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1- Introduction 

 

 

Stresses exerted on the electrical equipment due to disturbances are appearing in the form 

of either overvoltages or overcurrents. The overvoltages behavior is an impulsive increase in 

the system voltage. Suppression devices are used to protect the electrical networks against these 

overvoltages. On the other hand, the overcurrents behavior is an unexpected increase in the 

current due faults when they are shunt faults. The protection against such faults is more 

challenging because it requires intelligent discriminators to isolate them quickly before 

catastrophic failures [1]-[2]. It is recommended to use and to enhance special protection 

systems that can be quite effective at times in preventing cascading outages [2].  

Generally, if the faulty section is not isolated, property damage, legal liability or possible 

loss of life may result. Over the years, conventional protection schemes have been successfully 

used to detect and to protect against the low impedance faults where a small resistance only 

limits the fault current. However, when the resistance of the fault path is very high and 

therefore the fault current can not be easily recognized, it is called a high impedance fault. Such 

fault case can not be reliably detected, in particular in distribution systems, using the 

conventional relays because its current is very small [3]. One of the main features of this fault 

type is that it is associated with arcs. The main goal of this dissertation is to model the arc, to 

model the high impedance fault and then to detect this fault where a detection of the fault due to 

leaning trees in MV networks is studied.   

1.1 Problem Description 

Towards modeling and detecting of the high impedance arcing faults, the arc 

representation has to be studied and the fault characteristics have to be measured using 

experiments or to be captured from field tests. The fault model can be then represented using 

the well-known EMTP program and its detection can be investigated. Considering this research 

scope, the problem description and motivation are briefly described in this section.  

1.1.1 Arc Model Representation 

The arc is generally defined as a continuous luminous discharge of electricity across an 

insulating medium which is changed into a conducting medium due to a huge number of 

free electrons and ions. The arc was firstly studied concerning interruption capabilities of 

circuit breakers, in which arc models were initially introduced to enhance circuit breaker 

testing. Using these models, the capability of arc quenching can be predicted and design 

enhancements can be achieved with a lower number of experimental tests. Therefore, the 

time is reduced and the technical and economical problems of the experimental tests are 

overcome. The arc models have been recently modified to study the performance of arcing 

faults in different voltage levels and to test their detections and their discriminations. 

There are several breaker arc cards built in the EMTP program [4], [5]. Unfortunately, 

the structure of these cards was inadequate to fulfill different applications. Recently, the 

shortcomings have been partially rectified with ver. 3.x of the EMTP [4]. Although models 
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of this version show an improved accuracy, flexibility to account for universal applications 

is missing. For example arcing fault, arc furnace, empirical forms, innovations in arc 

models … etc. can not be directly implemented. This can be remedied with the arc 

representation in [6]. Although this primary representation accounted for P-τ model only, 

additional efforts are directed for further enhancement towards universality in [P.I].  

1.1.2 High Impedance Arcing Fault Characteristics and Detection Challenge 

The high impedance fault detection is a long standing problem. The fault natures have 

been studied since the early 1970’s with the hope of finding some characteristics in the 

waveforms for practical detections. The high impedance faults result when an unwanted 

electrical contact is made with a road surface, sidewalk, sod, tree limb, some other surface 

or object which restrict the flow of fault currents to a level below that reliably detectable by 

conventional protection devices. Such faults can be earth or phase faults [3].   

The high impedance faults have two main characteristics: the low fault currents and 

arcing. The first characteristic is happened because these faults produce little or no fault 

current. Typical currents range is from 10 to 50 A [3], [7]. For 12.5 kV Feeder, typical 

results of staged faults are illustrated in Table 1. It can be seen that for object like tree, the 

fault current is less than 0.1 A for 20 kV level as experimentally measured in [P.II]. This 

fault current is furthermore reduced during the winter time in Nordic Countries and 

therefore the detection of faults due to trees is more challenging.  

The second characteristic of high impedance faults is the presence of arcing 

phenomena as a result of air gaps due to the poor contact made with the earth or with an 

earthed object. These air gaps create a high potential over a short distance and arcing is 

produced when the air gap breaks down. However, the sustainable current level in the arc is 

not sufficient to be reliably detected. Part of this is due to the constantly changing 

conditions of the surface supporting the arc and maintaining high impedance. Therefore, a 

random electrical behavior is an associated feature with the high impedance faults. As the 

arcing often accompanies these faults, it further poses fire hazard and therefore the 

detection of such faults is critically important. 

Detection of high impedance faults with high reliability is a challenge for protection 

engineers. The protection reliability is measured by dependability and security. A high 

level of dependability occurs when the faults are correctly recognized. On the other hand, a 

high level of security occurs when the faults are not falsely indicated. A high dependability 

forces a lower security level and vice versa. The dilemma is to find a sensitive high 

impedance detector with conserving on the protection security.  
 

Table 1. Typical fault currents on various surfaces [7]. 

No. Surface  Current (A) 

1 Dry asphalt 0 

2 Wet sand 15 

3 Dry sod 20 

4 Dry grass 25 

5 Wet sod 40 

6 Wet grass 50 

7 Reinforced concrete  75 
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1.1.3 Blackouts due to Tree Faults  

Recently, an interesting event was that three major blackouts were closely occurred in 

2003, in which for two of them, the fault object was a tree. They were blackout on the 14
th
 of 

August in North America [8]-[9], blackout on the 23
rd

 of September in Southern Sweden and 

Eastern Denmark [10] and blackout on the 28
th
 of September in Italy [11]-[13]. The tree 

flashovers have caused the tripping of a major tie-line between Italy and Switzerland in the 28
th
 

of September and then it extended to a blackout. Also, the tree contact was the reason of a 

heavy loaded line tripped out with the corresponding blackout on the 14
th
 of August. The 

failure to adequately manage tree fault resulted in the line outages and therefore blackouts.   

In Nordic Countries, fault categories in MV distribution networks are classified into snow 

burden 35%, fallen trees 27%, boughs on pole transformers 9%, diggers 6%, lightning 

impulses 6%, and the rest are probably caused by animals [14], [15]. Due to the large forest 

area in these countries, the electrical network is exposed to the faults due to leaning trees. This 

kind of faults is categorized as high impedance arcing faults due to high resistance of the tree 

and associated arcs. These faults due leaning trees are hazardous for both human beings and 

electrical equipments where a hazard of electric shock can occur and fires can be also initiated 

in the forest area in particular in the summer time.  

1.1.4 Feature Extraction for Detecting Faults 

Tracking harmonics is usually used for the fault detection. However, power systems 

have time-varying harmonics due to applications of power electronic devices, switching 

and fault events. Therefore, most efforts are introduced in order to develop accurate and 

efficient measurement schemes for estimating power system voltage and current phasors 

and their spectra. Phasor measurements and harmonic analysis have been carried out using 

Fast Fourier Transform (FFT). However, there are pitfalls such as aliasing, leakage and 

picket fence effects [16]-[18]. To alleviate the aliasing, the sampling frequency must be 

greater than twice the highest frequency in the signal to be analyzed. When the number of 

samples per cycle period of resolution frequency is an integer, the leakage effect is avoided. 

However, the picket fence effects are produced if the waveform has frequencies which are 

not integer multiples of the resolution frequency. The last condition to apply FFT 

algorithms is that waveforms must be stationary and periodic. However, the network 

waveforms are not stationary due to the disturbances.  

To overcome such drawbacks, Wavelet Transform (WT) is recently introduced and it 

can analyze the signals in terms of their time-frequency localization [19]-[21]. Therefore, it 

is suitable for wide varieties of signals and problems in the power systems. The WT 

principle is that a set of basis functions is generated using dilating and translating a single 

prototype function called a mother wavelet. Its main advantage is the ability to focus on 

short-time interval for high-frequency components and long-time intervals for low-

frequency components. This ability improves the analysis of signals with localized impulse 

and oscillation in particular in the presence of a fundamental and low-order harmonics. In a 

sense, wavelets have a window that is automatically adapted to give the appropriate 

resolution [20].  

However, the wavelet execution time is one of the limitation issues restricting its 

practical implementation. This issue is in the phase of overcoming where discrete wavelet 

transforms (DWT) have been experimentally represented using Digital Signal Processing 
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(DSP) board with reducing its lengthy execution time as reported in [22]. This experimental 

implementation ensures the capability and encourages incorporating DWT in digital relays.  

1.2 Arc Model Applications for Investigating the Network Transients  

The arc models have been considered for more accurately representing the electrical 

networks either in normal operation or abnormal conditions. For example, the arc furnace is 

modeled to investigate the network during such complicated nonlinear load and therefore 

overcome the associated problems such as unbalance, harmonics, interharmonics and 

voltage flickers. During this load, the dynamic interaction of the arc melt process as a 

nonlinear load with the network is an essential study point of view. For a wide range of this 

load study, its interaction can be carried out using simulations. Therefore, an accurate arc 

model should be incorporated in the simulations, where the arc furnace load has been 

modeled as three parts: supply system, nonlinear load and controller models [23].  

During the abnormal conditions of the network such as shunt or simultaneous faults, 

the fault may be permanent or transient. The permanent type is ultimately associated with 

arcs. In a typical scenario, a high impedance path to the earth may be established in a 

location with a degraded insulation. The fault may remain in the high impedance stage for 

indefinite period, or it may establish a low impedance path to ground, resulting in a high 

current earth fault. Such faults often exhibit arcing and therefore the arcing signature can 

enhance their detection [24]. In another typical fault scenario, an energized conductor 

comes in close proximity to an earthed object without making solid contact. Small air gap 

are presented between the conductor and the fault object. When the conductor voltage 

builds to a sufficient magnitude in each half-cycle, the air gaps will break down and arcing 

current will flow. Such arc behavior can be called arc reignition or arc restriking based on 

the breakdown instant through the half-cycle. The arc then extinguishes when the line 

voltage goes through zero and so on. The other fault scenario is a downed conductor which 

is also associated with arcs due to bad contacting with the earth surfaces. From these fault 

scenarios, it is revealed that the arc element should be considered to model and to represent 

the fault impact on the network and therefore to enhance the fault detection.  

Furthermore, the transient faults are eventually arcing fault type where the arc 

interaction with the network can contribute to introduce an adaptive single-phase 

autoreclosure function. In this case, the fault has to be estimated either permanent or 

transient using protection techniques as reported in [25]. If this fault is transient, an 

adaptive reclosing instant is estimated based on the extinction instant of the arc where the 

arcing fault period is divided into primary and secondary periods. The primary period is 

from the fault instant up to the fault current interruption instant; however, the secondary 

period is from the end of the primary period until the arc media are fully de-ionized. 

Adaptive autoreclosures were introduced based on zero-sequence power or using artificial 

intelligent algorithms [26], [27]. Such algorithms were completely proposed using 

simulated arcing fault cases where the arc is the vital element in these simulations.  

There is another point of view for the arc model applications. It is a test of the circuit 

breaker interruption capability. As it is well-known, a trip signal is sent to the circuit 

breaker to interrupt the current. However, the interruption is carried out when the breaker 

arc is extinguished. This arc extinction is accomplished at current zero-crossings because at 

these instants the input power to the arc element is the minimum. To confirm the breaker 
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interruption capability, it should be tested. However, realizing experimental direct test 

circuit is extremely difficult. Therefore, synthetic test circuits are considered. For a wide 

range of testing circuit breakers, the simulations are more helpful. Thus, the dynamic arc 

models are the core for testing and furthermore for designing circuit breakers.  

