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ABSTRACT 

Hydroformylation is an important commercial process for the conversion of alkenes, carbon 

monoxide and hydrogen into aldehydes to be further used in the production of various 

chemicals. The industrial processes operate in a homogeneous mode. Therefore, the 

development of a solid catalyst would solve problems related to catalyst separation. The 

purpose of this work was to study supported cobalt and rhodium catalysts in heterogeneous 

hydroformylation both in liquid and gas-phase conditions. The effect of different 

preparation methods, precursors, support modifications and pretreatments on the 

characteristics of the catalysts was investigated. 

 

Atomic layer deposition (ALD) is a promising technique for the preparation of dispersed 

Co(A)/SiO2 catalysts using a Co(acac)3 precursor. Higher activity in ethene 

hydroformylation was obtained with Co(A)/SiO2 catalysts compared to impregnated 

Co(N)/SiO2 catalyst prepared from nitrate precursor. The dispersion, and consequently the 

activity and oxo-selectivity of the Co(A)/SiO2 catalyst, was further improved by inert 

handling of the catalyst. Moreover, by varying the metal content of the Co(A)/SiO2 

catalysts, a clear correlation between metal dispersion and oxo-selectivity was found. The 

basic AlN modification of the silica support did not enhance hydroformylation activity due 

to low dispersion of the Co(A)/n⋅AlN/SiO2 catalysts.  

 

For the carbon supported catalysts, the best hydroformylation activity was obtained with 

coconut-shell based Rh/C(C) catalyst. The presence of dispersed active sites and unreduced 

rhodium enhanced CO insertion, and also unintentional promotion by potassium was 

possible. Furthermore, without any pretreatment the catalyst exhibited even better propanal 

yields than with hydrogen pretreatment, apparently due to the better dispersed active sites. 

Pretreatment with carbon monoxide partially blocked the catalyst surface with 

carbonaceous residues, which improved CO insertion selectivity, but suppressed the overall 

activity.  
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The fibrous polymer-supported Rh-phosphine catalyst, FibrecatTM, prepared using a 

Rh(acac)(CO)2 precursor, was the most promising rhodium catalyst in ethene 

hydroformylation: high propanal selectivity (95%) and high activity were obtained under 

the mild reaction conditions of 100 ºC and 0.5 MPa. The 31P NMR characterisations 

suggested the formation of both a Rh-monophosphine species, Rh(acac)(CO)(PS-PPh2), 

and a Rh-bisphosphine species, Rh(CO)2(PS-PPh2)2, on FibrecatTM, which were 

transformed in contact with CO/H2 to the active Rh-carbonyl hydrides.  

 

In the liquid-phase hydroformylation of 1-hexene, the activity of the Rh/C catalysts 

appeared to correlate with the support: the larger the pores, the better the mass transfer and 

the higher the activity. In addition, C21 products were only formed on a support with 

sufficiently large pores – an indication of the heterogeneous functionality of the catalysts. 

With the carbonyl based cobalt catalysts, problems were encountered with the catalyst 

preparation and handling procedure due to the air sensitivity of the carbonyl precursors. 

 

The Co/SiO2 catalysts were stable in gas-phase hydroformylation at 173 °C and 0.5 MPa, 

whereas Rh/C catalysts lost 10-30% of the metal deposited, mostly due to the formation of 

volatile carbonyls. However, at a lower temperature, i.e. 100 °C and 0.5 MPa, no volatile 

carbonyls were formed on FibrecatTM, as confirmed by quantitative 31P NMR 

characterisations. In liquid-phase conditions, 20–50% of the metal deposited was dissolved 

from the cobalt and rhodium catalysts. Therefore, the stability of the catalysts in 

hydroformylation was related to the ability of the catalytic metal to form volatile or soluble 

carbonyls and thus, to the reaction conditions used.  
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TIIVISTELMÄ 

Hydroformylointi on tärkeä teollinen prosessi, jolla valmistetaan alkeeneista, 

hiilimonoksidista ja vedystä aldehydejä, joita edelleen käytetään erilaisten kemikaalien 

tuotannossa. Tällä hetkellä kaupalliset prosessit toimivat homogeenisesti. Kiinteän 

katalyytin kehittäminen ratkaisisi katalyytin erottamiseen liittyvät ongelmat. Tämän työn 

tarkoitus oli tutkia kantajalla olevia koboltti- ja rodiumkatalyyttejä sekä neste- että 

kaasufaasiolosuhteissa. Erilaiset valmistusmenetelmät, prekursorit, kantajan modifiointi, 

erilaiset katalyytin esikäsittelyt ja näiden vaikutus katalyytin ominaisuuksiin olivat 

tutkimuksen kohteena. 

 

Atomikerroskasvatustekniikalla (ALD) voidaan valmistaa dispergoituja Co(A)/SiO2-

katalyyttejä käyttäen lähtöaineena Co(acac)3-prekursoria. Näillä katalyyteillä saatiin 

korkeampi aktiivisuus eteenin hydroformyloinnissa verrattuna impregnoituun Co(N)/SiO2-

katalyyttiin, joka oli valmistettu kobolttinitraatista. Dispersio ja sen seurauksena myös 

katalyytin aktiivisuus ja oxo-selektiivisyys paranivat, kun katalyyttiä käsiteltiin inertisti. 

Kun katalyytin metallipitoisuutta kasvatettiin, huomattiin selvä yhteys metallin dispersion 

ja oxo-selektiivisyyden välillä. Silikan modifiointi emäksisellä AlN-kerroksella ei edistänyt 

hydroformylointiaktiivisuutta, koska Co(A)/AlN/SiO2-katalyytin dispersio huononi. 

 

Hiilikantajalle valmistetuista rodiumkatalyyteistä paras aktiivisuus oli 

kookospähkinäpohjaisella Rh/C(C)-katalyytillä. Dispergoidut aktiiviset kohdat ja 

pelkistymättömän rodiumin läsnäolo edistivät CO:n insertiota, ja myös tahaton kaliumin 

promootio oli mahdollinen. Ilman esikäsittelyä saatiin vieläkin parempi propanaalisaanto, 

koska aktiiviset paikat olivat paremmin dispergoituja. Esikäsittely hiilimonoksidilla osittain 

tukki katalyytin pinnan hiilijäämillä, mikä paransi CO:n insertioselektiivisyyttä, mutta 

alensi kokonaisaktiivisuutta. 

 

Polymeerikuidulle valmistettu rodium-fosfiinikatalyytti, FibrecatTM, oli lupaavin katalyytti 

eteenin hyroformylointiin: korkea propanaaliselektiivisyys (95%) ja korkea aktiivisuus 

saavutettiin miedoissa reaktio-olosuhteissa 100°C lämpötilassa ja 0.5 MPa paineessa.   
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31P NMR -karakterisoinneista pääteltiin, että valmistuksen aikana FibrecatTM-katalyytille 

muodostuu sekä Rh-monofosfiinia, Rh(acac)(CO)(PS-PPh2), että Rh-bisfosfiinia, 

Rh(CO)2(PS-PPh2)2, jotka CO/H2-atmosfäärissä muuttuvat aktiivisiksi Rh-

karbonyylihydrideiksi.  

 

Rh/C-katalyyttien aktiivisuus 1-hekseenin nestefaasihydroformyloinnissa näytti korreloivan 

kantajan ominaisuuksien kanssa: mitä isommat huokoset, sitä parempi aineensiirto ja 

korkeampi aktiivisuus. Myös pitkäketjuisia tuotteita muodostui vain kantajalla, jonka 

huokoset olivat tarpeeksi isot, mikä oli todiste katalyyttien heterogeenisuudesta. 

Karbonyylipohjaisilla kobolttikatalyyteillä katalyyttien ilmaherkkyys aiheutti ongelmia 

katalyyttien valmistuksessa ja käsittelyssä. 

 

Co/SiO2-katalyytit olivat stabiileja eteenin kaasufaasihydroformyloinnissa (173°C,  

0.5 MPa), mutta Rh/C-katalyyteistä hävisi 10-30 % metallista. Alhaisemmassa lämpötilassa 

(100°C) haihtuvia karbonyylejä ei kuitenkaan muodostunut Rh/kuitu-katalyytillä, mikä 

todistettiin kvantitatiivisilla 31P NMR -mittauksilla. Nestefaasihydroformyloinnissa 

koboltti-ja rodiumkatalyyteillä olevasta metallista liukeni 20-50 %. Katalyyttien stabiilisuus 

hydroformyloinnissa oli siis riippuvainen käytetyn katalyyttimetallin kyvystä muodostaa 

haihtuva tai liukeneva karbonyyli, ja siten reaktio-olosuhteilla oli vaikutus stabiilisuuteen. 
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ABBREVIATIONS AND SYMBOLS 

AAS   Atomic absorption spectroscopy 

acac    Acetylacetonate (pentane-2,4-dionate), C5H7O2
–

(Acet)    Acetone 

ALD    Atomic layer deposition 

AlN    Aluminium nitride 

a.u.    Arbitrary units 

C14    Hemiacetals, aldols and aldehydes containing 14 carbon atoms 

C21    Acetals, aldols and aldehydes containing 21 carbon atoms 

C(C)    Coconut based active carbon from Johnson Matthey 

C(N)   Peat based active carbon Norit Rox 0.8 

C(T)    Wood based active carbon from Takeda Shirasaki 

C6-O  Condensation products of propanal (containing 6 carbon atoms) 

Co(A)   Cobalt acetylacetonate, Co(acac)3

2Co(CO)  Dicobalt octacarbonyl, Co2(CO)8

4Co(CO)  Tetracobalt dodecacarbonyl, Co4(CO)12

CPMAS  Cross-polarisation magic angle spinning 

dcm    Dichloromethane 

DRIFT   Diffuse reflectance Fourier transform infrared (spectroscopy) 

DOP   Dioctyl phtalate 

FID   Flame ionisation detector 

Hacac   Acetylacetone (pentane-2,4-dione), C5H8O2

ICP   Inductively coupled plasma 

INAA   Instrumental neutron activation analysis 

LPO process  Low pressure oxo process 

mono/bis ratio Molar ratio of the Rh-monophosphine species to the Rh-

bisphosphine species 

MS   Mass spectrometer 

n.d.   not determined 

n/i ratio  normal to branched ratio of product aldehydes 

NMR   Nuclear magnetic resonance (spectroscopy) 
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(N) Nitrate 

(p)       Pentane 

PS    Polystyrene 

PVC    Polyvinyl chloride 

Rh/C(COMM)  Commercial active carbon supported rhodium catalyst 

S   Selectivity, mol-% 

SEM   Scanning electron microscopy 

Soxo   Sum of selectivities for propanal, propanol and C6-O 

TCD   Thermal conductivity detector 

TEM   Transmission electron microscopy 

THF   Tetrahydrofuran 

TMA   Trimethylaluminium, Al(CH3)3

TPD   Temperature programmed desorption 

TPPTS   Triphenylphosphine trisulphonate 

TPR   Temperature programmed reduction 

WHSV   Weight hourly space velocity, h-1 

X   Conversion, % 

XPS   X-ray photoelectron spectroscopy 

XRD   X-ray diffraction  

Y   Yield, mol-% 
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1 INTRODUCTION 

1.1 Industrial hydroformylation 

The hydroformylation reaction (OXO process) converts alkenes, carbon monoxide and 

hydrogen into aldehydes by increasing the chain-length of the reacting alkene by one 

carbon (Scheme 1). Both linear and branched aldehydes are formed, which are further 

converted to alcohols, carboxylic acids, acroleins, diols, amines, acetals and aldol 

condensation products. Hydroformylation products are raw materials for a variety of bulk 

and speciality chemicals, mainly for plasticizers and detergents, and thus, hydroformylation 

has special significance for the polymer industry. Hydroformylation could be utilised in 

organic synthesis as well since various functional alkenes can be used as reactants [1]. 

 

R CH2
H2, CO

cat.
R

CHO
+ R C 3

CHO

H
2

 

 Linear or normal 

product (n) 

Branched or iso 

product (i) 
 

Scheme 1. Hydroformylation reaction.  

 

In principle, all the transition metals capable of forming carbonyls are potential catalysts for 

homogeneous hydroformylation. The hydroformylation activity of unmodified metals 

decreases in the order: Rh >> Co > Ir, Ru > Os > Pt > Pd > Fe > Ni [2]. Only rhodium and 

cobalt are used commercially and rhodium is 103 - 104 times more active than cobalt.  

 

The hydroformylation reaction was discovered in 1938 by Otto Roelen, and from the mid-

1950s the importance of the reaction has steadily increased [3]. The first generation of 

hydroformylation catalysts was based on cobalt carbonyl. Since the reactivity of cobalt is 

low, harsh reaction conditions had to be used. The second generation processes use 
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rhodium as the metal. The first ligand-modified rhodium process came into use 

commercially in 1974 (Celanese) and was soon followed by others, in 1976 by Union 

Carbide Corporation (UCC) and in 1978 by Mitsubishi Chemical Corporation. They all 

used triphenyl phosphine (PPh3) as the ligand. The UCC process is often referred to as the 

low pressure oxo (LPO) process. The advantages of the LPO process were mild reaction 

conditions, simpler and therefore cheaper equipment, high efficiency and high yield of 

normal products [4].  Also, the pronounced thermal stability of rhodium-phosphine 

complexes made the recovery of the catalyst easier [4]. Thus, since the mid-seventies the 

rhodium catalysts started to replace the cobalt catalysts in propene and butene 

hydroformylation. Approximately 66% of the world-wide capacity in hydroformylation 

processes in 1997 (7.6 million tons) was based on the LPO process that yields n-butanal 

[5]. 70% of n-Butanal is in turn converted to dioctyl phthalate (DOP), which is used as a 

plasticiser in the production of PVC. The LPO process has been improved by the use of 

bisphosphite-modified rhodium catalysts with higher activity and selectivity for the normal 

product [ 6]. The first commercial plant was started in 1995 by UCC.    

