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Quantum detectors for the third cumulant of current fluctuations
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We consider the measurement of the third cumulant of current fluctuations arising from a point contact,
employing the transitions that they cause in a quantum detector connected to the contact. We detail two generic
detectors: a quantum two-level system and a harmonic oscillator. In these systems, for an arbitrary relation
between the voltage driving the point contact and the energy scales of the detectors, the results can be
expressed in terms of an effective detector temperature Teff. The third cumulant can be found from the
dependence of Teff on the sign of the driving voltage. We find that proper ordering of the fluctuation operators
is relevant in the analysis of the transition rates. This is reflected in the effective Fano factor for the third
cumulant measured in such setups: it depends on the ratio of the voltage and an energy scale describing the
circuit where the fluctuations are produced.
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I. INTRODUCTION

The statistics of current fluctuations in mesoscopic con-
ductors have been at the center of interest within the last
decade or so. This statistics can be described by the charac-
teristic function, which is the Fourier transform of the prob-
ability density for a given value of the current. Characteristic
functions for many different types of systems have been cal-
culated, ranging from the simple case of a tunnel junction
with Poisson-distributed currents to point contacts with bino-
mial distribution and to more complicated systems composed
for example of superconductors.1,2 Along with the character-
istic function, the fluctuations can be described by the cumu-
lants or moments of the distribution, the latter being of the
form

Mn�t1, . . . ,tn� = � �
i=1,n

�I�ti�� , �1�

where �I�ti�= I�ti�− �I�, I�t� is the instantaneous value of the
current, and the brackets �·� refer to ensemble averaging. The
typically described observable is then the Fourier transform
of Mn�0, t2− t1 , . . . , tn− t1� with respect to the time differences
ti− t1 and often only the limit where all the frequencies are
taken to zero is known.

As many of the studied systems require quantum mechan-
ics for their description, a natural question is the proper gen-
eralization of Eq. �1� to include the fact that the current op-

erator Î�t� may not commute with itself at different times.
The answer to this question depends on how the fluctuations
are to be measured. Levitov, Lee, and Lesovik suggested the
use of a spin coupled to the fluctuating current as an imagi-
nary detector.3 More precisely, when the coupling is turned
on at time t=0, the angle of the spin coupled only to the

fluctuating current Î�t�, with no average fields, starts to pre-
cess along with the current. Then the angle at a later time t,
averaged over the fluctuations, is

�+�t� = �+�0��T̃ exp�i
g̃

2
	

t

0

dtÎ�t�

�T exp�− i

g̃

2
	

0

t

dtÎ�t�
� . �2�

Here T and T̃ denote the time- and anti-time-ordering opera-
tors and g̃ is the coupling constant. This combination of
time-ordering operators is also called the Keldysh ordering.
For a classical current, ignoring noncommutativity, Eq. �2�
would yield the characteristic function of the charge
Q=�0

t I�t� transmitted in a conductor in a given time t. Hence,
Eq. �2� is one possible generalization of the characteristic
function for a quantum current operator. In the language of
quantum two-level systems �TLS’s� or qubits, Eq. �2� de-
scribes the dephasing of a nonbiased �zero-level-spacing� qu-
bit.

The advantage of the spin detector is the fact that the
Keldysh-symmetrized characteristic function of a point con-
tact with transmission probability Tn for channel n is a prod-
uct of binomial characteristic functions, described by the
probability Tn of success. For example, the first three mo-
ments of the distribution of currents measured in that way
are

�I� = G0V�
n

Tn,

��I2� = G0eV�
n

Tn�1 − Tn�  F2e�I� ,

��I3� = G0e2V�
n

Tn�1 − Tn��1 − 2Tn�  F3�I� .

Here G0=e2 /h and the summation goes over the spin and the
different transverse channels in the point contact. Such a
characteristic function thus has a transparent classical inter-
pretation.

But spin precession or qubit dephasing in real time is
difficult to measure. Also, the Levitov-Lee-Lesovik spin de-
tector responds to finite frequencies only at short measure-
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ment times. An alternative method is to measure the excita-
tion and relaxation rates of a quantum system subject to a
fluctuating force produced by the current. This is the ap-
proach taken in the present paper. These transition rates de-
termine the static state of the density matrix for the system,
which can in many cases be described by an effective tem-
perature. Measuring the effective temperature is much sim-
pler than spin precession, and it also gives access to the
finite-frequency moments of the noise. In this paper we dis-
cuss how two simple quantum detectors behave in response
to a non-Gaussian fluctuating force. An exact solution of this
problem with the full characteristic function of fluctuations is
not known to us, and therefore we resort to expanding in the
cumulants of these fluctuations up to the third cumulant.

It turns out that in this case the proper way to define the
third-order correlation function is by time-ordering two of
the current fluctuation operators and leaving the third one
free �cf., Eq. �3��.4 The transitions in the detector in this case
are sensitive to the frequency dependence of the third
cumulant,5 and the relevant Fano factor “measured” in this
process depends on the relation between different frequency
scales of the problem: If the detector is “close” to the noise
source, so that the frequency dependence is given by the
voltage V applied over the scatterer, the third cumulant
strength is characterized by F2−F3=2�nTn

2�1−Tn� /�nTn.
This factor is very small for a tunnel junction, but finite for
other types of scatterers. However, placing the detector fur-
ther from the noise source introduces another frequency scale
into the problem, characterizing the circuit between the
source and the detector. For voltages above this frequency
scale, the third cumulant effect on relaxation is characterized
by the “usual” Fano factor F3. In this limit one reproduces
our results in Ref. 4, where we assumed that the frequency
dependence is solely governed by the circuit. Besides the
Fano factor, also the dependence on the voltage V is different
in the two limits: in the first case it is logarithmic and in the
second case linear.