Interrupting High Voltage Direct Currents (HVDC) is more challenge because there is 

no zero-crossing in the current waveform. However, the AC circuit breakers associated 

with three parallel branches are utilized for interrupting the HVDC currents [28]. These 

branches are commutation, Rate of Rise of Recovery Voltage (RRRV) and energy 

dissipation circuits as shown in Figure 1.1. The aim of commutation circuit is to create a 

zero-crossing by generating an oscillatory current superimposed to the HVDC current. The 

commutation circuit can be active or passive where there are more details addressed in [28]. 

The second branch which is the RRRV circuit is used to control transient recovery voltages 

appearing on the breaker terminals after its arc extinction. The third branch is used to 

dissipate a stored energy in the HVDC system. Designing the HVDC breakers can not be 

directly accomplished in the laboratory. However, there are simulation stages before the 

experimental tests. Furthermore, the simulations are then used for testing the HVDC circuit 

breakers in their applications as reported in [29]. In these simulations, the accuracy of such 

breakers design and their test is mainly depending on the dynamic arc models. 
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Figure 1.1  Basic circuit configuration of HVDC breaker module [28]. 

 

1.3 Directionality as a Protection support in Electrical Networks 

According to the fault conditions in the network, electrical phase quantities (voltage, 

current and power) may change their directions. Therefore, a faulty zone can be 

distinguished from healthy zones or the fault point direction can be estimated. In other 

words, relays involving interaction between two electrical input quantities may have the 

differentiation ability or polarity marking which are necessary for the correct operations.  

The differentiation ability is considered in different protection schemes such as 

differential current and differential power principles which contribute to a unit protection. 

The differential current performance result in the current directions and therefore it 

discriminates between internal and external faults. The sum of the current flowing in 

essentially is equal to the sum of the currents flowing out during normal operation or 
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external faults [30]. However, this rule is changed during internal faults. Therefore, the 

differential relay setting is adjusted considering the relation between average and difference 

currents of the protected unit terminals.  

In [31], [32], the Wavelet Transform was applied on the currents at terminals of a 

protected transmission line. It was found that, the wavelet output spikes of the currents are 

in phase when the fault is external. However, they are out of phase when the fault is 

internal. Therefore this directionality of the wavelet output spikes were exploited to present 

a unit protection function. However, establishing a relay based on a spike is not a reliable 

protection scheme.   

Recently, another differential relay depending on the power directionality is introduced 

[33], [34]. In the same manner of the current differential function, the differential power 

relay is stable during normal operation and external faults because the flow in and flow out 

powers are approximately equal. However, this protection scheme was introduced and 

tested with the transmission lines only and it is not yet generalized or applied on the other 

electrical equipment. Also, it is not examined on the networks with different earthing 

concepts.   

The above mentioned protection schemes are applied in high and extra high voltage 

networks. In distribution networks, there is another practice for the directionality that relays 

sense the direction of current or power flow at a specific location and, thereby, indicate the 

fault point direction. A common practice is to use the output of the directional sensing unit 

to control the operation of the fault sensor which often is an instantaneous or an inverse-

time overcurrent unit or both units together [30]. Thus if the current flow is the desired 

operating direction and its magnitude is greater than the fault sensor’s pickup (minimum 

operating) current, the relay can operate. On the other hand, if the current flow is in the 

opposite direction, no trip can occur even though the current magnitude is higher than the 

pickup current. The fault direction is estimated from the phase angles of voltage and current 

phasors, where a polarizing quantity, normally the voltage, is used as a reference. In other 

concept, the difference in phase angle between the positive-sequence component of the 

current during fault and prefault conditions is used as an indicator to the fault point [35].  

When the distribution networks are unearthed or compensated, the network 

overvoltages are used as a fault detection aid for earth faults. However, when the network 

energizes several feeders, the directionality between fundamental residual voltage and 

currents can discriminate between the faulty and healthy feeders [36]. Higher fault 

resistances limit the earth fault detection using such technique. 

The protection schemes mentioned in this section are some principles of the network 

protection. However, they are not reliable to detect high impedance faults in particular 

when the fault resistance is very high like the tree resistance. A reliable detector of high 

impedance faults is still a challenging issue for protection engineers.  

1.4 High Impedance fault Detection  

As aforementioned, high impedance faults are defined as all low current faults which 

cannot be detected using conventional protections. Towards detecting the high impedance 

faults, most of the efforts have been directed to identify the fault features and therefore to 

clarify practical considerations for their detections [37]-[45]. The fault feature extraction is 
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carried out using different filters such as FFT, Kalman Filter, Fractal and Wavelet 

Transforms [3], [37]-[48]. Numerous detection algorithms have been motivated, depending 

on harmonic contents such as second order, third order, odd harmonics, even harmonics, 

nonharmonics, high frequency spectra and harmonic phase angle considerations [42]-[45]. 

However, such techniques are still limited by larger fault resistance, in particular 

resistances greater than 100 kΩ, such as the tree resistances. 

In order to improve high impedance fault detection capability and also in order to 

provide a high degree of security, a sophisticated detection technique was discussed in [24]. 

This technique was depending on parallel algorithms such as energy, randomness, arcing 

phase signature and load analysis algorithms. The energy algorithm monitored the level of 

energy contained in a specific range of frequency components. It might be difficult to 

identify changes in these energies due to connected loads. However, the non-harmonic 

components gave a much more dramatic indicator of high impedance arcing faults. The 

randomness algorithm was depending on a variability of instantaneous fault current 

magnitudes due to changing of physical fault conditions at a particular time. The 

randomness algorithm also calculated the amount of randomness associated with a fault 

using the energy contained at a non-fundamental frequency as a monitoring quantity. The 

arcing phase signature algorithm was depending on the arc signature on the current at a 

specific phase angles of the applied voltage, specifically near the voltage peaks. This 

signature was particularly visible in the high frequency (above 2 kHz) components of 

current. The load analysis algorithm was added to enhance the security term of the 

detection reliability. This algorithm identified a number of normal events and the 

corresponding waveforms on the network. This sophisticated detection technique became 

more complicated when applying the algorithms, for example energy and randomness 

algorithms, on multiple frequencies on each phase, on neutral current and further on the 

summation of odd harmonics, even harmonics and nonharmonics as discussed in [37]. 

Given all these inputs and information, a decision about the presence of a fault is neither 

quickly nor easily made. 

In the same manner, the random behavior of the high impedance fault current was used 

as a detector aid in [49]. In this detection technique, the positive and negative current peaks 

in one cycle to those in the next cycle were compared. Therefore, a current flicker was 

measured and the current asymmetry was calculated. Such detection method was suggested 

to detect the downed-wire faults, which is also known as high impedance faults. However, 

the fault current has extremely small changes when the fault object has an extremely high 

resistance such as the tree and therefore the current flicker or asymmetry can not detect this 

fault.   

1.5 Earth Fault Detection in Unearthed and Compensated MV Networks 

The transients produced in electrical networks due to faults often depend on the neutral 

point treatments. They can be completely isolated from the ground, earthed through 

impedance or solidly earthed at their neutral. In Nordic Countries, the neutral is commonly 

unearthed and compensated MV networks are increasingly being used [36], [46]. There is 

an important trait for the unearthed system. The directionality of the residual currents in the 

healthy and faulty branches with respect to the residual voltage is obvious during earth 
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faults [36]. This behavior is used for protection objectives. However, the fault resistances 

associated with leaning trees are very high limiting its detection using current magnitudes.   

Compensated earthing has grown in interest and its practical applications have 

increased [36], [46]. In this case, the earth fault current is somewhat small when it is 

compared to its value in a corresponding unearthed system. This is due to the parallel 

resonance of the inductance connected to the neutral and network earth capacitances. 

Therefore, traditional detectors reacting at current thresholds are no longer practical. One of 

the protection methods for detecting earth faults in compensated networks was to short 

circuit the Petersen coil using a parallel resistance to enable their detection. However, the 

coil function was not fully gained in this case. Furthermore, a complicated mechanism is 

required to apply such techniques.  

One of the main contributions of [46], [47] was based on analyzing the relative 

direction variations of transient residual voltages and currents which occur during earth 

faults. When a fault occurred, whatever the earthing system used, the transients of the 

residual current and voltage are in opposite directions in the defective section and in the 

same direction in the others. However, the sensitivity limit is reached for larger fault 

resistances. This sensitivity will be improved with the aid of the DWT as discussed in 

chapter 5 [P.V]. 

Other earth fault detection issue was discussed in [48], where a comparison of the 

residual current with each phase current was used to distinguish the faulty feeder. The 

scalar product is used as the means of comparison. The other detection technique was 

introduced based on analyzing the variation of the system parameters with respect to their 

steady state values [50]. However, the detection based on the system parameters 

identifications is still unreliable with the high impedance faults.  

1.6 Wavelet Transform (WT) 

As aforementioned, the network waveforms are not stationary due to disturbances. 

Therefore, FFT is not suitable for well-timed tracking and it is important to use an 

appropriate signal processing technique such as WT. Recently, wavelet analysis has been 

used in several applications in the power systems. For example in a power quality research 

area, it is applied for monitoring and for analyzing power system disturbances [51]-[56]. 

For partial discharge applications, it is considered for de-noising the measure signals and 

therefore enhancing the partial discharge monitoring task [56]-[61]. In digital protection 

area, the discrimination between transformer inrush currents and internal faults has been 

carried out using WT [62]-[66]. Also, fault detection and classification considering high 

impedance types have been enhanced when the wavelet analysis is considered [32], [40]-

[42], [67]-[77].  

Wavelets are families of functions generated from one single function, called the 

mother wavelet, by means of scaling and translating operations. They are oscillatory, 

decaying quickly to zero either side of its central path, and integrating to zero. The scaling 

operation is used to dilate and compress the mother wavelet in order to obtain the 

respective high and low frequency information of the function to be analyzed. Then the 

translation is used to obtain the time information. In this way a family of scaled (dilated) 
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and translated (shifted) wavelets are created and serve as the base for representing the 

function to be analyzed [19]-[21].  

Mathematically, the Continuous Wavelet Transform (CWT) of an input signal x(t) with 

respect to a mother wavelet ψ (t) is generally defined as:  
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∞
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where ψ*
(.) is a complex conjugate of the mother wavelet ψ (.), a is the dilation or scale 

factor and b is the translation factor. It is apparent from the above equation that the original 

one-dimensional time domain signal x(t) is mapped to a new two-dimensional function 

space across scale a and translation b. In other words, a WT coefficient CWTψ(a,b) at a 

particular scale and translation represents how well the original signal x(t) and 

scaled/translated mother wavelet match. These coefficients are thus a wavelet 

representation of the original signal with respect to the mother wavelet.  