 

For hydroformylation of higher olefins, however, cobalt dominates rhodium by a 9:1 ratio 

(1995) mainly for two reasons. The first reason is the low reactivity of rhodium with 

branched olefins containing partially internal carbon double bonds. The second reason is 

the high boiling points of the product aldehydes that prevent product separation by 

distillation, as too much thermal strain is imposed on the rhodium catalyst. Thus, C7–C11 

branched alcohols used for plasticizer production and linear C12–C16 alcohols used as 

detergent alcohols are mostly produced using cobalt-based processes [3]. 

 

The third-generation process offered an elegant solution to the catalyst separation using a 

two-phase system. The Ruhrchemie/Rhone-Poulenc process established in 1984 on an 

industrial scale for the hydroformylation of propene by Celanese and in 1995 for  the 

hydroformylation of 1-butene uses a water-soluble Rh-TPPTS (triphenylphosphine 

trisulphonate) catalyst [3, 4]. The water-soluble catalyst in the aqueous phase is easily 

separated from the product aldehydes that are in the organic phase. The fourth generation 

process for large-scale applications still has to be selected from the potential candidates. It 

will concern higher alkenes only since propene hydroformylation processes are already 
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highly developed. In recent years, platinum and palladium have been studied for the 

hydroformylation of higher alkenes, the latter showing promising results [3]. Phosphite-

based catalysts and new diphosphines have also been reported for the conversion of internal 

alkenes to terminal products [3]. Lately, interest in the production of fine chemicals such as 

expensive vitamins, medicines, perfumes, herbicides and nutrition additives by 

hydroformylation of very different substrates has increased [1]. 

1.2 Heterogenisation of catalysts 

Homogeneous catalysts are highly active and selective, but they have several 

disadvantages: problems with separation of the catalyst from reaction products, expensive 

metal losses, solubility limitations and corrosivity of catalytic solutions. For rhodium 

catalysis, economical operation requires recovery at ppb level due to the high cost of 

rhodium. Therefore, several attempts have been made to heterogenise homogeneous 

catalysts on a solid support.  

 

The heterogenised catalysts can be divided into two groups: immobilised metal complex 

catalysts and supported metal catalysts [7]. The immobilised metal complex catalysts can 

be further divided into supported and anchored metal complex catalysts, as summarised in 

Table 1. The coordinatively anchored metal complex catalysts, where metal complexes are 

chemically bonded to the functional groups of the support, are the most promising option 

for immobilised catalysts (Figure 1). The strong bonding of the complex to the support 

through the functional groups, and the possibility for modification of the support properties 

at the same time, are the obvious advantages compared to other types of immobilised metal 

complex catalysts. The most commonly used functional groups are phosphine ligands that 

are bonded via a methylene chain to an oxide surface or an organic macromolecule. Table 2 

shows some examples of coordinatively anchored metal complex catalysts employed in the 

hydroformylation of alkenes.  
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Table 1. Classification of immobilised metal complex catalysts [7].

1. Supported metal complex catalysts        

• Catalysts containing a dispersed phase of complex on a support 

      Physical adsorption  

• Supported Liquid-Phase Catalysts (SLPC)   

• Supported Aqueous-Phase Catalysts (SAPC) 

      Capillary condensation 

2. Anchored metal complex catalysts         Chemical bonding 

• Ion exchange    

• Covalent grafting 

            Metal complex bonded to oxygen atoms on an oxide support surface 

• Coordinative anchoring 

            Metal complex anchored on a chemically modified support containing 

            functional groups of donor-acceptor type 

 

 

 

 

M
M

M
M

M

LL

Support surface
Metal complex

  A    B 

 

Figure 1. Coordinative anchoring of a metal complex to the support surface, A is a 

mononuclear complex, B is a polynuclear complex, L is a ligand. 
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Table 2. Examples of coordinatively anchored metal complexes for hydroformylation of 

alkenes.

Support; linking agenta Precursor Reactant  
(Reaction conditions) 

Ref. 

3-aminopropyltriethoxysalane-co-
tetraethoxysalane; PPh2  

[Rh(CO)2Cl]2 1-hexene 
(90–120 °C, 3–6 MPa) 

[8] 

Functionalised zeolite Na-Y, Si–
MCM-41 and Si–MCM-48 

HRh(CO)(PPh3)3 1-octene, styrene 
(100 °C, 4 MPa) 

[9] 

cellulose acetate and 
poly(phenyl)sulphone films; PPh3

HRh(CO)(PPh3)3 ethene, propene 
(80 °C, 0.1 MPa) 

[10] 

2-20% cross-linked PS/DVB RhCl(CO)(PPh3)2 propene 
(100 °C , 1.43 MPa) 

[11] 

PS-PPh2/SiO2 RhCl(CO)2 ethene, propene, 1-butene 
(130 °C, 0.1 MPa) 

[12] 

polymeric organosiloxanes 
styrene-co-4-N-pyrrolidinopyridine 

Rh(acac)(CO)2

RhCl3⋅3H2O 
isobutene, 1-hexene 
(120 °C, 6 MPa) 

[13] 

1%DVB Ru(CO)3(PPh3)2 1-pentene 
(140 °C, 7 MPa) 

[14] 

2% cross-linked DVB/PS; PPh2 [RhCl(COD)]2 1-heptene 
(70 °C, 3 MPa) 

[15] 

poly(vinyl benzyl 
diethylenetriamine) 

[Rh(CO)2Cl]2 1-hexene 
(30–110 °C, 2–8 MPa) 

[16] 

PS/1-2%DVB; PPh2 RhH(CO)(PPh3)3 allyl alcohol 
(40–120 °C, 0.3–5.5 MPa) 

[17] 

poly(styrene-co-p-t-butoxy-
carbonyl-oxystyrene), 
poly(styrene-co-p-hydroxystyrene); 
phosphite groups 

Rh(COD)(acac) cyclo-octene 
(80 °C, 2 MPa) 

[18] 

poly(arylene ether triphenyl 
phosphine) 

Rh(acac)(CO)2 1-octene 
(120 °C, 1.7 MPa) 

[19] 

poly(propylene-g-p-
styryldiphenylphosphine) 

Rh(acac)(CO)2 1-hexene 
(45–85 °C, 1 MPa) 

[20] 

styrene/DVB; PPh2 Co2(CO)6 Pentene 
(144–172 °C, 2.8–6.9 MPa) 

[21] 

aPS = polystyrene; DVB = divinylbenzene; COD = cyclo-octadiene 
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The supported metal catalysts are prepared by impregnating metal salts and oxides on the 

support followed by reduction, or by decomposition of organometallic compounds on the 

support. For instance, active carbon, silica, alumina or zeolites can be used as supports onto 

which e.g. the metal nitrates are impregnated. Both rhodium and cobalt, separately and 

together, in combination with other metals on various supports have been studied in the 

hydroformylation of ethene [22, 23] and higher alkenes [24– 27]. 

 

Even though the heterogenisation of the homogeneous precursors often results in a decrease 

in activity, it has also resulted in improved performance. Polymers modified with 

phosphines or phosphites have been studied for hydroformylation of various reactants both 

with rhodium and cobalt catalysts as illustrated in Table 2. Greater normal/branched ratios 

(n/i) of the product aldehydes have been obtained on polymer-supported phosphine-

modified catalysts compared to homogeneous catalysts, possibly due to a higher localised 

concentration of phosphine atoms around the rhodium centre compared to the free solution 

[10, 20, 28]. 

 

In liquid-phase applications, leaching of the active metal into the liquid phase [16, 29, 30] 

has prevented the commercial use of heterogenised catalysts. In gas-phase 

hydroformylation, the use of supported metal catalysts is more feasible, since the operating 

conditions are mild: the reaction can be carried out at low pressures (and below 150 ºC) 

where the competing Fischer-Tropsch reaction ceases. Moreover, hydroformylation can be 

used as a test reaction for Fischer-Tropsch catalysts to determine their ability to form 

oxygenates. 

1.3 Reaction mechanism 

In the early 1960s Heck and Breslow [5] formulated the generally accepted 

hydroformylation cycle for cobalt catalysis that is also valid for unmodified rhodium 

catalysts. The hydroformylation mechanism for phosphine-modified rhodium catalysts 

follows, with minor modifications, the Heck-Breslow cycle. According to Wilkinson [2], 

two possible pathways are imaginable: the associative and the dissociative mechanisms. It 
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is accepted today that Wilkinson’s dissociative mechanism is the likely kinetic path for 

hydroformylation [1, 2]. This is shown in Scheme 2. The active species are 16-electron 

hydrides of the general formula HRh(CO)x(PPh3)3-x (x = 1, 2) formed by the dissociation of 

CO from the 18-electron carbonyl hydride [2, 31]. The basic steps in the hydroformylation 

reaction after the initial formation of the hydrido metal carbonyl are: (1) dissociation of CO 

to form the unsaturated 16-electron species, (2) coordination of alkene, (3) formation of the 

alkylmetal carbonyl species, (4) coordination of CO, (5) insertion of CO to form the 

acylmetal carbonyl, (6) oxidative addition of hydrogen, and (7) cleavage of the acylmetal 

species by hydrogen to form the aldehyde and regeneration of the hydridometal carbonyl. It 

is generally believed that the oxidative addition of hydrogen to the rhodium-acyl complex 

(step 6 in Scheme 2) is the rate determining step [2]. Leeuwen [3] has proposed that, 

roughly speaking, in phosphine catalyst systems the migratory insertion of the alkene into 

Rh-H (step 3 in Scheme 2) is the rate-determining step under standard industrial process 

conditions.  
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Scheme 2. Wilkinson’s dissociative mechanism presented for rhodium-phosphine catalysed 

ethene hydroformylation [2, 31]. 

 

The reaction mechanism on supported catalysts follows a similar mechanism. Henrici-Olivé 

and Olivé [32] have suggested that the decisive difference between the homogeneous and 

the heterogeneous process is the availability of a free, mobile, very reactive hydrido-metal 

species in solution. According to them, the last step (steps 6 and 7 in Scheme 2), the 

transformation of the acyl-metal species to the aldehyde, proceeds through reaction with a 
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second catalyst species in homogeneous media, but in heterogeneous media the oxidative 

addition of molecular hydrogen to an acyl-metal species is the only means of formation of 

the aldehyde.  The hydrogenation of the acyl intermediate was identified as the rate 

determining step at 0.1 MPa on Rh/SiO2 [33]. 

 

In some studies, the CO insertion selectivity on supported unmodified metal catalysts, is 

related exclusively to the linearly adsorbed CO on isolated Rh0 sites [34], whereas other 

studies show that reaction rate and selectivity for hydroformylation increases in the 

presence of Rh+ sites [35]. Thus, the dispersion of the catalytic metal and the extent of 

reduction are the main factors determining the CO insertion activity, and thereby, the 

selectivity towards aldehyde formation. According to Sachtler and Ichikawa [36], two types 

of active sites are responsible for aldehyde formation: isolated, partially oxidised metal 

crystallites for the migratory CO insertion into metal alkyl bonds, and fairly large metal 

ensembles for the dissociation of hydrogen. Hedrick et al. [37, 38] noticed that on a Mn-

Rh/SiO2 catalyst, spill-over hydrogen from the metal to the silica surface plays a role in the 

hydrogenation of the acyl intermediate. Thus, the hydrogenation of ethyl species to form 

ethane, and the hydrogenation of adsorbed acyl species to form propanal, are involved with 

two different types hydrogen: metal adsorbed hydrogen and hydrogen from Si-OH, 

respectively.   

1.4 Scope of the research 

The goal of this research was to develop a solid catalyst for heterogeneous 

hydroformylation. Rhodium and cobalt are the most active transition metals for 

hydroformylation and they were obvious choices for the catalytic metals for the preparation 

of the solid catalysts. Silica was chosen, because it is an inert, cheap support material 

widely applied in catalysis. Active carbons have many features that make them good 

candidates as supports, including high surface area, which together with the pore structure, 

can be varied relatively easily. Also, carbon is inexpensive, inert in corrosive environments, 

and precious metals supported on it can be easily recovered. 
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Both in Fischer-Tropsch synthesis and in ethene hydroformylation, CO insertion necessary 

for the formation of oxo-products is associated with isolated catalytic metal sites. Atomic 

layer deposition (ALD) was chosen as one of the preparation techniques for the preparation 

of Co(A)/SiO2 catalysts since highly dispersed catalysts have been obtained with this 

method [39]. For comparison, impregnated Co/SiO2 and Rh/SiO2 catalysts were prepared 

and tested. Moreover, a completely new catalyst support, AlN/SiO2, prepared by the ALD 

technique, was used for the preparation of Co(A)/AlN/SiO2 catalysts in order to test the 

effect of a basic additive on hydroformylation activity.  

