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We propose a scheme to generate squeezed microwave radiation into a transmission line using a simple
on-chip element. Instead of the more commonly used quadratic i�â†2− â2� Hamiltonian, the element is based on
parametric resonance drive, �â†+ â�2 cos 2�0t, which can approximately be realized using an ac magnetic flux
on a superconducting quantum interference device �SQUID� loop. The dissipation arising from the coupling to
the transmission line is also included in the dynamics, and it is, in fact, essential for the formation of the
�periodically� steady squeezed SQUID state. The spectral properties of the radiation are calculated and they
differ somewhat from the conventional squeezing. With a proper choice of parameters, the quadrature noise can
be suppressed below its ground-state value, a direct evidence of reduction of the quantum fluctuations. We also
present a measurement setup for direct verification of the phenomenon. The squeezing element provides a tool
for quantum noise engineering and its simplicity allows a flexible integration into more complex quantum
devices.

DOI: 10.1103/PhysRevB.75.184508 PACS number�s�: 85.25.Dq, 74.40.�k, 85.25.Cp

I. INTRODUCTION

Squeezing of quantum fluctuations has first been studied
and experimentally verified in quantum optics, where the
components of quantized electric field served as the squeezed
observables.1 Since then, the phenomenon has been observed
in superconducting circuits,2,3 and more recently, there has
been promising effort to realize the squeezing in nanome-
chanical structures4,5 and in circuit cavity QED.6 Experimen-
tally, the squeezing of the quantum fluctuations has been
demonstrated in microwave frequencies by constructing a
Josephson parametric amplifier,3 with a 40% reduction of the
vacuum noise.

We consider a setup that allows squeezing of the quantum
state of a mesoscopic superconducting quantum interference
device �SQUID� element and, subsequently, generation of
squeezed microwave radiation. We choose to employ para-
metric instability in a harmonic regime,8 a procedure known
to create squeezing in various different systems,9 rather than
rapid decrease of an external magnetic flux theoretically
studied in Ref. 7. It can be realized with an elementary flux
control in an rf SQUID. In the parameter range considered,
the system can be thought as an electromagnetic counterpart
of nanomechanical resonators with similar application
prospects.5 With little or no dissipation, the magnitude of the
squeezing grows exponentially and rotates between the
charge and the magnetic flux.10 A strong dissipation, here
realized by coupling to a transmission line, compensates the
resonant drive and leads to a rotating quasistationary state in
which uncertainties of SQUID observables periodically go
below their ground-state values. A significant advantage of
the proposed squeezing scheme is that the harmonic drive
maintains coherence even in the presence of strong dissipa-
tion. Hence, the creation of squeezed states is robust against
environmental effects and does not require samples of par-
ticularly high quality. We calculate the expectation values of
observables and noise spectrum of the radiation in the trans-

mission line, and also propose a measurement scheme for
experimental verification of the quantum squeezing.

II. SQUEEZING BY PARAMETRIC RESONANCE

In the parametric resonance,11 periodic time-dependent
perturbation can lead to large effects, which are most signifi-
cant when the period of the perturbation is twice the reso-
nance frequency,

H =
p2

2m
+

m

2
��0

2 + A cos 2�0t�x2, �1�

where the time-dependent part can be treated as a perturba-
tion, �A���0

2. Driven in resonance, the energy of the system
grows exponentially in time; additionally, starting the reso-
nant driving from the ground state of a quantum-mechanical
harmonic oscillator results in a rapid squeezing of uncertain-
ties of rotating conjugate observables �see Sec. V below�.

This mechanism can be realized using a flux-controlled rf
SQUID loop described in Fig. 1. The Hamiltonian for the
system can be written as

H =
Q̂2

2C
+

�̂2

2LS
− EJ cos���t�2e/��cos��̂2e/�� , �2�

where C is the capacitance of the junctions, LS is the self-
inductance of the loop, and ��t� is the flux bias externally

applied through the control loop.12 The quantities Q̂ and �̂
are the canonical variables corresponding to the charge in the
junctions and the magnetic flux through the loop, and they

satisfy the commutation relation ��̂ , Q̂�= i�. Thus, the mag-

netic flux �̂ plays the role of the position coordinate and the

charge Q̂ corresponds to the momentum in the standard one-
particle quantum mechanics.

The flux value corresponding to the oscillator length of
the harmonic part of Eq. �2� is �0=��Z0, where Z0=�LS /C.