CWT has a digitally implementable counterpart called Discrete Wavelet Transform 

(DWT), which it is in the form:  
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where the mother wavelet ψ (.) is discretely dilated by the scale parameter ao
m
 and 

translated using the translation parameter  nboao
m
, where ao and bo are fixed values with 

ao>1 and bo>0. m and n are integers. In the case of the dyadic transform, which can be 

viewed as a special kind of DWT spectral analyzer, ao=2 and bo=1. DWT is implemented 

using a multistage filter with down sampling of the low-pass filter output. 

To overcome the complexity encountered in DWT real time implementations, a novel 

DWT computational procedure has been introduced and experimentally verified in [22]. As 

shown in Figure 1.4, the real-time implementation of the dyadic DWT is depicted. The 

inner product of the updated sliding window vector of the sampled signal [W1] and the 

DWT filter coefficients (high and low-pass filter coefficients Cf) is convoluted with the 

processed frame. This process is repeated every two real-time shifts [2∆t], to insure the 

down-sampling process, in the first level of calculation to obtain the approximation a1 and 

detail d1. From the first stage, the second one can be calculated by performing the inner 

product of a1 and DWT filter coefficients along the calculated frame every 4 real-time shifts 

[4∆t]. Similarly, level three is executed every [8∆t], level four every [16∆t] … and so on. In 

other words, a separate sliding window for each level with N element is only used, where N 

equals to the number of DWT digital filter coefficients interpreting the used mother 

wavelet. The first level-sliding window [W1] updates its real-time data from the samples of 

the analyzed discrete input signal. However, the second level-sliding window [W2] is 

updated from the first level output a1 and the third level from a2 and so on. This represents a 

distinguished computation procedure with limited burden compared with the conventional 

computation methods.  
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Figure 1.4 Flow chart of implemented DWT in real-time [22]. 

1.7 Electromagnetic Transient Program (EMTP) 

EMTP is a computer program for simulating electromagnetic, electromechanical, and 

control system transients on multiphase electric power systems. It is used in this 

dissertation to simulate the arc and fault models and to represent their interactions with the 

networks. It was first developed as a digital computer counterpart to the analog Transient 

Network Analyzer (TNA). Many other capabilities have been added to EMTP over the 

years and it has become a standard program. One of the EMTP's major advantages is its 

flexibility for accurate modeling; an experienced user can apply the program to a wide 

variety of studies. The cost and space considerations of analog simulation give preference 

to the EMTP program. For example, it is not possible with scaled down analog models to 

simulate distributed natures of transmission line parameters [78]-[80]. 

Alternative Transient Program (ATP) was started as a new program from a copy of 

EMTP however with different commercialization. Therefore, the ATP manual is just a 

complete set of rules for EMTP input and output. However, there are slight differences 

such as circuit breaker models embedded in EMTP but they are not set in ATP. To 

overcome this drawback, ATP includes TACS controlled resistance that can provide 

breaker arc interaction. For more flexibility of a programming language, MODELS is 

recently introduced to interact with the source code of ATP.  
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ATPDraw is a graphical and mouse-driven preprocessor to the ATP version of the 

EMTP program on the MS-Windows platform [81] where the user can construct an 

electrical circuit using the mouse and selecting components from menus. Then, ATP input 

file is generated according to its codes. Most of the standard components of ATP, as well as 

TACS and MODELS are supported in ATPDraw. Line/Cable modeling is also included 

where the user specifies the geometry and material data and he has an option to view the 

cross section graphically and to verify the model in the frequency domain.  

1.8 Work Contribution 

The arc model representations in EMTP are divided into three different types. These 

three representations of arc models are: Avdonin, Urbanek, and Kopplin model as reported 

in the EMTP rulebook [4]. They are internally built-in and just require parameter 

identification. Therefore, the system investigation is limited to a bounded area declared by 

the model card parameters. In this dissertation, a universal breaker arc representation in the 

form of controlled voltage source in the EMTP program is presented as reported in [P.I]. 

The arc voltage and current signals are measured and transported from the EMTP power 

network into the TACS filed where they are used as inputs to the dynamic arc equation. 

Parameters of this equation are computed exploiting the FORTRAN facilities. The dynamic 

arc equation which is a first order differential equation is solved using a controlled 

integrator. Then, the obtained arc resistance value is multiplied by the arc current to 

compute the arc voltage which is fed back to the power network in the next step and so on. 

Therefore, the arc interaction with the power network is carried out. A comparison of this 

proposed representation with the EMTP built-in Avdonin model is performed. Thermal 

limiting curve derivation and breaker performance evaluation in a direct test circuit, Short 

Line Fault (SLF) circuit, and transmission system are carried out. Possibility of 

implementing different arc models using the novel representation is also explored. The 

universality is verified by implementing several examples of practical arc models such as 

improved Mayr, series arc and arcing fault models.  

When high impedance fault detection techniques were directly introduced using either 

staged filed data or experimental results, the better performance of such techniques is restricted 

to the fault cases used in the proposing stages of these techniques. This limitation is due to 

sophistications of the experiments and staged fault cases. However, if the fault element is 

accurately modeled and easily represented at different locations in electrical networks, the 

evaluation of the fault detection techniques will be more reasonable. Therefore, an 

experimental setup accomplished at Helsinki University of Technology (TKK), Finland is used 

to establish a high impedance fault of a leaning tree type as presented in [P.II]. The test results 

are used to model the fault. The model parameters are determined. The experimental work is 

implemented using the ATP/EMTP package. The tree impedance is represented using a 

resistance and the arc element is modeled by a thermal model, which realized using universal 

arc representation in the ATP code. The simulation results are compared with the experimental 

results to examine the fault model validity. The comparison is carried out between the 

experimental and simulated fault features extracted using DWT.  

The detection of faults due to leaning trees in MV networks is discussed for the first 

time in this dissertation. As aforementioned, this fault current is less than 0.1 A in a 20 kV 

voltage level and therefore its detection is extremely difficult. Towards introducing a 
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detection technique, the fault due to leaning trees occurring at different locations in 20 kV 

networks is simulated by ATP/EMTP. The impact of the arc reignition periodicity on the 

network currents is used to detect this difficult fault. In the vicinity of the current zero-

crossing, the initial transients lead to fingerprints boosting secure fault detections [P.II]. 

These transients are localized based on the DWT detail coefficient of the feeder currents to 

reliably detect the fault. The absolute sum over a period of one power cycle is computed 

and used as a detection flag or as a detector [P.III]. This detector is high not only at the 

fault beginning but also during the fault period. Also, this detector performance is attained 

with all phases at any measuring node fixed at the beginning of feeders. However, the 

faulty phase detector is the highest when the phase detectors are compared and the faulty 

feeder detector is the highest one when the feeder flags are evaluated. Therefore, Logic 

Functions are introduced to determine the faulty phase and also the faulty feeder as 

discussed in [P.III]. When wireless sensors are used for enhancing the fault detection and 

location processes, the detection technique is evaluated at different measuring nodes but 

another selectivity function is introduced as following [P.IV]. A ratio of the residual 

fundamental current of each section with respect to the parent section in the corresponding 

feeder is estimated for locating the faulty section. It is found that this ratio is close to one at all 

measuring nodes starting from the main transformer until the fault point. On the other hand, this 

ratio is close to zero at the other measuring nodes. This feature is correct only when the 

network is balance. Then, this selectivity function is modified to overcome this point of 

shortcoming.  

Also by exploiting the transients repeated for each half cycle due to the arc reignitions 

after each current zero-crossing, another detection procedure is introduced in [P.V] and 

[P.VI]. The fault localization is carried out by investigating the DWT detail coefficient of 

the measured voltages. The absolute sum over one power cycle is computed for the setting 

aim. The fault section is estimated using a novel selectivity protection function as 

following. The DWT detail coefficients of the currents and voltages are multiplied together. 

Then, a summation is computed over a period of two power cycles to estimate its polarity. 

This polarity is used as the directionality condition, in which, it is negative when the fault is 

behind this measuring node and it is positive when the fault is not behind. Therefore, this 

feature can discriminate between the healthy and faulty sections or feeders. This technique 

is applied on three-phase quantities and also on residual components. Furthermore, this 

technique is evaluated using field data. Test cases provide evidence of the efficacy of the 

proposed technique. 

1.9 Dissertation Outline  

Briefly, the dissertation consists of this summary and Publications [P.I] – [P.VI]. The 

dissertation presentation is as following.  

- The universal arc representation using EMTP is introduced in chapter 2. 

- Modeling of high impedance arcing fault due to leaning trees is presented and 

experimentally verified in chapter 3. 

- The fault detection and different selectivity techniques are proposed in chapters 4 and 5. 

- Conclusions and future considerations are summarized in chapter 6.  

- Finally, Publications [P.I] – [P.VI] are enclosed.  
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2- Evolution and Representation of Arc Models 

 

 

Efficient arc models combine simplified model forms in addition to a little 

sophistication in their programming. The arc models developed hitherto can be classified 

into two categories. The first category is based on dielectric recovery [81]-[84] and the 

other one is concerned with arc thermal characteristics [85], [86]. For miscellaneous 

applications, the thermal models were widely used as they give a better interpretation of the 

arc behavior than that is given by the dielectric recovery. Therefore, most of the efforts 

have been directed to develop new thermal models or to improve the existing ones. The 

validity of thermal arc models either for testing the circuit breaker interruptions or for 

representing arcing faults is achieved based on conformities between the measured and 

computed performances. The thermal models are intensively discussed in this chapter.  

Thermal models have the longest history of the dynamic arc models since Cassie 1939 

[87] and Mayr 1943 [88] introduced the first description of arc conductivity in a form of 

first order differential equation. Thermal arc models are usually classified into two forms. 

In the first one, the physical phenomenon of the arc is considered to explore the effect of 

circuit breaker design parameters on the interruption performance such nozzle size, speed 

of the flow, types of heat transfer ... etc. [86], [89], [90]. In the second form, the arc is 

modeled considering its external characteristic only such as Cassie, Mayr, combined 

Cassie-Mayr, modified Mayr, Improved Mayr models, … etc [85], [87], [89], [91]-[97]. 

Based on the second type of thermal models, characteristics of the breaker arc in the form 

of arc voltage, current, and rate of change of current are measured on the vicinity of current 

zero. These measurements should be recorded with highest possible time resolution to 

extract the model coefficients. This type of models is usually utilized when the arc is 

investigated as a part of the power system, which is satisfactory for modeling breaker arcs, 

long arcs and high impedance arcing faults and therefore for the dissertation subject.  

2.1 Mathematical Derivation of Thermal Arc Models 

The mathematical analysis of dynamical breaker arc extinction is very difficult due to 

the rapid change of the conductivity in a few microseconds around the current zero point. 

Therefore, most of the efforts have been directed to find a comparatively simple 

mathematical description in the form of integral modeling and without involving the 

physical processes. These models were proposed to represent actual circuit breaker arcs 

near by the current zero. They were concerned with the variation of arc resistance, arc 

current, arc power losses of arc space under certain simplifying assumptions with time span 

few hundreds of microseconds around current zero. In which, the arc conductivity was 

calculated based on the energy balance theory. Cassie followed by Mayr started these 

concepts of arc modeling for the description of arc behavior. The mathematical bases of 

these models established the preliminary rules of dynamic arc behavior description. The 

simplified integral equation(s) parameters of these models were expressed in terms of arc 

time constant, arc power losses … etc. in the vicinity of the current zero.  
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The energy balance states that the arc conductivity is a function of the arc power input, 

arc power losses, and time [85]. It is given in the form: 

),,( tPWF
u

i
g ==   (2.1) 

where i is the instantaneous arc current, u is the instantaneous arc voltage gradient, g is the 

instantaneous arc conductivity per unit length, W is the power input to the arc per unit 

length, P is the power loss from the arc per unit length and t is the time. 