 

In homogeneous processes, phosphines are used to direct the selectivity of the products 

towards aldehydes and to increase the amount of the straight-chain aldehyde compared to 

the branched one. In a similar way, we wanted to improve the oxo-selectivity of our 

catalysts by modifying the support with phosphines. A polymeric phosphine-containing 

fibre support was prepared by a pre-irradiation grafting method. A Rh(acac)(CO)2 precursor 

was coordinatively anchored on the phosphine groups of the fibre support. A silica-

supported Rh-phosphine catalyst was prepared and tested for comparison. 

 

In addition to the industrial importance of ethene hydroformylation, it offers the possibility 

of studying CO insertion in gas-phase conditions. The results can subsequently be applied 

to higher alkenes hydroformylation. Moreover, ethene hydroformylation offers a way to test 

oxygenate formation capability of the Fischer-Tropsch synthesis catalysts. Ethene 

hydroformylation is a simple test reaction for the study of the interactions between 

dispersion, the extent of reduction and CO insertion activity.  

 

Preliminary propene hydroformylation experiments were carried out in order to assess the 

formation of normal to branched aldehydes with rhodium catalysts. The activity of the 

cobalt and rhodium catalysts in liquid-phase conditions was studied in 1-hexene 

hydroformylation. The determination of the stability of the catalysts both in gas and liquid-

phase conditions was an important part of this work.  
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2 EXPERIMENTAL 

2.1 Preparation of catalysts 

Two different preparation methods were used in the preparation of the cobalt and rhodium 

catalysts: impregnation and atomic layer deposition (ALD). The supports used for the 

preparation of the catalysts were silica, activated carbon, AlN/SiO2 supports prepared by 

ALD and polymeric phosphine-containing fibre support prepared by a pre-irradiation 

grafting method. Table 3 presents the catalysts prepared for hydroformylation, precursors, 

supports and preparation methods used as well as conditions for activation of the catalysts 

before the hydroformylation reaction. For all the catalysts, the metal content is used as a 

prefix in the name of the catalyst. 

  

ALD is a technique to prepare catalysts by saturative chemisorption and is described in 

more detail by Puurunen [40]. The general steps in the preparation of materials are as 

follows: 

Initiation: Stabilisation of the reactive sites on the surface typically carried out by a heat 

treatment.  

 Physisorbed molecules, most often water adsorbed from ambient air are removed. 

Step 1: Saturating reaction of a gaseous reactant (typically a metal compound) with the 

reactive sites of the support surface.  

 The reaction is allowed to proceed until the surface is saturated with the adsorbing 

species and no more reaction takes place. Thereafter, excess reactant and possible 

gaseous reaction products are removed by an inert gas purge or by evacuation. 

Step 2: Saturating reaction of another reactant (typically a non-metal compound) with the 

reactive sites of the support.  

 The adsorbed species left behind by the first reactant form a major part of the 

reactive sites. Excess reactant and the gaseous reaction products are removed.  
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Steps 1 and 2 are referred to as a reaction cycle and are repeated to increase the amount of 

adsorbed species.  

 

Table 3. Catalysts studied in hydroformylation. 

Catalyst Precursor Support Solvent/
Method 

Activation Ref. 

Co(N)/SiO2 Co(NO3)2·6H2O 
 

Grace 432 water/ 
Impr. 

H2, 400 ºC, 1 h/ 7 h  I, V 

2Co(CO)(p) 
/SiO2

Co2(CO)8 Grace 432 pentane/ 
Impr. 

H2, 300 ºC, 7 h V 

2Co(CO)(dcm) 
/SiO2

Co2(CO)8 Grace 432 DCM/ 
Impr. 

H2, 300 ºC, 7 h V 

4Co(CO)(dcm) 
/SiO2

Co4(CO)12 Grace 432 DCM/ 
Impr. 

H2, 300 ºC, 7 h V 

Co(A)/SiO2 Co(acac)3 Grace 432 - /ALD H2, 550 ºC, 7 h I, II 

Co/n⋅AlN/SiO2 NH3, TMA  
Co(acac)3

Grace 432 - /ALD H2, 550 ºC, 7 h II 

Rh/SiO2 Rh(NO3)3·2H2O Grace 432 water/ 
Impr. 

H2, 300 ºC, 3 h IV 

Rh/C(N) 
 

Rh(NO3)3·2H2O Norit Rox 
0.8 

water/ 
Impr. 

H2, 400 ºC, 1 h/ 
CO 400 ºC, 1 h 

III, V 

Rh/C(T) 
 

Rh(NO3)3·2H2O Takeda 
Shirasaki 

water/ 
Impr. 

H2, 400 ºC, 1 h/ 
CO 175 ºC, 1 h 

III-V 

Rh/C(C) 
 

Rh(NO3)3·2H2O Johnson 
Matthey 

water/ 
Impr. 

H2, 400 ºC, 1 h/ 
CO 400 ºC, 1 h 

III-V 

Rh-PPh3/SiO2 Rh(acac)(CO)(PPh3) Grace 432 DCM/ 
Impr. 

- IV 

FibrecatTM Rh(acac)(CO)2 polymeric 
fibrea  

DCM or 
acetone/ 
Impr. 

Ar, 100 ºC/110 ºC, 1–7 h 
H2, 100 ºC/110 ºC, 7 h 
CO, 100 ºC/110 ºC, 3–7 h 
H2/CO, 100 ºC/110 ºC,7 h 

IV 

apolyethene(g-styrene-co-styryldiphenyl-phosphine) 
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2.1.1 Cobalt catalysts 

The supports used for the preparation of the cobalt catalysts were silica and silica modified 

with AlN. For the Co/SiO2 catalysts, porous Grace Davidson 432 silica with a particle size 

of 0.5–1.0 mm, surface area of 320 m2/g and a pore volume of 1.2 cm3/g was used as the 

support. The silica support was pretreated with a volumetric 1:1 mixture of ethanol and 

water in order to equalize the OH− group distribution of the carrier before impregnation. 

The Co(N)/SiO2 catalyst [I] was prepared by impregnation from an aqueous solution of 

Co(NO3)2·6H2O and calcined under air flow at 300 °C for 12 h.  

 

The carbonyl based Co/SiO2 catalysts were prepared by incipient wetness impregnation 

using dichloromethane or pentane as solvent and Co2(CO)8 and Co4(CO)12 as precursors 

[V]. The silica support was dehydroxylated at 600 °C under vacuum.  All stages of the 

preparation of the carbonyl catalysts were carried out under an inert atmosphere.  

 

Cobalt(III)acetylacetonate, Co(acac)3 (acac = acetylacetonate, pentane-2,4-dionato) was 

used as the precursor in the ALD preparation [41]. Catalyst preparation consisted of the 

following steps: (i) preheating of the silica support in air for 16 h at 600 °C, (ii) 

chemisorption of the gaseous precursor up to surface saturation, and (iii) removal of the 

remaining ligands by calcination in synthetic air (450 ºC, 4 h) for all but the last deposition. 

The steps (ii) and (iii) were repeated in order to obtain higher cobalt content. The catalysts 

after one (5 wt%), three (11 wt%) or five (16 wt%) preparation cycles are denoted as  

5-Co(A)/SiO2, 11-Co(A)/SiO2 or 16-Co(A)/SiO2, respectively [I].  

 

The AlN/SiO2 supports were prepared in an ALD reactor. Details of the preparation are 

given in paper [II], but here they are only presented in brief. Porous Grace Davidson 432 

silica (288 m2/g) with a particle size of 315–500 μm was used as the support. The AlN/SiO2 

samples were prepared in the reactor in three steps: (i) precalcination of the silica in 

ambient air at 750 ºC for 16 h and subsequently in the reaction chamber at 550 ºC for 3 h, 

(ii) reaction of TMA with the support at 150 ºC, and (iii) reaction of ammonia with the 

TMA-modified sample, starting at 150 ºC and terminating at 550 ºC. Steps (ii) and (iii) 

were repeated up to six times to increase the concentration of AlN. In the sample code, 

 

23



 

“n⋅AlN/SiO2” the n denotes how many times the step was repeated. Silica preheated at  

750 ºC and the 2⋅AlN/SiO2 and 6⋅AlN/SiO2 samples were used as supports for the cobalt 

catalysts. Co(acac)3 was vaporised at 170 ºC and allowed to react with the supports at  

180 ºC. The catalyst preparation and handling was carried out with an inert atmosphere, as 

was preparation of the 5-Co(A)/SiO2(inert) prepared as a reference catalyst. 

2.1.2 Rhodium catalysts 

The supports used for the preparation of the rhodium catalysts were silica, active carbon, 

and polymeric phosphine-containing fibre prepared by the pre-irradiation grafting method. 

For the preparation of the silica supported rhodium catalysts, the same Grace Davidson 432 

silica was used as a support as was used for the Co/SiO2 catalysts. For the preparation of 

the 6-Rh/SiO2 catalyst, the silica support was pretreated with a volumetric 1:1 mixture of 

ethanol and water and dried overnight at 120 °C and further in vacuum at 0.1–0.4 kPa and 

210 °C for 4 h. The 6-Rh/SiO2 catalyst [IV] was prepared by impregnation from an aqueous 

solution of Rh(NO3)3·2H2O  and calcined under 5% O2/N2 flow at 400 ºC for 6 h.  

 

For the preparation of 2-Rh-PPh3/SiO2 [IV] (Smoptech Ltd), the silica support was dried for 

1 h at 250 °C and allowed to cool to room temperature under vacuum before the incipient 

wetness impregnation. The Rh(acac)(CO)PPh3 precursor was dissolved in dichloromethane 

under nitrogen and added to the support with mixing. The catalyst was dried under vacuum 

to constant weight. 

 

The Rh/C catalysts [III-V] were prepared by impregnation from an aqueous solution of 

Rh(NO3)3·2H2O  [42]. Peat based Norit Rox 0.8 (N), coconut based carbon from Johnson 

Matthey (C) and wood based Takeda Shirasaki (T) were used as active carbon supports. 

The Rh/C catalysts were calcinated under flowing nitrogen for 3 h at 400 °C. The rhodium 

contents of the catalysts were 3–7 wt%.   

 

The Rh/fibre catalysts (FibrecatTM) [IV] were supplied by former Smoptech Ltd. The 

crosslinked polyethene fibre was grafted with styrene and p-styryldiphenylphosphine by the 
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pre-irradiation grafting method using high energy electrons [43]. A Rh(acac)(CO)2 

precursor was coordinatively anchored from dichloromethane or acetone solution onto the 

fibre support. The metal loading of FibrecatTM varied from 3 to 7.7 wt% rhodium. The 

phosphorus content of the catalysts was between 0.4 and 1.0 mmol P/gcatalyst. The length of 

the fibre was < 0.25 mm and the diameter was 20 μm.  

2.2 Characterisation of catalysts 

The characterisations of the catalysts are presented in detail in publications I-V. The metal 

content of the catalysts before and after the reaction was determined by atomic absorption 

spectroscopy (AAS) [I-V], instrumental neutron activation analysis (INAA) [III] or 

inductively coupled plasma (ICP) [IV]. The carbon loading of the samples was measured 

with a LECO analyser by burning at 950 °C in air [I, II] or with a Ströhlein analyser by 

burning at 1350 °C with oxygen [II]. The nitrogen loading of the samples was measured 

with a LECO analyser [II]. The metal particle sizes were estimated from H2 [I-IV] and CO 

chemisorption measurements [III, IV], and the extent of reduction was determined by X-ray 

photoelectron spectroscopy (XPS) [III, V] or oxygen titration [I, IV]. The reducibility of the 

Rh/C catalysts was studied by temperature programmed reduction (TPR) with hydrogen 

[III]. FibrecatTM was characterised by 31P nuclear magnetic resonance (NMR), 13C NMR 

and diffuse reflectance Fourier transform infrared (DRIFT) spectroscopies [IV]. 

2.3 Reaction tests 

2.3.1 Vapour-phase hydroformylation of ethene and propene 

The ethene hydroformylation studies were carried out in an automated fixed bed tubular 

reactor in vapour phase at 0.5–1.0 MPa and 75–175 °C as described in detail in papers [I-

IV]. The total feed of 3.5 or 7 dm3/h consisted of argon, carbon monoxide, hydrogen and 

ethene in molar ratio 1:2:2:2. Weight hourly space velocity (WHSV) for ethene feed at 
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standard reaction conditions (25 °C, 0.1 MPa) was 2.5–5 h-1. The catalyst, in the amount of 

0.5 or 1 g, was in some cases diluted with glass beads in a 1:1 volume ratio, and in situ 

pretreatments were carried out as described in Table 3. The reactor was a stainless steel 

tubular reactor. The temperature measurement was carried out by three calibrated K-type 

thermocouples inside the thermocouple pocket and with one movable thermocouple for the 

measurement of the axial temperature profile of the reactor. The thermocouple pocket was 

inside the catalyst bed. 

 

Product analysis was carried out on-line by two HP 5890 series gas chromatographs. The 

argon, carbon monoxide and ethene were analysed by a thermal conductivity detector 

(TCD) using packed column filled with activated carbon coated with 2% squalane. The 

separation of the products was carried out by a DB-1 column (J&W Scientific) and a 

PoraplotQ column (Hewlett Packard) and two flame ionisation detectors (FIDs). The 

surface areas of the peaks were divided by sensitivity factors as given by Dietz [44] and 

normalised to obtain the distribution of the products in weight percentages.  