Alternative “on-chip” detector schemes for measuring
non-Gaussian fluctuations have been suggested in Refs.
6–12, and a few schemes have already been experimentally
realized; see Refs. 13–16.

Frequency scales and different regimes

The noise-source—detector system can be characterized
with a few frequency and energy scales whose relative mag-
nitudes determine the detector response. The main frequency
scales are that coming from the detector level spacing � /�,
one characterizing the circuit connecting the noise source
and the detector, say �c �for an example, see Ref. 4�, and the
rate 	env of transitions in the detector induced by its own
environment. Furthermore, the fluctuations in a point contact
are characterized by two further scales, given by the tem-
perature T and the voltage V over the contact.

In this work, we assume that the level broadening is suf-
ficiently weak—i.e., �	env
�—such that it can be taken
into account perturbatively. The detector response will de-
pend on the ratios between the voltage and the detector level
spacing, eV /� �or, at a finite temperature, on kBT /��, and on

the ratio ��c /�. Finally, the response depends on the rela-
tive magnitude of the transition rates coming from the noise
source and of those coming from the Gaussian bath.

II. EFFECT OF THE THIRD CUMULANT ON AN
ARBITRARY DETECTOR

Consider the system depicted in Fig. 1. A non-Gaussian
noise source is coupled to a detector whose state we aim to
describe. The Hamiltonian of the system can be decoupled
into

H = Hdet + Henv + Hecoup + Hnoise + Hcoup.

Here Hdet is the Hamiltonian of the detector, specified in
Secs. �4� and �5�. It is in general described through a set of
collective variables with mutually noncommuting operators

Âi. This detector is coupled to its own environment described
by Henv through the coupling Hecoup. We assume this envi-
ronment to be Gaussian, such that we can model it via an
ensemble of harmonic oscillators,17

Henv = �
j

�� jâj
†âj ,

Hecoup = Â�
j

� j�âj
† + âj� +

1

��0
Â2�

j

� j
2,

where â�†� is the bosonic annihilation �creation� operator of
an oscillator in the bath, �n its eigenfrequency, and � j is the
coupling constant from this oscillator to the system variable

Â.
Finally, the noise source is described by Hnoise and

coupled to the detector via Hcoup. The latter connects in gen-
eral a set of collective variables of the noise source to an-
other set of variables of the detector. As we aim to describe
the measurement of current fluctuations, we explicitly as-

sume that the previous is the current operator Î in the noise
source.18 Thus the coupling is of the form

FIG. 1. Schematic idea of the fluctuation measurements: Current
fluctuations in the noise source are coupled to a quantum detector,
where they induce transitions between the detector energy levels.
Another source for the transition rates is the intrinsic Gaussian en-
vironment of the detector, which can be modeled via an ensemble of
harmonic oscillators. Up to the third order in the coupling coeffi-
cient g, the transition rates in the detector depend on the second and
third cumulant of the fluctuations. As the latter is odd in the driving
average current through the noise source, its effect can be measured
by detecting the change in the rates when the sign of the driving
average current is reversed.
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Hcoup =
�

e
�

i

giÎÂi,

where gi are dimensionless coupling constants. We further

assume that Î commutes with Âi.
Including the effects of Hcoup up to the third order in the

coupling gi, we do not have to specify Hnoise, but it suffices

to concentrate on the different correlators �cumulants� of Î.
For simplicity, we include the effect of the average current
on the detector Hamiltonian Hdet, such that we can take

�Î�=0. Here the brackets �·� denote quantum averaging over
the density matrix of the noise source. In particular, we con-
centrate on the noise power spectral density,

SI���  	
−�

�

dtei��t−t0��Î�t�Î�t0�� ,

and the partially time-ordered third cumulant4,19

�3I��1,�2�  	
−�

�

d�t1 − t0�d�t2 − t0�ei�1�t1−t0�

�ei�2�t2−t0��T̃�Î�t0�Î�t1��Î�t2�� . �3�

In the static system considered in this paper, these correlators
are independent of the time t0.

Assume the uncoupled detector is described via the en-
ergy eigenstates �n� with energies En—i.e., Hdet�n�=En�n�.
Without coupling to the environment, the state of the detec-
tor is described by a density matrix nm

det�t� which in general
may show coherent oscillations between the different states.
Assume now we turn on the couplings Hcoup and Hecoup at
some time t0. If Hcoup or Hecoup do not commute with Hdet,
after some time nm

det�t� tends into a diagonal steady state
form.6 These diagonal entries Pnnn

det�t� t0� are obtained
from a detailed-balance relation of the form

Pn

Pm
=

	m→n

	n→m
. �4�

In addition, the total probability has to be conserved—i.e.,
�nPn=1. Here 	m→n is the total transition rate from the en-
ergy eigenstate m to the eigenstate n, due to the coupling to
the environment.

Up to the third order in the coupling constants gi and �i,
the transition rates originating from the coupling to the os-
cillator bath and the noise source are uncorrelated and we
may write

	m→n = 	m→n
env + 	m→n

noise .

Here

	m→n
env =

�Amn�2

1 − e−��mn/�kTe��
j

� j
2 = e��mn/�kTe�	n→m

env

is the transition rate from state m to state n due to the cou-
pling of the detector to its Gaussian bath with temperature
Te, up to the second order in the coupling constants � j. Here

Amn�m�Â�n� and �mn�Em−En� /�. In what follows, we
use a shorthand notation �2� j� j

2. The transition rates in-

duced by the noise source are of the form4,20

	m→n
noise =

1

e2�
i

gi
2�Ai

mn�2SI��mn� + 	m→n
�3� .