We treat the Josephson term as a perturbation and there-
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fore consider the parameter range LS�LJ, where the Joseph-
son inductance is LJ=�2 /4e2EJ. If the quadratic potential is
strong, the flux particle is restricted to the linear regime of
the SQUID, and only the lowest two terms of the expansion
cos��̂2e /��=1− �̂2e2 /�2+2�̂4e4 /3�4+¯ are retained. Sup-
posing that the condition for the validity of the approxima-
tion �0��0=h /2e is satisfied, the Hamiltonian �2� takes the
form

H �
Q̂2

2C
+

C�2�t�
2

�̂2, �3�

where

�2�t� = �0
2�1 +

LS

LJ
cos���t�2e/��	 , �4�

with �0
2= �LSC�−1. The small term constant in �̂ resulting

from the cosine expansion has been dropped from Eq. �3�.
Now we have established a connection between Eqs. �1� and
�3� provided that the external magnetic flux is modulated
according to ��t�=��0t /e.

The linearly increasing magnetic flux is, in practice, in-
convenient since the magnetic field should be restricted to
the control loop, and it is difficult to isolate at high field
values. In addition, ac fields are obtained and manipulated
more naturally. We would like to implement the parametric
resonance by replacing the linearly increasing flux with an ac
flux ��t�=��0 sin��0t�. In fact, this can be achieved re-
markably accurately. The cosine of sine can be expanded in
terms of the Bessel functions as cos�	 sin�x��=J0�	�
+2
nJ2n�	�cos�2nx�. This relation suggests that 	 should be
chosen so that 2J2�	� is close to unity to realize cos�2x�
�cos�	 sin�x�� �the other terms in the expansion are small
and, importantly, nonresonant�. The maximum of J2�	� is
0.49, which is achieved at 	�3.05. Since J2�	� changes
slowly around its maximum, we choose 	=3. We introduce
an ac field flux

��t� = �3/2
��0 sin��0t� �5�

to produce the required resonance term in the Hamiltonian.
Despite the mathematical arguments, the previous consider-
ation serves only as a motivation. Ultimately, the validity of
the approximation is proven by the resulting dynamics which
coincides accurately with the exact results �for example, see
Fig. 1 of Ref. 10�. In all the calculations presented in this
paper, the ac-approximation results coincide with the exact
cosine results within a few percent of the relevant scale.

Numerical solutions indicate that the best agreement is
achieved around 	=3 and verify, as expected, that 	 could
be chosen from the interval 2.9�	�3.1 without affecting
the validity of the approximation significantly. In conclusion,
to implement the parametric resonance using ac driving, the
magnetic flux should be modulated at the resonance fre-
quency in such a way that its amplitude is roughly a half of
the flux quantum. For realistic SQUID, parameter satisfying
the above stated requirements can be given order of magni-
tude estimates C=1 pF, LS=10 nH, �0 /2
=5 GHz, Z0
=320 �, and LJ=100 nH.

For later purposes, it is convenient to introduce the
second-quantized bosonic creation and annihilation operators
â and â† in the photon number Fock space. The SQUID
observables may be then written as

�̂ = ��Z0/2�â + â†� = ��Z0�̂�,

Q̂ = i��/2Z0�â† − â� = ��/Z0Q̂�. �6�

Here, �̂�= 1
�2

�â†+ â� and Q̂�= i
�2

�â†− â� are scaled phase and
charge operators, and they satisfy the minimum uncertainty
condition 
��
Q��1/2.

In this notation, the Hamiltonian in Eq. �3� is transformed
to

Ĥ = ��0�â†â +
1

2
� + B cos�2�0t��â + â†�2, �7�

where B=��0LS /4LJ. Corrections to the higher orders in Eq.
�7� due to the Josephson coupling are D cos�2�0t��â+ â†�4,
where the ratio D /B� ��0 /�0�2 becomes small in the con-
sidered parameter range �0��0. In addition to being small,
the higher-order terms, in contrast to the quadratic one, are
not parametrically resonant and their effects are suppressed.

III. COUPLING THE SQUID TO A
TRANSMISSION LINE

In this section, we introduce a measuring scheme in which
the SQUID is coupled to a transmission line �TL� that serves
as a waveguide carrying away the radiation from the system.
It also plays a role of a generic measurement device which
causes a Markovian back action to the SQUID system. Ad-
ditionally, the TL provides a practical theoretical model for
studying the environmental effects to the squeezing.