 

The reaction time was usually 24 hours, but sometimes longer times (max. 70 hours) were 

used to observe the long-term performance of the catalysts. Conversion (X), selectivity (S) 

and yield (Y) were based on the molar amount of ethene consumed. The main reaction 

products in vapour-phase hydroformylation of ethene [I-IV] were ethane, propanal, n-

propanol and secondary C6 oxygenates (C6-O): 2-methyl-2-pentenal, 2-methyl-1-pentanal 

and 2-methyl-1-pentanol, formed by aldol condensation and subsequent dehydration and 

hydrogenation. With cobalt catalysts, small amounts of C3-C11 hydrocarbons, propanoic 

acid and methane were also formed [I, II]. In addition, with Rh/C catalysts, small amounts 

of 3-pentanone, propylformate and propylpropionate were detected [III]. The condensation 

products of propanal are denoted by C6-O, and the oxo-selectivity (Soxo) is defined as the 

sum of selectivities for propanal, propanol and C6-O.  

 

The same reactor and analysis system as used for ethene hydroformylation was used for 

propene hydroformylation experiments. The reaction was carried out in vapour phase at 

0.3–0.6 MPa and 90–150 °C. The total feed of 7.0 dm3/h consisted of argon, carbon 
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monoxide, hydrogen and propene in a molar ratio of 4:1:1:1. WHSV for propene feed at 

standard reaction conditions (25 °C, 0.1 MPa) was 3.4 h-1. The catalyst amount used was 

0.5 g. In situ pretreatments were carried out as described in Table 3. Conversion, selectivity 

and yield were based on the molar amount of propene consumed. The main reaction 

products in the vapour-phase hydroformylation of propene were propane, n-butanal and  

i-butanal. The analysis of the products was carried out in the same way as for ethene 

hydroformylation described above. 

2.3.2 Liquid-phase hydroformylation of 1-hexene 

The liquid-phase experiments [V] were carried out in a high-pressure autoclave at an initial 

pressure of 7.3 MPa (CO:H2 = 1:1) and temperature of 150 °C for 3–4 h. The reaction 

vessel was a 250 cm3 AISI316 magnetically stirred autoclave, equipped with a separate 

zirconium or teflon vessel. The reduced catalyst and 1-hexene were packed into the reaction 

vessel in a glove box under a nitrogen atmosphere, and then transferred to the autoclave. At 

the end of the experiment, the autoclave was cooled to room temperature and depressurised.  

The products were diluted with tetrahydrofuran (THF) and analysed by an HP 5890 series 

gas chromatograph, using a polar DB WAX capillary column and FID. The surface areas of 

the peaks were divided by sensitivity factors as given by Dietz [44] and normalised to 

obtain the distribution of the products in weight percentages.  

The isomerisation products of 1-hexene could not be detected with the analysis procedure 

used. Thus, in the calculations, conversion, selectivity and yield were based on the total 

amount of hexenes consumed. The main reaction products were hexane, n-heptanal,  

2-methyl-hexanal, 2-ethyl-pentanal, and the corresponding alcohols, n-heptanol, 2-methyl-

hexanol and 2-ethyl-pentanol. The secondary products are denoted by C14 or C21 including 

mainly condensation or acetalisation products, respectively. 
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3 HYDROFORMYLATION OF ETHENE 

3.1 Cobalt catalysts 

3.1.1 Characteristics of cobalt catalysts 

Dispersion and the extent of reduction are important features in hydroformylation, because 

the CO insertion necessary for the formation of aldehydes is reported to require small 

metallic cobalt sites [45, 46]. The dispersion and the extent of reduction are influenced by 

many factors including method of preparation, precursor used, metal loading and 

pretreatment conditions used. The method of preparation may have a significant influence 

on the dispersion achieved. The Co/SiO2 catalysts prepared by impregnation have exhibited 

higher extents of reduction, higher hydrogen uptakes and higher specific activities in CO 

hydrogenation than their precipitated counterparts [47, 48]. Moreover, catalysts with high 

dispersions have been obtained with ALD where the catalyst precursor is reacted from the 

gas phase with the support [39].  

 

Two different preparation methods, ALD and impregnation, and two different precursors, 

Co(acac)3 and Co(NO3)2, have been used for the preparation of the Co/SiO2 catalysts. The 

characteristics of the catalysts are shown in Table 4. The activity of the Co(A)/SiO2 

catalysts of varying metal content (5–16 wt%) prepared by ALD with the Co(acac)3 

precursor on silica was compared to the activity of the 4 wt% Co(N)/SiO2 catalyst prepared 

by impregnation using a nitrate precursor. In addition, the effect of aluminium nitride 

modification of the silica support on hydroformylation activity was studied. These catalysts 

were prepared by reacting Co(acac)3 with silica surfaced with varying degree with 

aluminium nitride.  
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Table 4. Characteristics of the Co/SiO2 catalysts after hydrogen reductiona. [I, II] 

Catalyst Atmosphere  Extent of 
reductionb

(%) 

Total 
H2 

uptake 
(cm3/g) 

Dispersionc

(%) 
Metal 

particle 
sizec

(nm) 

4-Co(N)/SiO2 Air 84 0.55 8.5 11.3 

5-Co(A)/SiO2 Air 52 1.2 23 4.3 

11-Co(A)/SiO2 Air 54 1.9 17 5.6 

16-Co(A)/SiO2 Air 63 1.4 7.6 12.6 

5-Co(A)/SiO2
e(inert) Inert n.d. 1.6 17d (33c) 6d (3c) 

5-Co/2⋅AlN/SiO2
e Inert n.d. 0.36 4d 25d

3-Co/6⋅AlN/SiO2
e Inert n.d. 0.20 3d 29d

a After hydrogen reduction at 550 ºC, except at 400 ºC for 4-Co(N)/SiO2. 
b Determined by oxygen titration.  
c Calculated from the total H2 uptake by using the spherical geometry assumption for cobalt 
particles and corrected by the extent of reduction. 
d No correction for the extent of reduction. 
e Silica precalcined at 750 ºC. The catalyst samples were handled inertly.  
n.d. = not determined 
 

Before hydroformylation reactions, the catalysts were pretreated in situ by hydrogen in 

order to reduce cobalt to Co0. For 4-Co(N)/SiO2, hydrogen treatment at 400 °C was 

adequate for the reduction of the cobalt [49]. For the removal of acac ligands and reduction 

of cobalt before hydroformylation reactions, the Co(A)/SiO2 catalysts were treated by 

hydrogen at 550 °C. The temperature of 550 °C was chosen because Backman et al. [41] 

observed a maximum in the hydrogen chemisorption capacity for Co(A)/SiO2 after 

hydrogen treatment at 550 °C. This pretreatment temperature was also adopted for the 

aluminium nitride modified Co(A)/n⋅AlN/SiO2 catalysts. The Co/n·AlN/SiO2 catalysts were 

handled inertly due to the moisture sensitivity of the AlN modified support. 
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3.1.2 Activity of Co/SiO2 catalysts in ethene hydroformylation 

The purpose of these experiments was to determine the effect of metal dispersion and 

extent of reduction of Co/SiO2 catalysts on hydroformylation activity and selectivity. 

Moreover, the effect of preparation method on the characteristics of the cobalt catalysts was 

studied. The 5-Co(A)/SiO2 catalyst was transferred to the reactor through air, but also 

inertly, in order to get a reference catalyst for the AlN/SiO2 supported catalysts that were 

prepared and transferred to the reactor inertly. The activity and selectivity of the cobalt 

catalysts in ethene hydroformylation is presented in Figure 2. The main products were 

ethane, propanal and propanol. In addition, small amounts of C6O were formed.  
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Figure 2. Ethene conversion and product selectivities for cobalt catalysts in ethene 

hydroformylation; T = 175 °C, p = 0.5 MPa, Ar:CO:H2:C2H4 = 1:2:2:2 mol:mol, WHSV = 

2.5 h-1. [I, II] 
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There was a clear difference in the activity of the catalysts prepared by ALD depending on 

whether the catalyst was handled inertly or through air. From the 5 wt% cobalt catalysts, 

the best ethene conversion of 15% was obtained with the 5-Co(A)/SiO2(inert) catalyst, 

compared to 9% conversion for the 5-Co(A)/SiO2 catalyst handled in air. In accordance, the 

hydrogen chemisorption capacity (Table 4) was higher for the 5-Co(A)/SiO2(inert) catalyst 

than for the catalyst handled in air. Also, the oxo-selectivity obtained was higher for the 5-

Co(A)/SiO2(inert) catalyst (45%) than for 5-Co(A)/SiO2 (39%). The extent of reduction for 

the inertly handled Co(A)/SiO2 catalyst could not be determined by oxygen titration due to 

the air and moisture sensitivity of the catalyst. If it is assumed that the extent of reduction is 

similar to both catalysts, the dispersion of cobalt on silica is improved by inert handling of 

the catalyst. These results suggest that high dispersion of cobalt is beneficial for CO 

insertion.  

 

Of the 5 wt% cobalt catalysts, the impregnated 4-Co(N)/SiO2 was the least active  

(X = 3%) with the lowest hydrogen uptake and consequently, the lowest dispersion (Table 

4). However, the oxo-selectivity of the 4-Co(N)/SiO2 catalyst was surprisingly high (35%) 

considering the low dispersion of the catalyst. The low conversion level obtained with the 

impregnated catalyst might have influence on the oxo-selectivity. Indeed, at a higher 

conversion level (X = 12%, at 193 °C and WHSV of 1.25 h-1), the oxo-selectivity dropped 

slightly to 28%. On the other hand, the cobalt particles were almost fully reduced (84%) 

compared to the low extents of reduction for the Co(A)/SiO2 catalysts, which may partly 

explain the higher than expected oxo-selectivity.  

 

With increasing metal content (from 5 to 16 wt%), the oxo-selectivity of the Co(A)/SiO2 

catalysts decreased from 39 to 25%, and this decrease appeared to be related to the 

decreasing dispersion. Simultaneously, the selectivity towards hydrogenation products, i.e. 

both towards ethane and propanol, improved (Figure 2). The extents of reduction remained 

low for the Co(A)/SiO2 catalysts, which is an indication of a strong support-metal 

interaction. Since the extent of reduction for all the Co(A)/SiO2 catalysts was in the range 

52–63 %, the effect of extent of reduction on the changes in oxo-selectivity can be 

excluded. Thus, these results confirm that CO insertion activity is related to the presence of 

small cobalt sites. One might argue that the oxo-selectivity is dependent upon the varying 
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conversion levels of the Co(A)/SiO2 catalysts. However, the results of Takeuchi et al. [45] 

with a 5 wt% cobalt-carbonyl based Co/SiO2 catalyst showed that the oxo-selectivity was 

unchanged at different conversion levels (X = 6–63 %) in the temperature range of 150–210 

°C. Moreover, these results do not reveal if unreduced cobalt is active for CO insertion.  

 

In conclusion, these results show that catalysts with higher dispersion are obtained with 

ALD technique using a Co(acac)3 precursor than with impregnation using a cobalt nitrate 

precursor. Moreover, the oxo-selectivity is related to the dispersion of the cobalt metal: the 

higher the dispersion, i.e. the smaller the cobalt metal particles on the catalyst, the better the 

CO insertion activity and the oxo-selectivity.  

3.1.3 Activity of Co/n⋅AlN/SiO2 catalysts in ethene hydroformylation 

A new type of AlN/SiO2 support was studied in hydroformylation in order to determine the 

effect of a basic additive on hydroformylation activity [II]. Amines have been reported to 

favour the single-step formation of alcohols in hydroformylation [50] and nitride materials 

have been successfully used as supports in hydroformylation [51]. However, as illustrated 

in Figure 2, the AlN modification was not beneficial for the hydroformylation activity and 

selectivity. Steady-state conversion, reached after about 5 h for all the catalysts, decreased 

drastically with increasing AlN content of the support from 16% for pure silica-supported 

catalyst to 5.6% and 0.6% for the 2⋅AlN/SiO2 and 6⋅AlN/SiO2-supported catalysts, 

respectively. Moreover, the oxo-selectivity decreased from 46% for 5-Co(A)/SiO2 to 16% 

for 5-Co(A)/2⋅AlN/SiO2. For the 5-Co(A)/6⋅AlN/SiO2, the oxo-selectivity did not decrease 

as drastically (Soxo = 30%), but the selectivities were probably influenced by the very low 

conversion level and also by the detection accuracy.   

 

The total hydrogen chemisorption capacity measured at 30 °C decreased with increasing 

AlN content of the support (see Table 4). It was not possible to determine the extents of 

reduction by oxygen titration due to the air and moisture sensitivity of the catalysts. The 

decreasing trend in the chemisorption capacity was partly related to the lower cobalt 

contents for the Co/n·AlN/SiO2 catalysts (see Table 2 in [II]). However, the decrease in 
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hydrogen chemisorption capacity was more drastic than what would be expected on the 

basis of the cobalt contents alone. The explanation seems to be the increase in cobalt 

particle size and the corresponding decrease in dispersion. The lower dispersion on 

AlN/SiO2 support than on silica support was probably due to differences in the mechanism 

of bonding of the cobalt reactant on the supports. On 5-Co(A)/SiO2, the acac/Co ratio after 

the reaction of the cobalt reactant was well below two [40]. The acac/Co ratio increased 

with the extent of aluminium nitride modification, being two for the 5-Co(A)/6⋅AlN/SiO2 

catalyst. The acac/Co ratio of two enabled the desorption of Co(acac)2 from the surface 

during heating and allowed the formation of larger cobalt particles. The hydroformylation 

results are in agreement with the hydrogen chemisorption results. The selectivity towards 

oxo-products decreased with increasing AlN content, i.e. with decreasing dispersion.   

