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Mesoscopic physics and nanoelectronics concentrate on systems with dimensions somewhere between atomic and
everyday macroscopic scale. Modern technology enables construction of submicron nanostructures where modeling
based on classical physics has proven inadequate. It is possible to design electric circuits where dynamics of single
electrons and photons are controlled using state-of-the-art experimental methods. For quantitative understanding of
these systems it is necessary to resort to a quantum-mechanical description. Quantum phenomena, such as tunneling
and a wave-like interference of particles, are essential ingredients of physics in mesoscopic systems. Field of
mesoscopic physics contains a rich variety of topics ranging from fundamental condensed matter physics to quantum
information processing and possible future technological applications.

This thesis presents theoretical studies of mesoscopic quantum phenomena in nanostructures and small electronic
devices. We have focused on effects of environment fluctuations and investigated connections between fluctuations and
transport phenomena. Decoherence in quantum bits (qubits) and quantum state engineering in superconducting circuits
are also studied. The theoretical analysis in each case requires an open-system treatment.

Effects of current fluctuations on quantum probe systems have been studied in detail. We have calculated transitions
induced by current noise and discussed how these could be used for characterization of fluctuations. We have also
shown that electric fluctuations play a key role in radiation and photon heat transport in nanostructures. Motivated by
recent advances in mesoscopic electron-photon systems, we have studied a response of a coupled resonator-qubit
system, squeezing of quantum fluctuations in small superconducting circuits and investigated decoherence in
Josephson flux qubits.
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Mesoskooppisessa fysiikassa ja nanoelektroniikassa tutkitaan rakenteita joiden kokoluokka on jossakin atomaaristen ja
arkipäiväisten mittojen välimaastossa. Modernin teknologian avulla on mahdollista tuottaa alle mikrometrin kokoisia
nanorakenteita, joiden mallintamisessa klassisen fysiikan lait ovat osoittautuneet riittämättömiksi. Uusimpien
kokeellisten menetelmien avulla on mahdollista kontrolloida yksittäisten elektronien ja fotonien dynamiikkaa, jolloin
systeemien teoreettinen mallintaminen edellyttää ilmiöiden kvanttimekaanista kuvaamista. Kvantti-ilmiöillä, kuten
tunneloituminen ja hiukkasten aaltomainen interferenssi, on keskeinen asema mesoskooppisissa rakenteissa.
Mesoskooppinen fysiikka kattaa laajan aihevalikoiman perusfysiikan ilmiöistä aina kvantti-informaatioteoriaan ja
tulevaisuuden teknologisiin sovelluksiin.

Väitöskirja koostuu mesoskooppisten kvantti-ilmiöiden ja nanoelektroniikan teoreettisesta tutkimuksesta. Erityisesti
käsitellään ympäristön fluktuaatioiden vaikutusta nanoskaalan kvanttisysteemeihin ja selvitetään fluktuaatioiden
yhteyksiä kuljetusteoriaan. Lisäksi tutkitaan dekoherenssia kvanttibiteissä ja kvanttievoluution kontrollointia
suprajohtavissa virtapiireissä. Teoreettinen käsittely nojaa avoimien kvanttisysteemien formalismeihin.

Epätasapainofluktuaatioiden aiheuttamia ympäristöilmiöitä käsitellään yleisten kvanttidetektorisysteemien
tapauksessa. Virtafluktuaatioiden luonnetta karakterisoidaan tutkimalla sen indusoimia transitioita
detektorisysteemissä. Virtafluktuaatiot liittyvät läheisesti myös säteilyyyn ja fotonilämmönkuljetukseen
nanorakenteissa. Viimeaikaisten mesosokooppisiin elektroni-fotonistruktuureihin liittyvien kokeellisten läpimurtojen
motivoimana tutkitaan kytketyn resonaattorin ja kvanttibitin dynaamista vastetta, kvanttifluktuaatioiden manipulointia
suprajohtavissa piireissä ja aaltojohteissa sekä suprajohtavien vuokvanttibittien dekoherenssia soveltaen uusimpien
mikroaaltomenetelmien ideoita.
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1 Introduction

Mesoscopic physics studies systems which are small on everyday scale, yet contain-

ing a large number of degrees of freedom. This relatively new field began to take

shape in the early 80’s as a combined result of improved experimental techniques

and attempts to resolve to what degree macroscopic systems may exhibit quantum-

mechanical behavior. Quantum mechanics is the most successful achievement of

the 20th century science and its impact on our society and everyday life is difficult

to overestimate. The theoretical formalism of quantum mechanics has been known

in its current form for a long time, however, its paradoxes and broader implica-

tions remain far from clear. The gap between mathematical formulation and the

physical world is not completely filled. Today, one of the most fascinating fron-

tiers to study consequences of quantum laws is mesoscopic physics where the micro

and macroworlds meet. In many applications, such as nanoscale electric circuits,

mesoscopic systems allow high level of control in designing and manipulating them

and many system parameters are typically tunable. This is in contrast to micro-

scopic systems where structures are fixed and parameters are given by fundamental

constants. Besides purely scientific interests, mesoscopic physics promises opportu-

nities for a wide variety of technological and industrial applications in the future.

Another motivation to study mesoscopic physics is the fact that quantum mechanics

imposes fundamental restrictions to small devices that need to be taken into account

in continuing miniaturization of structures.

Physics of open quantum systems has experienced a strong revival due to the interest

towards mesosocopic systems. It is necessary to formulate quantum mechanics in a

way that accommodates the influence of environment [1]. The open system formula-

tion also offers new aspects to the quantum measurement problem, emphasizing the

significance of the environment monitoring at the expense of a conscious observer [2].

Quantum measurement theory has also received a more concrete attention initiated

by studies of electric fluctuations in nanostructures [3]. This Thesis is devoted to
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the study of systems that are large compared to dimensions of individual atoms and

molecules, and as such, usually very sensitive to environmental effects. Therefore all

systems under study must be considered as open quantum systems interacting with

their environments. As a concrete example we explore transitions effects caused by

electric fluctuations in small quantum electronic devices. The topic is closely related

to electron transport in nanostructures, quantum measurement theory and shielding

of quantum electronics from harmful environmental effects. Another major topic of

this Thesis is mesoscopic electron-photon systems that are currently under active

study. These systems serve as test benches for quantum laws as well as promise vari-

ety of future quantum information and nanoelectronics applications [4]. Underlying

similarity in open systems is the fact that the temporal evolution of systems is no

longer governed by the unitary evolution of the Schrödinger equation which needs

to be replaced by more general master equations leading to irreversible dynamics.

Interactions between subsystems and their environment create correlations and, in

case of large environments, information of correlations is carried away from the sys-

tem permanently. From the point of view of subsystems, this leads to an irreversible

behavior and typically to reduction of quantum superpositions.

1.1 Organization of this Thesis

In Chapter 2 I introduce concepts and machinery used in the theoretical treatment

of open quantum systems and illustrate the formal side of the topic. In Chapter 3 I

discuss the effects of non-Gaussian current fluctuations on probe quantum systems.

The topic illustrates the dual interest in open system dynamics. On one hand, as

is painfully clear in quantum information applications, noise coming from the envi-

ronment contaminates the unitary temporal evolution of a subsystem and destroys

its coherence properties. On the other hand, from the point of view of quantum

measurement theory, an entangled subsystem can be used as a probe to extract in-

formation from its environment. In Chapter 4 I explore mesoscopic systems where
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electron-photon interactions play an important role and introduce some quantum

information applications. There I also discuss transport phenomena, forming an

important subclass of open system problems where the focus is on the interplay be-

tween different parts of a system. Chapter 5 summarizes the overview and contains

a brief outlook on the future developments in the field.
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2 Dynamics of open quantum systems

The basic object used to represent a state of an open quantum system is a density

operator ρ̂. It contains the complete information of a quantum state at a given

moment of time. A density operator is a Hermitian, positive operator 〈n|ρ̂|n〉 ≥ 0

(with an arbitrary state 〈n|) with unit trace Tr(ρ̂) = 1. Diagonal matrix elements

give probabilities for finding the system in corresponding states after a measurement,

while off-diagonals contain information about quantum-mechanical phase coherence.

In general, quantum-mechanical states represented by a density operator ρ̂ can be

classified into pure states which can be represented by state vectors and satisfy

Tr(ρ̂2) = 1, and mixed states which exhibit reduced phase coherence and fulfill

Tr(ρ̂2) < 1. Open systems are characterized by the fact that they generally are in

mixed states. In absence of environmental effects the Schrödinger equation for a

state vector is replaced by the von Neumann equation [5]

dρ̂(t)
dt

= − i

h̄
[H, ρ̂] . (2.1)

The von Neumann equation describes a unitary temporal evolution of a general quan-

tum state but it cannot be used to handle complicated systems efficiently. For this

reason it is necessary to consider master equations which reduce the complicated dy-

namics to a feasible form. Expectation values of observables can be calculated from

the density operator as 〈Â(t)〉 = Tr(Âρ̂(t)). Additional information can be found by

studying multi-time correlations of the form 〈Â1(t1)Â2(t2) . . . Ân(tn)〉 which cannot

be obtained directly from ρ̂(t).

2.1 Tracing out environment; Master equations

A closed system is an idealization which, strictly speaking, is not realized in any

physical system apart, perhaps, from the whole universe. Usually physical systems

are imbedded in larger systems that act as environments. A fundamental problem
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is to solve the reduced dynamics of a subsystem of interest. This can be achieved by

solving the full dynamics of a system and its environment and projecting out the un-

interesting part. Formally this is implemented by the Nakajima-Zwanzig equation

[6, 7], which is generally difficult to solve. Thus it is necessary to devise meth-

ods that concentrate on the reduced system, allowing the environment effects to be

taken into account without solving the full dynamics. This procedure, often referred

to as tracing or integrating out environment degrees of freedom, leads to master

equations that differ from Eq. (2.1) crucially by generating an irreversible tempo-

ral evolution. Irreversibilities manifest in energy dissipation and loss of coherence.