The transmission line acts as a one-dimensional electro-
magnetic field inductively coupled to the quantized flux �̂ of
the SQUID loop. Then, the free Hamiltonian of the line is

HTL = 

m

��m�ĉm
† ĉm + 1/2� , �8�

whereas the coupling is given by

Hint = M
�

LS



k

i���k

Ll
�− ĉk + ĉk

†� . �9�

Here, M is the mutual inductance between the loop and the
field modes in the transmission line. ĉk and ĉk

† are the bosonic

Φ(t) φ^

FIG. 1. Resonantly driven SQUID loop inductively coupled to a
transmission line. The black bars represent Josephson junctions and

the physical quantities �̂ and Q̂ correspond to the magnetic flux
through the right loop and the charge at the junctions. The �classi-
cal� flux ��t��sin��0t� through the larger loop is controlled by an
external magnetic field.
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annihilation and creation operators of the electromagnetic
field modes and

V̂�x0,t� = 

k

���k

Lc
cos� k


L
x0��ĉk�t� + ĉk

†�t�� �10�

is the voltage operator in the transmission line at distance x0
from the SQUID loop.13

Assuming that the excited states of the SQUID are not
thermally populated ���0�kBT� and that no signal arrives
from the transmission line, the dominating environmental ef-
fect is spontaneous emission into TL. With the parameter
values given above, this is achieved for T�100 mK. Due to
the coupling to the transmission line, the SQUID itself is an
open quantum system and is consequently described by a
density operator obeying the Lindblad-type master equa-
tion14

�t� = −
i

�
�H,�� + ��2â�â† − â†â� − �â†â� , �11�

where the first term is responsible for the Hamiltonian evo-
lution by the operator �7� and the second term describes the
spontaneous emission into the TL. The coefficient � is re-
lated to the quality factor of the circuit by �=�0 /Q, where
the Q factor can be as high as 103–104 in the case of a free
SQUID. Coupling to the TL should decrease Q significantly
in order to guarantee an efficient measurement of the
SQUID. The value of � can be calculated as � /�0
= �M /LS�2Z0 /ZTL, where ZTL=�l /c. For realistic values
M /LS=0.1 and ZTL=50 � and the rest SQUID parameters
taking previously stated values, the fraction becomes � /�0
�0.06 which corresponds to Q�20. A free SQUID can have
a Q value of order of 100, corresponding to a coherence time
of 20 ns, without significantly affecting to the radiation; thus,
only modest coherence properties are required. The disad-
vantage of decreased Q is the increased decoherence, hostile
to the squeezing process.

On the other hand, the SQUID radiates into the transmis-
sion line, and we can represent the voltage operator as

V̂�x,t� = V̂0�x,t� +
M�0


LS
�̂�t − x/v� , �12�

where V̂0�x , t� is the voltage operator in the absence of the
SQUID loop, and the second term is proportional to the re-
tarded SQUID field. In radiation problems, observables are
typically of this form.14 In derivation of Eq. �12�, we have
assumed that the level separation in the TL is much smaller
than �0, so the TL will act as a waveguide and not as a
resonator. The voltage radiated into the transmission line is
thus proportional to the phase operator �̂ of the SQUID, and
we may, for the time being, concentrate only on the dynam-
ics of the latter.

IV. SQUID DYNAMICS UNDER DISSIPATION

The master equation �11� allows, in principle, one to solve
the entire quantum state of the SQUID system, but this is not
always necessary. Rather, SQUID observables and the prop-

erties of the field radiated into the transmission line are suf-
ficiently described by the one-time expectation value of the
voltage operator and corresponding two-time correlation
functions that determine the noise spectrum.

The expectation values of â, â†, â2, â†2, and â†â can be
solved from the coupled set of differential equations of the
form �t
â�=Tr�â�t��, etc.10 For a strong drive, B��, the
expectation values grow increasingly in time, while for �
�B, the dissipation eventually compensates the resonant
drive and the solutions are periodic and bounded. We then
find an accurate analytical form for the periodic solution by
expanding the expectation values 
â†â�, 
â2�, and 
â†2� to a
Fourier series as 
â†â�=
−�

� 	n exp�2in�0t� and similarly for
other combinations. Truncating the series to the fourth order,
the lowest Fourier coefficients can be found by solving the
linear system. In the limit �→B+0, the lower limit of the
periodic squeezing is about 0.75 times the vacuum value of

�� and 
Q� �see Fig. 2�.

We illustrate the squeezing using the Wigner function

�W�x�,p�� = �2
�−1�
−�

� �x� −
1

2
y���x� +

1

2
y�eip�ydy ,

�13�

which is one of the quantum-mechanical analogs to the
phase-space probability distribution. Even though it is not a
genuine two-dimensional probability distribution, it correctly
produces the one-dimensional marginal distributions in arbi-
trary directions in the phase space �x� , p�� and can therefore
be used directly to visualize the uncertainties of observables.