3.2 Rh/C and Rh/SiO2 catalysts 

Active carbons have many features that make them suitable materials for use as catalyst 

supports. Carbon supports have high surface areas which, together with the pore structure, 

can be varied relatively easily. Also, carbon is inexpensive, inert in corrosive environments, 

and precious metals supported on it can be easily recovered. Moreover, active carbon has 

been reported to exhibit beneficial characteristics in carbonylation:  it can suppress 

dissociative hydrogen adsorption as well as inhibit dissociative CO adsorption [52]. These 

characteristics are important in hydroformylation as well. The three types of activated 

carbon used in this study [III] were peat based Norit Rox 0.8 (N), coconut based carbon (C) 

from Johnson Matthey and wood based Takeda Shirasaki (T). The detailed characterisation 

of the supports and the catalysts has been reported elsewhere [42] as well as their catalytic 

activity in methanol hydrocarbonylation [53]. Since, in addition to high dispersion, the 

existence of partly reduced rhodium sites has been reported to be beneficial in 

hydroformylation, the reducibility of the Rh/C catalysts was studied in more detail by 

temperature programmed reduction (TPR) using hydrogen as the reducing gas. The 

dispersion and the extent of reduction as well as the effect of pretreatments are discussed in 

connection with the activity and selectivity results for ethene hydroformylation [III]. The 

Rh/C catalysts were compared with Rh/SiO2 [IV]. 
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3.2.1 Characteristics of Rh/C catalysts 

The effect of characteristics of active carbon supports on the resulting Rh/C catalysts was 

studied in detail by Halttunen et al. [42]. They noticed that the dispersion was dependent on 

porosity and pH of the active carbon support and the type of oxygen-containing species 

present on the active carbon support. Meso- and macroporosity improved mass transfer 

during impregnation, and thereby, in part, increased the distribution of the metallic species 

within the carbon support.  The amount of meso- (dpore = 2 - 50 nm) and macropores (dpore > 

50 nm) was highest for carbon (N) (32%) and carbon (T) (15%) whereas carbon (C) was 

mainly microporous (dpore < 2 nm) (95%).  

 

The particle size of rhodium on active carbon was determined by TEM, XPS and hydrogen 

chemisorption and the results are collected in Table 5 [42]. Hydrogen chemisorption gives 

an average value for the particle size, but TEM provides information about the actual 

particle size distribution. TEM images indicated that rhodium was evenly distributed on 

Rh/C(T) after hydrogen reduction with a uniform particle size of 2–7 nm. On Rh/C(C) the 

particle size varied from 4 to 10 nm and some of the particles formed large aggregates (>10 

nm). The variation of the size of the particles was greatest in the case of Rh/C(N). Some 

particles were < 2 nm in diameter, whereas others were about 6 nm and, to some extent, 

aggregated. XPS results confirmed the existence of aggregates or very small particles on 

Rh/C(N). In hydrogen chemisorption, the chemisorption stoichiometry for CO varies, 

because the species may chemisorb in the linear, bridged and subcarbonyl forms, offering a 

chemisorption stoichiometry of one, a half, and two or more, respectively. Thus, high CO 

chemisorption stoichiometry is favoured for very small particles. In agreement with the 

XPS results, the high CO/H ratio from the chemisorption results suggested that particles on 

Rh/C(N) were very small in size. According to hydrogen chemisorption, which gives only 

an average value for the particle size, the particle size increased in the order Rh/C(C) < 

Rh/C(T) < Rh/C(N). [42] 
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Table 5. Characteristics of Rh/C catalysts after hydrogen reduction at 400 °C [42]. 

Particle size estimates (nm) Hydrogen chemisorption  

TEM XPS CO/H ratio Particle sizea (nm) 

Rh/C(C) 4–10  

> 10  

3.3  1.4 0.95  

Rh/C(N) < 2  

6  

aggregates 

-very small 

particles or 

aggregates 

6.6 

–> very small 

particles 

1.6  

Rh/C(T) 2–7  2.4  1.7 1.4  

a Calculated from irreversible hydrogen uptakes using the ‘button’ or ‘plate’ like geometry 
assumption and corrected by the extent of reduction. 
 

 

Since the surface of the carbon (T) was acidic (pH = 6.0), it had more active centres for the 

adsorption of cations (Rh3+) than carbon (N), which is neutral (pH = 7.0), or carbon (C), 

which is basic (pH = 9.1). Accordingly, rhodium seemed to be evenly distributed on carbon 

(T), whereas some aggregates were present on both carbon (N) and (C). Oxygen containing 

sites have been reported to act as adsorption sites for the metallic species and it is both the 

amount and the type of oxygen groups that affect the dispersion. Halttunen et al. [42] 

assumed that the CO evolving groups were more important in regard to the distribution of 

rhodium on Rh/C, since the major part of the CO evolving groups stayed intact at the 

temperature of reduction (400 °C), whereas most of the CO2 evolving groups were 

decomposed. Thus, the metal species adsorbed on the oxygen sites, decomposing through 

CO2, mobilised rhodium during reduction. In accordance, the agglomeration of rhodium 

was observed for the Rh/C(N) and Rh/(C) catalysts, which exhibited a high amount of CO2 

evolving acidic groups, whereas rhodium was evenly distributed on Rh/C(T), which 

contained a small amount of CO2 desorbing groups. Thus, the best dispersion after 

hydrogen reduction at 400 °C was obtained with carbon (T), a mesoporous carbon support 

which contained a high amount of thermally stable oxygen groups for bonding the active 

component. 
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3.2.2 Reducibility of Rh/C catalysts 

The reducibility of the Rh/C catalysts was studied by TPR. Figure 3 shows the hydrogen 

consumption during TPR measurements, together with water and methane formation as a 

function of temperature. The hydrogen consumption during the TPR below 250 °C was 

mainly due to the formation of water (Figure 3A), whereas at temperatures above 250 °C 

the formation of methane predominated (Figure 3B). Since the determination of water and 

methane was not quantitative, the extents of reduction were evaluated from hydrogen 

consumption. The results are shown in Table 6. The characteristics of the 6-Rh/SiO2 

catalyst are included as well. The calculations had to be limited to temperatures below 250 

°C since at higher temperatures methane was formed and only the formation of water 

results from the reduction of rhodium. 

Table 6. Dispersions, particle sizes and extents of reduction for Rh/C and Rh/SiO2 catalysts 

[III, IV]. 

Extent of Reduction (%) 

TPRd XPSe

Catalyst 
 

Dispersiona

(%) 
Metal 

particle 
sizeb

(nm) 

H2  
consumptionc

(mmol/gRh) 
1st peak 1st+2nd peak  

7-Rh/C(C) 27  0.7 44.0 29 44 78 

5-Rh/C(N) 4 4.3 14.2 12 39 94 

7-Rh/C(T) 13 1.4 15.2 8 20 62 

6-Rh/SiO2 62 0.3 - - - 85f

a Calculated from irreversible hydrogen uptake and corrected by the extent of reduction 
after hydrogen reduction at 400 °C for 1 h for Rh/C catalysts and at 300 °C for 3 h for  
Rh/SiO2. 
b Calculated from irreversible hydrogen uptakes using the ‘button’ or ‘plate’ like geometry 
assumption and corrected by the extent of reduction.   
c Total hydrogen consumption (TCD) during TPR measurement up to 400 °C. 
d Calculated from the H2 consumption (TCD) by fitting Gaussian curves assuming Rh3+ as 
the state of oxidized rhodium on the support: 1st peak corresponding to appr. temperatures 
<150 °C and 1st+2nd peak to temperatures < 250 °C.  
e After hydrogen reduction at 400 °C for 1 h. 
f Extent of reduction from oxygen titration. 
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Figure 3. (a) H2O formation (mass number 18) and (b) CH4 formation (mass number 16) 

during TPR measured by MS as a function of temperature for Rh/C catalysts  (a.u. = 

arbitrary units). [III] 
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The first peak maximum for hydrogen consumption was at 85–90 °C (Rh2O3 + 3H2 → 

3H2O + 2Rh0). The reduction of 7-Rh/C(C) proceeded to a greater extent (29%) at a lower 

temperature than did the reduction of 5-Rh/C(N) and 7-Rh/C(T). At 250 °C, the extent of 

reduction was similar for 7-Rh/C(C) and 5-Rh/C(N) (44% and 39%), but it was much lower 

for 7-Rh/C(T) (20%). Thus, the TPR results show that the reduction of Rh/C started at 

temperatures clearly below those used for the reaction tests. For all three catalysts, the 

extent of reduction at 400 °C, as determined by XPS, was considerably higher than the 

extent of reduction at 250 °C, as determined by TPR – a result at least partly caused by the 

higher reduction temperature in question.  

 

It was concluded that the high hydrogen consumption on 7-Rh/C(C), together with high 

methane formation, was apparently due to the rhodium catalysed support gasification, in 

agreement with the results of Tomita et al. [54]. This support gasification may cause 

agglomeration of rhodium during hydrogen pretreatment. It remained, however, 

unexplained why the gasification was significantly more pronounced on 7-Rh/C(C) than on 

5-Rh/C(N) or 7-Rh/C(T).  

 

In summary, the TPR experiments showed that the reduction of 7-Rh/C(C) clearly started 

below the temperature used for the reaction tests (173 °C) whereas for 5-Rh/C(N) and  

7-Rh/C(T), higher reduction temperatures were required. Moreover, on 7-Rh/C(C) the 

rhodium catalysed support gasification may cause agglomeration of rhodium. 

3.2.3 Catalytic activity after hydrogen reduction 

Figure 4 shows catalytic activity for rhodium catalysts after different pretreatments. After 

hydrogen reduction at 400 °C, the highest activity and best selectivity towards propanal was 

obtained with the 7-Rh/C(C) catalyst. The propanal selectivity was 50% - an exceptionally 

high selectivity at these conditions compared to 41% for 5-Rh/C(N), 40% for 7-Rh/C(T) 

and 35% for 6-Rh/SiO2. Since the presence of unreduced sites has been proposed to 

increase the activity for CO insertion, the performance of the catalysts was considered in 

terms of extent of reduction. The partly reduced catalysts, 7-Rh/C(C) and 7-Rh/C(T), 
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exhibited the highest conversion and highest yields of propanal. In addition to partly 

reduced rhodium sites, the small size of the metal is important for aldehyde formation. As 

indicated by the results from TEM and hydrogen chemisorption, 7-Rh/C(C) and 7-Rh/C(T) 

both had small particles, favourable for CO insertion. Together the XPS, TEM and 

chemisorption results indicated that after hydrogen reduction, both 7-Rh/C(C) and  

7-Rh/C(T) had sites favourable for hydroformylation, i.e. partly reduced rhodium sites 

sufficiently small in size. The higher selectivity of 7-Rh/C(C) towards propanal still 

remained unexplained. The low hydroformylation activity of 5-Rh/C(N) was in agreement 

with the characterisations: according to TEM there were very small particles and large 

aggregates present on 5-Rh/C(N), and XPS shows they were fully reduced. The large 

particles were more active in hydrogenation and less active in hydroformylation. Moreover, 

the considerably lower overall activity of 5-Rh/C(N) was explained by the low total 

hydrogen uptake.  

 

Even though the dispersion calculated from the hydrogen uptake for 6-Rh/SiO2 was very 

high (62%) and thus, the particle size was small, the oxo-selectivity was lower (35%) than 

for the carbon supported catalysts. More information about the particle size might be 

obtained from the CO/H ratio as determined by chemisorption. This ratio for 6-Rh/SiO2 was 

low (0.92), which does not confirm the existence of very small particles. The extent of 

reduction was also quite high (85%). Apparently, the fully reduced rhodium sites on  

6-Rh/SiO2 were active in hydrogenation. It is of interest that the hydrogen uptake for  

6-Rh/SiO2 was ten times higher than that for 5-Rh/C(N), but the activity still remained 

about the same. TEM characterisations would also be informative for the 6-Rh/SiO2 

catalyst. 

 

SEM results suggested the presence of KCl particles on the 7-Rh/C(C) catalyst, but not on 

the other two carbon supported catalysts. The potassium was most probably transferred 

from the support matrix onto the catalyst surface during catalyst preparation (wet steps or 

high temperature treatments). Potassium is capable of promoting oxygenates formation in 

synthesis gas reaction [55], and it may have had an unintended influence on the 

performance of 7-Rh/C(C).  
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Figure 4. The product selectivities and ethene conversion for rhodium catalysts after 

different pretreatments; star (*) denotes CO pretreatment at 173 °C (T = 173 °C, p = 0.5 

MPa, Ar:CO:H :C H = 1:2:2:2 mol:mol, WHSV = 2.5 h ). [III, IV] 2 2 4 
-1

 

It is also interesting to compare these results to those for methanol hydrocarbonylation 

reported by Halttunen et al. [53]. The homologation reaction, producing acetaldehyde and 

ethanol, was favoured on 7-Rh/C(C), whereas carbonylation, producing acetic acid and 

methyl acetate, was favoured on 7-Rh/C(T). 5-Rh/C(N) produced both homologation and 

carbonylation products. The homologation reaction requires both CO insertion and 

hydrogenation steps similar to hydroformylation. In agreement with the hydroformylation 

results, 7-Rh/C(C) was also the best catalyst for homologation.  