There are several different approaches to open quantum dynamics their respective

superiority depending on specific applications. The most direct way to derive the

reduced dynamics is to start from the von Neumann equation and develop a pertur-

bation expansion in the system-environment coupling term. A simple perturbative

treatment can be improved by resummation techniques allowing formally exact ma-

nipulations in close analogy to many-body field theory. In Feynman-Vernon theory

the reduced dynamics is formulated in terms of path integrals and environment ef-

fects are implemented by integration over influence functionals [1]. The Lindblad

theory provides a general mathematical structure of the master equations yielding

solutions satisfying a dynamical semi-group property [8, 9]. A complementary ap-

proach is provided by quantum Langevin equations in which the reduced system

dynamics is formulated for operators in the Heisenberg picture [10, 11]. In this

section the perturbation treatment follows the formulation of Refs. [12, 13].

Derivation of master equations usually requires writing the Hamiltonian of the

total system in three contributions H = Hs + Henv + Hint, where the first two

terms correspond to the system of interest and its environment while the third

term describes an interaction between them. A formal solution to the von Neu-

mann equation (2.1) for the density operator of the total system can be written as

ρ̂(t) = U(t, t0)ρ̂(t0)U †(t, t0) with U(t, t0) = e−
i
h̄

H(t−t0). In the interaction picture
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with respect to Hint the relation reads

ρ̂I(t) = UI(t, t0)ρ̂(t0)U
†
I (t, t0) (2.2)

where UI(t, t0) = Te
− i

h̄

∫ t
t0

dt′HI
int(t

′), HI
int(t) = e

i
h̄
(Hs+Henv)tHinte

− i
h̄
(Hs+Henv)t and T is

a time ordering operator. Assuming that the initial state of the total system is sepa-

rable, ρ̂(t0) = ρ̂0
s⊗ρ̂0

env, the reduced density matrix ρs(n,m, t) ≡ 〈n|Trenv [ρ̂(t)] |m〉 =

〈n, t|Trenv

[
ρ̂I(t)

] |m, t〉 may be written as

ρs(n,m; t) =
∑

j,k

Π(n,m, t; j, k, t0)ρ0
s (j, k), (2.3)

where the propagator is given by

Π(n,m, t; j, k, t′) = Trenv

[
ρ̂0
env〈k, t′|T̃ e

i
h̄

∫ t
t′ dt̄HI

int(t̄)|m, t〉〈n, t|Te−
i
h̄

∫ t
t′ dt̄HI

int(t̄)|j, t′〉
]
,

(2.4)

and the trace is calculated over a complete set of environment states. In a graph-

ical description the density matrix evolution is represented by two horizontal lines

corresponding to the forward and backward propagation in time, see Fig. 2.1. The

propagator can be expanded in powers of the operator Hint which is represented by a

dot in propagation lines. The dots are connected by interaction lines which represent

the trace over the environment and couple the forward and backward propagation

lines. In the spirit of field-theoretic resummation of a many-body perturbation the-

ory [14], one can derive the Dyson equation

Π(n, m, t;j, k, t′) = Π0(n,m, t; j, k, t′)+

+
∫ t

t′
dt2

∫ t2

t′
dt1Π(n, m, t; r, s, t2)Σ(r, s, t2; p, q, t1)Π0(p, q, t1; j, k, t′), (2.5)

where the repeated indices are summed. The self-energy Σ(r, s, t2; p, q, t1) is de-

fined as the sum of diagrams for which any vertical cut intersects at least one

interaction line and Π0(n,m, t; j, k, t′) is the propagator in the absence of the en-

vironment. In the eigenbasis of Hs it can be expressed as Π0(n,m, t; j, k, t′) =

exp [−i(En −Em)(t− t′)/h̄] δn,jδm,k, where Ej are eigenvalues of Hs. The Dyson

equation (2.5) for the propagator is equivalent to a Bloch-type density operator
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evolution
dρ̂s(t)

dt
= − i

h̄
[Hs, ρ̂s(t)] +

∫ t

t0

dt′Σ(t, t′)ρ̂s(t′), (2.6)

where Σ(t, t′) is a superoperator with matrix elements Σ(r, s, t; p, q, t′). The di-

agram expansion can also be employed to calculate correlation functions such as

〈B̂(t2)Â(t1)〉. The operators are placed on the closed time path (the Keldysh con-

tour) depending on their ordering and dressed with all possible interaction processes

[12], see Fig. 2.1.

The advantage of the above presented formalism is that it leads to an intuitive

graphical representation of the perturbation theory on the Keldysh contour anal-

ogous to that of many-body Green’s functions theory [15]. An obvious drawback

is that the method is applicable only for initial states that are of a tensor product

form in a system-environment space. This can be remedied by standard adiabatic

switching techniques requiring additional work. A more subtle issue is the positiv-

ity of the density operator since perturbation expansions do not necessarily sustain

the positivity and it can be violated after certain time [16]. This problem does

not arise within the Born-Markov approximation [8], where the system-environment

coupling is calculated in the lowest order and the self-energy is approximated as a

local quantity in time. Physically the Born-Markov approximation is valid when

the system and environment are weakly coupled and the decay of correlations in the

environment is much faster than the reduced systems dynamics.

2.2 Lindblad evolution equation

The main application of reduced-system equations of motion, i.e. master equa-

tions, is to implement environment-induced relaxation and decoherence effects not

taken into account by unitary dynamics of a closed system. The possible forms

of master equations are strongly restricted by the requirements for density opera-

tors, particularly the positivity. In case of Markovian evolution the general form
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= + + + +

= + + + +

+

= +

. . . . . .

. . .

Σ

Σ

Π

Π ΠΠ
0

Π
0

Π
0

ΠΠ Π= + +

. . .

+

A(t1)

B(t2)

Figure 2.1: Diagrammatic perturbation expansion for the propagator Π. The
propagator is obtained as a sum of all different diagrams and obeys the Dyson
equation which is written in terms of the irreducible self-energy Σ. The lowest line
represents the diagrammatic expansion of correlation function 〈B̂(t2)Â(t1)〉.

of master equations is provided by the Lindblad equation [17]. Suppose that the

reduced dynamics is given by a dynamical map ρ → ρ(t) = V (t)ρ(0), so that ρ(t) is

a density operator. Assuming that the dynamical map satisfies a semigroup prop-

erty V (t1 + t2) = V (t1)V (t2) for t1, t2 ≥ 0, the temporal evolution is given by the

Lindblad equation

dρ̂s

dt
= − i

h̄
[Hs, ρ̂s] +

∑

i

γi

(
2Aiρ̂sA

†
i −A†iAiρ̂s − ρ̂sA

†
iAi

)
, (2.7)

where γi are positive real numbers and Ai are so-called Lindblad operators acting

in the reduced Hilbert space. In applications quantities γi usually correspond to

excitation, decay and dephasing rates. The Lindblad equation (2.7) is the most

general equation of motion satisfying the dynamical semigroup property [8, 9]. In

physical applications, the Born-Markov approximation for the system-environment

interaction often leads to a master equation of form (2.7) with case-specific Lindblad

operators. Typically annihilation and creation operators play the role of Lindbad

operators. The Lindblad equation provides a straightforward starting point in an-

alyzing physics in the Markovian approximation and is well-behaving in numerical

calculations. However, non-Markovian phenomena generally cannot be addressed.
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2.3 Classical fluctuating potential as effective environment

Open quantum system dynamics is affected by environment degrees of freedom.

Sometimes environment effects can be effectively described by a time-dependent

stochastic term in the unitary von Neumann equation, as in Paper I. One could

qualitatively study effects of a fluctuating bath of particles or external control pa-

rameters such as gate voltages and bias currents by introducing a stochastic term

coupled to the system of interest. The philosophy of this approach is simple, though

mathematically it is difficult to justify. It is by no means guaranteed that certain

microscopic degrees of freedom can be identified as a fluctuating random potential.

A single trajectory of the system experiencing the random potential corresponds to

unitary evolution but an average over all potential realizations can generate nonuni-

tary effects analogous to tracing out degrees of freedom. The random potential

description reduces the Hilbert space dimension of the problem at the expense of

the ensemble averaging.

In Paper I the dynamics of a closed system is studied under discrete classical Marko-

vian noise. The noise is characterized by N different states having probabilities Pk(t)

which evolve in time according to

∂tPk(t) =
N∑

j=1

γkjPj(t) (2.8)

and satisfy
∑N

k=1 Pk(t) = 1. Ensemble averaged temporal evolution is formulated in

terms of conditional density operators ρk(t) which represent the system in a noise

state k, normalized so that Tr [ρk(t)] = Pk(t). The total density operator is obtained

as

ρ(t) =
N∑

k=1

ρk(t) (2.9)

satisfying the ordinary normalization. For each noise state there is a corresponding

Hamiltonian Hk, so the evolution of ρk(t) is given by

∂tρk(t) =
1
ih̄

[Hk, ρk(t)] +
N∑

j=1

γkjρj(t), (2.10)
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where the second term corresponds to the random transitions between noise states.