The rate from the third-order term is4

	m→n
�3� = �

i

gi
3

e3 Re �
l
�	 d�

�3I��,− �mn�
� − �ln − i�

Ai
mlAi

lnAi
nm� .

�5�

Here � is a positive infinitesimal. In this paper, this integral
is evaluated for two generic detectors in the case of noise
originating from a point contact.

III. FREQUENCY-DEPENDENT SECOND AND THIRD
CUMULANTS OF A POINT CONTACT

A general scheme for calculating arbitrarily ordered
frequency-dependent current correlators from the scattering
theory was laid out by Salo, Hekking, and Pekola �SHP� in
Ref. 5. Their results are applied here in order to calculate the
response of our generic detectors to the third-order current
fluctuations. SHP decompose the operator describing the cur-

rent through a given scatterer to “in” and “out” parts, Î= Îin

− Îout,
21 and show that time ordering between two current

operators Î�t1� and Î�t2� can be expressed in terms of ordering

between Îin and Îout. For the latter, they find that a time-
ordered product of a pair of �in,in� or �out,out� operators is
the same as the unordered pair and that time ordering a pair

of �in,out� operators corresponds to an ordering where Îout is

placed to the left of Îin.
A practically important noise source is a point contact

with an energy independent scattering matrix. A “point con-
tact” in this case refers to a system through which the elec-
tron time of flight, �D, is much smaller than the other time
scales of the problem. In this case, the second-order cor-
relator can be written in the form SI���=SI

Q���+SI
exc���,

where the vacuum fluctuations are SI
Q���=2��G���� and

the excess noise is given by7,22

SI
exc��� = G���coth� ��

2kT

 − sgn����

+ F2G

eV sinh� eV

kT

 − 2�� coth� ��

2kT

sinh2� eV

2kT



cosh� eV

kT

 − cosh���

kT



——→
T→0

F2G�e�V� − �������e�V� − ����� .

Here G is the conductance of the point contact, V is the
voltage applied over it, and F2= ��nTn�1−Tn�� /�nTn is the
Fano factor characterizing the transmission eigenvalues Tn of
the contact. Written in this way, the excess noise is a sym-
metric function of frequency, and thus it contributes to exci-
tation as much as to relaxation.

For the partially time-ordered third cumulant in the case
of a point contact, one can deduce from the results of SHP23
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�3I��1,�2� = Sioo�− �1 − �2,− �2� + Sioo��1,− �2�

+ Sioo�− �2,− �1 − �2� − Sooo�− �1 − �2,− �2� .

�6�

Here

Sioo��1,�2� = eF2G�A��1,�2 − v�

− B��1,�1 − �2 − v�� ,

Sooo = eF3G�A��1,�2 − v� + A��1 − v,�2� + A��1 + v,�2

+ v� − B��1,�1 − �2 − v� − B��1 − v,�1 − �2� − B��1

+ v,�1 − �2 + v�� ,

v=eV /�, and F3=�nTn�1−Tn��1−2Tn� /�nTn. The functions
A��1� and B��2� are defined as

A�x1,x2�  	 dEf�E��1 − f�E + �x1���1 − f�E + �x2��

——→
T→0

���x1���x2�min�x1,x2� , �7a�

B�x1,x2�  	 dEf�E��1 − f�E + �x1��f�E + �x2�

——→
T→0

���x1���x1 − x2�min�x1,x1 − x2� ,

�7b�

where f�E� is a Fermi function.
In an electric circuit containing reactive elements, the

fluctuation spectra are modified in a frequency-dependent
way. These types of modifications can be fairly generally
calculated with a Langevin approach �see, for example, Refs.
24 and 25; for an exception relevant for the third cumulant,
see Ref. 26�. In the case of a time-independent average cur-
rent, the noise spectra are modified according to

SI
c��� = G���G�− ��SI

exc��� ,

�3Ic��1,�2� = G��1�G��2�G�− �1 − �2��3I��1,�2� , �8�

where G��� is a function characterizing the circuit. In what
follows, we choose

G��� = 1/�1 + i�/�c� , �9�

typical for a circuit with reactive elements next to the point
contact.

Below, we aim to calculate the outcome of these spectra
on two generic detectors coupled to the noise source: a quan-
tum two-level system and a harmonic oscillator.

IV. QUANTUM TWO-LEVEL SYSTEM

The general Hamiltonian for a quantum two-level system
is

HTLS = −
B̃z

2
�z −

Bx

2
�x,

where �z/x are Pauli matrices and Bz/x the effective magnetic
fields. We assume that such a system is coupled to the noise
source via a coupling Hamiltonian

Hcoup =
�

e
g�I + �Î��z.

The field pointing to the y direction would not add any more
generality to our model. The average current I can be in-

cluded in the classical control field by defining Bz B̃z

+2�gI /e, so we can only concentrate on the fluctuations �Î.
The ground and excited states of this system are given by

�0�=−��↑ �+��↓ � and �1�=��↑ �+��↓ �, with �=cos�� /2�,
�=sin�� /2� and �=arctan�Bz /Bx�. The energies of these
states are E0/1= �� /2, ��Bx

2+Bz
2.