 

Overall, the best selectivity towards propanal was obtained with the 7-Rh/C(C) catalyst.  

7-Rh/C(T) was also active, but lower selectivities towards propanal were obtained. Taken 

together, the XPS, TEM and chemisorption results indicated that after hydrogen reduction, 
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both 7-Rh/C(C) and 7-Rh/C(T), had sites favourable for hydroformylation: sufficiently 

small, partly reduced rhodium sites. Unintentional promotion by potassium possibly 

promoted the formation of oxo-products on 7-Rh/C(C). 

3.2.4 Catalytic activity after carbon monoxide pretreatment or without 

pretreatment 

To shed light on whether Rh0 or Rh+ is the active site for hydroformylation, the Rh/C 

catalysts were also tested without pretreatment [III]. The number of Rh+ sites would be 

expected to be higher without any reductive pretreatment, due to lower extents of reduction. 

Furthermore, hydrogen reduction has been shown to induce agglomeration of rhodium on 

carbon [56] and, therefore, higher dispersion might be another benefit obtained by omitting 

the pretreatment. The performance of Rh/C was also studied by applying CO pretreatment, 

which has previously been found to significantly enhance the oxygenate yield on Rh/SiO2 

in CO hydrogenation via partial blockage of the active sites [57]. Such a partial blockage 

effect should also be beneficial for the hydroformylation catalysts. Others have claimed that 

CO treatment provides high dispersion [58] - another desired feature for hydroformylation 

catalysts. 

 

In the absence of pretreatment, the performance of Rh/C(C) was superior to its hydrogen 

treated counterpart (Figure 4). Most likely, the rhodium species on the Rh/C(C) catalyst 

remained better dispersed in the absence of pretreatment than in conjunction with hydrogen 

reduction, since the undesired rhodium catalysed hydrogasification of the C(C) support was 

eliminated, as discussed in connection with the TPR results. In addition, the extent of 

reduction for Rh/C(C) was presumably lower after omitting the pretreatment, i.e. the 

number of unreduced rhodium sites favourable for hydroformylation was increased. 

However, the activity of the other two catalysts decreased slightly without pretreatment -  

a result apparently due to the less profound hydrogasification effect for Rh/C(T) and 

Rh/C(N). Also, as indicated by the TPR results, the extent of reduction for Rh/C(C) was 

clearly higher already at 150 ºC (29%) whereas for Rh/C(T) and Rh/C(N) it remained 

below 12% at this temperature. The hydroformylation reaction also requires metallic 
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rhodium sites for the hydrogen addition steps and it could be that the extent of reduction 

was too low for the other two catalysts, resulting in decrease in activity. 

 

After high temperature CO pretreatment (400 °C) the catalyst surface was partially blocked 

by carbonaceous residues, which improved the CO insertion selectivity of the 7-Rh/C(C) 

catalyst, but suppressed the overall activity. On the other hand, low temperature CO 

pretreatment (175 °C) produced no benefits.  

 

Overall, for the 7-Rh/C(C) catalyst, the best activity and selectivity was obtained without 

pretreatment due to better dispersed active sites and the presence of unreduced rhodium 

sites. However, for the Rh/C(N) and Rh/C(T) catalysts, hydrogen treatment was necessary 

to get enough reduced active sites. Moreover, high temperature CO pretreatment improved 

the CO insertion selectivity of 7-Rh/C(C), but suppressed the overall activity. Thus, the 

right choice of pretreatment appears to be a key factor in providing an active and selective 

catalyst for heterogeneous hydroformylation. 

3.3 Rh/fibre catalysts 

The aim was to prepare phosphine-modified catalysts in order to improve aldehyde yields, 

in accordance with the results from homogeneous hydroformylation processes [3]. 

Moreover, in propene and higher alkenes hydroformylation, formation of straight-chain 

aldehydes compared to branched aldehydes is improved in the presence of phosphines due 

to steric and electronic effects. A fibre-supported Rh-phosphine catalyst, and for 

comparison, a silica-supported Rh-phosphine catalyst were prepared and tested for their 

activity in ethene hydroformylation [IV].   

 

The fibre-supported Rh-phosphine catalysts (FibrecatTM) were provided by former 

Smoptech Ltd. They have developed a method to prepare polymer supports for catalytic use 

by radiation grafting using high-energy electrons [43]. The pre-irradiation grafting method 

used minimises the formation of homopolymer and the grafted side chains are not cross-

linked [59]. Moreover, polymers in different forms can be used in radiation grafting, for 
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example films, fibres, membranes or beads. Other benefits are the high capacity of active 

sites due to a high extent of grafting, and good accessibility of the active sites. In the 

etherification of bulky C8 alkenes, mass-transfer over the grafted fibre catalysts was 

improved compared to traditional ion-exchange resin Amberlyst 35 [60].  

3.3.1 Characteristics of FibrecatTM 

Table 7 shows characteristics of the phosphine-containing rhodium catalysts studied in the 

hydroformylation of ethene [IV]. FibrecatTM was characterised by 31P NMR, using both the 

CPMAS and MAS methods, 13C NMR and DRIFT. These characterisations were done 

before and after reaction, and after different pretreatments, in order to reveal the structure 

of the active species and the changes occurring in the active species during pretreatment 

and reaction. 31P NMR characterisations suggested that two kinds of Rh-P species were 

formed on FibrecatTM during the deposition of the Rh(acac)(CO)2 precursor on the fibre 

support: a monophosphine species, Rh(acac)(CO)(PS-PPh2), and a bisphosphine species, 

Rh(CO)2(PS-PPh2)2, as illustrated in Scheme 3.  

 

Two different solvents, dichloromethane and acetone, were used in the preparation of 

FibrecatTM in order to test whether it has effect on the distribution of the Rh-phosphine 

species formed. Indeed, the Rh-monophosphine/Rh-bisphosphine (mono/bis) species 

distribution was affected by the solvent used in the deposition stage of the rhodium 

precursor: with dichloromethane more bisphosphine species was formed (mono/bis = 1.5–

1.8) than with rhodium deposition in acetone (mono/bis = 3.2–3.6).  With higher 

phosphorus loading of the support (1 mmolP/gsupport) the mono/bis ratio increased further to 

5.6 and not all the phosphine groups reacted.  
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Scheme 3. Schematic presentation of Fibrecat  preparation. [IV]TM

 

Table 7. Characteristics of the phosphine-containing rhodium catalysts [IV]. 

Catalyst Rh content 

(wt%) 

S/Pe P 
content 

(wt%)d
 

Rh precursor Solvent Mono/
bis 

ratiof

3-FibrecatTM 2.9a (4.0b) 1.2 10 Rh(acac)(CO)2 dcm 1.5 

4-FibrecatTM 4.4a (6.7b) 1.3 10 Rh(acac)(CO)2 dcm 1.8 

8-FibrecatTM n.d. (7.7b) 2.3 10 Rh(acac)(CO)2 dcm n.d. 

3-FibrecatTM(Acet) n.d.  (2.8c) 1.2 10 Rh(acac)(CO)2 acetone 3.6 

4-FibrecatTM(Acet) n.d. (4.2b) 1.2 10 Rh(acac)(CO)2 acetone 3.2 

6-FibrecatTM(Acet) n.d. (5.9c) 3.1 4 Rh(acac)(CO)2 acetone 5.6 

2-Rh-PPh3/SiO2 n.d.  (2.0d) 0.6 - Rh(acac)(CO)(PPh3) dcm - 

a Method A: The catalyst is burned at 900 °C and dissolved in HCl+Cl2(gas); rhodium 
content is determined by ICP. 
b Method B: The catalyst is mixed with sodium peroxide and sodiumcarbonate in a Zr 
crucible and heated on a bunsen burner until the exothermic reaction ceases. The residue is 
dissolved in H2O; rhodium content is determined by AAS. 
c Method C: Value based on the rhodium content of solution after rhodium deposition; 
determined by AAS. 
d Value given by manufacturer. 
e Styrene/styryldiphenylphosphine molar ratio. 
f Molar ratio of the Rh-monophosphine species to the Rh-bisphosphine species determined 
by 31P NMR. 
n.d. = not determined 
dcm = dichloromethane 

 

44



 

Figure 5 shows the fitting of the centre bands of the 31P MAS NMR spectra of 4-FibrecatTM 

before and after CO/H2 treatment. The pretreatments with CO or CO/H2 converted the 

Rh(CO)(acac)(PS-PPh2) species at 48.7 ppm to a new species, whose peak position was 

around 35 ppm (Figure 5b). From the quantitative 31P NMR results it was concluded that 

pretreatment with CO/H2 was more effective than pretreatment with carbon monoxide in 

converting the acac species to the species at 35 ppm. The bisphosphine peak at 28 ppm 

shifted a little to 26.5 ppm and became narrower, perhaps due to some sort of annealing of 

the polymer matrix. The 13C CPMAS NMR spectrum of 4-FibrecatTM also confirmed that 

peaks due to acac ligands, at 188 ppm for the carbonyl carbon and 100 ppm for the CH 

carbon, disappeared during CO/H2 pretreatment (Figure 12 in [IV]). 

 
 

 

 (b) Rh(CO)2(PS-PPh2)2
 

Rh(CO)3(PS-PPh2) 
 

                                          

Rh(CO)(acac)(PS-PPh2)

 Rh(CO)2(PS-PPh2)2Rh(CO)(acac)(PS-PPh2) 
 

(a)  

                                            70             60            50             40              30            20              10             0 

 31P NMR shift (ppm) 
 

Figure 5. Fitting of the centre bands of the 31P MAS NMR spectra of (a) 4-FibrecatTM (b) 

4-FibrecatTM after CO/H2 treatment at 100ºC and 0.5 MPa for 7 h. [IV] 
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The DRIFT spectra of 4-FibrecatTM also provides evidence for the disappearance of acac 

during CO/H2 treatment. The peaks for the acac ligand in Rh(acac)CO(PS-PPh2) at 1580, 

1518, 1391, 1270 and 1097 cm-1 [61, 62] disappeared almost completely upon CO/H2 

treatment (Figure 8 in [IV]). In contrast to the NMR results, no changes after carbon 

monoxide treatment were detected by DRIFT spectroscopy. The DRIFT results also 

suggested the formation of a carbonyl species after CO/H2 treatment. 

 

The DRIFT measurements, together with the 31P NMR and 13C NMR measurements 

suggested that the species at 35 ppm in the 31P NMR spectrum formed during CO and more 

effectively, during CO/H2 treatments, was Rh(CO)3(PS-PPh2). It must be noted, however, 

that the DRIFT and NMR measurements were carried out in air and the actual species 

present in CO/H2 atmosphere is probably a carbonyl hydride species, HRh(CO)3(PS-PPh2). 

 

In the 31P MAS NMR spectrum of FibrecatTM after reaction (Figure 6), the signal for the 

bisphosphine species is intact at 26.3 ppm, while the signal for Rh(CO)(acac)(PS-PPh2) at 

48.7 ppm changes into a series of overlapping peaks around 40–60 ppm. The 13C CPMAS 

NMR spectra after reaction show no peaks for acac, but a new peak appears at 7 ppm. This 

peak could be either a CH2 or CH3 group and on this basis, it was proposed that a 

hydrocarbon is coordinated to rhodium. The peaks appearing during reaction at 45–58 ppm 

might thus be Rh(PS-PPh2)(CO)3-z(CxHy)z (z = 1–3) species, where the species with more 

coordinated hydrocarbons appears at higher frequency. DRIFT results affirm as well the 

formation of a carbonyl-containing species after reaction.  

 

After the reaction, the amount of species at 35 ppm is higher with the CO and CO/H2- 

treated catalysts than with the catalysts not subjected to pretreatment (see Figure 9 in IV). 

There are fewer species at 45–58 ppm after the hydroformylation reaction with the carbon 

monoxide and CO/H2-treated catalysts than with the argon-treated or non-pretreated 

catalysts. 

 

 

 

 

 

46
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Rh(CO)2(PS-PPh2)2Rh(CO)3-z(CxHy)z(PS-PPh2) 
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Figure 6. Fitting of the centre bands of the 31P MAS NMR spectra of 4-FibrecatTM after 

reaction at 110 ºC and 0.5 MPa for 46 h (no pretreatment). [IV] 

 

In summary, 31P NMR characterisations suggested that two kinds of Rh-phosphine species 

were formed on FibrecatTM during the deposition of the Rh(acac)(CO)2 precursor on the 

fibre support: a Rh-monophosphine species, Rh(acac)(CO)(PS-PPh2), and a  

Rh-bisphosphine species, Rh(CO)2(PS-PPh2)2. Furthermore, the DRIFT measurements, 

together with the 31P NMR and 13C NMR measurements suggested that the  

Rh-monophosphine species was transformed to a Rh(CO)3(PS-PPh2) species during CO/H2 

treatment. Moreover, hydrocarbons might be coordinated to the Rh-monophosphine species 

in course of the reaction. 

