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J Lindberg1, T Setälä1, M Kaivola1 and A T Friberg2

1 Department of Engineering Physics and Mathematics, Helsinki University of Technology,
PO Box 2200, FIN-02015 HUT, Finland
2 Department of Microelectronics and Information Technology, Royal Institute of
Technology, SE-164 40 Kista, Sweden

E-mail: jlindber@cc.hut.fi

Received 17 September 2003, accepted for publication 8 January 2004
Published 24 February 2004
Online at stacks.iop.org/JOptA/6/S59 (DOI: 10.1088/1464-4258/6/3/010)

Abstract
We analyse the changes in the partial polarization of random, stationary light
fields in transmission through a near-field probe. The probe is modelled as a
two-dimensional metal-coated optical fibre tip through which the field is
propagated by applying the boundary-integral method. Both the magnitude
of the opening angle and the aperture size of the probe are found to
significantly influence the partial polarization of the field. We discuss the
results in terms of both the conventional two-dimensional and the recent
three-dimensional formalism for the degree of polarization.

Keywords: optical near field, degree of polarization, boundary-integral
method

1. Introduction

The polarization properties of optical near fields have attracted
considerable attention in recent years. The polarization state is
of crucial importance in many applications of nanophotonics
such as near-field microscopy, which has enabled optical
imaging of nanoscale structures [1, 2]. In a common mode
of near-field microscopy, a nanoprobe consisting of a metal-
coated tapered optical fibre tip with a sub-wavelength aperture
at the apex is scanned very close to the sample. The light
emitted or scattered by the sample is collected by the probe,
or the probe illuminates the sample and the scattered field is
detected in the far zone. Several theoretical methods have
been employed to analyse the electromagnetic interaction
between the sample and the probe in the near field [3–6]. In
particular, the coupling of the different field components into
the probe [7, 8] and the role of polarization in near-field image
formation [9–11] have been extensively studied. However,
the theoretical studies, as a rule, deal with monochromatic,
fully polarized fields, although near-field measurements using
partially coherent, partially polarized light might in some cases
be more relevant [10].

In this paper we analyse the changes in the partial
polarization of light fields in transmission through a near-field
probe. We apply the boundary-integral method to rigorously
propagate the electromagnetic field through a two-dimensional

metal-coated fibre tip used as a model for the near-field
probe [6]. In particular, we investigate the influence of
the tip’s opening angle and the size of the output aperture
on the polarization state of the transmitted light using the
recently introduced three-dimensional degree of polarization.
Furthermore, by considering the far field, we demonstrate
that the three-dimensional and the usual two-dimensional
formalisms for the degree of polarization lead to the same
conclusions on the changes in the polarization state.

The paper is organized as follows: in section 2 we
recall the relevant aspects of the two- and three-dimensional
formalisms for the degree of polarization. In section 3 the
model probe is presented and the boundary-integral method is
briefly outlined. The results of our calculations are presented
and discussed in section 4, and the main conclusions are
summarized in section 5.

2. Degree of polarization for near fields

The degree of polarization is a fundamental quantity that
characterizes the correlations between the electric field
components of a random electromagnetic field. The usual
formulation of the degree of polarization is valid only for
paraxial waves, which are expressible by two orthogonal
electric field components [12]. In the following, we consider
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such a field propagating along the y-axis with the electric field
vector lying in the xz-plane. The two-dimensional degree of
polarization, P2(r, ω), at a point r, at frequency ω, is then
written as

P2
2 (r, ω) = 1 − 4 det[�2(r, ω)]

tr2[�2(r, ω)]
, (1)

where det and tr stand for the determinant and the trace
respectively, and �2(r, ω) denotes the Hermitian, non-
negative definite, 2 × 2 spectral coherence matrix, with its
elements given by

φi j(r, ω) = 〈E∗
i (r, ω)E j (r, ω)〉, (i, j ) = (x, z). (2)

In this equation, Ei(r, ω) and E j (r, ω) are the transverse
electric-field components at r and the angle brackets and
the asterisk denote averaging and complex conjugation,
respectively. It can be shown that 0 � P2(r, ω) � 1, with 0
and 1 corresponding to fully unpolarized and to fully polarized
light. More insight into the 2D degree of polarization is
obtained by writing it in terms of the (complex) correlation
coefficient between the field components, defined as

µxz(r, ω) ≡ φxz(r, ω)

[φxx (r, ω)φzz(r, ω)]1/2
,

µzx (r, ω) = µ∗
xz(r, ω).