The system evolution is obtained as a solution to Eq. (2.10). For example, evolution

of a quantum system experiencing Random Telegraph Noise (RTN) is obtained by

solving the pair of equations

∂tρ± =
1
ih̄

[H±, ρ±]± 1
τ
(ρ− − ρ+), (2.11)

where τ is the flipping rate between the two noise states. Equation (2.11) was used to

study evolution of a two-level system under RTN in Paper I. It was also shown that

the effective RTN description corresponds to a quantum-mechanical model where the

two-level system is coupled to another two-level system subjected to an environment-

induced relaxation. The connection between a random classical potential and the

quantum model provides a physical motivation for using the RTN model. A similar

version of Eq. (2.11) was employed in Ref. [18] to study the macroscopic quantum

tunneling in a Josephson junction in the case of a fluctuating potential barrier.

2.4 Indirect quantum measurement

A measurement process of a quantum-mechanical system is formulated with a sep-

arate measurement postulate: a measurement of an observable R̂ =
∑

m rm|m〉〈m|
yields a result rm with a probability Tr(|m〉〈m|ρ̂) = ρmm. This formulation of

a measurement process, though not fitting in the picture of the unitary quan-

tum evolution and only partially understood, has proved indispensable in practice.

Besides the ideal projective measurement, sometimes it is advantageous or neces-

sary to consider an indirect measurement, where the system of interest is accessed

through an additional quantum probe which is eventually subjected to the projec-

tive measurement. The indirect measurement is implemented by the Hamiltonian

H(t) = Hs +Hp +Hsp(t) consisting of contributions from the system, the probe and

the mutual interaction. Preferably Hsp(t) can be turned on at a given moment not

to perturb the system before the measurement. Assuming that the probe is prepared

at t = 0 to a known state ρ̂0
p, the total initial density operator is ρ̂0 = ρ̂0

s ⊗ ρ̂0
p and
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the probability to obtain an outcome rm of a probe observable at a time t > 0 is

Pm = Tr [|m〉〈m|ρ̂(t)] = Tr
[
|m〉〈m|U(t, 0)ρ̂0

s ⊗ ρ̂0
pU

†(t, 0)
]
, (2.12)

with U(t, 0) = Te−
i
h̄

∫ t
0 dt′H(t′). The quantum system and the probe entangle during

the evolution, after which measurements of probe observables can be used to extract

information about ρ̂0
s . Depending on the nature of the system and the probe, two

qualitatively different situations may arise. Suppose, for example, that the probe is

a two-state quantum system coupled to another two-state system. Then the reduced

density matrix of the probe characteristically exhibits periodic coherent oscillations.

On the other hand, if the probe system is coupled to a large bath of particles, the

reduced density matrix of the probe evolves eventually to a diagonal steady state

determined by the bath coupling operator. Indirect measurement scheme is relevant

in Chapter 3 in the context of detecting current fluctuations.

Measurement

      device
Probe

Quantum

  object

Figure 2.2: Schematic representation of indirect measurement. The quantum ob-
ject entangles with the probe which is subsequently subjected to a projective mea-
surement.
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3 Characterization and detection of transitions induced by

non-Gaussian current fluctuations

Measurable properties of many-body systems usually correspond to averaged values

of many degrees of freedom. Average values provide restricted information and in

a further analysis one is lead to study fluctuations about the mean. Fluctuations

become more important as the system size is reduced, so they enter naturally in con-

sideration in mesoscopic systems. Current fluctuations in nanostructures have been

one of the central topics of mesoscopic physics for over a decade and exhibit interest-

ing features that are absent in macroscopic conductors [19, 20]. This is because con-

duction electrons lose their quantum mechanical phase coherence in collisions with

other electrons, phonons and dynamical impurities [21, 22]. Thus only in structures

that are smaller or comparable to the electron phase relaxation length Lφ, which de-

pends on temperature and microscopic details, quantum mechanical effects become

important. The study of electric fluctuations experienced a significant stimulation

from the theory of Full Counting Statistics (FCS) [3, 23] whose primary objective is

to solve the electron number distribution in a transport process in a given interval of

time. The essential result of FCS is that transmitted charge cumulants are obtained

from the generating function F(χ) = ln 〈T̃ e−i
∫

dtχI(t)/2Te−i
∫

dtχI(t)/2〉, where T (T̃ )

denotes (anti)time ordering operator. Besides FCS, the statistics of fluctuations has

been studied in many different contexts in various systems [24, 25, 26, 27, 28, 29].

Current fluctuations in mesoscopic structures consist of equilibrium Johnson-Nyquist

noise described by the Fluctuation-Dissipation relation [30] and nonequilibrium shot

noise caused by granularity of charge carriers [20]. Fluctuations provide information

of the nature of a conduction mechanism and the intrinsic structure of the conduc-

tor that is not accessible from the average current. As a drawback, noise provides

harmful influence on high-precision systems in the vicinity and needs to be taken

into account in many applications. In this chapter we explore characterization of
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transition effects induced by the third moment of current fluctuations in external

quantum detector systems. Transition phenomena can be accessed through station-

ary probability distributions in contrast to the off-diagonal dynamics considered in

detection of FCS. In the original FCS measurement scheme [3] the fluctuating cur-

rent was coupled to a fictitious spin-1
2 system in vanishing magnetic field acting as

a probe and the transmitted charge was identified as a rotation angle of the spin.

Transition effects cannot be used for FCS measurement but are important in their

own right and readily accessible. In some circumstances effects of noise even allow

an effective temperature description. Much of the motivation of this chapter is pro-

vided by characterization of current fluctuations but the problem of a probe system

coupled to a larger fluctuating environment is a very general one. The detection

theory can be thought as a study of spontaneous emission and absorption in the

presence of nonequilibrium environments. Detection aspects are discussed below in

detail in context of two generic detector models, a two-level system and a harmonic

oscillator.

3.1 Transitions induced by quantum noise

Consider the system schematically plotted in Fig. 3.1. The Hamiltonian of the

system is

H = Hdet + Henv + Hecoup + Hnoise + Hcoup, (3.1)

where Hdet corresponds to the detector system, Henv its environment and Hnoise to

the noise source. Remaining terms Hecoup and Hcoup describe the couplings of the

detector system to the environment and the noise source, respectively. In the termi-

nology of indirect measurement in Section 2.4, the noise source and environment cor-

respond to the quantum object and the detector to the probe system. The detector

part is assumed to have a discrete nondegenerate set of eigenstates Hdet|n〉 = En|n〉
but the current source Hnoise does not need to be specified in detail. The coupling is

assumed to have a bilinear form Hcoup = gÎB̂, where Î is the current operator, B̂ a
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Hermitian operator acting in the detector Hilbert space and g a coupling constant.

For simplicity, the average current effects are included to Hdet, so we may assume

〈Î〉 = 0. The environment Henv and the coupling Hecoup Hamiltonians implement

a possible unideal behavior of the detector and are modeled by Caldeira-Leggett

interaction [31, 32] Henv =
∑

j h̄ωj â
†
j âj , Hecoup = Â

∑
j λj(âj + â†j)+ Â2

∑
j λ2

j/h̄ωj .

δÎ(t)

G

eV , kBT , h̄ωc

g

Ω

Γ↓ Γ↑

λ

Te

Hnoise Hcoup Hdet Hecoup Henv

Noise source Detector Environment

Figure 3.1: Generic scheme for noise measurement. The noise source is coupled
to a detector system where it induces transitions. The detector is subsequently
imbedded in a fluctuating environment independent of the measured noise source.

We are interested in the detector dynamics, so we study the reduced density operator

ρ̂(t) = Tr′ ρ̂tot(t) where ρ̂tot is the density operator for the whole system and the

partial trace is calculated over the noise source and the environment. The transition

rates can be obtained by solving the temporal evolution of a diagonal element of the

reduced density matrix ρn′n′(t) = 〈n′|ρ̂(t)|n′〉 with the initial condition ρn n(t0) = 1

(n 6= n′). The transition rate Γn→n′ is defined as the coefficient of the linearly

increasing contribution to ρn′n′(t) in the long-time limit. For calculating the rates

the initial conditions are assumed to be of the product form ρ̂tot(t0) = ρ̂(t0) ⊗
ρ̂noise(t0)⊗ ρ̂env(t0), where ρ̂noise(t0)⊗ ρ̂env(t0) describes the initial state of the noise

source and the environment. In the following the rates are expressed in terms of the
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noise power

SI(ω) ≡
∫ ∞

−∞
eiω(t−t0)〈I(t)I(t0)〉d t (3.2)

and the partially time-ordered third cumulant

δ3I(ω1, ω2) ≡
∫ ∞

−∞
d(t1 − t0)

∫ ∞

−∞
d(t2 − t0)eiω1(t1−t0)+iω2(t2−t0)〈T̃ [I(t0)I(t1)]I(t2)〉,

(3.3)

which emerge from the partial trace over the noise source. In the static case consid-

ered here, these correlators are independent of the time t0. In Paper II it was for the

first time recognized that the partially ordered correlator (3.3) plays an important

role in transition phenomena. Previous literature was concentrating only on non-

ordered or fully Keldysh symmetrized correlation functions arising from FCS. An

essential lesson from the general considerations is that it is not a priori clear what

type of correlation function contributes to the measured quantity. The current oper-

ators at different times do not commute and there is no universal form of correlation

functions contributing to different observables. The relevant case-specific correlation

function is determined by the observable of interest and the detailed measurement

scheme. This problem is already present at the level of two-point correlation func-

tions and it took a long time to recognize the emission-absorption interpretation

arising from the different ordering of operators [33].