The circularly symmetric ground state of the SQUID is
distorted to an ellipse by squeezing �see Fig. 3�. For ideal
squeezed states, the principal axes of elliptical contour lines
are inversely proportional reflecting the minimum uncer-
tainty property. The effect of the dissipation on squeezed
states is twofold: On one hand, the distribution is broadened,

FIG. 2. �Color online� Uncertainty 
�� of the bounded periodic
solutions �=1.5B �solid line�, �=1.3B �dotted line�, and �=1.1B
�dashed line�. The horizontal dashed line marks the ground-state
value of 
��. The lower envelope of the oscillation depicts the
uncertainty of the reduced quadrature, while the higher envelope
corresponds to the increased quadrature of the rotating state. The
minimum of the squeezing in the periodic solutions approaches to
lower bound of about 0.75 times the ground-state value.
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which, most importantly, increases the uncertainty of the nar-
rower quadrature and the state no longer is a proper mini-
mum uncertainty state. On the other hand, spontaneous emis-
sion of individual photons into the TL also populates the
states of odd number of excitations, which are entirely absent
in the ideal squeezed states of minimum uncertainty.

In order to find the spectral properties of the signal radi-
ated into the TL, we also need to evaluate two-time correla-
tion functions, such as 
â†�t2�â�t1��. According to the quan-

tum regression formula,14 the function pair 
Â�t�â�t��� and


Â�t�â†�t��� obeys the same differential equations as 
â�t���
and 
â†�t��� for an arbitrary operator Â�t�. Choosing Â�t�
= â�†��t�, arbitrary second-order correlators can be found nu-
merically in the entire time domain.

V. SPECTRUM OF PARAMETRIC RESONANCE
AND SQUEEZING

In order to describe the signal carried by the transmission
line, we briefly consider a spectral analyzer based on a two-
level system13 with an energy splitting �=
E. The probabil-
ity of observing the analyzer system in its states is propor-
tional to

�
0

t �
0

t


A�t1�A�t2��e−i��t2−t1�dt1dt2 �14�

at �= ±�, where A is the operator of the studied noise
source that couples to the analyzer two-level system. Now
the SQUID radiation is periodic rather than steady state, and
the detector rate is proportional to the time-averaged noise
power

SA��� = �
−�

� 1

T
�

0

T


A�� + t��A�t���ei��dt�d� , �15�

where T is the period of the evolution. Expression �15� gen-
eralizes the standard steady-state solution in the sense that so
defined spectrum is positive definite and gives excitation
probabilities of the analyzer system in the long-time limit t
�T=2
 /�0. Based on Eq. �12�, the spectral properties of

V̂�x , t� are directly related to spectral properties of �̂ and the

free voltage operator V̂0, and we therefore evaluate the �̂
noise and, at the end of this section, discuss parameters rel-
evant to the TL output noise.

The 2�0 resonant drive produces peaks in the �̂ spectrum
�15� at frequencies ±�2n+1��0 of which the ±�0 are by far
the strongest with relative thermal population �see Fig. 4�.
The higher harmonic peaks are very weak. From the time-
averaged observables, it is difficult to detect the squeezing
directly. This can be understood by considering the Wigner
function: the fast rotation of the elliptic figure in Fig. 3 av-
erages out to a circular shape, the diameter of which corre-
sponds to the broader quadrature and in which no squeezing
is present; the overall broadening compared to the ground
state only appears as an equilibrium state at a finite tempera-
ture.

A. Spectrum of rotating operators

A detailed detection of squeezing can be performed using
a phase-sensitive measurement. For that purpose, we define

the rotating-frame operators as b̂�t�=exp�i�0t+ i��â�t� and

b̂†�t�=exp�−i�0t− i��â†�t�. The rotating SQUID observables

are defined analogously as �̂r�= �b̂�t�+ b̂†�t�� /�2 and Q̂r�

= i�b̂†�t�− b̂�t�� /�2, and rotations of b̂�t� and b̂†�t� compen-
sate the natural rotation of the harmonic creation and anni-
hilation operators. In the new operators, the orientation of the
squeezing is �nearly� static and is determined by the angle �;
the Wigner functions in Fig. 3 appear frozen in time. Only a
tiny time-dependent deformation resulting from the drive re-
mains.