The equation can be investigated and expressed as: 
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where Q is the energy content per unit length of the arc associated with its temperature and 

state of ionization. Accordingly, the general form of the arc model can be obtained as 

follow: 
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Under particular forms selected for F(Q) and P, the equation of Cassie and Mayr can be 

deduced.  

Cassie assumes constant resistivity (µ), constant power loss (λ), and constant energy 

content (c) where they are constant per-unit-volume. Accordingly, the assumed constant 

cross-section area (A), which is dependent on the current and time, requires that the current 

density and voltage gradient are also constant in the steady state case. This gives a static 

characteristic (Uo) as in:    

λµ=oU   (2.4) 

Thus, the aforementioned assumptions lead to: 
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Then the differential equation, which Cassie was obtained, is in the from: 
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where τ = c/λ is the arc time constant. 

On the other hand, Mayr assumptions are that thermal ionization is according to Saha 

equation and heat losses are due to thermal conductance only [85]. This leads to: 
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By substituting in the general form of heat balance equation (4), Mayr differential equation 

is in the form: 
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where, τ=Qo/P is the arc time constant. 

The experimental results have shown that Cassie’s dynamic arc equation is 

recommended for modeling the arc in pre-current zero regime while the Mayr’s equation is 

suitable for post-current zero one. On other words, the evaluation of using only one 

dynamic equation of Cassie or Mayr is not sufficient for quantitative calculation over pre 

and post current-zero crossing.  

2.2 Extended Study of Thermal Models 

Extensive studies were conducted to improve these models. In [90], a formulation of 

the Combined Cassie-Mayr (CM) model was introduced. The CM model employs each 

equation of the two forms in its appropriate arc representation period. Cassie’s equation 

before current zero and Mayr’s equation after current zero where the transition from 

Cassie’s to Mayr’s equation at current zero is applicable due to the two equations are 

identical at zero power input. Similarly, Cassie-Mayr-Cassie (CMC) model was introduced 

[95]. In this extended model, Cassie represents the arc in pre-zero interval and Mayr, which 

is used in post-zero, is taken from the solution of Cassie at the zero-crossing point. After 

current zero, if the arc resistance is increased the successful interruption is occurred. 

However in case of the failure interruption, the modified Cassie differential equation is then 

utilized but with new parameters. The defect of considering these models is that different 

assumptions between the pre and post current-zero crossing produces unrealistic change in 

the conductivity time response at the transition instant.  

A parallel arrangement of Cassie and Mayr arc representation was introduced in [93], 

[96]. In this case, both model equations are solved simultaneously and arc resistance is 

obtained by summing up the resultant resistance of each equation. The arc behavior of a 

circuit breaker is described using four constant parameters model as given below:  
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where gC and gM are the conductivity of the Cassie and Mayr parts of the arc, respectively. 

Both equations have two constant parameters: Uo is the constant part of the arc voltage, τC 

is Cassie’s time constant, P is the steady state power loss, and τM is Mayr’s time constant. 

From the evaluation of this model, it was found that in the vicinity of current zero, the 

contribution of the Mayr equation is increased while the Cassie portion goes to zero. For 

this model, four parameters must be determined. Therefore, solving two differential 
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equations and determination of arc parameters of a certain circuit breaker would be 

troublesome. 

The Modified Mayr model has been considered one of the important contributions in 

the area of dynamic arc modeling [97]. The parameters used for arc behavior estimation 

are: arc time constant τ(g) and arc power losses P(g). Both parameters are usually 

expressed in terms of the arc conductivity and they are specified for each circuit breaker. 

Therefore, Mayr differential equation is altered to the following form: 

)1
)(

(
)(

11
−=

gP

iu

gdt

dg

g τ
  (2.12) 

αττ gg o=)(     and     βgPgP o=)(   (2.13) 

If τ(g) and P(g) are constants, the equation is identical to the form of Mayr’s model. 

However, if τ(g) is constant and P(g)=Uo
2 

g, where Uo=constant, it becomes identical for 

the Cassie’s equation model as illustrated by Moller in [92]. Generally, the model 

simplicity and its parameter plausibility are the major advantages for its wide range of 

applications. However, the arc model has power functions of arc conductivity in the 

denominators. After current zero, this conductance becomes very small in case of 

successful interruption. Therefore, numerical errors may occur, which would be tolerated 

using very small time step of calculation.  

One of the innovations in arc models is the Improved Mayr model, which is recently 

introduced by KEMA, High Power Laboratory Group [94]. This adaptive arc model is 

given by: 

)1
),max(

(
11

1

−
+

=
iuPPiU

iu

dt

dg

g ooτ
  (2.14) 

where P1 and Po are constants of cooling power and Uo is the constant arc voltage in the 

high current area. Equation (2.14) is used to represent the dynamic arc equation during pre-

zero current period, in which model conformity with Cassie in high current area is fulfilled. 

However, Improved KEMA model has constant cooling power, which is dominant near 

current zero area. This is fulfilled by the max statement of (2.14). After the current zero 

crossing, the equation is reduced to the Mayr arc model as follows: 

)1(
11

−=
oP

iu

dtg

dg

τ
  (2.15) 

This is exactly the Mayr arc model with two parameters as in (2.8), while the KEMA arc 

model generally has three free parameters as in (2.14). 

2.3 Arcing Fault Models  

Transmission line arcing faults are widely experienced in power systems and they are 

usually categorized as transient faults. Their identifications would involve some difficulties 

compared with other types of transient faults. Therefore, efficient long arc models are 

highly demanded to represent the bilateral interaction between the system and the arc 
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element [98]-[103]. Furthermore, classifying these types of faults would enhance the 

operation of extra high voltage autoreclosures. The dynamic behaviors of arcing fault are 

described either by normalizing the volt-ampere characteristics or by considering the power 

balance of arc column with estimating the model parameters by variant methods. 

Alternatively, the arcing faults have been represented by approximating the arc interaction 

as a square wave voltage locked with the arcing current and accompanied by additional 

harmonics. This wave voltage amplitude is estimated depending on the arc length, arc 

constant voltage per unit length … etc. The model is modified to include a current 

dependant voltage source with a distorted rectangular waveform [102].  

There are two arcing fault models that have been recently introduced using the 

dynamic equations. The first one is the Kizilcay model [99], [100]. The second one is the 

Johns model [101]. Kizilcay model is a well-trusted as its effectiveness was experimentally 

verified in [104]. Considering the Kizilcay model, a synthetic test circuit is developed to 

obtain the parameters of primary and secondary phases of the arc along a 380 kV insulation 

string [102]. The arcing fault equation of the Kizilcay model is given as: 

)(
1

gG
dt

dg
−=

τ
  (2.16) 

stu

i
G =        and   liruostu )( +=   (2.17) 

where G is the stationary arc conductance, r is the resistive component per arc length, uo is 

constant voltage per arc length, and l is the time dependent arc length.  

When the Johns model [101] is considered, the stationary arc conductance G can be 

evaluated as following: 

lu

i
G

o

=   (2.18) 

While the arc time constant τ  was empirically derived for the arc current as: 

l

Iα
τ =   (2.19) 

where I is the peak value of the fault current when it is considered a bolted one and the 

coefficient α is about 2.85 × 10
-5

. It was empirically obtained by fitting the dynamic arc 

equation time response to match the experimental cyclograms of the arc currents ranging 

from 1.4kA to 24kA. 

The parameters formulas of the previous two models have been introduced to fulfill 

arcing fault characteristics in the transmission line systems. Kizilcay model parameters 

described in (2.17) are modified to represent the arcing faults in MV networks as reported 

in [105]. The modification is that uo and r are not considered constant; however, they are 

dependent on the arc length as in the form:  

l
uo

400
900 +=        and       

l
r

008.0
040.0 +=   (2.20) 

Regarding the time constantτ, it is also modified as following: 
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αττ )(
o

o
l

l
=   (2.21) 

where τo is the initial arc time constant, lo is the initial arc length, α is a coefficient of 

negative value. Since the arc length variation is highly dependent on external factors like 

wind, conventions of the plasma and surrounding air, it is difficult to consider these random 

effects accurately in the arc model.  

2.4 Universal Arc Representation [P.I] 

The arc simulations are strictly carried out using the EMTP program, in which, a valid 

arc implementation is accomplished in [P.I]. This representation facilitates establishing the 

time domain model of any dynamic arc equation by exploiting the bilateral interaction 

between the EMTP power networks and TACS field. In this section a brief declaration of 

the proposed arc representation and its evaluation are summarized.  

2.4.1 The Proposed Arc Representation  

The proposed representation of the arc model can be explained with the help of Figure 

2.1. The generator is used to provide the breaker with the short circuit current level and the 

Rc-Cc branch is used to control the Rate of Rise of Recovery Voltage (RRRV). The breaker 

arc is represented by TACS controlled voltage source type 60. The value of the voltage is 

computed in the TACS field by multiplying the computed arc resistance by the arc current 

measured by sensor 91. This resistance is derived from the dynamic arc equation(s) 

exploiting the TACS tools. At the next step, the corresponding arc voltage is fed back into 

the power network via controlled voltage source type 60. In this manner, arc interaction 

with the power system elements is fully considered. It should be noted that during pre-zero 

current periods, the controlled voltage source is connected to the system, as the switch SW 

is normally closed until current zero crossing. While for testing the breaker RRRV 

withstanding during post current-zero interval, the switch is opened and the breaker voltage 

is transported into TACS field by sensors 90. Then, the RRRV against the zero current 

conductivity states interruption/reignition conditions according to post zero dynamic arc 

equation(s). In order to distinguish between the pre and post zero current periods, control 

signals are generated. Implementation details of the modified Mayr model (2.12) and (2.13) 

using the proposed arc representation is preliminarily given in [6] and also summarized in 

the Appendix of [P.I]. However in [P.I], the arc representation universality is achieved and 

approved considering a wide range of arc models.  

2.4.2 Evaluation of the Proposed Arc Representation 

An SF6 breaker rated at 123 kV and 40 kA breaking current is used as a test sample 

[97]. In which, the characteristic arc time constant τ(g) and power loss P(g) functions were 

obtained experimentally via series of short circuit tests as given by Figure 2.2. It is obvious 

from Figure 2.2 that P(g) and τ(g)  functions are divided into three functions considering 

the magnitude of the conductivity (g). This would represent an obstacle to EMTP Avdonin 

model as this model only accounts for a single function of P(g) and τ(g). 
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Figure 2.1  EMTP network of synthesizer generator and breaker. 
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Figure 2.2  Reported P-τ functions of the circuit breaker [97]. 
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Figure 2.3 illustrates a comparison of the computed limiting curves when they are 

estimated using the universal arc representation and when considering EMTP Avdonin 

model cards. When the limiting curve is computed using the universal arc representation, 

the P(g) and τ(g) functions which are divided into three functions of g are computed 

exploiting the flexibility of Fortran expressions in the TACS field. The corresponding 

thermal limiting curve is shown in Figure 2.3 as a solid line. On the other hand, declaring 

these three functions of P(g) and τ(g) is impossible using EMTP Avidonin model cards. In 

order to sort out this issue, two solutions can be considered. The first one is to select the 

P(g) and τ(g) function corresponding to the lowest value of g and use them in the 

declaration of the arc parameters. The other solution is to do some regression forms in 

order to reduce the three functions into a single function. After testing these two solutions, 

it is found that the first one is the appropriate and the corresponding limiting curve is 

shown in Figure 2.3 as a dot line.   