Up to the third order in couplings λj and gi, the total transition rate is a sum of

independent contributions arising from the noise source and environment Γm→n =

Γenv
m→n + Γnoise

m→n. The environment contribution

Γenv
m→n =

|Amn|2
h̄2 2π

∑

j

λ2
j [δ(ωmn − ωj)(nj + 1) + δ(ωmn + ωj)nj ] (3.4)

gives the rate from state m to n due to a Gaussian bath, where we have intro-

duced shorthands Amn = 〈m|Â|n〉, ωmn = (Em − En)/h̄, nj = 1/(eβeh̄ωj − 1) and

βe = 1/kBTe denotes the inverse bath temperature. Expression (3.4) can be evalu-

ated further by introducing a continuous distribution of bath oscillators f(ω) and
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replacing the summation by integration
∑

j =
∫∞
0 dωf(ω), yielding

Γenv
m→n =

|Amn|2
h̄2 2π

[
f(ωmn)λ2(ωmn)(n(ωmn) + 1)Θ(ωmn)

+f(−ωmn)λ2(−ωmn)n(−ωmn)Θ(−ωmn)
]

= eβeh̄ωmnΓenv
n→m. (3.5)

Tracing out the noise source up to the third order in the coupling constant g leads

to expression

Γnoise
m→n =

1
h̄2 g2|Bmn|2SI(ωmn) + Γ(3)

m→n, (3.6)

where

Γ(3)
m→n =

g3

h̄3 Re
∑

l

[ ∫ ∞

−∞

δ3I(ω, ωmn)
ω − ωln − iη

dωBmlBlnBnm

]
. (3.7)

The first term on the right hand side of Eq. (3.6) is the well-known Golden Rule

result which can be expressed in terms of frequency-dependent current noise [33].

The second term (3.7) was calculated in Paper II employing a diagrammatic method

introduced in Chapter 2 and depends on the third-order correlator (3.3). Whereas

the Golden Rule rate may give a finite contribution even in the case of equilibrium

fluctuations, the expression Eq. (3.7) is non-vanishing only in nonequilibrium situa-

tions and characterizes effects of shot noise. The current operator Î changes its sign

in time-reversal transformation, so the three-point function vanishes in time-reversal

invariant states.

3.2 Current correlators of point contacts

For calculating the populations of the detector states we need correlators (3.2) and

(3.3). Finding them for a general mesoscopic conductor with interaction effects is

a formidable task and only few results are known. However, in an important case

of coherent transport through a quantum point contact with an energy-independent

scattering matrix, the correlators can be found from the scattering theory [20, 34].

The noise power (3.2) can be written in the form SI(ω) = SQ
I (ω) + Sexc

I (ω), where
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the vacuum part is SQ
I (ω) = 2h̄ωGθ(ω) and the excess noise is given by

Sexc
I (ω) =Gh̄ω

(
coth

(
h̄ω

2kT

)
− sgn(ω)

)
+ F2G

eV sinh( eV
kT )− 2h̄ω coth( h̄ω

2kT ) sinh2( eV
2kT )

cosh( eV
kT )− cosh( h̄ω

kT )
T→0→ F2G(e|V | − h̄|ω|)θ(e|V | − h̄|ω|). (3.8)

Here G is the point contact conductance, V is the applied voltage over it and F2 =
∑

n Tn(1−Tn)/
∑

n Tn is the Fano factor determined by the transmission eigenvalues

Tn [33, 20]. Evaluation of δ3I(ω1, ω2) is more involved but can be carried out by

using a technique developed in Ref. [34]. As was shown there, an arbitrarily ordered

frequency-dependent current correlation function can be decomposed in terms of

”in” Îin and ”out” Îout current operator correlation functions. Using this formalism

and notation of Ref. [34], the correlator (3.3) can be written as

δ3I(ω1, ω2) =Sioo(−ω1 − ω2,−ω2) + Sioo(ω1,−ω2)

+Sioo(−ω2,−ω1 − ω2)− Sooo(−ω1 − ω2,−ω2), (3.9)

where

Sioo(ω1, ω2) =
∫

d(t0 − t1)
∫

d(t1 − t2)eiω1(t0−t1)eiω2(t1−t2)〈Îin(t0)Îout(t1)Îout(t2)〉

and analogously for Sooo. The frequency dependence in Eqs. (3.8) and (3.9) arises

only from Fermi distribution functions in the leads and does not reflect any features

of a contact. These expressions are valid for frequencies much below the charac-

teristic frequencies associated with internal dynamics or the collective response of

structures such as charge pile-up. If the point contact is a part of an electric circuit

with the impedance Zext(ω) (see Fig. 3.2), fluctuations are modified in a frequency-

dependent way. In steady-steady situations this can be taken into account by

Sc
I(ω) = G(ω)G(−ω)SI(ω), δ3Ic(ω1, ω2) = G(ω1)G(ω2)G(−ω1 − ω2)δ3I(ω1, ω2),

where the factor G(ω) = 1/[1 + Zext(ω)G] accounts for the external circuit [20].

Now, in principle, we have all the necessary information for evaluating the probe

system transition rates for point contacts.
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Zext (ω)

G

δI

Figure 3.2: Quantum point contact G in series with an external circuit with
impedance Zext(ω).

3.3 Two-level and harmonic detectors

In the long-time evolution the detector density matrix ρnm(t) typically tends to a

diagonal steady-state form. The diagonal elements correspond to the probabilities

Pn ≡ ρnn to find the detector in states |n〉〈n|. In a steady state, the probabil-

ities of states connected by non-vanishing rates satisfy the detailed-balance con-

dition Pn/Pm = Γm→n/Γn→m. If for all m,n the probabilities satisfy Pn/Pm =

exp(βh̄ωmn) for some constant β, the probability distribution can be interpreted as

a thermal distribution at an effective temperature 1/kBβ. Since the Golden-Rule

contribution is a symmetric and the third-cumulant contribution (3.7) is an antisym-

metric function of the current, the effective temperature is an asymmetric function

of current in the case of a non-vanishing third moment.

The general Hamiltonian for a quantum two-level detector is

HTLS = −Bz

2
σz − Bx

2
σx, (3.10)

where σz/x are Pauli matrices and Bz/x are the effective magnetic fields that are

often controllable in applications. We assume that the noise source is coupled to the

detector according to

Hcoup =
h̄

e
gÎσz.
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and 〈Î〉 = 0 because the average current effect can be absorbed to Bz. The ground

and excited states of this system are given by |0〉 = −β| ↑〉+ α| ↓〉 and |1〉 =

α| ↑〉+β| ↓〉, with α = cos(φ/2), β = sin(φ/2) and φ = arctan(Bz/Bx). The energies

of these states are E0/1 = ∓Ω/2, Ω ≡
√

B2
x + B2

z and the relevant detector matrix

elements are σ11
z = −σ00

z = cos(φ) and |σ01
z |2 = sin2(φ). The Golden-Rule and

third-moment rates can be written as

Γ(2)
0→1 =

g2

e2
|σ01

z |2Snoise(−Ω/h̄), (3.11)

and

Γ(3)
0→1 = −g3

e3
|σ01

z |2 cos(φ)Re
[ ∫ ∞

−∞
dω

δ3I(ω,Ω/h̄)
ω + Ω/h̄− iη

−
∫ ∞

−∞
dω

δ3I(ω,Ω/h̄)
ω − iη

]
. (3.12)

The corresponding relaxation rates Γ(2/3)
1→0 can be obtained from the excitation rates

with a substitution Ω → −Ω. Importantly, if either Bz or Bx vanishes, the third mo-

ment contributions Γ(3) vanish also. This generic property follows from the structure

of the product of detector matrix elements and is independent of noise. The explicit

expressions for (3.12) was calculated analytically in various limits in Paper III. As-

suming that the higher-order effects are insignificant, the effective temperature of

the system can be defined as

kBTTLS =
Ω

ln
(

Γ
(2)
1→0+Γ

(3)
1→0

Γ
(2)
0→1+Γ

(3)
0→1

) . (3.13)

Important solid-state realizations of two-level quantum detectors are mesoscopic

superconducting circuits, which have been used in characterization of noise [35].

A harmonic detector system is defined by the Hamiltonian

HHO = − h̄

2m
∂2

x +
1
2
mω2

0x̂
2 = h̄ω0b̂

†b̂, (3.14)

where b̂ and b̂† are bosonic creation and annihilation operators. As a consequence

of the general formula (3.7), if the fluctuating current couples linearly to the po-

sition or the momentum operator the rates Γ(3)
m→n vanish. This is independent of

the current noise and follows from the form of the matrix elements of the coupling
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operators. This reasoning shows how harmonic systems are naturally robust against

third moment transition effects and was used to justify the assumption of adia-

batic nature of bias current fluctuations in a Josephson escape measurement [36].

If instead fluctuations modify the mass parameter of the oscillator, the resulting

coupling term is of the form Hcoup = −gÎ(b̂† − b̂)2. Non-vanishing contributions

to transitions are Γ(2)
n→n+2, Γ(2)

n+2→n, Γ(3)
n→n+2 and Γ(3)

n+2→n, which all share the same

n-dependence. This property, in the case when the Gaussian bath can be neglected,

allows an effective temperature description according to

kTho =
2h̄ω0

ln
(

Γ
(2)
n+2→n+Γ

(3)
n+2→n

Γ
(2)
n→n+2+Γ

(3)
n→n+2

) . (3.15)

If the fluctuations couple to the square of the position instead of the momentum,

the behavior remains qualitatively the same.