The noise varies periodically as a function of � as the
orientation of the squeezing is rotated �see Fig. 5�. For a

FIG. 3. �Color online� Wigner function of the ground state �left�
and the periodic squeezed state �=1.5B �right� in the ��� ,Q��
plane. The squeezed state rotates clockwise as indicated by the ar-
rows. The ellipse makes 2
 rotation in time T=2
 /�0.
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FIG. 4. �Color online� �a� Time-averaged noise spectrum S�����
of the periodic squeezed state �=0.15�0=1.25B. The spectrum has
resonances at frequencies ±�0. �b� The fine structure of spectrum
�a� reveals the weak resonance peaks at ±3�0.
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finite range of �, the SQUID noise of the �̂r� observable goes
below its ground-state value, which is a direct evidence of
reduction of the quantum fluctuations. For the parameters of
Fig. 5, the ground-state noise at zero frequency is approxi-
mately 2.5 times higher than the minimum noise correspond-
ing to �=0. The noise curves of squeezed states are slightly
asymmetric with respect to the half axes of the ellipse in Fig.
3, a consequence for the fact that the parametric drive in the
presence of a dissipation does not exactly produce ideal
squeezed state. In Sec. VI below, we will shortly discuss how
to measure the rotating spectrum.

B. Transmission line output

The TL voltage observable is the sum of the free-line
voltage operator and the retarded SQUID radiation contribu-
tion �see Eq. �12��. Since the two are uncorrelated, the volt-
age noise spectrum is given by SV���=SV

0���+g2S�����,
where SV

0��� is the vacuum noise of the TL and the coupling
constant g depends on the material parameters and can be
deduced from Eq. �12�:

g =
M�0

LS

��Z0, �16�

where Z0=�LS /C �S����� is the noise in the dimensionless
flux variable�. For the phenomenon to be measurable, the
vacuum noise of the TL should not overwhelm the SQUID
noise. From Eq. �16� and the results shown in Fig. 5, we can
estimate the order of magnitude as g2S�r�

��=0���2
−50��M /LS�2��0Z0, where the smaller value corresponds to
the blue curve and the greater value to the red curve. Al-
though the noise peak is mathematically shifted to zero in the
rotating spectrum, the physical SQUID signal is still peaked
around �0 and should be compared to the free TL vacuum

noise at frequency �0, which at low temperatures is SV
0��0�

=��0ZTL. Then, the relative effect is of order g2S�r�
��

=0� /SV
0��0�= �2–50��M /LS�2Z0 /ZTL= �2–50�� /�0. Taking

� /�0=0.15, as in Fig. 5, the fraction becomes
g2S�r�

�0� /SV
0��0�=0.3–7.5, depending on the direction of

squeezing, suggesting that the SQUID noise has a significant
effect on the TL output radiation in favorable conditions. In
the next section, we give an example of how the rotating
spectrum can be measured.

VI. MEASUREMENT OF SQUEEZING BY A QUBIT

In this section we briefly discuss how the squeezed spec-
trum can be accessed directly. We assume that the SQUID
flux �̂� is coupled to a two-state quantum system �qubit�
according to a total Hamiltonian,

H = HSQUID + Henv + gc�̂� cos��0t��z +
Bz

2
�z, �17�

in which the SQUID flux �̂� couples time dependently to the
qubit through �z operator. Here, Bz is the qubit energy split-
ting and gc is the coupling strength. The terms HSQUID and
Henv describe the SQUID and its dissipative environment,
leading to dynamics studied previously. The time-dependent
SQUID-qubit coupling is essential for compensating effects
of rotating squeezing angle. If the systems are weakly
coupled, the dephasing time of the qubit can be obtained

perturbatively as 1/T2=
2gc

2

�2 S�r�
�0�, where S�r�

�0� is the spec-
trum of rotating SQUID operators at zero frequency. As can
be seen from Fig. 5, this quantity depends strongly on the
squeezing angle. Thus, by measuring the dephasing time of
the qubit, one can directly verify the squeezing of the spec-
trum. The squeezing angle � can be varied by detuning the
relative phase of parametric driving and SQUID-qubit cou-
pling term.