 

 

 

 

 

 

20 30 40 10 

1 

10 

Interrupting Current (kA) 

R
at

e 
o

f 
R

is
e 

o
f 

R
ec

o
v
er

y
 V

o
lt

ag
e 

(k
V

/µ
s)
 

50 60

 

Universal arc representation 
 

Built-in arc model 

 
 

 

Figure 2.3  Comparison of the computed limiting curves. 
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When these curves, which are computed by the proposed representation and by EMTP 

built-in model, are compared with the experimentally reported curves shown in Figure 2.4, 

there is a good matching between the derived curves using the proposed representation and 

the reported curves traced for zero time delay of voltage application on the arc channel post 

current zero. There are different delay times accounting for a free interval of conductivity 

decaying before the application of RRRV as reported in [97]. The reason of this matching 

is that the three P(g) and τ(g) functions of Figure 2.2 are realized in the EMTP considering 

the flexibility of TACS FORTRAN expressions as mentioned before. However, these three 

functions of P(g) and τ(g) can not be realized in EMTP Avidonin built-in model cards as 

the arc parameter card is declared by P(g) and τ(g) corresponding to the lowest part of g 

curves.  
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Figure 2.4  Reported thermal limiting curves [97]. 
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In order to confirm the accuracy of the proposed arc representation, a single function of 

P(g) and τ(g) is considered for the proposed representation and Avdonin built-in models. 

Then, the thermal limiting curves are computed and the results of both models are fairly 

close as shown in Figure 2.5. This reveals that the proposed representation has the same 

accuracy of the built-in models as far as single function for P(g) and τ(g) is considered. 

However, the proposed representation has the advantage of flexible consideration of multi 

functions defining P(g) and τ(g). It should be also noted that the curve of zero time delay is 

only considered in the comparison. Other curves with different time delays cannot be 

considered as the built-in model format does not fulfill such conditions. More comparisons, 

to confirm the accuracy, are discussed in [P.I] such as the breaker performance in the time 

domain using a direct test circuit and power transmission system.  
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Figure 2.5  Thermal limiting curves of the two models for the same arc parameters. 
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2.4.3 Improved Mayr Model Representation 

The improved Mayr model has been discussed in section 2.2. The dynamic equations 

(2.14) and (2.15) are used to represent the arc during pre and post-zero current periods, 

respectively. Although, this model cannot be realized considering built-in models, it can be 

easily implemented using the proposed representation. The arc representation is adopted to 

account for KEMA model by solving (2.14) and (2.15) in the TACS field. These 

modifications are only incorporated without altering the representation concept.  

Two SF6 breakers rated at 245 kV / 50 kA / 50 Hz are used as a test example. The 

parameters of the first one are: τ = 0.27 µs, Po = 15917, P1 = 0.9943, and Uo = 100 V 

while for the second breaker: τ = 0.57 µs, Po = 24281, P1 = 0.9942, and Uo = 1135 V. 

These values have been obtained from the least square fit of KEMA experimental results as 

reported in [94]. 

The proposed arc representation can be validated by recognizing the computed 

waveforms of arc voltage and current in vicinity of current zero when the breaker is tested 

through Short Line Fault (SLF) test circuit. The aforementioned circuit breakers are tested 

in practical test circuits used by KEMA (90% SLF test). When the two breakers are tested 

using the universal arc representation, the first one has successful interruption while the 

second has reignition state and their voltage and current waveforms in the vicinity of zero-

current are depicted in Figure 2.6. These waveforms present perfect match to the measured 

waveforms reported in [94]. This efficiently ensures the proposed arc representation. 

 

2.4.4 Arcing Fault Representation 

For representation of the fault arcs using the universal representation, the breaker arc 

equations are replaced by Kizilcay model (2.16) and (2.17). Primary arc parameters are: l = 

350 cm, τ = 1.3 ms, uo = 12 V/cm, and r = 1.3 mΩ/cm. The secondary arc parameters are 

considered as given in [99]. The obtained currents and voltage of primary and secondary 

fault arc are depicted in Figure 2.7. The computed results are identical to that ones obtained 

by the experimental setup and the consecutive ATP simulation reported in [99]. There is an 

offset in the voltage waveform shown in Figure 2.7.c. that is due to the capacitor residual 

charges. When the arc is extinguished, the residual charges voltage on the capacitor at this 

instant lead to this offset. The value of dc offset is dependent on extinction instant.  

From the aforementioned investigation and comparisons, it is evident that the proposed 

representation has shown the flexibility to accommodate different arc models. Also, the arc 

elements are connected or altered over the power system arrangement in a straightforward 

methodology.  
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Figure 2.6  Arc current and voltage traces using the SLF test circuit 
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Figure 2.7  Currents and voltage for primary and secondary periods of the arcing fault. 
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3- Experimental Verification of High Impedance Arcing 

Fault Model in MV Networks [P.II] 

 

 

In order to overcome the complications of obtaining staged fault data or of studying 

difficult abnormal conditions in the electrical networks, accurate fault model incorporated in 

the networks at different locations reproduces the well-known fault circumstances. Fault 

modeling requires experimental data to fulfill its equations and their parameters. Therefore in 

this chapter, an experimental setup is used to establish a high impedance fault of a leaning tree 

type. The test results are used to model the fault. The model parameters are determined. The 

experimental work is implemented using the ATP/EMTP package. The tree impedance is 

represented using a resistance and the arc element is modeled by a thermal model and realized 

using the universal arc representation in ATPDraw.  

3.1 Experimental Results 

An experiment was performed to measure the characteristics of a high impedance fault 

occurring in a 20 kV distribution network. The experiment was carried out at the Power 

Systems and High Voltage Laboratory, Helsinki University of Technology (TKK), Finland. 

Figure 3.1 shows the experimental setup. When the conductor is energized at 11.5 kV and 

the tree bends close, an arc is created as shown in Figure 3.2. More details about the 

experiment scenario are described in [P.II]. 

 Towards accurate measuring, the experimental errors should be reduced. There are 

several sources for these errors: errors due to transducers such as current and voltage 

transformers and errors due to the reading/recording instruments such as Oscilloscopes and 

recorders.  Regarding the experimental work, it is carried out at High Voltage Laboratory, 

TKK and the transducers in this laboratory are frequently calibrated as it can be revealed 

from the appendix of Publication [P.II]. There is another issue carefully considered to 

reduce the experimental error. This issue is the arrangement of these transducers (Current 

and Voltage), in which the calibrated resistance is directly connected with the fault element 

to accurately measure the fault current and therefore to avoid the error due to the current 

injected in the voltage transducer. Then, the voltage transducer is connected across both of 

the fault element and current transducer. The other point which can produce errors is the 

saturation of these transducers, however, the discussed fault is a very high impedance fault 

type and its disturbance is extremely small and such fault can not lead to saturation in the 

utilized transducers. So during this fault, the transducers operate in the linear portions of 

their characteristics. 

Figure 3.3 illustrates the fault voltage and current waveforms when it is associated with 

arcs at different locations over the tree. It reveals that the distortions in voltage and current 

waveforms are influenced by the arc behavior. Non-steady state periods with spikes in the 

voltage and current waveforms are evident at reigniting instants. This is clearly depicted in 

the enlarged figures at the vicinity of the zero-crossings as shown in Figure 3.3.a. 

Identification of these features can enhance this fault detection. On the other hand, the arc 
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voltage or current waveform pattern can be approximately continuous as shown in Figures 

3.3.b and 3.3.c. 
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Figure 3.1  Experimental configuration. 
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Figure 3.2  Arc-associated tree bending over the conductor. 
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b. The waveforms when the fault is at the branch. 
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              c. The waveforms when the fault is at the trunk. 

 

Figure 3.3  Experimental waveforms at different fault locations over the tree. 
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3.2 Modeling of the Associated Arc 

To enable measuring of the arc characteristics, the arc position is experimentally 

moved to a new point between the tree and the calibrated series resistance. The capacitor 

divider can then be connected across the arc element to only measure the arc voltage. The 

arc behavior changes from one half-cycle (power frequency) to the other as revealed by the 

experimental arc characteristics shown in Figure 3.4. This constitutes one cycle specific to 

an arc and it is characterized by unsymmetrical half-cycles. Therefore, the arc model 

parameters extracted using the positive half-cycle are inappropriate for the other.   

This arc element can be modeled using the dynamic arc equation (2.16) of long arcs. 

However, the equation parameters such as the stationary arc voltage ust and arc time 

constant τ are determined so as to match the experimental results. The experimental 

characteristics shown in Figure 3.4 are used to determine the arc model parameters. It is 

found that ust can be a fixed value while the time constant is suggested to be described as 

[P.II]:  

BgAe=τ   (3.1) 

where A and B are constants. Therefore, there are three constants to model the arc 

performance. These parameters can be interpreted as which ust describes the arc voltage 

clipping level. It can be determined as the arc voltage value when dg/dt=0 and it is 

synchronized with the instant of maximum current occurrence. The arc hysteresis in the 

simulation phase is sensitive to τ. The behavior of τ at the instant of reignition and during 

the half cycle is dominated by the constant A and B, respectively. The appropriate 

parameters for the positive half cycle shown in Figure 3.4 are ust = 2520 V, A = 6.6E-5 and 

B = 41977 while for the negative half cycle they are ust = 2100 V, A = 2.0E-5, and B = 

85970.3. The corresponding simulated arc characteristics are illustrated in the comparison 

of Figure 3.5. These comparisons confirm the model accuracy. 
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Figure 3.4  Experimental arc characteristics. 
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     b. Fitting for the negative half cycle data. 