In summary, in this chapter we studied transition effects in simple quantum probe

systems induced by nonequilibrium current fluctuations. The current operators at

different times do not commute and generally specific combination contributing to

the measured quantity depends on the details of the measurement scheme. The

leading contribution to transition rates is proportional to the noise power (3.2) and

the first correction to the third-moment correlator (3.3). The latter signals the

nonequilibrium nature of the environment and vanishes in equilibrium. Apart from

Section 3.2, the treatment is insensitive to the specific nature of the environment

and thus very general.
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4 Mesoscopic electron-photon systems

The theory of particles interacting with electromagnetic fields has a long and colorful

history. One of the early triumphs of quantum theory was a successful explanation

of spontaneous emission in excited atoms. Since then, interactions between light

and matter have revealed a rich variety of phenomena from fantastically high to

very low energies. Quantum electrodynamics and quantum optics are some of the

best established theories of modern physics today. During the last decades devel-

opments in mesoscopic physics have opened an interesting possibility to engineer

systems where the effects of electron-photon interactions are pronounced. With cur-

rent technology the temporal evolution of solid-state quantum devices is routinely

manipulated using external fields and radio-frequency signals. Recent advances have

also enabled experimental studies of the strong coupling circuit cavity QED which

has many advantages over the quantum optical counterpart. In circuit cavity QED

a small electric circuit interacts with a single or multiple photon modes of a trans-

mission line resonator [4, 37]. The phenomenon is interesting from the point of view

of fundamental physics as well as numerous applications in quantum information

processing, realizing single-photon sources and performing high-precision measure-

ments. Besides controlled signals, photons also carry heat which propagates along

electric circuits, a phenomenon which was experimentally measured recently [38].

At low temperatures photon radiation is an essential relaxation channel in metallic

systems. A major advantage of mesoscopic electron-photon systems is the high-level

control in designing and manipulating them.

In this chapter we study phenomena that are relevant in mesoscopic electron-photon

systems. In the first section we consider a strongly coupled qubit-resonator system

and explain how the oscillator response depends on the quantum state. The conse-

quences of correlated relaxation of flux qubits is the topic of Section 4.2, where the

proposed experimental scheme relies on methods of cavity QED. Section 4.3 con-

centrates on manipulation of quantum fluctuations in a SQUID circuit and applying
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this to generate squeezed microwave radiation. Finally, Section 4.4 focuses on pho-

ton transport in a low-dimensional geometry and highlights an interplay between

photon heat transport and electrical fluctuations.

4.1 Quantum impedance of a strongly coupled oscillator-qubit system

A harmonic oscillator coupled to a quantum two-level system is one of the generic

systems appearing in many different physical contexts. The individual constituents

are rare examples of exactly solvable systems and coupling them provides a qualita-

tive explanation for a variety of phenomena. In quantum optics the system has been

studied as a model of an atom interacting with a quantized electromagnetic cavity

mode for decades. Oscillator-qubit systems have gained interest in solid-state physics

after the experimental realization of circuit cavity QED in superconducting systems

where small electric circuits are coupled to transmission line resonators [4, 37]. Cir-

cuit cavity QED applications is a fast growing field with promising prospects. Lately,

the oscillator-qubit systems have been considered also in the context of mesoscopic

electromechanical systems [39, 40]. In this section we consider a resonant oscillator-

qubit system and study the response of the system under an external perturbation

directed to the oscillator. The response depends on the quantum state of the sys-

tem and the oscillator can be thought of as a probe in an indirect measurement

of the qubit. Ideally this type of measurement could be used in probing the qubit

properties and determining the state of the system. In case of electric circuits the

response can be accessed by impedance measurements which have been realized in

many experiments [4, 41, 42, 43, 44].

We describe the oscillator-qubit system with a variant of the Jaynes-Cummings

Hamiltonian

HJC = h̄ω0 â†â− h̄ωqb

2
σz +

h̄g

2
σx(â + â†), (4.1)

where ω0 and ωqb ≈ ω0 correspond to the oscillator and qubit frequencies in res-
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Figure 4.1: Two-state system coupled to a harmonic oscillator. Measurement of an
oscillator response to an external perturbation can be used to extract information
of the state of the system.

onance and g is their coupling strength. We concentrate on the strong-coupling

regime where g ∼ 0.01ω0. Since in practice both systems have dissipative losses,

we introduce bosonic baths Hqb
B = Σih̄ωi b̂

†
i b̂i and Hosc

B = Σj h̄ωj ĉ†i ĉi to implement

finite quality factors. The total Hamiltonian becomes

H = HJC + Hqb
B + Hosc

B + Hqb
int + Hosc

int , (4.2)

where Hqb
int = −σxΣigi(b̂i+b̂†i ) and Hosc

int = −(â+â†)Σjg
′
j(ĉj+ĉ†j) couple the system to

the environment. Using LC resonator conventions, the canonical conjugate variables

are written as

φ̂ =
(

h̄Zb

2

) 1
2

(â + â†), q̂ = i

(
h̄

2Zb

) 1
2

(â† − â), (4.3)

where Zb =
√

L/C, ω0 =
√

LC and the operators satisfy [φ̂, q̂] = ih̄. The quantized

LC resonator is an example of a quantum mechanical system of collective variables

or a macroscopic quantum system, meaning that the canonical variables describe

an ensemble of microscopic degrees of freedom. The oscillator response is obtained

from susceptibility

χq(ω) =
i

h̄

∫ ∞

0
eiωt〈[q̂(t), q̂(0)]〉dt, (4.4)

which measures the response of δ〈q̂(t)〉 to a perturbation coupled to q̂. Different

response functions can be evaluated analogously by replacing the observables in the

commutator in Eq. (4.4). The coupled system (4.1) can be diagonalized numerically
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and the bath interaction can be taken into account perturbatively. The correlators

in (4.4) were evaluated in Paper IV by employing the diagrammatic method outlined

in Chapter 2.

The impedance of the resonator is related to the susceptibility by Z(ω) = iωχq(ω)

and exhibits a strong dependence on the quantum state of the system. The positions

of impedance peaks correspond to the excitation energies of the oscillator-qubit

system and the linewidth reflects the dissipation, see Fig. 4.2. At finite temperature

the resistance Re(Z(ω)) is positive and the relative hight of the peaks reflect the

thermal population of states. The behavior is dramatically different in situations

where the qubit is prepared in either of its eigenstates. When the qubit is prepared to

the excited state the resistance exhibits negative peaks describing a net emission from

the system due to the strong nonequilibrium nature of the state. It also illustrates

how sensitive the system response is to the quantum state of the system. The

impedance relaxes to its finite temperature value after a time corresponding to the

spontaneous emission rate. As can be seen from Fig. 4.2 a), at low temperatures
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Figure 4.2: Real part of Z(ω, t0) at temperatures T = h̄ω0/10kb (blue), T =
h̄ω0/2kb (red) and T = h̄ω0/kb (green). The initial state at t = t0 is prepared so
that the oscillator is in the thermal state and the qubit state is up (the lower energy
qubit state). Dissipation corresponds to a quality factor Q = 104 for a free oscillator.
(b) Same as (a) but the initial state is prepared so that the qubit state is down.
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kBT ≤ h̄ω0 the absorption spectrum exhibits peaks corresponding to transitions

between the five lowest states that are approximately given by |1〉 = |0〉| ↑〉, |2〉 =
1√
2
(|0〉| ↓〉 − |1〉| ↑〉), |3〉 = 1√

2
(|0〉| ↓〉 + |1〉| ↑〉), |4〉 = 1√

2
(|1〉| ↓〉 − |2〉| ↑〉), |5〉 =

1√
2
(|1〉| ↓〉 + |2〉| ↑〉). At higher temperatures more transitions come into play and

eventually the individual peaks cannot be resolved [45]. In this section the analysis

has been restricted to the case where the qubit and the resonator are tuned to

resonance. However, for measuring the state of the qubit using the resonator as a

probe it is optimal to work in the dispersive regime where the qubit and the resonator

are detuned [4, 37]. Then the resonator absorption line is shifted depending on the

state of the qubit. In Section 4.2 the measurement aspects are studied in more

detail when we discuss a transmission measurement of Josephson flux qubits in a

transmission line cavity.

4.2 Correlated relaxation of entangled qubits

In the last decade quantum information processing developed into an active branch

of physics [46, 47]. Peter Shor’s discovery of the powerful factorization algorithm

[48] initiated tremendous efforts to realize a quantum computer operating on qubits.

In order for a quantum computer to work, it is necessary for qubits to exhibit an ad-

equate quantum-mechanical coherence to allow execution of algorithms. To achieve

this, qubits must be well isolated from their environment to prevent decoherence. In

this section we study dissipative environment effects by considering coupled qubits

exposed to a global relaxation process. The global relaxation refers to the assump-

tion that qubits are coupled to the same quantum bath. The global nature of the

bath leads to remarkable features in spontaneous emission as first noticed by Dicke

[49]. He showed that certain entangled states of noninteracting molecules decay more

rapidly (superradiance) or are more stable than uncorrelated excitations (subradi-

ance). The phenomenon was observed much later in the system of trapped nearby

atoms [50] and has also been seen in quantum dot systems [51] where global phonon
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modes play the role of the global bath.

As a concrete system we concentrate on Josephson flux qubits which consist of

small superconducting loops interrupted by three Josephson junctions [52]. The two

lowest energy levels corresponding to the oppositely circulating current states are

well separated from the rest of the spectrum so at low temperatures the circuit can

be thought of as an effective two-level system. Flux qubits are one of the most

promising solid-state implementations for quantum bits exhibiting coherence times

up to several microseconds. Energy relaxation has proved to be a serious limitation

for further increase of their coherence time and therefore understanding it is of

great importance. Unfortunately the origin and detailed mechanism of relaxation

has remained largely unknown so far. By studying the decay of different two-qubit

states one can determine whether the relaxation process is global, a feature that

cannot be addressed in single-qubit experiments. In an experimental setting the

measurement can be carried out by applying methods of cavity QED as discussed

below. In addition, provided that the relaxation is caused by global fluctuations,

one can construct long-lived entangled states.

