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Quantum transitions induced by the third cumulant of current fluctuations
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We investigate the transitions induced by non-Gaussian external fluctuations on a small quantum system.
The rates for the transitions between the energy states are calculated using the real-time Keldysh formalism for
the density matrix evolution. We detail the effects of the third cumulant of current fluctuations coupled to a
quantum system with a discrete level spectrum and propose a setup for detecting the frequency-dependent third
cumulant through the transitions it induces. We especially discuss a scheme where the fluctuations are coupled
to a Josephson flux qubit.
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The study of fluctuations has been at the center of interest
in physics for decades. The relevance of noise and fluctua-
tions is underlined by the fundamental relation between fluc-
tuations and dissipation in physical systems. One very con-
crete example of fluctuations is the current noise in electric
circuits. At equilibrium, it obeys the fluctuation-dissipation
theorem that relates the magnitude of fluctuations to the tem-
perature and the impedance of the circuit. For a quantum
system with a finite number of levels interacting with an
environment, the magnitude of these fluctuations in the en-
vironment then determines the steady state of the system,
along with the rate with which this steady state is ap-
proached.

During the past decade, the theory of electric fluctuations
in mesoscopic systems has been significantly developed to
characterize them also out of equilibrium,1,2 where a finite
average current leads to shot noise. The study yields infor-
mation about the microscopic physical phenomena inside
electric conductors and the effects of the electromagnetic en-
vironment on mesoscopic circuits. In large wires the current
statistics is Gaussian and fully characterized by the average
current and the noise power. The experimental development
in manufacturing smaller circuits has enabled the study of
the non-Gaussian character of fluctuations in mesoscopic
samples.3,4 In principle, the knowledge of these fluctuations
allows for an improved characterization of the conductors,1

or the study of the effect their non-Gaussian character causes
on other mesoscopic systems.5–8

With a nonvanishing average current, the probability dis-
tribution of current fluctuations no longer needs to be sym-
metric around the average current. In particular, the third
cumulant of fluctuations describing the skewness of the cur-
rent distribution may be finite. It is also the lowest cumulant
indicating a non-Gaussian distribution. Despite the strong
theoretical effort describing the nature of the higher-order
cumulants,1 measuring even the third cumulant with conven-
tional techniques has turned out to be difficult and so far its
only measurements exist for the case of a tunnel junction.3

Attention is thus turning toward using other mesoscopic sys-
tems as fluctuation detectors.5,6,9–11

In this Communication we analyze the transitions caused
by external fluctuations on a probe quantum system. First,
we present a formula correcting the golden rule transition
rates by taking into account the next-order effects that are
dependent on the third cumulant. This is essential in devel-

oping generic methods for detecting non-Gaussian fluctua-
tions. We can establish conditions imposed on suitable
probes of third-cumulant-induced excitations. Although we
concentrate on current fluctuations, our general analysis is
independent of the physical system as long as the fluctua-
tions are linearly coupled to the probe system. To demon-
strate the results, we consider a quantum two-state system
�qubit� as a probe candidate and propose a setup for measur-
ing the effects of the frequency-dependent third cumulant of
current fluctuations by a Josephson flux qubit.12,13 This can
be viewed as a generalization of using qubits as spectrom-
eters of the quantum noise power,11 a method that has al-
ready been experimentally demonstrated.14

Our starting point is the Hamiltonian

H = Hext + Hs + Hint, �1�

where Hext and Hs describe the environment where the cur-
rent fluctuates, and the quantum system we use as a probe for
the fluctuations, respectively, and Hint is the interaction
Hamiltonian between the environment and the probe. Moti-
vated by the case of a current-biased Josephson junction and
the magnetic interaction between two circuits considered be-
low, we study the bilinear coupling of the form Hint=g�I�.
Here �I is the current fluctuation operator acting on the en-
vironment, � is an operator acting on the probe system, and
g is the coupling constant of the interaction. We assume that
the quantum system is described by a set of energy eigen-
states ��n�� and the average current effect g�I�� is included in
Hs. Treating Hint as a perturbation, the Fermi golden rule
predicts the transition rate

�n→n�
�2� =

2�g2

�2 ��nn��
2S�I�En − En�

�
	

between the eigenstates of the probe system.11 The matrix
element is defined as �nn�= �n���n�� and the noise power
S�I���= �1/2��
−�

� ei�t��I�t��I�0��dt. The lowest-order esti-
mate ��2� is thus proportional to the second cumulant of cur-
rent fluctuations. The correlator in the above expression is
calculated with respect to the environment Hamiltonian Hext
as if the probe system did not exist. Below, we correct the
transition rate ��2� by calculating the next-order contribution
��3�, depending on the third cumulant.
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We solve the density matrix evolution using the real-time
Keldysh method, as outlined in Refs. 15 and 16, which is a
natural formalism for studying a small subsystem in a larger
environment. We are interested in the dynamics of the probe
system in particular, so we study the reduced density opera-
tor 	�t�=Trext	tot�t� where 	tot is the density operator for the
system and the environment. The trace goes over a complete
set of environment states. The idea is to solve the temporal
evolution of a diagonal element of the reduced density ma-
trix 	n�n��t�= �n��	�t��n�� with the initial condition 	nn�t0�=1
�n�n��. In the long-time limit 	n�n��t� is proportional to the
total evolution time t− t0, the coefficient being the transition
rate �n→n�. We calculate the rates between well-specified
states of the reduced system. Therefore, without loss of gen-
erality, we use an initial state of the form 	tot�t0�=	ext�t0�
� 	�t0�, where 	ext�t0� describes the initial state of the envi-
ronment.

As the lowest-order contribution to �n→n� is the well-
known golden rule result �

n→n�
�2� , we concentrate on the next

order contribution �
n→n�
�3� . The total rate is then given by

�n→n�=�
n→n�
�2� +�

n→n�
�3� . Treating Hint=g�I� as a perturbation

and using the graphical rules derived in Ref. 15, we find six
different diagrams contributing to �

n→n�
�3� , �see Fig. 1�.

As each diagram contains one vertex on one and two ver-
tices on the other branch of the Keldysh contour, the rates
can be expressed through the correlators

�3I��1,�2� =
1

�2��2�
−�

�

d�t3 − t1��
−�

�

d�t2 − t1�


 ei�1�t2−t1�+i�2�t3−t1��T̃��I�t1��I�t2�
�I�t3�� , �2�

where T̃ denotes the anti-time-ordering operator. The time-
dependent correlator is calculated with respect to the free
external Hamiltonian Hext with the density operator 	ext�t0�.
We assume Hext to be independent of time and 	ext�t0� to
describe a stationary state with respect to Hext. Our results
can be also stated with the help of the Fourier transform of
��I�t3�T��I�t2��I�t1�
�, which is the complex conjugate of the
previous correlator, so it is a matter of choice which one to
use. Note that our definition in Eq. �2� differs from the third
cumulant corresponding to the Keldysh-ordered characteris-
tic function of fluctuations, often studied in the field of full
counting statistics1—the latter also contains terms of the

form �T̃��I�t1��I�t2��I�t3�
�. Whereas the latter is relevant in
studying the evolution of the off-diagonal density matrix dy-
namics, transition rates cannot be obtained from that form. If
the state of the environment is invariant under time reversal
as usually in equilibrium at low magnetic fields, the cor-
relator �2� vanishes.

Evaluating and summing the different contributions
shown in Fig. 1, we obtain the result

�n→n�
�3� =

4�g3

�3 Re �
n1

��
−�

� �3I�E

�
,
En� − En

�
	

E − �En1
− En�� − i�

dE


 �n�,n�n1,n��n,n1� . �3�

The summation is extended over all the eigenstates of Hs and
� denotes a positive infinitesimal quantity. With the help of
the identity 1 /x−x0± i�= P�1/x−x0�� i���x−x0�, where P
stands for a principle value integral, we can write �3� in the
form

�n→n�
�3� = −

4�g3

�3 Im �
n1

�− iP� �3I�E

�
,
En� − En

�
	

E − �En1
− En��

dE

+ ��3I�En1
− En�

�
,
En� − En

�
	��n�,n�n1,n��n,n1

. �4�

Even without the knowledge of �3I��1 ,�2�, the general re-
sults ��3� and �4�
 contain some information about the re-
quirements made for the meter designed to detect the third-
cumulant effects. The structure of the product of the matrix
elements �ninj

restricts the possible physical realizations used
in detecting the transitions induced by the third cumulant.
Generally the operator � should either couple several states
of the system, or both matrix elements �n,n and �n,n+1 should
be finite.

Next we turn to study the case where the probe system is
a qubit. The system Hamiltonian can be written as
Hs=− 1

2Bz
z− 1
2Bx
x and the interaction term as Hint=g�I
z.

