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We study the scattering of a partially coherent electromagnetic beam from metallic nanocylinders and analyze
the effects of plasmon resonances on the coherence and polarization properties of the optical near field. We
employ the coherent-mode representation for the incident field and solve the scattering problem independently
for each mode by using a boundary-integral method. Our results show that the plasmon resonances may sig-
nificantly affect the coherence and polarization characteristics of the near field and that partial coherence in-
fluences the energy flow in nanocylinder arrays. © 2006 Optical Society of America
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1. INTRODUCTION
Surface plasmon and phonon polaritons are known to
play a central role in the properties of optical near fields.
Often the analysis of plasmon effects is restricted to de-
terministic (monochromatic) optical fields, but some stud-
ies also involving the fluctuating character of light have
appeared. For example, it has been shown that due to ab-
sorption the coherence length in the near field can be
much smaller than the wavelength or that it can extend
over several tens of wavelengths, even for thermal
sources, due to surface polariton excitations.1,2 Also, the
excitations can cause the near-field spectrum to differ sig-
nificantly from the corresponding source and far-field
spectra.3 Furthermore, a study for assessing the effects of
surface polaritons on the degree of polarization in the
near field has also been reported.4 These recent discover-
ies indicate that when the coherence theory is applied to
nanoscale electromagnetic fields, novel effects can be ex-
pected.

Besides surface plasmons on a planar surface, localized
plasmon resonances can be excited in metallic nanopar-
ticles or nanowires. Such an excitation can lead to a large
scattering cross section and to a strong enhancement of
the electromagnetic field around the particle at the reso-
nant wavelength.5–9 Currently there is considerable inter-
est in studies of nanoparticle chains10–14 and
nanowires,5,15–17 as these systems can act as near-field
waveguides enabling light guiding at subwavelength
scales.

In this work we investigate the scattering of a TM-
polarized one-dimensional (1D) Gaussian Schell-model
(GSM) beam from a system consisting of one or more me-
tallic nanowires with cylindrical cross section. We analyze
the changes caused by plasmon resonances on the (spa-
tial) coherence and polarization properties of the optical

near field around the scatterer. We characterize the coher-
ence in the optical near field in terms of the electromag-
netic degree of coherence18,19 and the three-dimensional
(3D) degree of polarization.4,20 The scattering problem is
treated by employing the theory of coherent modes21,22

and solving the scattered modes with a boundary-integral
method.8,23–26

The paper is organized as follows. In Section 2 the
cross-spectral density tensors and the quantities for the
description of partial coherence and partial polarization
in electromagnetic fields are introduced. In Section 3 we
show how the coherence tensors can be determined by
making use of the coherent modes and the angular-
spectrum representation of the wave fields. In Section 4
we apply the concepts of Section 3 to a TM-polarized 1D
GSM beam. The boundary-integral method is described in
Section 5, and the results are presented and discussed in
Section 6. The work is summarized in Section 7.

2. CROSS-SPECTRAL DENSITY TENSORS
The geometries that we consider are invariant in the z di-
rection and, therefore, can be treated as two dimensional
(2D). In such a system each realization of the fluctuating
electromagnetic field can be represented as a superposi-
tion of transverse electric (TE) and transverse magnetic
(TM) field components. The TE-polarized and TM-
polarized waves are determined by, respectively, a single
electric field and a single magnetic field component,
which, in this case, point in the z direction.

The coherence properties of a partially coherent, statis-
tically stationary (in the wide sense) electromagnetic field
are, at angular frequency �, characterized by the electric,
magnetic, and two mixed cross-spectral density tensors,
whose components are, respectively, given by21
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Wkl
�e��r1,r2,�� = �Ek

*�r1,��El�r2,���, �1�

Wkl
�h��r1,r2,�� = �Hk

*�r1,��Hl�r2,���, �2�

Wkl
�m��r1,r2,�� = �Ek

*�r1,��Hl�r2,���, �3�

Wkl
�n��r1,r2,�� = �Hk

*�r1,��El�r2,���. �4�

The quantities El,k and Hl,k, with �l ,k�= �x ,y ,z�, denote
the Cartesian components of, respectively, the electric and
magnetic field in the electromagnetic field realization.
Furthermore, ri= �xi ,yi�, with i= �1,2�, refers to two points
in space, the asterisk denotes complex conjugation, and
the angle brackets stand for ensemble averaging.