 
Figure 3.5  Comparison of simulated with experimental arc characteristics 
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3.3 Simulation Results 

The experimental system shown in Figure 3.1 was implemented using the ATP/EMTP 

program where the circuit was realized using ATPDraw. Figure 3.6 shows the 

corresponding ATPDraw network where it is divided into the power network to represent 

the experimental setup and the TACS field to solve the dynamic arc equation. The arc 

model was realized using the universal arc representation as described in [P.II]. The control 

signal required for the controlled integrator and acquired from the case depicted in Figure 

3.3.a is shown in Figure 3.7.a. Considering the conductance at the zero-crossing, the 

dielectric of the arc medium until the instant of reignition is represented by a variable 

resistance as a ramp function of 0.5 MΩ/ms for a period of 1 ms after each zero-crossing 

and then 4 MΩ/ms until the reignition instant. These variables are used for matching the 

experimental current and voltage waveforms until the reignition instants. They are 

compromise ramp values obtained with the aid of fitting the resistance curves computed 

from the experimental voltage and current during such periods. The corresponding 

simulated fault waveforms are illustrated in Figure 3.7.b. In the same manner, the test case 

shown in Figure 3.3.c has been simulated as shown in Figure 3.7.c. The utilized fault 

parameters have been selected to be suitable for each case where the parameters Rtree, ust, A 

and B are found to be 140.5 kΩ, 2520 V, 5.6E-7 and 395917 for the first simulated case, 

and 130.0 kΩ, 2050 V, 8.5E-5 and 99987 for the other, respectively. In the two simulated 

fault cases, the parameters A and B are compromised values for the positive and negative 

half cycles. In these cases, there are differences in the arc behavior and therefore the arc 

model parameters of each case are not the same. By comparing the simulated and 

experimental waveforms, it appears that the fault modeling due to a leaning tree is 

accurately represented. 
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Figure 3.6  The ATPDraw network of the experimental setup 
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b. The case shown in Figure 3.3.a. 
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c. The case shown in Figure 3.3.c. 

 

Figure 3.7  Simulation results. 
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3.4 Network Performance during the Fault  

In MV networks, initial transients are generated when the networks are exposed to 

disturbances such as faults. These transients are ultimately controlled by the energy 

conservation theory. They are investigated to detect earth faults in unearthed and 

compensated MV networks [35], [36], [45], [46]. The initial transients are in the form of 

charge and discharge transient components. The discharge transient components are 

happened on the faulty phase when an earth fault occurs suddenly. This gives rise to the 

discharge transient component and therefore a voltage rise in the sound phases that is 

accompanied by the other created components called charge transient. These initial 

transients are depending on the network equivalent parameters, fault location, fault instant, 

and fault impedance [35], [46]. Because the compensation coil impedance is relatively high 

at the high frequencies, these transients are about similar in unearthed and compensated 

networks [35].  

As aforementioned, an accurate simulation of the electrical networks associated with high 

impedance arcing faults is quite important to evaluate the possibility of a detection of these 

faults. Using the ATP/EMTP program, the simulated system can be divided into two main 

parts: the power network model and the representation of high impedance arcing fault 

described in the previous section.  

Figure 3.8 illustrates a single line diagram of a 20 kV, MV network. The transmission 

line dependent frequency model of the EMTP program is intentionally selected to account 

for the unsymmetrical faults. The feeder lines are represented using the frequency 

dependent JMarti model. The neutral of the main transformer is singularly treated to 

manage different earthing methods.  

The residual voltage and current waveforms can be analyzed for the fault detection 

purposes. They are computed as: 

cbar uuuu ++=   (3.2) 

cbar iiii ++=  (3.3) 

where ir and ur are the residual current and voltage, respectively. ia , ib and ic are the phase 

currents. ua , ub and uc are the phase voltages. In order to investigate these residual 

waveforms during the discussed fault, the equations (3.2) and (3.3) are implemented in the 

TACS field.  

Figure 3.9 illustrates the ATPDraw network of the simulated system. It contains the MV 

network described in Figure 3.8, the universal arc representation of the associated arc with 

the tree resistance and the residual voltage and current (ur and ir) equations (3.2) and (3.3), 

respectively. 
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Figure 3.8  Simulated system for a substation energized 251 km distribution network. 
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3.4.1 Unearthed Network 

Although the unearthed network is not intentionally connected to the earth, it is naturally 

earthed by the phase to ground capacitances. Therefore, the phase fault current is very low 

and allow to a high continuity of service [30]. The main disadvantage of unearthed network 

is that it is subjected to transient overvoltages.  

For a fault case due to a leaning tree occurred at 27 ms at the end of Feeder 1 in an 

unearthed 20 kV network depicted in Figure 3.8, the corresponding waveforms are shown 

in Figure 3.10. The residual and neutral voltages are shown in Figure 3.10.a where they 

ultimately depend on the fault impedance. The fault and residual currents are depicted in 

Figures 3.10.b and 3.10.c, respectively. The corresponding residual current is very small 

and the impact of the initial transients due to the arc reignitions is obvious after each zero-

crossing via approximately one-quarter of the power cycles as illustrated in the enlarged 

view of the residual current shown in Figure 3.10.c. Therefore, it is appropriate to use a 

discrete signal processing technique such as DWT to extract these transients and therefore 

to localize the arc reignition instants.  

3.4.2 Compensated Network 

When the resonant earthing network is used, the earth fault current is correspondingly 

decreased because the network earth capacitance is in a parallel resonance with the 

inductance connected to the neutral. Because the neutral voltages of such networks are 

substantially higher than the isolated systems, a higher sensitive relay protection for high 

resistance faults can be gained [30], [35]. However, the tuning of the compensation coil is 

never precise where the switching can cause major changes in the network connections. In 

Nordic Countries, the compensated MV networks have increasingly been used [35].  

Towards modeling the compensated network, the transmission line capacitance is 

compensated by an earthed inductance of 2.85 H where it is connected at the neutral point 

of main transformer in the network shown in Figure 3.8. The neutral and residual voltages 

during the tree leaning fault are illustrated in Figure 3.11.a where the fault occurrence is at 

the end of Feeder 1. The fault and residual currents are shown in Figure 3.11.b. The 

performance of this fault is changed with different earthing although the fault impedance is 

very high. However, the arc reignition fingerprints are still observed in the measured 

voltage and current waveforms. The same manner is also measured when the fault location 

and incipient instants are changed; however, the initial transients are affected.  

Due to the fact that the impedance of the compensation coil is relatively high at high 

frequencies, these transients are about similar in the unearthed and compensated networks 

[35]. Regarding the high impedance arcing fault tree leaning type, these initial transients 

are repeated with each arcing reignition after each current zero-crossing via approximately 

one-quarter of power cycles as depicted in the residual waveforms.  
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c. Enlarged view of residual current waveforms (ir) 

 

Figure 3.10 The transient waveforms when the network is unearthed. 
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a. Neutral and residual voltages (un and ur, respectively). 
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Figure 3.11  The waveforms when the fault occurs at the end of Feeder 1 on the compensated earth network. 
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4- DWT-Based Investigation of Network Currents for 

Detecting High Impedance Arcing Fault [P.III], [P.IV] 

 

 

 

In this chapter, the impact of the arc reignition periodicity on the network currents is 

utilized to detect the faults due to leaning trees. In the vicinity of the current zero-crossing, 

the initial transients lead to fingerprints boosting secure fault detections. These transients 

are localized based on the DWT detail coefficient of the feeder currents to detect the fault. 

The fault detector is based on the absolute sum of the DWT detail coefficient over one 

power cycle. The selectivity function to estimate the faulty feeder or the faulty phase is 

based on Logic Functions where their inputs are the absolute sum of the DWT detail 

coefficients as reported in [P.III]. However, when the currents are measured not only at the 

main busbar but also at different measuring nodes throughout the network, another 

selectivity function is introduced based on the residual current ratio as addressed in [P.IV]. 

The ratio of the residual fundamental current of each section with respect to the 

fundamental current of parent section in the feeder is used as a discriminator to estimate the 

faulty section.   

 

4.1 Feature Extraction and Fault Detection Algorithm using DWT [P.III] 

The scenario of the fault detection and the faulty feeder estimation is illustrated in 

Figure 4.1. At the measuring node of each feeder, phase currents are measured and the fault 

features are extracted using DWT. The absolute sum of the detail d3 coefficient 

corresponding to the frequency band 12.5-6.25 kHz is computed over one cycle period of 

the power frequency for the fault detection purpose. The sampling frequency is 100 kHz. A 

timer is used to determine the fault period and it can be implemented using a samples 

counter. In order to find out the faulty phase, the absolute sum over one power cycle of the 

detail d3 of each phase is evaluated using a Logic Function, in which, the absolute sum of 

the faulty phase is the highest one when it is compared with the absolute sum of other 

phases. A similar feature is found when a comparison between the absolute sums of the 

feeders for the same phase current where the absolute sum of the faulty feeder is the highest 

one. Therefore, another Logic Function is designed to determine the faulty feeder. The 

selectivity of the faulty phase and feeder is taken into consideration after the fault detection 

is achieved. More details about the algorithm can be found in [P.III]. 

Several wavelet families have been tested to extract the fault features using the 

Wavelet toolbox incorporated into the MATLAB program [106]. It is found that 

Daubechies wavelet 14 (db14) is appropriate to localize this fault, in which characteristics 

of Daubechies wavelets (dbN) are arbitrary regular, compactly supported orthogonal and 

asymmetry. When the sampling frequency is equal to 100 kHz, the corresponding 

frequency distribution for each detail level is shown in Figure 4.2. The Detail d3 including 

the frequency band 12.5-6.25 kHz is investigated. The sampling rate can be reduced to 50 
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or 25 kHz but the used coefficients will be details d2 or d1, respectively. More reduction in 

the sampling frequency can be considered, however, the absolute sum detector has less 

gain. 

For the tree leaning fault case occurred at the end of Feeder 1 of the network shown in 

Figure 3.8, extracted features from the phase current waveforms measured for different 

feeders using DWT are shown in Figure 4.3. This fault case started at 26 ms. The initial 

transients due to arc reignitions are frequently localized throughout the network feeders.  
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Figure 4.1  The proposed detection technique. 
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a. Details d3 of phase currents of Feeder 1.            b. Details d3 of phase currents of Feeder 2. 
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c. Details d3 of phase currents of Feeder 3.             d. Details d3 of phase currents of Feeder 4. 
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Figure 4.3  Details d3 of phase currents at a beginning of the network feeders. 
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To find flags used as a fault detector, the absolute sum value of the detail d3 over one 

power cycle is computed in a discrete form at each measuring node. This absolute sum is in 

the form [41]-[107]:  

∑
+−=

=
k

Nkh

II hdkS
1

)(3)(  (4.1) 

where h is used for carrying out a sliding window covering 20 ms and N is a number of 

window samples. d3I(.) is the DWT detail level 3. For example, the detail d3Ia(Feeder1)(.) is 

for phase-a and Feeder 1 and the corresponding detector SI will be SIa(Feeder1). The 

performance of the detectors SI for different phases and feeders is shown in Figure 4.4, in 

which the detectors all over the measured currents respond to the fault disturbance. This 

confirms the fault detection. Moreover, the considered detectors are high not only at the 

starting instant of the fault events but also during the fault period that improves the 

protection security. It should be notified that such detectors can localize the fault event; 

however, it is essential to determine the faulty phase and also the faulty feeder. Regarding 

the faulty phase determination it can be noticed with the aid of Figure 4.4 that the detector 

SI of the faulty phase is the highest one. Similarly, the detector SI of the faulty feeder is the 

highest when a comparison is carried out between the feeders at a certain phase as shown in 

Figure 4.5. More fault cases, which confirm this obtained feature, can be found in [P.III]. 

These cases are carried out by varying fault locations, fault instants and load conditions.  

