despite the fact that the number of parallel circuits in the stator is often 

substantially lower than the number of parallel circuits in the rotor, the parallel paths in the 

stator winding may still provide a more efficient UMP mitigation than the rotor cage 

(damper winding). 

When parallel circuits are provided both in the rotor and stator, the smallest amount 

of the UMP is expected. However, currents circulating in these parallel paths may interact 

with each other, thus affecting the UMP and the shape of its FRF.  
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