We will now limit our analysis to the TM-polarized
light, since the plasmon resonances in a 2D geometry can
occur only for light with this polarization direction. For
the TM-polarized light the magnetic cross-spectral den-
sity tensor has only one nonzero element, namely, Wzz

�h�.
Since

E�r,�� = −
1

i���r,��
� � H�r,��, �5�

the magnetic field component Hz determines the compo-
nents Ex and Ey of the electric field realization. This im-
plies that the elements of the electric cross-spectral den-
sity tensor for the TM-polarized light are given by

Wxx
�e��r1,r2,�� =

1

�2�*�r1,����r2,��

�2Wzz
�h��r1,r2,��

�y1�y2
, �6�

Wxy
�e��r1,r2,�� = −

1

�2�*�r1,����r2,��

�2Wzz
�h��r1,r2,��

�y1�x2
,

�7�

Wyx
�e��r1,r2,�� = −

1

�2�*�r1,����r2,��

�2Wzz
�h��r1,r2,��

�x1�y2
,

�8�

Wyy
�e��r1,r2,�� =

1

�2�*�r1,����r2,��

�2Wzz
�h��r1,r2,��

�x1�x2
, �9�

while all the other elements are zero. The permittivity (in
general, complex) is given by ��r ,��=�0�r�r ,��, with �0
and �r�r ,�� denoting the dielectric constant of vacuum
and the relative permittivity of the medium, respectively.
Furthermore, for later purposes, we note that the compo-
nents of the averaged Poynting vector �S�r�� are given
by22

�Sk�r�� =
1

4�
lm

�klm�Wlm
�m��r,r,�� − Wlm

�n��r,r,���, �10�

where �klm is the Levi–Cività antisymmetric unit tensor.
To describe the (spatial) coherence properties of ran-

dom electromagnetic fields, we employ the electromag-

netic degree of coherence and the 3D degree of polariza-
tion. The electromagnetic degree of coherence
�el�r1 ,r2 ,�� is defined as18

�el�r1,r2,�� =
�W�e��r1,r2,���F

�S�r1,��S�r2,���1/2 , �11�

where W�e��r1 ,r2 ,�� is the 3D electric cross-spectral den-
sity tensor, �A�F	�tr�A ·A†��1/2 is the Frobenius norm,
where tr and † denote trace and Hermitian adjoint, re-
spectively, and S�r ,��=tr�W�e��r ,r ,��� is the spectral den-
sity at angular frequency �. The 3D degree of polarization
P3�r ,�� is given by4,20

P3
2�r,�� =

3

2
 tr��W�e��r,r,���2�

tr�W�e��r,r,���
−

1

3
 . �12�

Physically �el�r1 ,r2 ,�� and P3�r ,�� characterize the cor-
relations of orthogonal electric field components at two
points and at one point, respectively.

3. COHERENT-MODE REPRESENTATION
Across the plane y=0 the coherent-mode representation of
the magnetic cross-spectral density tensor of the incident
field is of the form

Wzz
�h�,inc�x1,0,x2,0,�� = �

q=0

�

�q����q
*�x1,0,���q�x2,0,��,

�13�

where �q��� are the eigenvalues and �q�x ,0 ,�� are the or-
thonormal eigenfunctions of the homogeneous Fredholm
integral equation

�
−�

�

Wzz
�h�,inc�x1,0,x2,0,���q�x1,0,��dx1 = �q����q�x2,0,��.

�14�

The modes �q�x ,y ,�� are mutually uncorrelated and thus
propagate without interference. The propagation of the
modes is governed by the 2D Helmholtz equation

�2�q�x,y,�� + k0
2n2�q�x,y,�� = 0, �15�

where k0 is the free-space wave number and n is the re-
fractive index of the medium. Furthermore, as each field
realization obeys the Sommerfeld radiation condition and
the boundary conditions at the interfaces, the same must
be true for the modes �q�x ,y ,��.