The model we consider is determined by the Hamiltonian H = Hq + Henv + Hi,

where

Hq = −∆
2

∑

i

σ(i)
z + J

∑

i<j

σ(i)
x σ(j)

x , Hi = gx̂
∑

i

σ(i)
x . (4.5)

Here x̂ is a Hermitian operator acting on the environment part of the Hilbert space.

The many-body Hamiltonian of the environment Henv does not need to be specified

in detail; its effects enter through correlation functions of x̂. It is assumed that qubits

have equal energy splittings ∆, interaction strengths J and bath coupling constants

g. These features are realized in the case of similar qubits in close proximity to each

other, compared to the relevant length scale of environment fluctuations. The form of

the coupling in Eq. (4.5) is assumed to be σx⊗σx-type as this is natural for optimally

biased superconducting qubits. Also the σx-type coupling to the environment is

natural since the effect of longitudinal coupling is strongly typically suppressed [53,
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41]. In the case of two qubits the relevant Hilbert space is spanned by the vectors |−
−〉 ≡ |1〉, |−+〉 ≡ |2〉, |+−〉 ≡ |3〉, |++〉 ≡ |4〉. Supposing that J 6= 0, the system has

four non-degenerate eigenstates |d〉 ≡ a|1〉+ b|4〉, |φs〉 ≡ (|+−〉+ |−+〉)/√2, |φa〉 ≡
(|+−〉− |−+〉)/√2 and |u〉 ≡ −b|1〉+ a|4〉 with respective energies −√∆2 + J2, J ,

-J and
√

∆2 + J2. The coefficients are given by a = ((1 + ∆/2
√

J2 + ∆2))1/2 and

b = −((1−∆/2
√

J2 + ∆2))1/2. The decay rates of the states can be calculated using

the methods introduced in Chapter 2. In the lowest order in the bath coupling one

obtains the Golden-Rule result

Γφs→d =
g2

h̄2 2(a + b)2Sx

(√
∆2 + J2 + J

h̄

)
, (4.6)

where Sx(ω) =
∫∞
−∞〈x̂(t)x̂(0)〉eiωtdt. For the antisymmetric state the rate vanishes

Γφa→d = 0, which is in striking contrast to Eq. (4.6). The stability of |φa〉 is an exact

consequence of the specific form of (4.5) and does not rely on the perturbation the-

ory. Contrary to what was assumed in Eq. (4.5), the bath couplings of qubits never

coincide exactly in experimental realizations. When qubits are realized artificially,

for example, by quantum dots or superconducting circuits, individual Hamiltonians

are not identical but depend on material parameters and sample-specific geometries.

These features lead to deviations from the model (4.5) and modifies previous conclu-

sions to some extent. As discussed in paper V, the scattering of parameters should

not spoil the picture of the Dicke states supposing that the energies ∆1, ∆2 and the

bath coupling constants g1, g2 of the two qubits satisfy (∆1 − ∆2)2/J2 ¿ 1 and

(g1 − g2)2/(g1 + g2)2 ¿ 1.

To study the nature of the relaxation process we suggest a system of two flux qubits

[52, 54] with as identical parameters as possible coupled to a high-quality cavity

[4], see Fig. 4.3. The lifetime of |φa〉 should indeed be long even in the presence of

imperfections — provided the assumption of globality of the noise holds. The qubit

j (j=1,2) subspace when biased at the half-flux quantum point Φ0/2 consists of two

circulating current states carrying a current of ±Ij
p. Tunneling between the states

happens at a rate of ∆j/h̄. Neglecting the off-resonant coupling to the cavity used
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Figure 4.3: Schematic of the suggested experiment. The dimensions are exagger-
ated for clarity. The disconnected section in the middle forms a coplanar resonator
whose resonant frequency is modified depending on the qubit state thus allowing for
dispersive readout. The chirality is chosen such that the control microwave input
via the same port as the readout couples antisymmetrically to the qubit.

for dispersive readout, the qubits are described by the Hamiltonian

Hq = −
2∑

j=1

(
∆j

2
σ(j)

z − εj

2
σ(j)

x

)
+ Jσ(1)

x σ(2)
x (4.7)

At the optimal point εj = 2Ij
p(Φ − Φ0/2) = 0 dephasing due to low-frequency

flux fluctuations is minimized. To achieve symmetry and to optimize coherence

we assume ε1 ≈ ε2 ≈ 0 and ∆1 ≈ ∆2. As mentioned previously, the difference

|∆2−∆1| should be small compared to J = MI1
pI2

p where M is the mutual inductance

between the qubit loops. A realistic sample [55, 56] may have quite similar tunneling

energies and a large coupling so as an example we assume (∆2−∆1)/h = 200 MHz,

∆1/h = 6 GHz and J/h = 1 GHz. Choosing the bias of the second qubit to be

ε2 = 0 is easy using a global magnetic field and a typical e-beam patterned sample

with nominally the same area may then have ε1/h = 200 MHz [57]. These are

conservative assumptions leading to the estimates

Γφ̃s→d̃ = 1.7× g2

h̄2 Sx(2π × 7.2GHz), (4.8)

Γφ̃a→d̃ = 4.0× 10−3 × g2

h̄2 Sx(2π × 5.2GHz), (4.9)

for the transition rates. The factor g2/h̄2Sx(ω) in the above formulas is the char-

acteristic relaxation rate for individual qubits and is typically of the order of 1 µs

[53]. This translates into a 250 µs lifetime of the antisymmetric state under global
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noise while the symmetric state decays in about 0.6 µs. Considering that presently

energy relaxation is limiting coherence in flux qubits, spectacular coherence can be

expected if a significant amount of the high-frequency noise is global.

The apparent complication in the present setting is on one hand the stability of

|φa〉 under any global high-frequency field and on the other hand the desire to

excite the transition to study its decay. As shown in Fig. 4.3 we therefore assume

that the qubits are coupled antisymmetrically (due to the left- and right-handed

configurations of the qubits) to the center conductor such that a resonant drive via

the transmission line can excite the |d〉 ↔ |φa〉 transition and ideally only that. That

is, the microwave Hamiltonian can be approximated by Hmw = α(t)(σ(2)
x − σ

(1)
x )

for which clearly the excitation of |φa〉 is possible since 〈d|(σ(2)
x − σ

(1)
x )|φa〉 6= 0

but transitions between the symmetric states are forbidden. The antisymmetric

microwave drive amplitude α(t) obeys α(t) = δΦ(t)Ip where Ip is the persistent

current of the qubit and δΦ(t) is the ac flux drive. The state of the qubit can be

detected from the shift of the cavity resonance frequency in a microwave transmission

measurement in the same way as in Ref. [4], as discussed in detail in Paper V. Testing

whether a significant part of the relaxation is due to global fluctuations amounts to

measuring the lifetime of the state |φa〉. Whether the result will be positive or

negative is not known but in any case this should give valuable information about

the origin of the noise and possibly enable a construction of long-lived entangled

states.

4.3 Squeezed SQUID noise and microwave radiation

At the heart of the quantum theory lies the fundamental principle of describing

observable quantities as Hermitian operators acting on quantum states. Generally

these operators do not commute, a trait giving rise to the fundamental uncertainty

principle first discovered by Heisenberg [58]. For non-commuting observables the

statistical variations of their observed distributions, frequently called uncertainties,
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cannot generally be arbitrarily small in a given state. However, the statistical varia-

tion of a single observable is not limited in any way by the uncertainty principle. The

manipulation of uncertainties is referred to as squeezing. The squeezing of quantum

fluctuations was first studied and experimentally verified in quantum optics, where

the components of quantized electric field served as the squeezed observables [59].

Since then the phenomenon has been observed in superconducting circuits [60, 61],

and more recently, there has been efforts to realize the squeezing in nanomechan-

ical structures [62, 63, 64, 65]. Squeezing of quantum fluctuations is potentially

interesting in future applications of quantum measurement. For example, nanome-

chanical resonators have been considered as realistic candidates in measuring ultra

weak forces produced by gravitational waves [66]. Detection of effects of external

forces is based on monitoring the position of a resonator which is blurred by quan-

tum fluctuations. Reducing fluctuations through squeezing, it should be possible to

detect smaller displacements and thus see perturbations due to gravitational waves.

Φ(t) φ
^

Figure 4.4: Resonantly driven SQUID loop inductively coupled to a transmission
line. The black bars represent Josephson junctions and the physical quantities φ̂
and Q̂ correspond to the magnetic flux through the right loop and the charge at the
junctions. The (classical) flux Φ(t) ∝ sin(ω0t) through the left loop is controlled by
an external magnetic field.