Now, the second-order contribution to the excitation rates
is

	0→1
�2� =

g2

e2 ��z
01�2Snoise�− �/�� �10�

and the third-order contribution can be obtained from

	0→1
�3� = −

g3

e3 ��z
01�2 cos���Re�	

−�

�

d�
�3I��,�/��

� + �/� − i�

− 	
−�

�

d�
�3I��,�/��

� − i� � . �11�

Here we used the fact that �z
11=−�z

00=cos���. Note that the
matrix element ��z

01�2=sin2��� is common for both rates. The
corresponding relaxation rates 	1→0

�2/3� can be obtained from
the excitation rates with the substitution �→−�.

In the case of a point contact at a vanishing temperature
�kBT
eV ,��, the second-order excitation and relaxation
rates are given by

	0→1
�2� =

g2

e2 ��z
01�2F2G

�e�V� − ����e�V� − ��
1 + ��/��c�2 , �12a�

	1→0
�2� =

g2

e2 ��z
01�2G�F2�e�V� − ����e�V� − �� + 2�

1 + ��/��c�2 � .

�12b�

The calculation of the integrals required for the third-order
effect in this case is detailed in the Appendix. The general
result with an arbitrary ratio between eV and ��c can be
found analytically, but it is too long to be written down here.
In the limit �� �eV�
��c we obtain

	0→1
�3� = −

g3

e3 ��z
01�2 cos����I3 − I1� =

2g3

e2 ��z
01�2 cos���G�V��F2

− F3��� ln� �eV� − �

�

 + �eV�ln� �eV�

�eV� − �

� �13�

and 	1→0
�3� =−	0→1

�3� . For �eV���, the contributions to the ex-
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citation rates from the third cumulant vanish, but there is a
contribution to the relaxation rate,

	1→0
�3� ��eV� � �� =

g3

e2 ��z
01�2 cos���GF2

�
8��3�c

3�

4�4�c
4 + 5�2�c

2�2 + �4V . �14�

This contribution becomes small in the limit ��c��.
For �eV���, these rates tend to ±	close

�3� with

	close
�3� =

2g3

e2 ��z
01�2 cos���G sgn�V��F2 − F3��

��ln� �eV�
�


 + 1 −
�

2�eV�� + o�� �

�eV�

2� . �15�

Note that for a tunnel junction, F2=F3, and there is no con-
tribution from the third cumulant to the transition rates. For
other types of contacts, the rates are determined according to
F2−F3=2�nTn

2�1−Tn� /�nTn. This is the same as the zero-
frequency Fano factor one would get for an unordered third
cumulant.5

In the opposite limit where the voltage by far exceeds the
scale ��c /e set by the circuit, the frequency dependence is
governed by �c and the third-cumulant effect on the excita-
tion rate is given by

	0→1
�3� = −

4�g3

e2 ��z
01�2 cos���F3

G�3�c
3�

4�4�c
4 + 5�2�c

2�2 + �4V

�16�

and again 	1→0
�3� =−	0→1

�3� . This is the result one would
obtain by assuming �3Ic��1 ,�2��G��1�G��2�G�−�1

−�2��3I�0,0� as was done in Ref. 4.
The third-order contributions to the relaxation rates in-

duced by the noise source are plotted in Fig. 2 for a few
example cases.

Now let us analyze the detection of noise with the two-
level system via the steady-state occupation probabilities P0
and P1=1− P0 of the states �0� and �1�. These satisfy the
detailed-balance condition, Eq. �4�. Analogous to the equilib-
rium system, we can define an effective temperature of the
quantum two-level system,

kBTTLS =
�

ln�P0

P1

 =

�

ln�	1→0
�2� + 	1→0

�3�

	0→1
�2� + 	0→1

�3� 
 + o�g4� . �17�

The contributions from the second and third cumulants can
be separated by considering what happens to TTLS when the
voltage across the point contact is reversed. We define the

average temperature T̄TLS�TTLS�V�+TTLS�−V�� /2 and the
difference �TTLSTTLS−TTLS�−V�. In the lowest order in
the coupling constant g, the previous is then independent of
the third cumulant, whereas the latter is directly proportional
to it.

The limiting case expressions for T̄TLS and �TTLS depend
on the relative strengths of the relaxation and excitation rates

from the bath and from the noise source and on the magni-
tude of the circuit frequency scale �c. The previous is easiest
to characterize through the ratio of the differences between
relaxation and excitation they cause �this is essentially the
“friction” strength in classical models�,30

�  �2e2���c
2 + �2�sin2���

2�2g2G�c
2�

. �18�

For �
kBTe , �eV�, we then get an asymptotic expression for

T̄TLS,

kBT̄TLS =
2kBTe� + F2�eV�

2�1 + ��
+

�1 − F2��
2�1 + ��

+ o� �

kBTe

 .

�19�

For �eV��kBTe ,�, there is another asymptotic expression

kBT̄TLS =
F2�eV�

2�1 + ��
+

1 − F2 + � coth� �

2kBTe



2�1 + ��
� + o� �

�eV�
 .

�20�

The latter equation is valid for an arbitrary ratio between �
and kTe.

The effective temperature TTLS as a function of the volt-
age V is plotted in Fig. 3 for a few types of junctions and in
Fig. 4 for a few values of �c.