Figure 4.6.a illustrates the proposed technique that can be used for estimating the faulty 

phase where the inputs of the Logic Functions are the differences of the absolute sum SI of 

each phase at a certain feeder. When the difference D (for example Dab=SIa-SIb for each 

feeder) is positive, it will be considered 1 and when it is zero or negative value, it is 

considered zero. When the fault is phase-a to ground, Dab is positive while Dca is negative 

disregarding the status of Dbc. In this case, the output Phase_a is high and other outputs are 

low whatever the status of Dbc. In the same manner, the discriminator output Phase_b or 

Phase_c is high when phase-b or phase-c to ground fault occurs, respectively. Such Logic 

Functions are possible to be implemented in the digital relays. A similar discriminator can 

be designed to estimate the faulty feeder where the corresponding Logic Functions is 

shown in Figure 4.6.b. More discussion is reported in [P.III].  
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Figure 4.4  The detector SI of different phases (SIa, SIb and SIc) at the beginning of certain feeder. 
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Figure 4.5  Comparison between the detector SI of different feeders at a certain phase. 
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Figure 4.6  The proposed Selectivity Function.  
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4.2 Wide Area Feature Extraction Using Wireless Sensor Concept [P.IV] 

The wireless sensor concept is a modern insight used for various objects with saving time 

and expenses. The wireless sensor networks include compact microsensors and wireless 

communication capability. They are distributed in the network and electrical quantities are then 

frequently transmitted from different measuring points and investigated for several purposes 

such as load monitoring, fault detection and location, … etc. [108]-[111]. 

Towards increasing the wide area measurement systems, the wireless sensor networks 

are recently constructed. The availability of sensing devices, embedded processors, 

communication kits and power equipment enables the design of wireless sensor as depicted 

from the illustrated four major blocks in Figure 4.7 [111]. The supply is used to power the 

node. The communication block consists of a wireless communication channel which can 

be short range radio, fiber optic, or infrared. The processing unit is composed of memory to 

store data and applications programs, a microcontroller (MCU) and an Analog-to-Digital 

Converter (ADC) to receive signal from the sensing devise. The sensing block links the 

sensor node to the physical conditions. In our application, the sensing devise is used to 

measure the feeder line currents as discussed in [108]-[111].  

In this section, the wireless sensor concept can be considered for enhancing the fault 

detection and location processes. In this case, the fault detection is carried out by testing the 

DWT performance on a wide area of the network. However, the contribution of this 

dissertation is produced from the standpoint of protection issue disregarding the 

investigation of wireless sensor performance or challenges. A fault case due to leaning tree 

is considered at the end of section EF in the complicated MV network shown in Figure 4.8. 

The corresponding ATPDraw network is depicted in Figure 4.9. The residual current 

waveform measured at the beginning of each section during this fault case is depicted in 

Figure 4.10. From the enlarged view of Figure 4.10, it can be seen that the initial transients 

at each zero-crossing are obvious at all measuring nodes (healthy and faulty sections).  
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Figure 4.7  Architecture of the sensor node system [111]. 
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Figure 4.8  Simulated system for a substation energized 251 km distribution network. 

 

TREE1

I
=1.0

U

E

F

B

C

K

D H

I

J
A

RES 

Varc 

ττττ 

C
T

R
 

R(t) 

Rtree 

Universal Arc 

Representation 

ir(AB) 

Feeder 3 

Feeder 2 

Feeder 1 

Feeder 5 

Feeder 4 

66/20kV 

Transformer 

ir(BE) 

ir(EF) 

ur(A) 

ur(B) 

ur(D) 

ir(Feeder 5) 

ir(Feeder 4) 

ir(Feeder 3) 

ir(Feeder 2) 

 
Figure 4.9 The ATPDraw network 
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Features of the residual currents shown in Figure 4.10 are extracted using DWT. In the 

same manner, the sampling frequency is 100 kHz and the mother wavelet is Daubechies 

wavelet 14 (db14). Figure 4.11 illustrates the corresponding detail levels d3, d4 and d5. The 

detectors SIr performance is evaluated and shown in Figure 4.12, in which, the fault is 

detected based on DWT. Furthermore, the detectors are high not only at the fault starting 

instant but also during the fault period which enhances the fault detection security. As 

aforementioned, such performance is due the arc reignitions after each fault current zero-

crossing. Towards decreasing the sampling frequency at which the DWT is processed, 

when the detectors SIr of the DWT detail d4, which is indicated SIr(d4), is considered a 

detector, the sampling frequency can be reduced to 50, 25 or 12.5 kHz; however, the used 

coefficient will be detail d3, d2, or d1, respectively. However, the faulty section cannot be 

discriminated using the detectors SIr.  
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Figure 4.10  Enlarged view of residual current waveforms (ir) when the fault occurred in section EF. 
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 Figure 4.11  Details of residual waveforms shown in Figure 4.10. 
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Figure 4.12 The detector SIr of the details shown in Figure 4.11. 
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There is an observation obtained from Figure 4.10 is that the highest residual current 

amplitude is the measured one in the faulty section and in the upstream sections BE and 

AB. Therefore, this observation is exploited to introduce another selectivity function 

because it is difficult to design Logic Functions with a high number of measuring nodes. 

The proposed selectivity function depends on the ratio of the fundamental component of 

each section with respect to the parent section AB. Therefore, the fundamental component 

has to be tracked using a signal processing technique such Discrete Fourier Transform 

(DFT). The recursive DFT is in the form:  

)cos())()((
2

)1()( θkNkiki
N

kIkI rrrealreal −−+−=  (8) 

)sin
2

)1()( (kθN))(ki(k)(i
N

kIkI rrimajimaj −−+−=  (9) 

)()()( kIkIkI imajrealr

22 +=   (10) 

where θ = 2π/N, ir(.) is the discrete input samples of the residual current. Ireal(.), Iimaj(.) and 

Ir(.) are the in-phase, quadrature-phase and residual current amplitude, respectively. The 

corresponding fundamental amplitudes of the residual current waveforms of different 

sections are shown in Figure 4.13. It illustrates that the residual current amplitudes of 

sections AB, BE and EF are higher than the others. Accordingly, the ratio of the residual 

fundamental current component of each section with respect to the residual current 

amplitude of the parent section AB is computed to estimate the fault path. For example, the 

ratio regarding section EK is: 

)AB(

)EK(

EK

r

r

I

I
R =  (4.4) 

where Ir(EK) and Ir(AB) are the fundamental residual current components of sections EK and 

AB, respectively. Similarly, the ratios regarding other sections are computed and their 

performance is shown in Figure 4.14. Because the fault is in section EF, the ratios RBE and 

REF are the highest and they are approximately close to one during the fault. Before the 

fault, the ratios are not stable because the value of residual current of section AB is 

approximately zero. However, they are only considered when the fault existed where the 

fault existence can be ascertained using the detector SIr.  

Towards increasing the fault location security, the aforementioned ratio is computed for 

the change of residual current amplitudes. This change is the difference between the 

residual current magnitude during and pre-fault measuring. However, such selectivity 

function needs to discriminate between pre and during-fault periods where this task can be 

carried out using the detector SIr. Furthermore, synchronization between the measured 

currents should be attained. This synchronization can also be achieved by evaluating the 

detector SIr performance throughout the network where the DWT details are responded to 

the fault event simultaneously at different measuring nodes.   
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Figure 4.13  Fundamental components of the residual currents during the fault case shown in Figure 4.10. 
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5- DWT-Based Power Direction Selectivity of High 

Impedance Arcing Fault Detection [P.V], [P.VI] 

 

 

Figure 5.1 shows another detection procedure proposed in this dissertation where it is 

also depending on DWT. However in this case, the network voltages and currents are taken 

at each measuring node. The fault features are extracted using DWT. The absolute sum, 

however, of the phase voltage detail d3 coefficient over one cycle period of the power 

frequency is estimated for fault detection purposes. A threshold value of 1.0 is suggested to 

discriminate the fault features from measurement noise, as described in [P.V]. This 

threshold value is better than the previous one suggested when the current waveforms were 

considered as in [P.III], [P.IV]. In order to determine the faulty feeder, the detail d3 of the 

voltage and current of each connected feeder are together multiplied to compute the power. 

Using the sum over a period of two power cycles, the power direction in the form of its 

polarity is utilized to identify the faulty feeder. When this power is negative, the fault 

occurrence is in the corresponding feeder; however, when it is positive the feeder is 

healthy. In a general form, when the fault features appear on the voltage details, the fault 

tracking process is considered. From the practical point of view, there is more challenge for 

detecting the faults due to leaning trees in MV networks. This challenge is due to the 

network noise. The main point to verify the detection possibility is applying the proposed 

technique on staged fault cases as evaluated in this chapter. 
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Figure 5.1  The flowchart for the detection technique implementation. 
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5.1 Feature Extraction from Phase Quantities [P.V] 

Daubechies mother wavelet 14 (db14) and the details d3 are also used in this section for 

localizing the fault with a sampling frequency of 100 kHz. For the fault case occurred at the 

end of Feeder 1 in the network shown in Figure 3.8, the fault features are extracted from the 

phase voltages as shown in Figure 5.2. Also, the initial transients due to arc reignitions are 

frequently localized in the healthy and faulty phase voltage details. Using the voltage 

details in preference to current details, a performance of the detector SU, which is the 

absolute sum value of the phase voltages, is shown in Figure 5.3. The performance of SU 

ensures the fault detection.  

A performance of the proposed discriminator method to estimate the faulty feeder can be 

ensured by Figure 5.4. The details d3 of the voltage and currents of the healthy feeders are 

in-phase. However, the detail of the faulty feeder current is out of phase. Such shifting can 

be tracked by multiplying the details of the voltage (d3U) and current (d3I) for each phase of 

each feeder. It can be considered as the harmonic-band power over the frequency range 

12.5-6.25 kHz. The power polarity is estimated using summation over a period of two 

cycles. As an example, this power for phase-a and for Feeder j is:  

( )∑
+−=

=
k

Nkh

jFeederIaUajFeedera hdhdkP
12

)()( )(3)(3)(  (5.1) 

where Pa(Feeder j)(.) is used as a discriminator where its polarity is used to point out the fault 

point. The discriminator performance is shown in Figure 5.5. The discriminator polarity is 

positive for healthy feeders and negative for faulty Feeder 1 as confirmed for each phase. 

However, the faulty phase is not determined. Therefore, the proposed technique can be used 

considering the residual components (voltage and currents) as described in the following 

section. 
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Figure 5.2  Details d3 of the phase voltages. 
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Figure 5.3  The detector SU performance using the phase voltage details. 
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Figure 5.4  Enlarged view of phase-a voltage and feeder current details. 
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Figure 5.5 Comparison between the discriminator Pa, Pb, and Pc of the different feeders. 
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5.2 Feature Extraction from Residual Waveforms [P.V] 

Considering the same fault test case highlighted in the previous section, the fault features 

are extracted from the residual components [P.V]. The absolute sum value of the residual 

voltage details is recalculated and the results are depicted in Figure 5.6.a. It is evident that 

the fault is detected with a better detector gain when it is compared by Figure 5.3. The 

transient power directionality is tested using a similar formula in the form of (5.1) but the 

details of the phase quantities are replaced by the details of the residual waveforms. The 

corresponding performance of the discriminator Pr points out the faulty feeder as depicted 

in Figure 5.6.b, where its polarity is positive for healthy feeders and negative for the faulty 

Feeder 1. This proposed detection and selectivity technique is further evaluated at different 

fault conditions in [P.V]. 
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Figure 5.6  The performance when the second fault case conditions are considered. 
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5.3 Field Data Verification 

When the fault object has a high resistance such as tree, the fault detection possibility is 

reduced because its impact on the network waveforms can not be easily recognized. In such 

fault cases, the fault features are very small and the network noise can also contribute to 

loss of the fault detection (or loss of dependability of the fault detection). The only method 

which can confirm the high impedance fault detection is to evaluate the detection 

techniques using field data either using actual fault cases or considering staged faults. In 

this section, the proposed technique introduced at the beginning of this chapter is examined 

using staged fault cases.  