We assume that the field propagates into the region y
�0. When the mode �q�x ,y ,�� is known across the trans-
verse plane y=0, the mode within the region y	0 can be
written in terms of the angular-spectrum representation,
which in general may contain both propagating and eva-
nescent components. In two dimensions the representa-
tion is of the form22

�q�x,y,�� =�
−�

�

Aq�
,��exp�i�
x − s�
�y��d
, �16�

where
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Aq�
,�� =
1

2�
�

−�

�

�q�x,0,��exp�− i
x�dx �17�

is the angular spectrum and

s�
� = 
 ��k0n�2 − 
2�1/2, �
� 	 k0n

i�
2 − �k0n�2�1/2, otherwise
 . �18�

Thus the magnetic cross-spectral density tensor of the in-
cident field in the half-space y	0 can be written as

Wzz
�h�,inc�x1,y1,x2,y2,�� = �

q=0

�

�q����q
*�x1,y1,���q�x2,y2,��.

�19�

Once the modes of the incident field are known, we can
treat the scattering of the field by solving the problem in-
dependently for each mode.22

4. GAUSSIAN SCHELL-MODEL FIELD
In this work we consider TM-polarized optical beams
whose magnetic cross-spectral density tensor component
Wzz

�h� at the waist plane �y=0� is of the Gaussian Schell-
model (GSM) form. This is explicitly written as

Wzz
�h��x1,0,x2,0,�� = W0 exp�−

x1
2 + x2

2

4w0
2����exp�−

�x1 − x2�2

2�0
2��� � ,

�20�

where W0 is a constant, w0��� is the beam width of the
magnetic energy density distribution, and �0��� is the
transverse correlation length.

For the GSM beam the coherent modes are known in
the analytical form21

�q�x,0,�� = �2c

�
�1/4 1

�2qq!�1/2Hq�x�2c�exp�− cx2�, �21�

where Hq�x� is the Hermite polynomial of order q,

a =
1

4w0
2���

, b =
1

2�0
2���

, c = �a2 + 2ab�1/2, �22�

and the corresponding eigenvalues are

�q��� = � �

a + b + c�
1/2� b

a + b + c�
q

. �23�

The angular spectrum for the mode �q�x ,y ,�� is ob-
tained by substituting Eq. (21) into Eq. (17), resulting in22

Aq�
� =
�− i�q

2�
�2�

c �1/4 1

�2qq!�1/2 exp�−

2

4c�Hq� 


�2c
� .

�24�

By inserting the above angular spectrum into Eq. (16), ne-
glecting the evanescent components, and approximating
that the main contribution to the resulting integral arises
from the region of small 
, we obtain the following ana-
lytical expression for the mode:

�q�x,y,�� =
�− i�q

2�
2qq!�1/2� 2

�c�
1/4

exp�− ik0ny −
x2

4

�

��1 −
1

2c

�q/2

Hq� ix

2�2c
2 − 
�1/2� , �25�

where


 =
1

4c
−

iy

2k0n
. �26�

Equations (19), (23), and (25) give us the coherent-mode
representation for Hzz of the incident GSM beam through-
out the space.

5. BOUNDARY-INTEGRAL METHOD
We employ the boundary-integral method to solve the
scattering problem for each coherent mode of the incident
field. In what follows we briefly outline the method and
its numerical solution.8,9,23–26

For systems that are invariant in one direction, the be-
havior of the magnetic field modes associated with TM-
polarized light is, in any homogeneous and isotropic re-
gion, governed by the 2D Helmholtz equation [Eq. (15)].
The solution of that equation in a closed region labeled by
j can be expressed as a boundary integral:

�j�r� =�
sj

�Gj�r,r���n̂ · ���j�r���

− �j�r���n̂ · ��Gj�r,r����ds�, �27�

where n̂ denotes the outward unit vector normal to the
curve sj around the region. The Green function Gj�r ,r��,
which satisfies the inhomogeneous 2D Helmholtz equa-
tion with a delta-function source term, is explicitly given
by

Gj�r,r�� =
i

4
H0

�1��k0nj�r − r���, �28�

where H0
�1��x� is the zero-order Hankel function of the first

kind.
To obtain the boundary values, we take the limit of Eq.