3.3.2 Catalytic activity 

8-FibrecatTM was tested in the hydroformylation of ethene at 110 ºC and 0.5 MPa (WHSV 

= 2.5 h-1). The main products were ethane and propanal. Small amounts of propanol,  

3-pentanone, 2-methyl-2-pentenal and 2-methyl-1-pentanal (C6-O), were also formed.  
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8-FibrecatTM was very active, giving an ethene conversion of 46% and oxo-selectivity of 

93%. For comparison, the activities of the unmodified rhodium catalysts were very low; 

ethene conversions were 1% or below. Modification of the Rh/SiO2 catalyst with phosphine 

(2-Rh-PPh3/SiO2) improved the activity slightly to 1.2 %, and the oxo-selectivity was 

improved considerably, from 37% to 95%.   

 

8-FibrecatTM was tested at different reaction temperatures and pressures in order to find out 

limits for the use of FibrecatTM. The conversions and product yields for 8-FibrecatTM at 

three different reaction temperatures are presented in Figure 7. A temperature of 135 °C 

was clearly too high: the catalyst deactivated from the initial 60% conversion to 10% 

conversion in 15 h on stream. However, it was remarkable that the excellent selectivity 

towards propanal was unchanged. The oxo-selectivities were 93−98% and the 

hydrogenation selectivities toward ethane were only 2.5−6.5% at all the temperatures and 

pressures tested. The temperature of 100 °C and pressure of 0.5 MPa were chosen as the 

reaction conditions for further studies.  

 

There was an initial activation period of 5-10 h for FibrecatTM at every temperature tested. 

Since the product selectivities did not change during the activation period, the activation 

period indicated change in the number of active sites. The effect of the reacting gases on the 

activation period was investigated by pretreatments with carbon monoxide, hydrogen and a 

combination of these at 100 ºC and 0.5 MPa. The effect of temperature was studied by 

pretreatment with argon. As illustrated in Figure 8, the argon, carbon monoxide and 

hydrogen pretreatments did not shorten the activation period. After CO/H2 pretreatment, 

however, the conversion was already 13% after 20 minutes and the steady-state conversion 

was lower (about 18%) than with the other treatments (20%). A similar trend was observed 

at 110 °C for 8-FibrecatTM with carbon monoxide pretreatment alone (not shown): relative 

to the untreated catalyst, the carbon monoxide pretreatment shortened the activation period 

from 15 hours to 5 hours and the conversion level decreased from 45% to 33%.  
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Figure 7. Ethene conversion and product yields with time for 8-FibrecatTM at 75 °C–135 °C 

and 0.5 MPa; WHSV = 2.5 h-1, Ar:CO:H :C H = 1:2:2:2 mol:mol.2 2 4  [IV] 
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Figure 8. Ethene conversion for 3-FibrecatTM at 100 °C and 0.5 MPa after pretreatment 

with (a) Ar or H2 for 7 h and (b) CO or CO/H2 for 7 h at the reaction temperature; WHSV = 

5 h-1, Ar:CO:H2:C2H4 = 1:2:2:2 mol:mol. [IV] 
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In summary, FibrecatTM was a promising catalyst for ethene hydroformylation: high 

propanal selectivity (95%) and high activity were obtained under the mild reaction 

conditions of 100 ºC and 0.5 MPa. At 110 °C, the pretreatment with carbon monoxide and 

at 100 °C the pretreatment with CO/H2, shortened the activation period. The accompanying 

effect, unfortunately, was a decreased conversion level. It must be noted that the propanal 

selectivity remained at 95-96% during the activation period, which suggests that only the 

number of the active sites was changing.    

3.3.3 Active species 

The mechanism of the hydroformylation reaction was considered in order to relate the 

changes observed in the catalyst structure to the activity results. In the Rh/PPh3-catalysed 

homogeneous hydroformylation, according to the widely accepted Wilkinson’s dissociative 

mechanism [1, 2, 31], the active species are the 16-electron hydrides, HRh(CO)(PPh3)2 and 

HRh(CO)2(PPh3), which are formed by the dissociation of CO from the 18-electron 

carbonyl hydrides (see Scheme 2).  

 

As discussed above, once in contact with carbon monoxide, the monophosphine species 

Rh(CO)(acac)(PS-PPh2) was transformed to a Rh-carbonyl species, Rh(CO)3(PS-PPh2), that 

is a direct catalyst precursor in hydroformylation. In a similar way, the 2-Rh-PPh3/SiO2 

catalyst prepared from a Rh(CO)(acac)(PPh3) precursor needs to lose the acac group before 

the catalyst becomes active. The activation of the bisphosphine species is simpler: all that is 

required is formation of the carbonyl hydride species, HRh(CO)2(PS-PPh2)2. Accordingly, 

an increase in activity with time occurred only for the phosphine containing catalysts, 

FibrecatTM and 2-Rh-PPh3/SiO2, while the activity of the supported non-phosphine 

modified rhodium catalysts decreased. The activation period on FibrecatTM could be 

shortened by carbon monoxide or CO/H2 pretreatments since the catalytic precursor sites 

were formed already during the pretreatment. The treatment with CO/H2 thus promotes the 

formation of an active species at 35 ppm and prevents the formation of the hydrocarbon 

coordinated Rh(PS-PPh2)(CO)3-z(CxHy)z (z = 1–3) species, which is less active in 

hydroformylation. 
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The activation behaviour of the catalysts prepared with acetone was similar to that of the 

catalysts prepared with dichloromethane, except that the activation took longer for  

6-FibrecatTM(Acet) than for 3-FibrecatTM(dcm) with a similar conversion level (Fig. 4 in 

[IV]). This indicates that the activation of the Rh-monophosphine species was slower 

compared to the Rh-bisphosphine species. Moreover, the samples prepared with acetone 

exhibited different propanal selectivities depending on the metal loading and the mono/bis 

ratio: the propanal selectivity was 95% for 3-FibrecatTM(Acet) (mono/bis = 3.6), but from 

91–93% for 6-FibrecatTM(Acet) (mono/bis = 5.6). Thus, the Rh-bisphosphine species 

appears to be more selective in producing propanal than the Rh-monophosphine species.     

3.3.4 Catalyst deactivation 

Hydroformylation runs lasting 50 h were carried out to assess the long-term stability of 

FibrecatTM. The conversion for 4-FibrecatTM decreased from 15% to 10% over a 50 h time 

period at 100 °C and 0.5 MPa (Figure 9). The propanal selectivity increased slightly, from 

94% to 96%. At 110 ºC and 0.5 MPa, the deactivation was even more drastic with  

4-FibrecatTM: conversion decreased from 28% to 10% over 40 h on stream whereas with 

6.7-FibrecatTM the decrease was only 8 %.   

 

The two main deactivation mechanisms in homogeneous hydroformylation are the 

degradation of the phosphine ligands and the oxidation of the phosphine ligands to 

phosphine oxide [63].  Degradation of the phosphine ligands is not likely under the mild 

reaction conditions used. Also, the quantitative 31P NMR did not show a loss of phosphorus 

even after 50 h of reaction. The formation of Rh-dimers observed in homogeneous 

processes can be prevented by immobilisation of the catalyst on a support [63] and is 

therefore not likely on FibrecatTM. 
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Figure 9. Ethene conversion and yields for 4-FibrecatTM at 110 or 100 °C and 0.5 MPa; 

WHSV = 5 h-1, Ar:CO:H2:C2H4 = 1:2:2:2 mol:mol. [IV] 

 

There might have been traces of oxygen present in the system when the reaction was 

started, so one should consider the possibility of oxidation of phosphine resulting in 

breakage of the Rh-P bond. However, examination of the 31P NMR spectra shows that the 

ratio of the two different relaxation time components for the peak at 28 ppm, before and 

after CO/H2 treatment, does not change significantly. We have assumed that the minority, 

faster relaxing component comes from phosphine oxide in the catalyst. If this is valid then 

it is reasonable to assume that there is no phosphine oxide formed during the reaction 

either. Moreover, the quantitative 31P NMR results show that there was no loss of 

coordinated rhodium or phosphorus during the pretreatments or reaction.  

 

After the initial activation period, and after reaching steady-state, the activity of FibrecatTM 

decreased slightly with time. The 31P NMR spectra of FibrecatTM after the reaction showed 

new peaks at around 40–60 ppm and these were assigned to Rh(CO)3-z(CxHy)z(PS-PPh2) 

(z=1–3) species. These complexes were formed after both 24 h and 50 h on stream, but the 

amount of the species with higher z increased with time. The amount of hydrocarbon 

coordination was also higher at 110 ºC than at 100 ºC. As a result of coordination of two or 
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three hydrocarbons, there are not enough coordination sites on the catalyst for carbonyl, 

hydrogen and ethene (step 2 in Scheme 2) and thus the number of active sites available for 

hydroformylation decreases. The increased coordination of hydrocarbon with time at least 

partly explains the decrease in activity.  

 

One possibility for the identity of the coordinated species would be the ethyl group, since 

ethyl coordination to rhodium is part of the catalytic cycle (Scheme 2), even though it 

should be further hydroformylated to propanal or hydrogenated to ethane. Other possible 

hydrocarbons are reaction products, or parts of the acetyl acetonate group, which might 

have decomposed in contact with CO/H2 [64]. 

 

The deactivation was clearer at 110 ºC than at 100 ºC. Samples were exposed to 

temperatures just around the melting point of polyethene for a long time and then cooled 

fairly slowly and this could have caused annealing of the sample [65]. The possible 

annealing was studied by examining the CH2 carbon region around 33 ppm in the 13C NMR 

spectra to get a qualitative idea of the degree of crystallinity of the polyethene. No 

annealing was observed in 3-FibrecatTM after CO/H2 treatment at 100 ºC. After reaction at 

110 ºC and 0.5 MPa, however, the crystallinity of the catalyst increased, indicating that 

some annealing of the fibres had occurred during the reaction. Thus, annealing could also 

be another contributing factor to the clearer deactivation of FibrecatTM at 110 ºC compared 

to 100 ºC. The increase in crystallinity makes active sites in the amorphous phase less 

accessible for the reactants, resulting in a decrease in activity. As discussed above, the 

amount of hydrocarbon coordination with z = 2 or 3 was also higher, contributing to the 

deactivation at 110 ºC. One should also remember that, at the low temperature employed, 

some of the products, especially C6O, even though formed in small quantities, may over 

time accumulate on the support of the catalyst and block part of the active sites.   

 

In summary, the catalytic results and characterisations indicated that deactivation on 

FibrecatTM was caused by formation of inactive Rh-species by hydrocarbon coordination, 

annealing of the polyethene support at 110 ºC and higher temperatures, and possibly by 

accumulation of reaction products on the surface with time. The amount of phosphorus or 

coordinated rhodium did not decrease during the reaction. 
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4 HYDROFORMYLATION OF PROPENE 

To extend my findings to other alkenes, preliminary reaction tests with 3-FibrecatTM and 

Rh/C were carried out in vapour-phase hydroformylation of propene (unpublished data). In 

propene hydroformylation, it is possible to see the capability of the catalysts to form 

straight-chain or branched aldehydes. Table 9 shows the activity of the rhodium catalysts in 

propene hydroformylation at 90–150 °C.  

 

Table 8. Propene hydroformylation with rhodium catalystsa. 

Selectivities (%) Catalyst Reaction 
conditions 
(ºC, MPa) 

Time 
(h) 

 

Propene 
conv. 
(%) Propane i-

butanal 
n-

butanal 
n/i 

3-FibrecatTM 90, 0.6 11–14 3.2 3.8 42.5 53.7 1.26 

3-FibrecatTM 100, 0.3 11–14 1.1 10.1 40.2 49.7 1.24 

7-Rh/C(T) 150, 0.6 11–14 2.1 61.1 12.5 26.4 2.11 

5-Rh/C(N) 150, 0.6 6 0.7 66.8 14.5 18.7 1.30 

a Ar:CO:H2:C3H6 = 4:1:1:1 mol:mol, WHSV = 3.4 h-1. 

 

Propene was much less reactive than ethene at similar reaction conditions. Propene 

conversion with 3-FibrecatTM was only 3% at 90 °C and 0.6 MPa, but very high butanal 

selectivity was obtained (96%) with normal to branched ratio of 1.26. In order to increase 

conversion level, higher temperatures or pressures should be used. Since the maximum 

reaction temperature for FibrecatTM is about 100 °C as revealed by the ethene 

hydroformylation results, reaction pressure should be increased in order to increase 

conversion level. 7-Rh/C(T) catalyst was the most promising catalyst in terms of the 

formation of the straight-chain products (n/i ratio = 2.1).  

 

For comparison, in the studies of Reinius [5], in liquid-phase hydroformylation of propene 

at 100 °C and 1.0 MPa with a homogeneous catalyst, the n/i ratio was about 1.8. Moreover, 
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with a macroreticular-type phosphinated PS/DVB as a support, the n/i ratio was 1.23 at  

100 °C and 1.4 MPa, with a conversion level of 5%, which is similar to our results. Thus, 

the activity of 3-FibrecatTM is indeed quite high considering the low reaction pressure used. 

As for ethene hydroformylation, the activity of 3-FibrecatTM increased with time.  