FIG. 2. �Color online� Third-order contributions to the excita-
tion �solid lines� and relaxation �dashed lines� rates of a quantum
two-level system coupled to a point contact. The rates are plotted
for four different types of contacts with equal conductance G: tun-
nel contact �blue circles, F2=F3=1�, dirty interface �Ref. 27� �black
squares, F2=1/2, F3=1/4�, diffusive wire �Ref. 28� �green stars,
F2=1/3, F3=1/15�, and a chaotic cavity �Ref. 29� �red triangles,
F2=1/4, F3=0�. The other parameters used in this plot are
�=� /4 and ��c=20 �. Inset shows the low-voltage region. The
rates are proportional to the dimensionless constant GRK where
RK=h /e2 is the resistance quantum.
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The antisymmetric part �TTLS of the temperature with
respect to the voltage through the scatterer depends strongly
on whether the frequency dependence is governed by the
voltage or by the circuit. In the previous case, for �

kBTe , �eV�
��c �noise source “close” to the detector�, the
asymptotic expression for �TTLS is

kB�TTLS = sgn�V�
2g�F2 − F3�cos���

�1 + ��2 ,

��F2�eV� + 2kBTe���ln� �eV�
�


 + 1� + o� �

�eV�
 . �21�

For a noise source placed “far” from the detector—i.e.,
� ,��c
 �eV� ,kTe—we get

kB�TTLS = − eV cos���
4gF3���c

�4�2�c
2 + �2��1 + ��2

��F2�eV� + 2kBTe�� + o��,��c

�eV� 
 . �22�

These limits are illustrated in Figs. 5 and 6 which show the
temperature difference �TTLS as a function of the voltage
over the point contact for different types of point contacts
and for different �c, respectively. For a tunnel junction,
�TTLS/V is negative for all values of the voltage as the loga-

FIG. 3. �Color online� Effective temperature of the two-level
system as a function of the voltage through different types of point
contacts coupled to it. The different curves correspond, from top to
bottom, to a tunnel contact �solid blue line�, dirty interface �dashed
black line�, diffusive wire �dashed-dotted green line�, and a chaotic
cavity �dotted red line�. The behavior is mostly dictated by the Fano
factor F2. Other parameters in the plot are g=0.05, ��c=20 �,
�=� /4, �=1, kBTe=�, and G=1/RK.

FIG. 4. �Color online� Effective temperature of the two-level
system as a function of the voltage through a diffusive point contact
coupled to it via circuits characterized with different �c. On the
right, from top to bottom: ��c /�=100 �dashed-dotted green line�,
10 �dotted red line�, 0.1 �solid blue line�, and 1 �dashed black line�.
Other parameters are as in Fig. 3.

FIG. 5. �Color online� Asymmetric part of the temperature
�TTLS as a function of the voltage over the point contact for differ-
ent types of point contacts. On the right, from top to bottom: chaotic
cavity �dotted red line�, diffusive wire �dashed-dotted green line�,
dirty interface �dashed black line�, and a tunnel junction �solid blue
line�. Other parameters are as in Fig. 3.

FIG. 6. �Color online� Asymmetric part of the temperature
�TTLS as a function of the voltage over a diffusive point contact
with different frequencies characterizing the circuit: on the right,
from top to bottom: ��c /�=100 �dashed-dotted green line�, 10
�dotted red line�, 0.1 �solid blue line�, and 1 �dashed black line�.
Other parameters are as in Fig. 3. The curve for ��c=100 � is in
the logarithmic regime, Eq. �21�, for all plotted voltages, and it is
characterized by the Fano factor F2−F3. The curves for ��c�1 are
in the linear regime, Eq. �22�, and the case ��c=10 � has a cross-
over between the two. Inset shows the low-voltage regime, reflect-
ing the behavior described in Eq. �14�.
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rithmic term in V �Eq. �21�� is absent, whereas for a chaotic
cavity F3=0 and the absence of the linear term �Eq. �22��
leads to a positive-definite �TTLS/V. For other types of junc-
tions, there is a crossover from positive �TTLS/V to a nega-
tive �TTLS/V roughly when eV exceeds ��c.

The relative temperature change �TTLS/ T̄TLS is thus loga-
rithmic in V for � ,kBTe
 �eV�
��c and linear for
�eV��� ,kBTe ,��c.

V. HARMONIC OSCILLATOR

Below, we discuss two schemes for using a quantum har-
monic oscillator as a detector of the current fluctuations. The
first scheme couples a displaced oscillator to the fluctuations
through the position operator x̂ and the second scheme
through the second power of the momentum operator, p̂2. It
turns out that at least up to the third order in the coupling
operators gi, �i, the first scheme is insensitive to the third
cumulant, whereas the latter follows quite closely the qubit
scheme. First, we note that a simple harmonic oscillator
coupled to the fluctuations via its position operator—i.e.,

Â= x̂—directly implies 	�3�=0 as Eq. �5� requires that all the
matrix elements between the initial, the final, and one or
more intermediate states be nonzero. This cannot be satisfied
as x̂ couples only the neighboring states.

A. Displaced harmonic oscillator coupled to
the position operator

The restriction due to the vanishing matrix elements may
be overcome by considering a displaced harmonic oscillator,
so that the effective coupling is to x̂−x0, where x0 is a scalar
displacement. However, one can quite generally show that
even in this case the resulting 	�3�=0.

To be specific, consider a harmonic oscillator coupled to
the fluctuating current. The Hamiltonian for the oscillator is

HHO = −
�

2m
�x�

2 +
1

2
m�0

2x̂�2.

Assume the fluctuating current is coupled to the x̂� coordi-
nate; i.e., the coupling is described by

Hcoup =
g

e
�Ib + �Î��2m��0x̂�.

Due to the average current term Ib, the oscillator potential
minimum is shifted from x=0 to x0=−�2�gIb / �e�m�0

3�. De-
fining a new displaced operator x̂ x̂�−x0 we get, neglecting
the unimportant scalar terms,

HHO + Hcoup = −
�

2m
�x

2 +
1

2
m�0

2x̂2 + g
�2m�0

e
�Î�x̂ + x0� .