(27) as r approaches the point rs on the boundary. The
singularity at rs=r� is treated by deforming the boundary
around the singular point with an arc of radius � and tak-
ing the limit �→0. For a system consisting of two regions
(interior and exterior of the scatterer) with smooth bound-
aries, we obtain

1

2
�1�rs� = �1

inc�rs� +�
s

�G1�rs,r���n̂1 · ���1�r���

− �1�r���n̂1 · ��G1�rs,r����ds�, �29�

1

2
�2�rs� =�

s

�G2�rs,r���n̂2 · ���2�r���

− �2�r���n̂2 · ��G2�rs,r����ds� �30�
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for the region outside �j=1� and inside �j=2� the scatterer,
respectively. Here s denotes the boundary of the scatterer,
and the incident mode is given by �1

inc.
We use the boundary-element method to obtain a nu-

merical solution to the problem. The geometry and the
fields are represented with cubic Lagrange shape
functions,26 and the integrals over each element are
evaluated by using Gaussian quadratures. For each node
on the boundary, we have four unknowns: the field and its
normal derivative in the regions above and below the
node. The boundary conditions for the field and its normal
derivative are employed to express the unknown bound-
ary values of the region inside the scatterer in terms of
the corresponding boundary values in the exterior region
of the scatterer. The equations for the mode �1 and its
normal derivative �1� at the nodes can then be written in
the form25

�B1 C1

B2 C2
���1

�1�
� = ��1

inc

0 � , �31�

where Cj and Bj, with j= �1,2�, represent the integral op-
erators in region j involving the Green function and its
normal derivative, respectively. Since for a fixed fre-
quency the left-hand side of Eq. (31) is independent of the
properties of the incident field, the matrix elements need
to be calculated only once for any given geometry, and
thus all coherent modes of beams with different values of
parameters w0��� and �0��� can be evaluated efficiently.

6. RESULTS
We employ the theory of the previous sections to investi-
gate the effects of plasmon resonances on the coherence
and polarization properties of the near field when a TM-
polarized GSM beam scatters from a single nanocylinder,
two interacting cylinders, or a chain of cylinders. In any
geometry the cylinders are of silver, for which the values
of the refractive index are taken from Ref. 27. We consider
the scattering of two beams with different coherence
properties, one with w0=9.6� and �0=0.6� and the other
with w0=9.6� and �0=4.8�. Unless stated otherwise, the
beams propagate in the negative y direction. For the num-
ber of modes retained in the coherent-mode representa-
tion, we use the criterion �q��� /�0����10−4, which leads
to 74 modes for the beam with �0=0.6� and 10 for �0
=4.8�.

First we analyze the scattering of the beam with �0
=0.6� from a single silver cylinder having a radius of r
=25 nm. Such an object is known to exhibit a plasmon
resonance at the wavelength ��340 nm.5,7,9 In Fig. 1(a)
we show the spectral density S�r ,�� of the total field (in-
cident plus scattered) on a log10 scale close to the cylinder
for the resonant wavelength. It is seen that at resonance
the field has a region of high intensity in front of the cyl-
inder. The 3D degree of polarization P3�r ,�� and the elec-
tromagnetic degree of coherence with respect to the ori-
gin, �el�r ,0 ,��, are depicted in Figs. 1(b) and 1(c),
respectively.28 It is seen that the light in the region of
high intensity in front of the scatterer is highly polarized
and coherent. Furthermore, the field contains two side-
lobes of lesser intensity that have a high degree of polar-

ization and coherence. Figure 2 depicts the same quanti-
ties as those in Fig. 1 but for the off-resonance case �
=375 nm. There is no significant field enhancement, and,
unlike in the resonant case, the highly polarized and co-
herent areas are now localized on the sides of the cylinder.
We have also observed (although not shown here) that, in
both resonance and off-resonance cases, the near field