In November 1995, staged earth faults were accomplished in a 20 kV network using 

known fault resistances and also using natural trees. The network was only two feeders. 

However, these fault cases were not associated with arcs. Figure 5.7 shows a wire 

connection between the network conductor and the fault object which was a tree where it 

was connected to the faulty feeder before its energizing. Then, the breaker was switched 

onto the fault. Similarly, the fault object was replaced by a known resistance which is 

shown in Figure 5.8. The fault resistance values were in the range 23.2 to 236.4 kΩ. 

Although these fault cases were not actual fault scenarios, they can be used as an evaluation 

guide for the detection possibilities.   

These fault cases are not associated with arcs. Therefore, the transients are only generated 

at the starting fault instant without repetition because the arc reignition impact on the 

network does not exist. The transient features are only localized at the fault occurrence 

instant when these staged fault cases are examined using the absolute sum of DWT residual 

voltage detail coefficient for the detection purposes and polarity of the transient powers as a 

selectivity function.  

This technique is applied on 17 staged fault cases, in which, the sampling frequency is 10 

kHz. Figure 5.9 illustrates the performance of detector SUr and discriminator Pr when the 

fault resistance is 236.4 kΩ. Although the effect of noises is obvious on the results, the 

proposed technique detects the fault and discriminates the faulty feeder which has a 

negative Pr. Towards improving the performance, the captured signals are de-noised. The 

de-noising procedure is carried out in the MATLAB environment. The strategy to de-noise 

signals is based on the one-dimensional stationary wavelet analysis using the graphical 

interface tools. The corresponding performance is shown in Figure 5.10. However, the 

detector gain is slightly reduced after the de-noising process. 

Figures 5.11 to 5.13 confirm the performance for different fault resistances such as 162.8, 

81.7 and 64 kΩ, respectively. Figures 5.14 to 5.16 illustrate the performance when the fault 

object is tree. However, the detector responded to the transients at the instant of the fault 

beginning because there are not associated arcs. From these Figures, the fault is detected 

and the faulty feeder is determined. The detector performance is summarized for extra ten 

cases in Table 5.1. Such staged fault cases practically confirm the efficiency of the 

proposed technique.  
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Figure 5.7  The tree as a fault object wired by the network conductor.  

 

 
 

Figure 5.8  The resistance used as a fault object.  
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Figure 5.9  The performance when the fault resistance is 236.4 kΩ. 
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Figure 5.10  The performance when measured signals of the staged fault are de-noised. 
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Figure 5.11  The performance when the fault resistance is 162.8 kΩ. 
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Figure 5.12  The performance when the fault resistance is 81.7 kΩ. 
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Figure 5.13  The performance when the fault resistance is 64 kΩ. 
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Figure 5.14  The performance for a staged fault connected through a tree.  
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Figure 5.15  The performance for a staged fault connected through a second tree.  
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Figure 5.16  The performance for a staged fault connected through a third tree.  

 

 

 

 

Table 5.1  The detector S performance for the other staged fault cases.  

No. Fault Resistance The detector SUr No. Fault Resistance The detector SUr 

1 23.2 kΩ 6.47 6 104.8 kΩ 10.0 

2 23.2 kΩ 13.4 7 186.0 kΩ 20.0 

3 40.8 kΩ 61.0 8 Tree 45.5 

4 40.8 kΩ 6.37 9 Tree 11.1 

5 64.0 kΩ 8.59 10 Tree 2.86 
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5.4 Testing the Proposed Detection Technique throughout the Network 

[P.VI] 

In this section, the proposed detection technique is more tested throughout the network 

shown in Figure 4.8. Considering a fault test case occurring at the end of section BD, the 

detectors SUr performance for different residual voltages is shown in Figure 5.17. The 

detectors respond to the fault disturbance all over the network, which confirms the decision.  

The discriminator Pr performance is depicted in Figure 5.18 at the measuring nodes A 

and B. At node A, the discriminator polarity is positive for healthy feeders and negative for 

the faulty Feeder 1 as shown in Figure 5.18.a. At node B, the discriminator Pr polarity is 

positive for the healthy sections BC and BE but it is negative for the faulty section BD 

shown in Figure 5.18.b. When the discriminator polarities are checked at the measuring 

nodes D and E, they are found positive, ensuring the sections behind are healthy. From the 

performance of the discriminator Pr, it can be indicated that the fault is in section BD. The 

other fault case occurred at the end of section EF is discussed in [P.VI]. 
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Figure 5.17  The detector SUr using the voltage details when the fault occurred in section BD. 
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Figure 5.18  The discriminator Pr when the fault occurred in section BD. 
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A simultaneous fault case is considered to evaluate the performance of the proposed 

detection technique. The fault scenario is as following. During a fault occurring in section 

EF at 26 ms another fault also caused by a leaning tree occurred in Feeder 5 at 90 ms. 

Figure 5.19 illustrates the detector SUr performance which ensures the fault detection. In 

Figure 5.20.a the discriminator Pr of Feeder 1 is negative from the fault instant at 26 ms and 

Pr Feeder 5 is changed from positive to negative polarity at 90 ms while the other healthy 

feeders are remaining positive during the faults. Such performance confirms that there is a 

fault in Feeder 1 and another fault in Feeder 5. Figure 5.20.b illustrates that the fault in 

Feeder 1 is in or behind section BE. It can be concluded from Figure 5.20.c that there is a 

fault in section EF.   

Under certain circumstances controlled by the fault instant (or fault inception angle) of 

the second associated fault in Feeder 5, the effect of the initial transients from the second 

fault at its starting instant is sometimes more dominant than the initial transients created by 

the arc reignitions of the first fault in Feeder 1. Therefore, the discriminator Pr of Feeder 1 

can be affected for a transition period of two cycles from the instant of the second fault. 

This period can be reduced by summing the band-power over one cycle. However, 

considering two cycles gives more stability for the power polarity response.  
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Figure 5.19  The detector SUr of the voltage details for a simultaneous fault case. 
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Figure 5.20  The discriminator Pr behavior during a simultaneous fault case. 
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6- Conclusions and Future Work  

 

6.1 Conclusions 

A universal arc representation has been introduced using Modified Mayr (P-τ model) as 

an example, in which, the arc equations were solved in the TACS field of the EMTP 

program and represented in the power network by TACS controlled voltage source. The arc 

voltage and current signals have been measured from the power network into the TACS 

field using sensors type 90 and 91, respectively. They have been used as inputs to the 

dynamic arc equations. The model parameters have been computed exploiting the 

flexibility of FORTRAN expressions in the TACS field. SF6 breakers with experimentally 

defined arc parameters have been considered to perform a comparison between the 

proposed arc representation and the EMTP built-in model. The thermal limiting curve has 

been computed by the proposed and built-in models and compared with the measured 

characteristic. Such comparison has confirmed the accuracy of proposed arc representation. 

Also, the universality of proposed arc representation has been verified via carrying out 

different arc model examples of circuit breaker and transmission line arcing faults. The 

study results validated the proposed representation regarding accuracy and universality.  

A model for high impedance arcing faults due to leaning trees in MV networks have 

been proposed and experimentally verified. The fault was represented in two series parts; 

an arc model and a high resistance. The arcing element has been dynamically simulated 

using thermal equations. The arc model parameters and resistance values were determined 

using the experimental results, where for representing short length and small current arcs, 

the parameters have been changed to fit the new application. The fault behavior has been 

simulated by the ATP/EMTP program, in which the arc model has been realized using the 

universal arc representation.  

The electromagnetic transients due to the earth fault caused by tree leaning in MV 

networks were discussed where the fault model was incorporated in a 20 kV distribution 

network at different locations using ATP/EMTP program. The residual voltage and current 

associated with this disturbance have been measured considering different neutral earthing 

methods. The main found features of this fault type that can enhance its detection were the 

electromagnetic transients created by the periodic arc-reignitions.  

Features of earth faults due to leaning trees have been extracted from phase currents 

using DWT. Due to the periodicity of arc reignitions, the initial transients have been 

localized not only at the fault occurrence instant but also during the fault period that 

enhanced the detection security. The absolute sum of the DWT detail d3 coefficient has 

been computed over one power cycle for each phase current of each feeder. The faulty 

phase had the highest absolute sum when it has been compared with the other healthy 

phases. Similarly, the absolute sum of the faulty feeder has been the highest when the 

comparison was carried out with respect to other feeders. Therefore, two Logic Functions 

have been suggested to determine the faulty phase and faulty feeder.  
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The study has been extended to extract the fault features from residual currents 

throughout the network. The DWT performance at different measuring nodes has been 

gathered at the base station using wireless sensors concept. Therefore, the DWT has been 

evaluated for a wide area of the network and the fault detection has been confirmed by 

numerous DWT extractors. In this case, the term of locating the faulty section has been 

changed to be based on ratios of the residual current amplitudes.  

The other selectivity term of the faulty feeder has been introduced based on a novel 

technique by extracting and examining the power polarity. This power is mathematically 

processed by multiplying the DWT detail coefficients of the phase voltage and current for 

each feeder. Its polarity has discriminated the faulty feeder, in which, the polarity has been 

positive when the feeder was healthy and it has been negative when the feeder was faulty. 

Such feature has confirmed when considered with any phase. In order to reduce the 

computational burden of the technique, the extraction of the fault features was examined 

using the residual components instead of the phase components. The same methodology of 

computing power has been considered with taking into considerations the residual voltage 

and current detail coefficients where the proposed algorithm performance became better. 

This proposed algorithm performance has been evaluated using staged fault data. However, 

the fault feature was only localized at the fault instant because there was no associated arc 

and therefore the transients were not repeated. When the signals have been de-noised, the 

detection performance has been improved. Then, this proposed detection technique has 

been processed on the residual voltages and currents at different measuring nodes 

throughout the network using the distributed wireless sensors and more precise faulty 

section discriminator has been attained.  

6.2 Future Work 

The following points of interest will be extended in work to follow: 

1- The high impedance fault modeling issue is required to be extended to cover other 

faults such as incipient faults, different fault objects and downed conductor over 

different soils. That is because this work only models high impedance faults due to 

leaning trees. 

2- More scrutiny on the proposed algorithms using staged fault data of the earth faults 

due to leaning trees. That is because the performance of the proposed detection 

technique is examined using a limited staged fault cases. Extended staged faults are 

to be captured with actual fault scenario of leaning trees. 

3- Testing probabilistic techniques after extracting the fault features using DWT which 

can contribute to more selectivity functions of the fault detection. 
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