�23�

In what follows, we assume that Ib can be controlled sepa-
rately from the current flowing through the noise source.
This type of a separation of average and noise currents was
discussed, for example, in Ref. 31.

We proceed in the usual way by defining the harmonic
oscillator annihilation and creation operators,

� â

â†� =
1

�2�m�0

�m�0x̂ � ��x� .

Now the energy eigenstates �n� of the “average” Hamiltonian

are those of the number operator N̂�n�= â†â�n�= �n�. The fluc-

tuations are coupled to the operator Â�2m��0�x̂+x0�. This
has a finite matrix element An,n±1 between the neighboring
states due to the operator x̂. Moreover, the displacement x0

makes the diagonal matrix element Ânn also finite and inde-
pendent of the level index n. Similar to the two-level system,
we can write the second-order excitation and relaxation
rates due to the external noise from a point contact at kBT

 �eV� ,��0,

	n→n+1
�2� =

g2

e2 �n + 1�SI�− �0�

=
g2

e2 �n + 1�GF2��eV� − ��0����eV� − ��0� , �24a�

	n+1→n
�2� =

g2

e2 �n + 1�SI��0� =
g2

e2 �n + 1�G�F2��eV� − ��0�

����eV� − ��0� + 2��0� . �24b�

The third-order contribution to the excitation rate is

	n→n+1
�3� =

2g4Ib

e4�0
�n + 1�Re�	

−�

�

d�
�3I��,�/��

� + �/� − i�

+ 	
−�

�

d�
�3I��,�/��

� − i� � , �25�

and the relaxation rate 	n+1→n
�3� can be obtained by replacing

�0 by −�0 inside the integrals �but not in the prefactor�.
These integrals are the same as for the quantum two-level

system, Eq. �11�, up to a sign between them. But as shown in
the Appendix, the two integrals give exactly the opposite
contribution under quite general conditions, and therefore
	�3� vanishes.

B. Coupling to the square of the momentum
or position operator

Assume one could vary the mass of the harmonic oscilla-
tor via the fluctuating current. In this case, the coupling to
the fluctuations would be of the form32

Hcoup =
�m̂��Î�

2m2 p̂2 = − g�Î�â† − â�2. �26�

Such an operator Â= �â†− â�2 has finite matrix elements be-
tween next-nearest-neighbor energy levels n and n+2 of the
oscillator, An,n+2=��n+1��n+2�, and diagonal matrix ele-
ments An,n=−2n−1. To be able to further describe the system
with an effective temperature, we assume that the coupling to
the bath is much weaker than the coupling to the noise
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source, and the previous can hence be neglected. Now the
second-order contribution to the transition rates due to the
current fluctuations at T=0 are

	n→n+2
�2� =

g2

e2 �n + 1��n + 2�SI�− 2�0�

=
g2

e2 �n + 1��n + 2�GF2��eV� − 2��0����eV� − 2��0� ,

�27a�

	n+2→n
�2� =

g2

e2 �n + 1��n + 2�SI�2�0� =
g2

e2 �n + 1��n + 2�

�G�F2��eV� − 2��0����eV� − 2��0� + 4��0� .

�27b�

The third-order contribution to the excitation rate is

	n→n+2
�3� = −

g3

e3 �n + 1��n + 2�Re��2n + 1�

�	
−�

�

d�
�3I��,2�0/��
� + 2�0 − i�

+ �2n + 3�

�	
−�

�

d�
�3I��,2�0/��

� − i� �
 −

g3

e3 �n + 1��n + 2���2n + 1�I3 + �2n + 3�I1� ,

and the relaxation rate 	n+2→n
�3� can be obtained by replacing

�0 by −�0. Using the fact that I3=−I1 �see the Appendix�, we
get

	n→n+2
�3� = −

2g3

e3 �n + 1��n + 2�I1�2�0� . �28�

The third-order rate has thus the same level-dependent pref-
actor as the second-order rate. Therefore, we can again de-
fine an effective temperature, which now is of the form

kBTho =
2��0

ln�	n+2→n
�2� + 	n+2→n

�3�

	n→n+2
�2� + 	n→n+2

�3� 
 . �29�

This is independent of the level index n, provided the fluc-
tuations coupling linearly to x̂ or p̂ can be neglected.

Because of the similar form of the rate expressions as in
the qubit case, the behavior of the effective temperature is
similar to the qubit, provided the prefactor cos��� in Eqs.
�15�, �16�, �21�, and �22� is replaced by −1 and the matrix
element �z

01 by �n+1��n+2�. In the case of coupling to x̂2

instead of p̂2 �i.e., varying the spring constant rather than the
mass�, the only difference is the inverted sign of the third-
cumulant contributions to the rates.

VI. EXPERIMENTAL DETECTOR REALIZATIONS

To exemplify the measurement of the third cumulant
through the polarization of a qubit coupled to the fluctuating

current, we consider three specific examples: a persistent
current �or a flux� qubit,33,34 a phase qubit,35,36 and a charge
qubit.37 The fluctuation measurement schemes with these qu-
bits are illustrated in Fig. 7. Apart from the measurement
schemes, we aim to discuss typical values for the coupling
constant g, level splitting �, circuit frequency scale �c, and
dimensionless constant � characterizing the ratio between
the intrinsic and induced noise.

In all cases, the level splitting � /� turns out to be of the
order of a few GHz at minimum. Also, for all systems the
relevant reactive element causing dispersion of noise is the
inductance L of the lines feeding the noise current, and there-
fore the frequency scale �c=1/ �GL�, where G is the conduc-
tance of the shot noise source. As L is typically of the order
of some 10 pH and R may vary between some 10 � to some
100 k�, we have �c ranging between 103 and 106 GHz. This
means that unless special care is taken to make a large in-
ductance, ��c /� is at least a few hundred.