The system Hamiltonian has the eigenstates �E1�
=��↑ �+��↓ �, �E0�=−��↑ �+��↓ � and the eigenenergies

FIG. 1. Six diagrams contributing to �
n→n�
�3�

. Each diagram rep-
resents the temporal evolution from the initial state �n��n� to the
final state �n���n��. The dots represent interaction vertices g�I� and
the horizontal lines forward and backward propagation in time.

FIG. 2. Josephson flux qubit inductively coupled to an external
circuit producing current fluctuations. The effective magnetic fields
Bz ,Bx can be tuned by controlling fluxes �1 ,�2 to maximize the
effects of ��3�.
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E1= 1
2
�Bx

2+Bz
2, E0=− 1

2
�Bx

2+Bz
2. The coefficients can be pa-

rametrized as �=cos � /2 and �=sin � /2, where �
=arctan�Bx /Bz�. We denote the energy difference between
the two eigenstates as �E=�Bx

2+Bz
2. Using the above con-

ventions and the general result �4�, we can express the cor-
rections to the transition rates as

�E1→E0

�3� =
16�g3

�3 F��E

�
	����2��2 − �2� ,

�E0→E1

�3� = −
16�g3

�3 F�−
�E

�
	����2��2 − �2� . �5�

The function F��� contains the information about the third
cumulant and is defined as

F��� = Im�− iP� �3I�E

�
,− �	dE

E − ��
+ iP� �3I�E

�
,− �	dE

E

+ ��3I��,− �� − ��3I�0,− ��� . �6�

Comparing the result �5� with the golden rule rates

�E1→E0

�2� =
8�g2

�2 S�I��E

�
	����2,

�E0→E1

�2� =
8�g2

�2 S�I�−
�E

�
	����2, �7�

one notices that the function F��� plays a similar role in ��3�

as the noise power in ��2�.
Supposing we can control the effective magnetic fields Bx

and Bz, we can optimize the parameter � to produce the
maximum effect from ��3�. The absolute value of the expres-
sion ����2��2−�2� is maximized by choosing �=0.89,
which implies �=0.46 or vice versa, i.e., Bx=1.4Bz or Bz

=1.4Bx. By changing the magnitude of �E=�Bx
2+Bz

2 but
keeping Bx /Bz fixed, one can probe F��� as a function of
frequency.

A physical qubit always has some intrinsic noise mecha-
nism, in solid-state realizations produced by the electromag-
netic environment, which cannot be neglected �we consider
the external fluctuation circuit as an additional environment�.
To be measurable, the external current fluctuation effects
have to be significant compared to transitions due to the
intrinsic noise.

A possible physical realization for the system considered
above is a Josephson flux qubit12,13 coupled inductively to
the external circuit �see Fig. 2�. The interaction Hamiltonian
is of the form Hint= �M�� /2Lqb��I
z, where M is the mutual
inductance between the qubit and the external circuit, �� is
the flux difference between the two states of the flux qubit,
and Lqb is the inductance of the qubit. We choose ��I�=0,
since the effects of the finite average external current can be
included in redefining Bz or eliminated by a flux control. The
effective magnetic fields can be controlled by external fluxes

through the loops so the qubit can be biased to the optimal
point for detecting ��3�. The transition rates follow from Eqs.
�5� and �7� after the identification g=M�� /2Lqb. We assume
that the energy gap to the higher states is large compared to
any other energy scales in the system, allowing us to make
the two-state approximation and to neglect the effective in-
teraction terms nonlinear in �I.

Let us estimate ��3� in a flux qubit for a specific setup.
Suppose that the external circuit consists of a scatterer with
resistance R and loop inductance L. We assume that the third
cumulant of current fluctuations in the scatterer is frequency
independent in the frequency scale of the circuit, �L�R /L.
This is generally the case provided that the voltage eV over
and the Thouless energy ET of the scatterer, defined as the
inverse time of flight through it, satisfy eV, ET���L.17,18

Then the frequency dependence of the correlator �2� arises
solely from the classical effect of the inductance L modifying
the noise. In this limit Eq. �2� can be approximated by

�3I��1,�2� =
F3e2I�2��−1

�1 +
i�1L

R
	�1 +

i�2L

R
	�1 −

i��1 + �2�L
R

	 ,

�8�

where I is the average current in the circuit and F3 is a
scatterer-specific proportionality constant �“Fano factor”� be-
tween the third cumulant and the current.