(3)

Using this definition the 2D degree of polarization assumes the
form

P2
2 (r, ω) = 1 − 4[1 − |µxz(r, ω)|2]φxx(r, ω)φzz(r, ω)

[φxx (r, ω) + φzz(r, ω)]2
. (4)

Thus, P2
2 (r, ω) is readily expressible in terms of the spectral

densities of the two field components and the modulus of their
correlation coefficient. It is straightforward to prove from
equation (4) that [13]

P2(r, ω) � |µxz(r, ω)|. (5)

In addition, the coordinate system can always be rotated about
the field’s direction of propagation in such a way that the
spectral densities of the two field components become equal,
i.e. φxx(r, ω) = φzz(r, ω). In this particular case the equality
sign in equation (5) holds and we obtain

P2(r, ω) = |µxz(r, ω)|. (6)

Recently, the concept of the degree of polarization was
extended to deal with general three-dimensional, non-paraxial
electromagnetic fields [14]. The 3D degree of polarization,
P3(r, ω), is given by the formula

P2
3 (r, ω) = 3

2

{
tr[�2

3(r, ω)]

tr2[�3(r, ω)]
− 1

3

}
, (7)

where �3(r, ω) denotes the 3 × 3 spectral coherence matrix
for which the elements are given by equation (2), with
indices (i, j ) = (x, y, z). The value of P3(r, ω) is bounded
between 0 and 1, corresponding to fully unpolarized and fully
polarized three-dimensional fields respectively. In analogy
with equation (3), we may introduce the correlation coefficients

between the three orthogonal field components, which allows
us to rewrite P3(r, ω) in the form

P2
3 (r, ω) = 1 −

∑
i, j 3[1 − |µi j (r, ω)|2]φi i(r, ω)φ j j (r, ω)

[φxx(r, ω) + φyy(r, ω) + φzz(r, ω)]2
,

(8)
where the summation is carried out over index pairs (i j ) =
(xy, xz, yz). Equation (8) expresses P3(r, ω) in terms of
the absolute values of the correlations between the field
components, and their spectral densities. Furthermore,
equation (8) yields the following inequality [14]

P2
3 (r, ω) �

∑
i, j |µi j (r, ω)|2φi i(r, ω)φ j j (r, ω)∑

i, j φi i(r, ω)φ j j (r, ω)
, (9)

where the summations again are performed over the index
pairs (i j ) = (xy, xz, yz). Equation (9) shows that
P2

3 (r, ω) represents the upper limit of the averaged correlation
coefficients squared, weighted by the corresponding spectral
densities. Again, the coordinate system may always be rotated
in three dimensions in such a way that the spectral densities
become equal. In this coordinate system the equality sign in
equation (9) holds and we have

P2
3 (r, ω) = |µx y(r, ω)|2 + |µxz(r, ω)|2 + |µyz(r, ω)|2

3
,

(10)
which is the 3D analogue of equation (6).

We emphasize that the value of the degree of polarization
depends, in general, on the dimensionality of the treatment.
This fact is intuitively understood by considering the following
plane-wave example. A plane wave, whether unpolarized in
the usual two-dimensional sense or not, can never be fully
unpolarized in the three-dimensional treatment [14], since
the electric field vector of such a wave oscillates in a single
plane. In other words, the possible states of the electric field
in the statistical ensemble are confined to lie in the plane
perpendicular to the propagation direction, and hence the
randomness of the field components is strongly limited leading
to a non-zero 3D degree of polarization. A more thorough
discussion of this fact is found in [14].