In this section we consider squeezing of fluctuations in a flux-controlled Supercon-

ducting QUantum Interference Device (SQUID) circuit coupled to a transmission

line (Fig. 4.4). In this application the SQUID is operated in a nearly harmonic

regime, so the circuit can be thought of as an electromagnetic resonator. The

squeezing mechanism is based on the parametric resonance, which is realized in

harmonic systems where the characteristic angular frequency is subjected to a pe-

riodic perturbation ω2 = ω2
0 + Acos 2ω0t [67]. In a quantum mechanical oscillator
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this perturbation is known to cause a rapid oscillatory squeezing of the uncertainties

[68]. Here the parametric resonance is realized by an external driving flux Φ(t) cou-

pling through the Josephson term, squeezing SQUID fluctuations and feeding power

to the system. This power is subsequently dissipated by microwave radiation. The

Hamiltonian H = HS + HTL + Hint consists of three contributions

HS =
Q̂2

2C
+

φ̂2

2LS
−EJcos(

2eΦ(t)
h̄

)cos(
2eφ̂

h̄
), (4.10)

HTL =
∑

k

h̄ωk(ĉ
†
k ĉk + 1/2), Hint = M

φ

LS

∑

k

i

√
h̄ωk

Ll
(−ĉk + ĉ†k), (4.11)

where HS , HTL and Hint correspond to the SQUID [69], the transmission line and

their interaction. The terms in Eq. (4.10) represent charging energy, magnetic energy

and the Josephson interaction. The charge and the magnetic flux are conjugate

variables satisfying [φ̂, Q̂] = ih̄. The parameter C is the capacitance of the junctions,

LS is the the loop inductance in the coupling loop and Φ(t) is the flux bias externally

applied through the control loop.

The transmission line Hamiltonian and the magnetic interaction are determined by

the eigenmodes ωk, the capacitance and inductance per unit length c, l, the length

L and the mutual inductance M . Assuming that the harmonic potential confines

the flux φ̂ close to the origin, the SQUID Hamiltonian transforms to

HS ≈ Q̂2

2C
+

Cω2(t)
2

φ̂2, ω2(t) = ω2
0

(
1 +

LS

LJ
cos(Φ(t) 2e/h̄)

)
(4.12)

(4.13)

with ω2
0 = (LSC)−1 and LJ = h̄2/4e2EJ . From this form it is clear that the

parametric resonance condition can be realized by the external drive Φ(t) = h̄ω0t/e,

which corresponds to a linearly increasing external bias. A linearly increasing flux is

experimentally inconvenient and can be accurately replaced by an AC flux according

to

Φ(t) = (3/2π)Φ0 sin (ω0t), (4.14)
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as discussed in Paper VI. In the second quantization the SQUID Hamiltonian can

be written as

HS = h̄ω0(â†â +
1
2
) + B cos (2ω0t)(â + â†)2, (4.15)

where B = h̄ω0L/4LJ and â, â† are canonical boson operators. Assuming that the

interaction between the SQUID and the field can be treated in the Born-Markov

approximation, the equation of motion for the reduced SQUID density operator is

given by the Lindblad equation

∂tρ̂ = − i

h̄
[HS , ρ̂] + κ(2âρ̂â† − â†âρ̂− ρ̂â†â), (4.16)

where the coefficient κ is related to the quality factor of the circuit by κ = ω0/Q.

The value of κ can be estimated by κ/ω0 = (M/LS)2Z0/ZTL, where Z0 =
√

LS/C

and ZTL =
√

l/c. The coupled problem is then divided into solving the SQUID

dynamics from (4.16) and working out the transmission line radiation. The voltage

operator of the transmission line is of a typical radiation form

V̂ (x, t) = V̂0(x, t) +
Mω0

πLS
φ̂(t− x/v), (4.17)

where V̂0(x, t) is the voltage operator in the absence of the SQUID loop, and the

second term is proportional to the retarded SQUID field. Thus the properties of

transmission line observables are inherited from the SQUID dynamics according to

(4.17). This is analogous to how the emitted photon radiation from a coherent

conductor reflects electronic shot noise [70].

The expectation values of operators â, â†, â2, â†2, and â†â can be solved from the

coupled set of differential equations of the form ∂t〈â〉 = Tr[â∂tρ̂] etc. Numerical so-

lution shows that for a strong drive, B > κ, the expectation values grow indefinitely

in time, while for κ > B, the dissipation eventually compensates the resonant drive

and the solutions are 2ω0 periodic and bounded. In the limit κ → B + 0, the lower

limit of the periodic squeezing is about 0.75 times the vacuum value of ∆φ ≡ 〈φ̂2〉1/2

and ∆Q ≡ 〈Q̂2〉1/2 as depicted in Fig. 4.5. The squeezing of fluctuations can be
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Figure 4.5: Uncertainty ∆φ′ of the bounded periodic solutions κ = 1.5B (red,
solid line), κ = 1.3B (blue, dotted line) and κ = 1.1B (green, with dashed line).
The black horizontal dashed line marks the ground state value of ∆φ′. The lower
envelope of the curves depicts the uncertainty of the reduced quadrature while the
higher envelope corresponds to the increased quadrature of the rotating state. The
minimum of the squeezing in the periodic solutions approaches a lower bound of
about 0.75 times the ground-state value.

illustrated by the Wigner function

ρW (φ′, Q′) = (2π)−1

∫ ∞

−∞
〈φ′ − 1

2
y|ρ̂|φ′ + 1

2
y〉eiQ′y dy, (4.18)

where we have defined dimensionless variables φ′ = φ/
√

h̄Z0 and Q′ = Q/
√

h̄/Z0.

The circularly symmetric ground state of the SQUID is distorted to an ellipse by

squeezing, see Fig. 4.6. For ideal squeezed states the principal axes of elliptical

contour lines are inversely proportional to each other, reflecting the minimum un-

certainty property ∆φ′∆Q′ = 1
2 . As a consequence of dissipation, the distributions

are broadened, which increases the uncertainty of quadratures ∆φ′∆Q′ > 1
2 .

To calculate the SQUID and the transmission line noise one must find two-time cor-

relation functions. This was done in Paper VI by applying the Quantum Regression

formula [9]. According to the Regression formula, the function pair 〈Â(t)â(t′)〉
and 〈Â(t)â†(t′)〉 obey the same differential equations as 〈â(t′)〉 and 〈â†(t′)〉 for

an arbitrary operator Â(t). Choosing Â(t) = â(†)(t), one can calculate arbitrary

two-time correlators and subsequently find transmission line properties such as
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φ′

Q′

φ′

Q′

Figure 4.6: Wigner function of the ground state (left) and the periodic squeezed
state κ = 1.5B (right) in the (φ′, Q′)-plane. The squeezed state rotates clockwise as
indicated by the arrows. The ellipse makes 2π rotation in time T = 2π/ω0.

〈V̂ (x, t)V̂ (x, t′)〉. The rapid rotation of the squeezing direction averages out the

squeezing effects and the noise resembles that of the harmonic oscillator at finite

temperature corresponding to the average energy of the system. Special detector

schemes, such as resonantly rotating coupling, are required for direct verification of

the squeezed noise spectrum. The studied SQUID circuit, when operated in the lin-

ear regime, is an electromagnetic counterpart of a mechanical resonator with similar

prospects for applications. Thus, in analogy with measuring weak forces with me-

chanical resonators, the system could be considered in probing weak magnetic fields.

Even though this is hypothetical at the moment, ultimately there is a need to ma-

nipulate quantum fluctuations in order to improve the accuracy of quantum-limited

measurement devices in the future.

4.4 Photon heat transport in nanostructures

General physical arguments imply that a single-channel heat conductance has a

universal upper limit GQ = π2k2
BT/3h irrespective of the precise nature of the heat

carriers [71]. In particular, this remarkably universal feature is believed to hold



35

even for exotic quasiparticles obeying a fractional statistics. The single-channel

heat transport has been experimentally measured for electrons [72], phonons [73] and

quite recently for photons propagating in supeconducting leads between two metallic

islands [38]. When electron heat conduction is restricted and the temperature is low

enough for phonon modes to be frozen, the dominant method of thermal relaxation

of metallic systems is photon transport [74]. In this section we study single-channel

photon transport in nanostructures starting from a microscopic formulation. We

introduce a model for photon exchange between a metallic island and a transmission

line, explain the connection to electric fluctuations and discuss properties of the

resulting radiation.

}V̂TL

z
Lz

Ge(ω) l, c

Figure 4.7: Metallic island coupled to the electromagnetic field of a transmission
line. The voltage between the strips is V̂TL.

Our starting point is a model consisting of a metallic island coupled to a parallel strip

transmission line, see Fig. 4.7. The transmission line acts as a waveguide supporting

a one-dimensional electromagnetic field. The total Hamiltonian of the system is

H = He + Hγ + He−γ , where

He =
∫

Ψ̂†(r)
(

p̂2

2m
+ U(r)

)
Ψ̂(r)dr +

1
2

∫
Ψ̂†(r)Ψ̂†(r′)V (r, r′)Ψ̂(r′)Ψ̂(r)drdr′,

Hγ =
∑

j

h̄ωj(â
†
j âj +

1
2
) He−γ =

e

Lz

∫
Ψ̂†(r)zΨ̂(r)drV̂TL. (4.19)

The different terms correspond to the electron system, transmission line field and in-

teraction between them. The electron number on the island is conserved, so the elec-

tric current between the transmission line and the island vanishes. In the following,

a further specification of the electronic Hamiltonian He is irrelevant. The transmis-

sion line is characterized by its length L, distance between the parallel strips Lz, and

inductance l and capacitance c per unit length. Operator V̂TL =
∑

j Tj(âj+â†j) is the
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voltage operator at the end of the line. The field operators Ψ̂(r), Ψ̂†(r) and creation

and annihilation operators âj , â
†
j satisfy canonical fermion and boson commutation

relations. Constants ωj = jπv/L (j is a positive integer) and Tj =
√

h̄ωj/Lc can be

found by quantizing the line field [37]. The wave velocity v in the transmission line

is given by v = 1/
√

lc.

The photon transport problem was solved in Paper VII by applying a nonequilibrium

Green’s function method [75]. The electron Hamiltonian does not commute with the

total Hamiltonian, giving rise to an energy flow characterized by a current JQ defined

as

JQ ≡ 〈Ḣe〉 = − e

mLz

〈∫
Ψ̂†(r)p̂zΨ̂(r)drV̂TL

〉
. (4.20)

The notation 〈·〉 stands for averaging over a density matrix of the total system.