In deriving �8�, we assumed LqbIqb
2 �LI2 where Iqb is the

current in the qubit, allowing us to neglect the back action of
the qubit on these fluctuations. This leads to the rates
�E0→E1

�3� =�E1→E0

�3� ���3� given by

��3� = A
�E�L

3

��E2 + �2�L
2���E2 + 4�2�L

2�
, �9�

where A�32�F3e2Ig3����2��2−�2�. The noise power for
the setup can be written as

S�I��� =

F2�eI −
����

R
	��eV − ����� +

������
R

1 + �2/�L
2 , �10�

where F2 is the Fano factor for the second cumulant and ��x�
is the Heaviside step function. This formula includes the
quantum fluctuations �last term� and is valid for our case
provided that the temperature T is low, kBT��E. In the limit
eV��E, we get from Eqs. �7�, �9�, and �10� that �E1→E0

�2�

=�E0→E1

�2� ���2� and

�3 �
��3�

��2� = 2��2 − �2�g̃
F3

F2

�E��L

�E2 + 4�2�L
2 , �11�

with g̃= �M��e /�Lqb�. For the optimal parameters � and �
mentioned above, �2−�2=0.58. The phase difference of the
two flux states can be of the order of �0 /4=h /8e, so we may
estimate g̃��2�M /8Lqb�. Consequently, it can be made of
the order of unity or greater by an efficient inductive cou-
pling and a large external inductance L. The factor F3 /F2,
usually of the order of unity, depends solely on the nature of
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noise produced by the scatterer.19 For realistic parameters
�L / �2��=10 GHz and �E /h=1 GHz the last factor is about
2.5%. Optimizing the setup one could expect a relative effect
���3� /��2�� up to roughly 10%, which shows that the third
cumulant effect can be significant.

Now suppose that the intrinsic relaxation of the qubit is
caused by an independent zero-averaged fluctuating Gauss-
ian field. Then the second-order rate should be replaced by
the sum of rates caused by the field and the external circuit,
the third-order rate remaining unchanged. In the case of a
zero-temperature environment, this intrinsic relaxation rate
�int can be quantified by the Q factor, �int=�E /�Q. In this
case, its ratio to the rate ��2� is

�Q
int �

�int

�E0→E1

�2� =
R

4RQ

1

Qg̃2

1 + �E2/��L
2

F2� eV

�E
− 1	��eV − �E�����2

.

�12�

Here RQ=h /e2.
One possibility to detect ��3� is to let the qubit reach the

stationary state and then determine the probabilities PE0
and

PE1
=1− PE0

of the states �E0� and �E1�. This can be achieved
by repeated measurements of the qubit. From detailed bal-
ance we get

p �
PE1

PE0

=
�E0→E1

�2� + �E0→E1

�3�

�E1→E0

�2� + �E1→E0

�3� =
1 + �3

1 + �Q + �3
, �13�

where �Q=�Q
int+�Q

c and �Q
c = ��E1→E0

�2� −�E0→E1

�2� � /�E0→E1

�2� . Now
inverting the external current I, ��3� changes sign and we get
p�� PE1

� / PE0
� = �1−�3� / �1+�Q−�3�. From the above rela-

tions one can solve �E1→E0

�3� and �E0→E1

�3� provided that the

probabilities, �int and �i
�2� are known. One can evaluate �i

�2�

by applying Eq. �7� or the rates can be determined experi-
mentally. From Eqs. �5� and �7� we see that when �=�, ��3�

vanishes but �i
�2� remains finite. By keeping �E fixed but

setting Bz=0 it is possible to measure �i
�2� independently.

Figure 3 shows the asymmetry p− p� in the change of polar-
ization with respect to the current in the source as a function
of the magnitude of the current �bias voltage V=RI�.

In conclusion, we have studied the transitions induced by
the third cumulant of current fluctuations on a probe quan-
tum system. We have calculated a general formula for the
transition rates and propose a scheme to measure the pre-
dicted results using a Josephson flux qubit. We have shown
that the third-order transition rates are governed by a variant
of the third cumulant different from the conventional
Keldysh-ordered one.
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FIG. 3. �Color online� Difference p− p� in the qubit polariza-
tions at different directions of the current for different magnitudes
of intrinsic relaxation, Q=10 �blue solid line�, Q=1 �red dashed
line�, and Q=0.1 �green dash-dotted line�. The inset shows the cor-
responding total polarization vs voltage V=RI. Note that the behav-
ior in the region eV��E relies on the approximations made to
obtain Eq. �11�. These curves have been calculated with �=0.89,
�=0.46, g̃=F2=F3=1, ��L=2�E, and R=0.2RQ.
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