 

 In all, high butanal selectivity (96%) was obtained with FibrecatTM in vapour-phase 

hydroformylation of propene. From the carbon supported catalysts, 7-Rh/C(T) was the most 

promising catalyst in directing the selectivity towards straight-chain aldehydes: the normal 

to branched ratio was 2.1.  
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5 HYDROFORMYLATION OF 1-HEXENE  

5.1 Activity of rhodium catalysts in 1-hexene hydroformylation 

In the liquid-phase hydroformylation of 1-hexene at 150 ºC and 7.3 MPa (initial pressure), 

the effect of support on the performance of the Rh/C catalysts was determined. Figure 10 

shows the activity of the carbon supported rhodium catalysts and a homogeneous rhodium 

nitrate in 1-hexene hydroformylation. The normal to branched ratio (n/i) was between 0.5–

0.6 for C7 aldehydes and between 0.7–0.9 for C7 alcohols. The quite low n/i ratios (below 

1) can be explained by the rather high reaction temperature, 150 ºC, and the rather low CO 

pressure. The isomerisation activity was affected by the reaction conditions rather than the 

Rh/C catalysts used, because selectivity towards 2-ethyl-hexanal, which is formed from  

2- or 3-hexene, was 13–14% for all the rhodium catalysts tested.  

 

At best, the activity of the solid catalysts was similar to their homogeneous counterparts. 

On Rh(NO3)3, the selectivity towards C7 alcohols was remarkably higher than that of Rh/C 

catalysts, even at similar conversion levels. Moreover, the greatest difference between 

homogeneous and heterogeneous reaction was the formation of secondary products by 

condensation or acetalisation on the solid rhodium catalysts. These C14 and C21 products 

were only formed in traces on Rh(NO3)3.  

 

Acetal formation, i.e. addition of two alcohol molecules to an aldehyde, is catalysed by a 

trace of strong acid [66]. This is why the acetal formation was studied in relation to the 

nature of the active carbon supports in more detail. The acid catalyzed formation of 

dimethylether decreases in gas-phase methanol hydrocarbonylation in the order Rh/C(C) > 

Rh/C(N) >> Rh/C(T) [53], i.e. the acidic character of the supports decreases in the same 

order. Since for the carbon (N) the formation of C21 was greatest, it was apparently the high 

fraction of meso and macro pores (allowing good mass transfer), together with the acidity, 

that was responsible for the formation of C21 acetals on Rh/C(N). The formation of traces of 

C21 acetals on homogeneous rhodium is explained by the good alcohol selectivity. 
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The activity of the Rh/C catalysts appeared to correlate with the support: the larger the 

pores, the better the mass transfer and the higher the activity. For the most active catalyst, 

Rh/C(N), 30% of the pores were larger than 2 nm in diameter compared to 15% for 

Rh/C(T) and 9% for Rh/C(C). Also, C21 acetals were only formed on a support with large 

enough pores – an indication of the heterogeneous functionality of the catalysts. For 

comparison, in the studies of Zhang et al. [67] with Co/SiO2 catalysts, the best activity and 

selectivity in 1-hexene hydroformylation was obtained with average pore diameters of 6 

and 10 nm. 
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Figure 10. Conversion and selectivity for rhodium catalysts in 1-hexene hydroformylation 

at 150 °C and 7.3 MPa (initial pressure) after 4 h. [V] 
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5.2 Activity of cobalt catalysts in 1-hexene hydroformylation 

The activity of nitrate and carbonyl based silica supported cobalt catalysts was compared to 

homogeneous cobalt nitrate and cobalt carbonyl [V]. Cobalt catalysts of carbonyl origin 

were chosen for study, because higher dispersions have been obtained with carbonyl based 

catalysts compared to nitrate based catalysts [68]. Figure 11 shows the activity of the cobalt 

catalysts in 1-hexene hydroformylation.  

 

Homogeneous Co2(CO)8 was extremely active in hydroformylation; the conversion of  

1-hexene to products was 96 %, whereas it was only 73 % for homogeneous cobalt nitrate. 

Since the solubility of Co(NO3)2 in the reaction medium was low, and cobalt nitrate has to 

be first transformed to Co2(CO)8 and then further to the active HCo(CO)4 species, the 

formation of active species takes place more readily from Co2(CO)8. Also, there were 

differences in the selectivity: the hydrogenation to alcohols was initially higher for 

Co2(CO)8, but the alcohols reacted further to acetals. Since the acetal formation is catalysed 

by a trace of strong acid [66], the high selectivity towards acetals is not surprising 

considering the strong acidic character of HCo(CO)4. Thus, the high selectivity towards 

alcohols and the strong acidic character of HCo(CO)4 both affected the formation of C21 

acetals on homogeneous Co2(CO)8.  

 

At best, the activity of the 5-Co(N)/SiO2 and 2Co(CO)(p)/SiO2 catalysts was comparable to 

the homogeneous nitrate precursor, whereas the activities of the other catalysts were clearly 

lower (Figure 11). The excellent result with 2Co(CO)(p)/SiO2 catalyst could not, however, 

be reproduced; problems were encountered in the catalyst preparation and handling 

procedure due to the air-sensitive nature of the carbonyl precursors. Another reason for lack 

of reproducibility might be the uncontrolled equilibrium between catalyst precursor and the 

dissolved active species: the reaction conditions used (CO pressure < 3.6 MPa, 150 ºC) 

were milder than those reported in the literature necessary to keep cobalt carbonyl species 

stable in solution (more than 4 MPa at 150 ºC [31]). As a result, it was very difficult to 

determine the effect of the cobalt precursor on the activity of the Co/SiO2 catalysts. For 

rhodium, the reaction conditions needed to keep rhodium carbonyl stable in solution are 

noticeably milder and in fact, the experiments were repeatable from run to run.  
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Figure 11. Conversion and selectivity for cobalt catalysts in 1-hexene hydroformylation at 

150 °C and 7.3 MPa (initial pressure) after 4 h. [V] 
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6 STABILITY OF THE RHODIUM AND COBALT 

CATALYSTS IN HYDROFORMYLATION 

Even though there are many reports of applying solid catalysts for heterogeneous 

hydroformylation, stability data is often missing. However, for industrial applications, 

stability of the catalysts is vital for the economics of the processes, due to the high cost of 

rhodium. Therefore, determination of the stability of the catalysts was an important part of 

this work, both in gas and liquid-phase conditions. The performance of the catalysts was 

evaluated as a function of time. Moreover, the stability of the solid catalysts was 

determined by metal analyses before and after the hydroformylation reaction. 

6.1 Gas-phase hydroformylation 

Under gas-phase conditions, the metal losses were less than 10% for Rh/C(N), whereas for 

Rh/C(T) and Rh/C(C) they were 20-30%. This could also be seen by decrease in activity 

with time on stream (Figure 12). Thus, the Rh/C(C) and Rh/C(T) catalysts active in the 

formation of propanal lost more metal than the less active Rh/C(N). Under the reaction 

conditions, it is possible that the supported rhodium species might form volatile carbonyls 

that are transported away from the support with the product flow. To confirm this 

assumption, a test was performed on Rh/C(C) in the absence of carbon monoxide (ethene 

hydrogenation): the losses were only 8%. Thus, most of the losses were due to the action of 

carbon monoxide on rhodium.  

 

The stability of the catalytic performance was evaluated for 68 h on the 5-Co(A)/SiO2 

catalyst (see Figure 3 in [1]). The conversion increased from 10 to 13% over 10 h and 

remained almost constant thereafter, and the selectivities also remained unchanged. The 

increase in conversion was also observed with the 11-Co(A)/SiO2 catalyst (again, over 10 h 

on stream) but not with 16-Co(A)/SiO2 or 4-Co(N)/SiO2, which both maintained the same 

activity throughout the experiment. No time dependent change in the activity on any of the 
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Co(A)/SiO2 catalysts was detected during 1 h on stream in toluene hydrogenation [32]. 

Thus, it seems appropriate to assume that hydrogen did not induce the change. 

 

The steady or increasing activity of the cobalt catalysts with time indicates that the active 

metal is not leached or sublimed from the support, and the stability of the catalysts was also 

confirmed by the metal analyses (see Table 2 in Paper [I]). The results clearly indicated that 

no metal was lost from the support, since the values before and after reaction were the same 

within the accuracy of the analyses.  

 

Thus, the stability of the solid catalysts in heterogeneous hydroformylation is dependent on 

the metal in question and the reaction conditions used. As expected, the stability of the 

catalysts was better in gas phase [I, III] than in liquid phase [V]. The cobalt catalysts were 

stable at 173 ºC and 0.5 MPa, whereas rhodium losses occurred under these conditions. 

This difference was due to the different tendencies to form volatile metal carbonyls. 

Rh(CO)2(acac) and related complexes are excellent precursors for plasma enhanced 

deposition due to their high volatility [69 -71]. 
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Figure 12. Ethene conversion and products yields with time for rhodium catalysts. 

Reaction conditions were 173 °C and 0.5 MPa (WHSV = 2.5 h-1) except with 3-FibrecatTM 

100 °C and 0.5 MPa (WHSV = 5 h-1); Ar:CO:H2:C2H4 = 1:2:2:2 mol:mol. 
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The reaction temperature used for FibrecatTM was much lower (100–110 ºC) than that used 

for unmodified rhodium catalysts, which prevented the formation of volatile carbonyls.  

This was confirmed by quantitative 31P NMR characterisations, according to which the 

amount of phosphorus or phosphorus-coordinated rhodium did not decrease during the 

reaction. The catalytic results and characterisations indicated that deactivation on 

FibrecatTM was due to formation of inactive Rh-species by hydrocarbon coordination, 

annealing of the polyethene support at 110 ºC, and possibly by accumulation of reaction 

products on the surface with time. The amount of phosphorus or coordinated rhodium did 

not decrease during the reaction. 

6.2 Liquid-phase hydroformylation 

In the liquid-phase hydroformylation of 1-hexene, the metal analyses of the catalysts before 

and after the reaction showed that some metal was dissolved from the support during the 

reaction. The losses were 20-40% of the amount deposited on the support for Rh/C catalysts 

and 40-50% for Co/SiO2 catalysts. The activity of the solid catalysts was, however, not 

directly related to the amount of dissolved metal. The differences between the solid 

catalysts might be due to the different abilities to form the active carbonyl species, in the 

same way as was observed for homogeneous Co2(CO)8 and Co(NO3)2. Thus, the metal 

particle size, and therefore the strength of the metal-support or metal-metal bond, might 

have an influence on the ease of carbonyl formation. However, the amount of metal 

dissolved was not directly related to the metal dispersion. In addition, the pore size 

distribution of the supports influences the mass transfer of the reactants and products, and 

thereby also has an effect on the dissolution of the metal from the support. Accordingly, the 

activity of Rh/C appeared to correlate with the support, i.e. the larger the pores, the better 

the mass transfer of the reactants and products, and the higher the activity (see Figure 3 in 

paper [V]). The experiments in nitrogen or hydrogen atmospheres also resulted in metal 

losses, thus indicating that, in addition to synthesis gas mediated formation of active 

species, dissolution of the metals by product occurred. 
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7 CONCLUDING REMARKS 

The purpose of this research was to develop a solid catalyst for heterogeneous 

hydroformylation. Different supports, precursors, preparation methods and pretreatments 

were applied in order to obtain an active, selective and stable hydroformylation catalyst.  

 

The support characteristics and the different pretreatments had a clear effect on the 

dispersion and the extent of reduction and, thereby, on the activity and selectivity of the 

Rh/C catalysts in ethene hydroformylation. Dispersed sites were essential for 

hydroformylation activity, and the presence of unreduced rhodium was favourable for 

propanal formation. It is important to be aware that the impurities of the support matrix 

may promote catalysis as was the case with the unintentional promotion by potassium on  

7-Rh/C(C). Also, it was evident that hydrogen chemisorption only offers an average 

estimate for the particle size of the metal, and that other characterisation methods like TEM 

and XPS are necessary in order to get a more detailed view of the rhodium distribution on 

the catalyst surface.  

 

Atomic layer deposition was a good technique for the preparation of dispersed Co/SiO2 

catalysts using a Co(acac)3 precursor, and a clear relation between metal dispersion and 

hydroformylation activity was obtained. The high metal support interaction was evidenced 

by quite low extents of reduction (50 %). It would be interesting to apply this technique to 

the preparation of rhodium catalysts as well.   

 

The most promising rhodium catalyst in ethene hydroformylation was the fibrous polymer-

supported Rh-phosphine catalyst, FibrecatTM, prepared from a Rh(acac)(CO)2 precursor: high 

propanal selectivity (95%) and high activity were obtained under mild reaction conditions. 

The solvent used in the impregnation step had an effect on the Rh-monophosphine/Rh-

bisphosphine species distribution on FibrecatTM. More research is needed to further study 

the effect of the preparation conditions on the catalyst structure and the activity of the  

Rh-monophosphine and Rh-bisphosphine species in hydroformylation. 
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In industrial heterogeneous hydroformylation, the stability of the catalysts is essential to the 

economics of the process. Therefore, the determination of the stability of the catalysts was 

an important part of this work as well. Clearly, the stability of the catalysts was related to 

their capability to form volatile or soluble carbonyls and thus, directly related to the 

reaction conditions applied. A careful consideration of the reaction conditions versus 

properties of the catalytic metal and the support matrix are essential to obtain a stable solid 

catalyst for heterogeneous hydroformylation. 
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