3. Boundary-integral method

For the calculation, we employ a two-dimensional model for
the near-field fibre tip illustrated in figure 1. The aluminium-
coated structure is uniform in the z-direction and the medium
in each region is assumed linear, homogeneous and isotropic.
The fibre tip is of glass (ng = 1.5) and the ambient medium
has an index of refraction of na = 1.0. The thicknesses of the
aluminium coatings (nAl = 0.718 + 5.917i) in the horizontal
layer and around the tip are 500 and 70 nm respectively. The
horizontal aluminium layer is chosen to be thick enough in
order that we can reasonably approximate that the field is zero
on the lower border of the layer far away from the tip apex.

In the 2D geometry each realization of the electromagnetic
field can be represented as a superposition of an s-polarized
(transverse electric) and a p-polarized (transverse magnetic)
component. The s-polarized wave is represented by a single
electric field component which, in this case, points in the z-
direction. For the p-polarized wave, on the other hand, a z-
oriented magnetic field component is used. In both cases the
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Figure 1. A 2D model for a metal-coated tapered fibre tip with an
opening angle α and an output aperture diameter d . The geometry is
similar to that investigated in [6]. The vertical distance between the
lower and upper aperture is 1000 nm. The thickness of the
aluminium layer is 500 nm in the horizontal part and 70 nm around
the tip. A plane wave of wavelength λ = 488 nm and wavevector
k ‖ −û y is incident on the structure. The scalar field ψ(r) stands
for the z component of the electric or the magnetic field vector,
corresponding to s- or p-polarized light.

behaviour of the electromagnetic field is everywhere governed
by the 2D scalar Helmholtz equation

(∇2 + k2
0n2)ψ(r) = 0, (11)

where ψ(r) denotes the (complex) amplitude of the electric (s
polarization) or the magnetic field (p polarization). Further,
k0 is the free-space wavenumber, n is the refractive index
of the medium and r = (x, y). In this work we make
use of a numerical procedure known as the boundary-integral
method to solve equation (11) in the arrangement of figure 1.
Below we briefly outline the theory; for a more comprehensive
presentation see, e.g., [6, 15–17].

The geometry of figure 1 consists of four regions. The
solution of the Helmholtz equation in a region labelled by l
(l = 1, 2, 3, 4) can be expressed as a boundary integral

ψl(r) =
∮

sl

{Gl(r, r
′)[n̂ · ∇′ψl(r

′)]

− ψl(r
′)[n̂ · ∇′Gl(r, r

′)]} ds ′, (12)

where n̂ denotes the outward unit vector normal to the curve
sl around the region. The Green function Gl(r, r

′), which
satisfies the inhomogeneous 2D Helmholtz equation with a
delta-function source term, is explicitly given by

Gl(r, r
′) = i

4
H (1)

0 (k0nl |r − r′|), (13)

where H (1)
0 is a zero-order Hankel function of the first kind,

and r and r′ refer to the field and source points respectively.
None of the regions in the fibre-tip model is closed.

However, to employ the boundary-integral method, the
domains must to be closed and for this we adopt the following
procedures [6]: the boundaries separating regions 1 and 2, and
regions 2 and 4, are extended from x = −R to −∞. Similarly,
the boundaries separating regions 1 and 3, and 3 and 4, are

Figure 2. Behaviour of the 3D degree of polarization, P3, as a
function of angle θ at the distance r = 10 µm from the output
aperture. The incident wave is fully unpolarized and the different
curves correspond to varying opening angles of the tip.

extended from x = +R to +∞. Domains 2 and 3 are then
closed with vertical segments at x = −∞ and +∞ respectively,
and infinite semicircles are used to close domains 1 and 4. For
points in region 1, the integral over the semicircle gives the
incident field [6], whereas the integral over the semicircle in
region 4 vanishes due to the fact that the field satisfies the
Sommerfeld radiation condition.