However, note that at least in diffusive wires and chaotic
cavities, there is an additional frequency scale given by the
inverse dwell time 1/�D or the inverse screening time
1/�sc.

38–40 For example, for a diffusive wire of length
L=1 �m and diffusion constant D=100 cm2/s, we have
1/�D�10 GHz. When 1/�D or 1/�sc is less than
min��eV� /� ,�c�, these have to be taken into account sepa-
rately.

FIG. 7. Fluctuation measurement schemes using superconduct-
ing qubits: �a� persistent current qubit, �b� phase qubit, and �c�
charge qubit.
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With the qubits, the detection takes place by applying a
steady current through the noise source and measuring the
occupation number 11 of the higher qubit state many
times—i.e., averaging over the realizations of current fluc-
tuations. The effective temperature is then

kBTeff = � ln�1 − 11

11

 .

The third-cumulant effect can be controlled by tuning the
phase � through the average fields Bx and Bz. When either of
these fields vanishes, also the third-cumulant effect should
vanish.

The temperature measurement of the harmonic oscillator
depends on its realization: For a true oscillator based on a
resonant LC circuit, the temperature should be measured ei-
ther by measuring the current noise power in the oscillator,
or coupling it to a nonlinear system, say a superconducting
quantum interference device �SQUID�, and measuring its re-
sponse. If the realization is a current-biased Josephson junc-
tion, the temperature detection can be done via the measure-
ment of the thermal escape rate as in Ref. 31.

Voltage fluctuations could also be coupled to the qubits or
oscillators. Typically these would couple to the perpendicular
external field component compared to the current fluctua-
tions. However, the frequency dependence of the third cumu-
lant of voltage fluctuations is not known to us and the re-
sponse of the qubits might in this case be somewhat
different.

A. Persistent current qubit

In the persistent current qubit, a fluctuating current is easi-
est to couple to the qubit current through the mutual induc-
tance M as in Fig. 7�a�.33 In the basis defined by the clock-
wise and anticlockwise current, this corresponds to coupling
to �z. In this case, the coupling constant g is of the order of

gpcq =
e

�
M�Iqb �

e

�
MIc,

where �Iqb is the difference between the currents corre-
sponding to the two qubit states. This is of the order of the
critical current Ic of the Josephson junctions. Using M �2
pH and Ic�3 �A close to the experimental values,33,34 we
get g�0.01. Finally, with the intrinsic relaxation time
T1=1 ms, � /�=10 GHz, R=RK, and �=0, we get �
�0.003; i.e., the intrinsic bath effect is almost negligible.

B. Phase qubit

With the scheme depicted in Fig. 7�b�, the external current
fluctuations can be again coupled to the diagonal element of
the qubit Hamiltonian—i.e., �z. The coupling strength is35

gpq =
e

�

�E10

�Ib
,

where E10 is the level separation between the qubit states.
For the bias current close to Ic, this is given by

E10 � ��p�I��1 −
5

36

��p�I�
�U�I�


 ,

where �p�I�=21/4�8EJEc�1− I / Ic�1/4 and �U�I�=4�2/3EJ�1
− I / Ic�3/2, EJ=�Ic / �2e�, and EC=e2 / �2C� are the Josephson
and charging energies of the junction, and Ic is its critical
current. Thus we have

gpq = −
5ẽC + 3 � 23/4�ẽC�1 − ib�5/4

6�1 − ib�2 ,

where ib= I / Ic, and ẽc=EC /EJ. With the values36 C=6 pF,
Ic=21 �A, and ib�0.99, we get gpq�0.1. In such qubits, the
relaxation due to the intrinsic bath is slower than �p /1000,
which implies ��0.1. Therefore, the intrinsic bath should
also here be negligible.

C. Charge qubit

Coupling a charge qubit in a form of the Cooper-pair
box37 to current fluctuations takes place via the operator �x
in the natural charge basis of the qubit. This is accomplished
by coupling the fluctuations to the flux controlling the Jo-
sephson energy of the Cooper-pair box. Due to this slightly
different type of a coupling, the phase � should be defined as
�=arctan�Bx /Bz�, but otherwise the rate expressions stay the
same. In this case, the coupling strength is given by41

g =
e

�
M

dIc��x�
d�x

,

where M is the mutual inductance and Ic��x� is the critical
current of the box at the average external flux �x. With
M =2 pH and Ic=300 nA, g can be made to vary between
almost zero �the “sweet spot” where the first derivative of
Ic��x� vs �x vanishes� to some 10−3. A higher coupling
strength can be obtained by increasing Ic and thereby going
away from the strict charge basis as in Ref. 42.

D. Cooper-pair box in a resonant circuit

Coupling the fluctuations to a flux controlling the Joseph-
son coupling of a Cooper-pair box placed in a resonant cir-
cuit, one may control the effective capacitance of the
resonator.43–45 Such a setup corresponds to that studied in
Sec. V B. The coupling strength g depends on the relative
ratio between the Josephson and charging energies EJ and EC
of the Cooper-pair box. For EJ=10EC, the relative capaci-
tance modulation �C /C can be of the order of 0.05 for a
change ��x=� /2e in the external flux.44 The coupling con-
stant in this case is

g = −
�C

C

e2M�0

2�
.

For M =100 pH and �0=100 GHz, we would hence obtain
g�10−4. This is quite a small value, and using this scheme
would require optimization of the EJ /EC ratio and maximiz-
ing both M and �0.