Fig. 1. Illustration of the coherence properties of the near field
around a silver cylinder of radius r=25 nm: (a) spectral density
log10�S�r ,��� (arbitrary units), (b) 3D degree of polarization
P3�r ,��, and (c) electromagnetic degree of coherence �el�r ,0 ,��.
The incident-beam parameters are w0=4.8� and �0=0.6�, and
the wavelength �=340 nm corresponds to a plasmon resonance.
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around the single cylinder is essentially fully polarized
and fully coherent for the beam with �0=4.8�. We note
that when the coherence length of the incident field is
small, the value of the degree of polarization of the near
field around the scatterer can significantly differ from
unity although the degree of polarization of the incident
field is high (P3�0.9 for �0=0.6� throughout the beam).
This is due to the fact that different source points in the

scatterer and also the fields that they generate can be
weakly correlated for such an incident field. A similar ar-
gument can be presented to explain the effects observed
in the near-field distribution of the electromagnetic de-
gree of coherence.

Next we consider a system consisting of two interacting
silver cylinders with a center-to-center distance of 55 nm.

Fig. 2. Same as Fig. 1, except that the wavelength �=375 nm is
off resonance.

Fig. 3. Illustration of the coherence properties of the near field
around two interacting silver cylinders �r=25 nm� with center-to-
center separation of 55 nm: (a) spectral density log10�S�r ,��� (ar-
bitrary units), (b) 3D degree of polarization P3�r ,��, and (c) elec-
tromagnetic degree of coherence �el�r ,0 ,��. The incident-beam
parameters are w0=4.8� and �0=0.6�, and the wavelength of
light is �=340 nm.
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From the analysis of the scattering cross section, we know
that this two-cylinder system exhibits two resonances:
one close to the single-particle resonance peak at �
�340 nm and another, stronger resonance peak near �
�380 nm.5,7,9 Figures 3 and 4 show the results for the
wavelengths �=340 nm and �=375 nm, respectively. For
�=375 nm the field enhancement is stronger and more lo-
calized than for �=340 nm. We also note that for �
=375 nm there is a clear similarity in the patterns of the
degrees of polarization and coherence to those for the
single-particle resonance at �=340 nm [see Figs. 1(b) and

1(c)]. This is in accordance with the fact that the stronger
resonance at ��380 nm has a more dipolelike character,
similar to that of the single-cylinder dipolar resonance,
than the weaker resonance at �=340 nm, which is of
mixed dipole and quadrupole character.5

Figures 5 and 6 depict the quantities log10�S�r ,���,
P3�r ,��, and �el�r ,0 ,�� for the wavelengths �=340 nm
and �=375 nm, respectively, in the case of two cylinders
placed along the symmetry axis of the incident beam with
a center-to-center distance of 55 nm. The cylinders ex-
hibit a resonance near �=375 nm for this orientation.7,9

Fig. 5. Same as Fig. 3, except that the cylinder structure has
been rotated by 90°.

Fig. 4. Same as Fig. 3, except that the wavelength of light is
�=375 nm.

1354 J. Opt. Soc. Am. A/Vol. 23, No. 6 /June 2006 Lindberg et al.



Figure 5(a) shows that the enhancement of the intensity
mostly takes place close to the boundary of the upper cyl-
inder and that the intensity is quite low in the gap be-
tween the cylinders. For �=375 nm we note, instead, that
the intensity is strongly enhanced in the gap [Fig. 6(a)].
The electromagnetic degree of coherence with respect to
the center point in the gap is shown in Fig. 5(c) for �
=340 nm, and we see that the field is quite coherent and
that the pattern of �el�r ,0 ,�� is rather smooth. However,
for �=375 nm [Fig. 6(c)], we find that the field correla-

tions with respect to the center point of the gap are strong
only in the immediate vicinity of the gap and just below
the second cylinder.