Calculation of the field inside a region using the boundary-
integral method requires knowledge of the field and its normal
derivative on the boundary. The boundary values are obtained
by taking the limit of equation (12) as the field point r

approaches the boundary. The boundaries in the interval −R �
x � +R are then discretized and the boundary conditions
for the electric and magnetic fields are employed to relate the
field and its normal derivative for the adjacent regions. After
the contributions from the extended boundaries (|x | > R) are
taken into account, the field and its normal derivative on the
boundary are obtained by solving the ensuing matrix equation.
Once the boundary values are known, the field inside a region
can be calculated from equation (12). We note that in the case
of the p-polarized light, where the magnetic field is known,
the electric field is straightforwardly obtained by employing
the Maxwell equations. The accuracy of the results is verified
by an energy conservation check.

4. Results

We assume that the field incident on the structure shown
in figure 1 is a planar wave, with equal spectral densities
associated with the s and p components, but with a degree
of polarization which may be arbitrary. According to
equations (4) and (8), the 2D and 3D degrees of polarization
can be expressed using the spectral densities and the correlation
coefficients of the orthogonal field components. For the
incident field these quantities are written as φi

xx(r, ω) =
φi

zz(r, ω), φ
i
yy(r, ω) = 0 and 0 � |µi

xz(r, ω)| = P2(r, ω) �
1. We represent the incident wave by an ensemble in
which each realization has equal amplitudes in the s and p
directions. On employing the boundary-integral method, we
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Figure 3. Behaviour of the 3D degree of polarization, P3, as a function of the radial distance r from the aperture in four directions θ = 0◦,
20◦, 40◦ and 60◦. The incident wave is unpolarized and the opening angle of the probe tip is (a) α = 20◦ and (b) α = 35◦.

calculate the s- and p-polarized transmitted field distributions
for a single realization. The s component leads to the
intensity φt

zz(r, ω), while the p component gives the averaged
quantities φt

xx (r, ω) and φt
yy(r, ω). Furthermore, as regards

the correlation coefficients, obviously the x and y components
are everywhere fully correlated, i.e. |µt

x y| = 1, whereas the
correlations between the z and the x and y components are
the same as the s and p correlation of the incident wave,
i.e. |µt

xz| = |µt
yz| = |µi

xz|. Finally, we emphasize that
the (average) phase difference between the incident s and p
components is irrelevant as regards the degree of polarization
of the transmitted field.

We consider first unpolarized illumination (|µi
xz| = 0). In

figure 2 the 3D degree of polarization P3(r, ω) is shown, on a
semicircle, at a distance r = 10 µm from the output aperture
(d = 50 nm), for probes with opening angles varying fromα =
20◦ to 45◦. We observe that when α = 20◦, the transmitted
field is highly polarized. This is due to the considerably higher
transmission of the p-polarized light through the aperture as
compared to s-polarized light. When the opening angle is
increased, the transmission of the s-polarized light increases
only slightly. Instead, the transmission of the p-polarized light
first decreases for opening angles ranging from α = 20◦ to
35◦, sharply rises for α = 40◦ and then again decreases for
larger α. This behaviour causes the corresponding decreases
and increases in the values of P3(r, ω) observed in figure 2.
The shape of the P3(r, ω) curve is primarily determined by the
diffraction pattern of the p-polarized light, which dominates
over the s-polarized light.

The behaviour of the 3D degree of polarization P3(r, ω)
as a function of the radial distance from the aperture is shown
in figure 3. As before, the illumination is unpolarized and
the diameter of the output aperture is d = 50 nm, while the
tip opening angle is α = 20◦ in figure 3(a) and α = 35◦
in figure 3(b). The values of P3(r, ω) are shown along four
directions specified by the angle θ with respect to the negative
y-axis (see figure 1). In figure 3(a), owing to the significantly
higher transmission for the p-polarized light than for the s-
polarized light, the field is strongly polarized both in the
near zone and in the far zone. Instead, in figure 3(b) the
intensities of the s- and p-polarized components are of the
same order of magnitude, resulting in substantial angular and
radial variations in P3(r, ω).