The focus is on the averages over nonequilibrium states where subsystems have a

temperature gradient or the electron system is subjected to a finite voltage. The

current (4.20) can be written as

JQ(t) = − 2e

mLz
Re

∑

j

TjG
<
j (t, t), G<

j (t, t′) ≡〈P̂ (t)âj(t′)〉, (4.21)

where P̂ =
∫

Ψ̂†(r)p̂zΨ̂(r)dr. The electric current perpendicular to the transmission

line is related to the total momentum component by Î = e
mLz

P̂ . The transport

problem is reduced to finding the ”lesser” Green’s function G<
j (t, t′), which in a

steady-state situation depends only on relative time G<
j (t, t′) = G<

j (t−t′). Applying

the equation-of-motion technique, the Fourier transform G<
j (ω) can be expressed as

G<
j (ω) = −gL2

z m

h̄e2
Tj

[
i

ω
〈Î Î〉r(ω)D<

j (ω) +
i

ω
〈Î Î〉<(ω)Da

j (ω)
]

, (4.22)

where the superscripts r, a and < stand for ”retarded”, ”advanced” and ”lesser” and

Dj(ω) denotes a free photon Green’s function. At a finite temperature, the photon

Green’s functions are D<
j (ω) = −2πinγ(ω)δ(ω−ωj) and Da

j (ω) = 1
ω−ωj−iη = πiδ(ω−

ωj) + P 1
ω−ωj

, where P denotes principle value and nγ(ω) is the Bose distribution.

For a transmission line much longer than h̄πv/(kBT ), the sum over the field modes



37

can be replaced by integration according to
∑

j = L
π

∫∞
0 dk = L

πv

∫∞
0 dw and the

current takes the form

JQ = 2Z0

∫ ∞

0

dω

2π

[
2Re〈Î Î〉r(ω)nγ(ω)− 〈Î Î〉<(ω)

]
, (4.23)

where Z0 =
√

l/c is the characteristic impedance of the transmission line. The

correlators on the right hand side of Eq. (4.23) can be expressed in terms of the

noise power SI =
∫∞
−∞ eiωt〈Î(t)Î(0)〉dt as 〈Î Î〉<(ω) = SI(−ω) and Re〈Î Î〉r(ω) =

1
2(SI(ω)−SI(−ω)). Expression (4.23) is a formal solution in a sense that the current

correlation functions depend on the external field. This makes it generally necessary

to resort to approximations. The problem does not reduce to one-particle Green’s

functions which further complicates the treatment. However, the quadratic form

of Hγ and the linear coupling term He−ph, together with the density of states of a

long transmission line is precisely a Caldeira-Leggett representation of an ohmic loss

[31]. This notion microscopically motivates the circuit approximation, where the

transmission line can be thought of as a resistor in series with the metallic island.

Then the correlation functions in Eq. (4.23) can be approximated by

〈Î Î〉(ω) =
〈Î Î〉e(ω)

|1 + Ge(ω)Z0|2 , (4.24)

where 〈Î Î〉e(ω) and Ge(ω) are the current-current correlation function and conduc-

tance of the island in the absence of the electromagnetic field. Within the circuit

approximation Eq. (4.23) transforms to

JQ =
∫ ∞

0

dω

2π

2Z0

|1 + Ge(ω)Z0|2
[
2Re〈Î Î〉re(ω)nγ(ω)− 〈Î Î〉<e (ω)

]
. (4.25)

Formula (4.25) provides a straightforward starting point in calculating photon trans-

port properties.

A number of interesting results can derived from Eq. (4.25). In a quasiequilibrium

situation, where the island and the field have an infinitesimal temperature gradient,

the heat flow is given by

JQ =
4Z0Re

(Re + Z0)2
GQ∆T, (4.26)
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where Re ≡ 1/Ge, ∆T = Tγ − Te is a small temperature difference between electron

and photon system and GQ = π2k2
BT/3h is the universal quantum of heat conduc-

tance [71]. This result verifies that the maximum heat conductivity is GQ, achieved

by a perfect matching Re = Z0. If the electron system is driven to a nonequi-

librium state, the photon radiation is enhanced by electron shot noise. Supposing

that the electron system can be described as a coherent conductor characterized by

transmission eigenvalues Tm biased by an external voltage V , the energy current

becomes

Jγ
Q = r

[
1
2
G0L0(T 2

γ − T 2
e )− 1

2
F2GV 2

]
, (4.27)

where G0 = e2/h, G = G0
∑

m Tm = 1/Re is the island conductance, F2 =
∑

m Tm(1 − Tm)/
∑

m Tm the Fano factor, L0 = π2k2
B/3e2 the Lorenz number and

r = 4Z0Re/(Z0+Re)2. The last term in Jγ
Q corresponds to the increased emission by

shot noise. Result (4.27) is valid for a system with energy-independent transmission

eigenvalues described by current noise (3.8). As shown in Paper VII, using a more

realistic form of the current noise the photon radiation enhancement displays fea-

tures of the intrinsic properties of the conductor, see Fig. 4.8. The photon radiation

leads also to a reduced Joule heating of the island as was discussed in Paper VII.

According to the analysis of this section, GQ is the upper limit of heat conductivity

in the studied model where the transmission line field couples only to current fluc-

tuations perpendicular to the strips. However, if we introduce another transmission

line with the same temperature but being perpendicular to the original one, the line

couples to orthogonal current fluctuations and the maximum heat conductivity dou-

bles to 2GQ illustrating how the dimensionality plays an important role. This does

not contradict the general statement that the maximum single-channel heat conduc-

tance is limited by GQ because adding a perpendicular transmission line opens up

a second independent transport channel, as discussed in Paper VII.
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Figure 4.8: Energy flow from a symmetric chaotic cavity (NL = NR = 1) as a
function of voltage. We assumed that the cavity conductance at zero frequency
Ge(0) is matched to Z−1

0 . The different curves correspond to different cavity charge
relaxation times τ , τ = 0 (solid), τ = 0.1h̄β (dashed), τ = h̄β (dotted), τ = 10h̄β
(dash-dotted). Inset shows the τ/h̄β-dependence of the heat flow from the cavity
(V = 0), the horizontal dashed line corresponds to the heat flow from an ideally
matched ohmic resistor without frequency dependence. When τ/h̄β ¿ 1 the heat
flow is close to the theoretical maximum and settles to a lower value as the fraction
increases.
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5 Conclusions

In this Overview we have discussed fluctuations and transport in mesoscopic sys-

tems where quantum mechanical effects play a key role. An underlying similarity

in all the topics is the dynamical nature of considered phenomena and the neces-

sity to resort to an open system description. The research contributions of this

Thesis are motivated by recent experimental and theoretical studies in the field of

mesoscopic physics and all the topics are also presently under an active study. A

number of theoretical predictions were made in this Thesis work that could have

relevance in future experiments. The most promising candidates for experimental

verification are the transitions induced by the third moment of current fluctuations

in quantum probes, the correlated decay and life time enhancement of entangled

states in Josephson flux qubits, and the electron shot noise contribution to photon

heat transport in nanostructures.

The characterization and detection of current fluctuations in mesoscopic structures

was discussed in detail from the point of view of transition phenomena. Nonequilib-

rium current fluctuations generally have nonvanishing three-point current correlation

functions which contributes to transition rates in external probe systems. The in-

fluence of current noise was considered on two generic probe models, a qubit and a

harmonic oscillator. Current fluctuations play a dual role, on one hand they have a

harmful influence in the vicinity of other systems. On the other hand fluctuations

provide valuable information of the conducting system.

Mesoscopic electron-photon systems, a topic of a rapidly growing research field,

can be designed and controlled accurately, allowing a number of interesting appli-

cations. We considered the response of a coupled qubit-resonator system to an

external perturbation illustrating how it reflects the quantum state and properties

of the system. Manipulation of quantum fluctuations was studied in an elementary

SQUID circuit and applied to generation of squeezed microwave radiation. Propa-
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gating photons carry energy, playing also an important role in thermal relaxation at

low temperatures. We introduced a microscopic model for photon heat transport in

nanostructures, considered the interplay between electric current fluctuations and

photon heat transport.

Single-electron devices are routinely fabricated and used for many experimental pur-

poses today. Lately, experimental advances is circuit cavity Quantum ElectroDy-

namics (QED) have allowed manipulation of single photons in nanoscale electro-

magnetic resonators. The next logical step, already in progress, is to construct

electromechanical systems capable of manipulating single phonons in nanomechan-

ical resonators. In the future one can hope to combine all these aspects in a single

controllable system capable of single electron, photon and phonon manipulations.

These systems could be used, perhaps, for creation and detection of single photons

and phonons, and converting single phonons to photons and vice versa. Understand-

ing of these composite systems requires efficient theoretical methods treating all the

different particles on equal footing, possibly by generalizing the Landauer-Büttiker

theory to accommodate the photon and phonon leads. Interesting future challenges

in transport theory also include generalization of the known results of fluctuations

and Full Counting Statistics to strongly correlated interacting systems. Transport

theory of exotic particles of fractional charges in quantum Hall and Luttinger liquid

structures offers many open questions. In solid state quantum information appli-

cations there are numerous obstacles in the way of constructing realistic quantum

computers. No definite architecture allowing a sufficient coherence and control to

execute quantum algorithms with an adequate number of qubits to solve practical

problems has yet emerged. There remains a plenty of room for new proposals and

improvement in physical realizations of qubits. Mesoscopic physics offers a great

variety of interesting research topics in the future.
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