Next we analyze two geometries consisting of several
silver nanocylinders. The first system is shown in Fig.
7(a). It consists of ten cylinders of radius 25 nm, with the
center-to-center distance between the cylinders being
55 nm. The cylinders are deposited above a glass sub-
strate whose refractive index is n=1.5. The angle of inci-
dence is 54° with respect to the surface normal, so that
the cylinders are illuminated by an evanescent wave. Fig-
ure 8(a) shows the spectral density along a line 5 nm
above the particles for the wavelength �=340 nm for two
correlation lengths of the incident beam: �0=0.6� (solid
curve) and �0=4.8� (dashed curve). From the figure we
observe that the intensity peaks are located above the cyl-
inders and note that the value of the coherence length
only slightly affects the intensity distribution above the
cylinders at this wavelength. However, the situation is
different at the wavelength �=412 nm [see Fig. 8(b)]. In

Fig. 6. Same as Fig. 4, except that the cylinder structure has
been rotated by 90°.

Fig. 7. Illustration of the geometries. (a) Array of ten silver cyl-
inders �r=25 nm� above a glass substrate �n=1.5� with the
center-to-center distance of 55 nm. The beam is incident from be-
low, with the propagation direction forming an angle of 54° with
respect to the surface normal. (b) Y-shaped structure of silver cyl-
inders �r=15 nm� with the center-to-center distance of 36 nm in
the individual chains. The separation of the cylinders between
the two vertical chains is 40 nm. The dashed and dashed–dotted
lines are explained in the text.
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this case the intensity at the end of the chain is much
higher for the beam with shorter correlation length. Fur-
thermore, the intensity peaks are no longer localized
above the cylinders but, instead, are seen to lie above the
gaps between the cylinders. This feature is similar to that
observed for a 3D particle chain above a substrate, which
is attributed to an excitation of a collective mode of the
chain.11 Hence our results show that the excitation of
such collective chain modes is influenced by the coherence
properties of the light.

The Y-shaped configuration of Fig. 7(b) is similar to
that analyzed by Gray and Kupka in Ref. 5. The cylinders
�r=15 nm� have a center-to-center distance of 36 nm in
the individual chains, and the separation of the cylinders
between the two vertical chains is 40 nm. The purpose of
the structure is to funnel energy from the incident field to
the vertex and to locally excite the cylinders of the paral-
lel chains at the vertex. A beam (�=448 nm and w0
=4.8�) is incident on the structure from above. Spectral
densities along the double chain are shown in Figs. 9(a)
and 9(b) for the beams with correlation lengths of �0
=0.6� and �0=4.8�, respectively. The intensity distribu-
tions are seen to be nearly similar in shape. The energy
flux in the funnel system is of particular interest in study-

ing the coupling of the incident field into the chain. For
this purpose we calculated the Poynting vectors by using
Eq. (10). Figure 10(a) shows the normal component of the
Poynting vector �−�Sy�� along the dotted–dashed line de-
picted in Fig. 7(b). The plot of the normal component of
the Poynting vector, �Sx�, at x=40 nm parallel to the
double chain, is shown in Fig. 10(b). The results are simi-
lar to those presented in Ref. 5, namely, �Sx� along the
double chain oscillates in sign [Fig. 10(b)] and has much
smaller values than �Sy� at the lower end of the double
chain [Fig. 10(a)]. We observe that the behavior of the
Poynting vectors is similar for both beams, but the energy
flux at the end of the double chain is higher for the spa-
tially more coherent beam.

7. SUMMARY
In this work we have analyzed the effects of plasmon reso-
nances in metallic nanocylinders on the coherence and po-
larization properties of the electromagnetic near field

Fig. 8. Spectral density (in arbitrary units) above the nanocyl-
inder chain for wavelengths (a) �=340 nm and (b) �=412 nm.
The beam parameters are w0=4.8�, and �0=0.6� (solid curves)
and �0=4.8� (dashed curves).

Fig. 9. Spectral density (on log10 scale) around the double chain
of the funnel structure. The beam parameters are w0=4.8�, and
(a) �0=0.6� and (b) �0=4.8�.
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when a 1D Gaussian Schell-model TM-polarized beam
scatters from the system. We employed the coherent-
mode representation of the incident field and solved the
scattering problem with the boundary-integral method.
Our results show that the plasmon resonances in the cyl-
inders lead to a rich variety of electric field correlation ef-
fects in the immediate near zone around the cylinders. We
also demonstrated that in nanocylinder chains the partial
spatial coherence can influence the coupling of the inci-
dent field into the chain and alter the near-field intensity
profile.
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