Figure 4. The effect of the aperture width, d , on the 3D degree of
polarization, P3. The incident wave is unpolarized, the tip opening
angle is α = 30◦ and the calculation is carried out for distance
r = 10 µm.

The effect of the aperture width on the polarization state
of the transmitted field is investigated by calculating P3(r, ω)
(with unpolarized illumination) for three probes with aperture
widths d = 30, 50, 70 nm (see figure 4). The 3D degree
of polarization is observed to be high, when the aperture
width is d = 30 nm, and to decrease significantly as the
aperture width increases. This behaviour is due to the strong
dependence of the s-polarized transmission on the aperture
width. The intensity of the transmitted s-polarized field
becomes comparable to that of the transmitted p-polarized light
for d = 70 nm. This is seen particularly well in figure 4
for the angles near the forward direction (θ ≈ 0), where
the y component of the electric field is close to zero and
the field behaves as an unpolarized plane wave (in the 2D
sense). Thus, the 3D degree of polarization approaches the
value P3(r, ω) = 1/2 when the aperture is increased.

The dependence of the 3D degree of polarization of the
transmitted field on the correlation between the orthogonal (s
and p) components of the incident wave is depicted in figure 5.
The correlation coefficient is, in this case, equal to the 2D
degree of polarization P2(r, ω), as shown by equation (6).
As the value of |µi

xz(r, ω)| of the incident wave increases,

S62



Degree of polarization in light transmission through a near-field probe

Figure 5. Dependence of the 3D degree of polarization, P3, on the
correlation |µi

x y| of the incident field. The opening angle is α = 30◦
and the calculation is carried out for r = 10 µm.

so does P3(r, ω) of the transmitted field. The 3D degree of
polarization reaches the maximum value P3(r, ω) = 1, when
the incident field components are fully correlated, i.e. when
|µi

xz(r, ω)| = 1. This is as expected, since for a fully polarized
incident field the transmitted field necessarily is fully polarized
as well.

Finally, in figure 6, we compare (with unpolarized
illumination) the 2D and 3D degrees of polarization of the
transmitted field for two probes having an opening angle
α = 30◦ and aperture widths 50 and 70 nm. In order
for P2(r, ω) to be a reasonable measure for the degree of
polarization, the field must be planar. This requirement is, to a
good approximation, satisfied locally at a distance r = 10 µm
for angles |θ | � 45◦, since the amplitude ratio of the normal
and tangential field components on the semicircle centred at
the aperture is less than 0.04. Both P2(r, ω) and P3(r, ω)

exhibit similar behaviour showing minima and maxima at the
same positions. The difference is their numerical value; a fact
that was discussed in section 2.

5. Conclusions

We have analysed the changes in the partial polarization of light
transmitted through a near-field probe tip by making use of the
concept of the three-dimensional degree of polarization and
by applying the boundary-integral method. We examined the
dependence of partial polarization on both the opening angle
and the aperture size of the tip, and found that the probe can
induce significant modifications to the degree of polarization of
the illuminating wave. These changes are related to the higher
transmission of the p-polarized light as compared with that of
s-polarized light through the tip. For instance, a probe with a
small opening angle and a small aperture acts like a polarizer
blocking the s component and thus resulting in a high degree of
polarization for the transmitted field. Furthermore, within the
two-dimensional model geometry, we demonstrated that the
2D and 3D formalisms for treating the polarization state of the
field provide similar information in the far zone. Comparisons

Figure 6. Comparison of the 2D (P2) and 3D (P3) degrees of
polarization at a distance r = 10 µm from the aperture in the far
zone. The incident field is unpolarized and the tip opening angle is
α = 30◦.

cannot be made in the near zone where the usual 2D description
of polarization is not valid. Knowledge of the probe-induced
changes in partial polarization of the field is expected to be
particularly useful in near-field microscopy and polarization
imaging.
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