The measurement setup described above could be realized
by the circuit depicted in Fig. 6. For simplicity, it consists of
three similar circuit elements operated in different parameter
regimes. The original squeezed SQUID element is coupled to
a Josephson flux qubit by a third loop. All three circuits are
described by the Hamiltonian of type �2� with different rela-
tive magnitudes of parameters. System 1 is the original

1 0.5 0 0.5 1

10

30

50

ω [ω0]

φ'S r
(ω) [ω0

−1]

--

FIG. 5. �Color online� Noise spectrum S�r�
��� of the squeezed

state �=0.15�0=1.5B in the rotating operators. The resonance
peaks are now moved to the origin. The blue solid curve shows the
spectrum of the minimum-noise quadrature, and the other curves
�green dotted, red dash-dotted, and yellow solid� correspond to the
noises of the quadratures rotated with 
 /4, 
 /2, and 3
 /4, respec-
tively, with respect to the quadrature of the minimal noise. The
black dashed curve represents the ground-state noise. Evidence of
squeezing is obtained whenever the noise of some quadrature lies
below the ground-state level.

FIG. 6. Schematic circuit for measuring the squeezed spectrum.
System 1 on the left is the squeezed SQUID element and system 2
on the right is a flux qubit. The gray loop 3 in the middle mediates
the harmonically varying interaction when the flux �3�t� is modu-
lated with an ac magnetic field. Dissipation mechanism of the
squeezed SQUID element is not represented in the figure.
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SQUID circuit studied so far, system 2 is a flux qubit, and
system 3 is the mediating circuit responsible for the har-
monic modulation of the mutual interaction between systems
1 and 2. In system 2, the Josephson energy is large enough to
produce well-defined double well potential when the external
flux bias is close to �0 /2 through the loop associated by a
total flux �̂.12 In system 3, the Josephson energy is assumed
to be dominant, the other terms being negligible. The effec-
tive Hamiltonian for the whole system is

H = H1 + H2 + H3, �18�

where H1 describes the squeezed element and its environ-
ment, H2 can be expressed in the basis of the two flux states
as H2=

Bz

2 �z+
Bx

2 �x, and H3=−EJ3 cos��2�t�2e /��cos���̂
+ �̂�2e /�� introduces the interaction between the first two
loops. Parameters Bz and Bx can be tuned by external mag-
netic fields through loops �2 and �̂.

Supposing that the expectation value of flux �̂+ �̂ is well
localized and small compared to �0, the second cosine in H3
can be expanded to the second order �flux can be always
made small by diminishing the middle loop and allowing
only fraction of �̂+ �̂ through it�. In addition, applying pre-
viously employed trick of modulating the flux as �3�t�
= �3/2
��0 sin��0t /2�, the effective Hamiltonian becomes

H3=
2e2EJ3

�2 cos��0t���̂2+ �̂2+2�̂�̂�. The weak nonresonant

quadratic terms �̂2 and �̂2 do not produce finite long-time
effects and can be neglected. Thus, the effective SQUID-

qubit interaction becomes H3�Hint=
4e2EJ3

�2 cos��0t��̂�̂. Writ-
ing the qubit flux operator in the two-state approximation as
�̂= �

2 �z �� being the flux separation of states� and supposing
that the tunneling between the two flux states of the qubit is
suppressed Bx=0, we recover a Hamiltonian of the form �17�
with gc=

�0�

�0
2 EJ3.

If needed, the coupling strength gc can be reduced by
allowing only a fraction of flux �̂+ �̂ through the middle
loop. The SQUID-qubit interaction can be turned off by set-
ting �2�t�=�0 /4. Measuring the dephasing time of the qubit
in the absence of the SQUID-qubit interaction and then
switching it on at different times, one should see the effects
of SQUID noise in various squeezing angles. The squeezed
noise can also be measured by other flux-sensitive devices15

by introducing a harmonically modulated interaction.

VII. CONCLUSIONS

The parametric harmonic driving creates rotating
squeezed quantum states in the SQUID ring. In the presence
of a strong damping, the magnitude of the squeezing is sta-
tionary. The minimum uncertainty in the flux and charge go
below the ground-state value periodically. The phenomenon
enables a quantum noise engineering which plays an increas-
ingly important role in the quantum measurement theory as
well as in the design of practical quantum devices. Squeezed
mechanical oscillators could be used, in principle, as ultra-
sensitive measurement devices for detecting weak classical
forces.5,16 The squeezed SQUID element could be, analo-
gously, used for measuring weak magnetic fields.

The experimental creation of squeezed quantum states in
a SQUID by a parametric driving is feasible with the current
experimental methods. We have calculated the relevant noise
properties of the periodic squeezed state. By introducing a
coupling to the transmission line, we have analyzed the fully
quantum-mechanical emission spectrum of the SQUID and
discussed briefly the conditions of an experimental verifica-
tion of the phenomenon.
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