E. Current-biased SQUID

Instead of directly controlling the bias current of the Jo-
sephson junction as in the phase qubit scheme above, one
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may also envisage coupling the fluctuations inductively to
control the flux in a SQUID as in Fig. 8�b�. The Hamiltonian
of a biased symmetric SQUID is

HJJ = − 4EC��
2 − EJ cos�2�

�x

�0

cos��� −

�

2e
Ib� ,

where � is the phase across the SQUID, Ib is the bias current,
�x is the external flux through the loop, and �0=h / �2e� is
the flux quantum. We assume the self-inductance of the loop
small enough so that it can be neglected. For Ib much lower
than the critical current IC��x�=2e /�EJ cos�2��x /�0� of
the SQUID and EC, kBTJJ
EJ, we can neglect the driving
term and expand the term cos����1−�2 /2. As a result, we
get a harmonic oscillator Hamiltonian with the mass given
by the capacitance C and the spring constant given by the
Josephson inductance LJ=� / �2e�IC. Now connecting the cur-
rent fluctuations to the flux �x=M�I+�I�t��, we can vary the
inductance term—i.e., couple to x̂2 of the harmonic oscilla-
tor. The coupling constant is given by46

gJJ = −
Me2�p

2�
sin�2�

MI

�0

 , �30�

where �p=�8EJEC /� is the plasma frequency of the SQUID
at �x=0. With M =20 pH and �p=200 GHz, we get g
=10−3. Hence, the current-biased SQUID can be used for the
detection of the third cumulant in the harmonic mode, but the
parameters M and �p need to be optimized to quite high
values in order to obtain large enough coupling strength.

Another way to use the SQUID in the harmonic mode
would be to place it in a resonant circuit and use the modu-
lation of the Josephson inductance for the fluctuation mea-
surement. In this case, the scheme would be similar to that
presented in Sec. VI D, but the coupling would be to x̂2

rather than p̂2. The coupling constant would be again given
by Eq. �30�, but now �p should be replaced with the reso-
nance frequency of the circuit.

VII. DISCUSSION

We suggest to use the excitation and relaxation in quan-
tum two-level systems or harmonic oscillators for measuring
the third cumulant of current fluctuations in a short contact.
When coupled to the driven non-Gaussian fluctuations, the
static density matrix of these systems reveals information on
the frequency dependence of the fluctuations. The third cu-
mulant can be read from the change in the effective tempera-
ture of these systems upon reversing the polarity of the bias
across the contact. As the measured signal is inherently
quantum, the ordering of the current operators turns out to be
important. Depending on the relative ratio of the frequency
scales of the system, given by the voltage eV /� and the
circuit �c, the measured Fano factor for the third cumulant is
either �nTn�1−Tn��1−2Tn� /�nTn �eV���c, Eqs. �13� and
�21�� or 2�nTn

2�1−Tn� /�nTn �eV
��c, Eqs. �16� and �22��.
This slightly resembles the reasoning in Ref. 47, where the
measured Fano factor depends on “how far” the detector is
placed from the current path.
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APPENDIX: INTEGRALS REQUIRED FOR
THE THIRD-ORDER RATES

The third-order contributions to the rates depend on the
integrals of the form

I1/4  Re�	
−�

� �3I��, ± �0�
�

d��
= Re�	

0

� �3I��, ± �0� − �3I�− �, ± �0�
�

d�� ,

I2/3  Re�	
−�

� �3I��, � �0�
� � �0

d��
= Re�	

0

� �3I�� � �0, � �0� − �3I�− � � �0, � �0�
�

d�� .

Quite generally, the frequency-dependent third cumulant
considered in this paper satisfies �3I��1 ,�2�=�3I�−�1

−�2 ,�2�. This is valid for a point contact at arbitrary

FIG. 8. Fluctuation measurements with oscillators whose mass
or spring constant is driven with the fluctuations: �a� Cooper-pair
box and �b� driven Josephson junction. In both cases, the Josephson
energy is tuned with the fluctuations. In �a�, the difference to a
charge qubit is in the fact that the Cooper-pair box is placed as a
part of a resonant circuit.
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temperature �Eqs. �6� and �7�� in the presence ��3Ic from Eq.
�8�� or absence of an external circuit. Using this symmetry, it
is straightforward to show that I2=−I4 and I3=−I1.

The integrals can be calculated at T=0 by
evaluating ��3I�� , ±�0�−�3I�−� , ±�0�� /� in parts,
�� �0,min��0 , �eV� /�−�0��, �� �min��0 , �eV� /�

−�0� ,max��0 , �eV� /�−�0��, �� �max��0 , �eV� /�

−�0� , �eV� /�� and finally �� �eV� /�. In the presence of the
external circuit, described with Eq. �9�, the resulting analytic
expressions for Ii are very long, even at zero temperature.
However, they have rather simple limits depending on the
relation between �eV� and ��c—i.e., which of these scales
gives the cutoff for the integrals. The integrals I1,I3 are finite
only for �eV���. Moreover, both for �eV����c and �eV�

��c �but not generally�, I1= I2. For �eV�
��c we get for
T=0

I1 = eG�F2 − F3��V��� ln� �eV� − ��0

�0



+ �eV�ln� �eV�
�eV� − ��0


� . �A1�

For �eV����c, the integral can be evaluated by assuming a
frequency-independent intrinsic third cumulant, �3I��1 ,�2�
=G��1�G��2�G�−�1−�2�F3eGV, as was done in Ref. 4.
This yields

I1 = − eGF3
2��c

3�0

4�c
4 + 5�c

2�0 + �0
2 . �A2�

This result can be found fairly straightforwardly via the resi-
due theorem.
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