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output control strategy using the model predictive control (MPC). The dynamic models are tested with two data sets
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residuals between the simulated data and the industrial measurements are sufficiently small, on average 1-3%. The
performance of the control system is tested in simulation environment using the industrial data as input. Compared to
manual control, the variation in the rich electrolyte copper concentration was decreased by 70 — 80 % with the PI
controllers and 80 — 90 % with the model predictive controller. The copper mass production was increased by about 3 — 5
% with both control strategies. The modeling and control results are very encouraging for the further testing of the control
system in an industrial copper solvent extraction plant.
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ABSTRACT

More than 20% of the cathode copper is annuallydgpeced by copper leaching,

solvent extraction and electrowinning processeg. fblous in process technology has
been on research and capital intensive developmiettie process equipment and
chemicals. However, the financial benefits gainadough an advanced control
system would be significant. An advanced contrstesy would maximize production

by running the process closer to the optimal opegapoint, and increase the

production of the first quality copper cathode bgcikasing the variation in key
process variables. The lack of adequate dynamicegs models for industrial

applications has, to date, prevented the developrmkemadvanced process control
systems.

Therefore, the first aim of this thesis is to depetlynamic models to describe the
behaviour of an industrial copper solvent procesd @ facilitate control system

development. The second aim of this thesis is t@ld@ an advanced control system
for the copper solvent extraction process, and daofy that the performance and
profitability of an industrial copper solvent exttmn process can be significantly
increased by utilizing the advanced process cosfrstiem.

In the process model, the mass transfer of coppethé mixer-settler units is
described by means of dynamic, modified ideal ngxamd plug flow models. The
equilibrium value for the ideal mixing model is callated on the basis of the steady
state McCabe-Thiele diagram. The model utilizesustdal online and offline
measurements. The unit process models are combiceatding to the case plant
flowsheet. Based on the process models, a congmrchy is developed for the case
copper solvent extraction process. The optimizaéwel in the hierarchy consists of
an optimization algorithm that maximizes the prdduc of the copper solvent
extraction process and provides setpoints for ttabilizing control level. The
stabilizing control level consists of a single itysingle output control strategy
employing two PI controllers or, alternatively, aulth input-multi output control
strategy using the model predictive control (MPC).

The dynamic models are tested by comparing thelatedi data with the industrial

data. The controller performances are tested ftpos® tracking and disturbance
rejection in the simulation environment with steyput changes. The benefits of the
control system are assessed by comparing the ioariatthe controlled variables and
the total copper production to the data collecteminf the process under manual
control.

The dynamic models are tested with two data s@iesenting the normal operation
of the industrial case copper solvent extracticampl The models follow the output
copper concentration trends smoothly for the majput changes in the flow rates
and copper concentrations, and the residuals betwee simulated data and the
industrial measurements are sufficiently small. @kierage absolute error is 1-3% of
the mean value of the output copper concentrations.

The performance of the control system for setptvattking and disturbance rejection
is very good. As expected, the model predictivetratier performs better than the Pl
controllers. The disturbance rejection capabiliies further improved by adding four
feedforward compensators to the control strate@esnpared to manual control, the
variation in the rich electrolyte copper concemntratvas decreased by 70 — 80 % with
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the PI controllers and 80 — 90 % with the modeldmteve controller. The copper
mass production was increased by about 3 — 5 %hwitih control strategies.

The modeling and control results are very encouadpr the further testing of the
control system in an industrial copper solventasotion plant.
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copper concentration of the lean electrobgkition
copper concentration of the loaded orgaalatgon
copper concentration of the pregnant leadition
copper concentration of the raffinate ol
copper concentration of the rich electrobaéution
controlled variable

operating points of the industrial process
disturbance variable

extraction step

Series 1 and 2 and parallel extractiqgrsste

E1S,E2S,E1P Series 1 and 2 and parallel extrasteps

EW
F(LE)
F(LO)
F(PLS)
FB

FF
FOPTD
IAE
ISE

LE

LO
MIMO
MPC
MV

OL

pH

Pl

PID
PLS

electrowinning

flow rate of the electrolyte solution

flow rate of the organic solution

flow rate of the pregnant leach solution
feedback

feedforward

first order plus time delay model
integral of the absolute error index
integral of the square error index

Lean electrolyte solution

Loaded organic solution

Multi input — multi output

Model predictive control

manipulated variable

open loop

pH level of the pregnant leach solution
PI (proportional, integral) controller
PID (proportional, integral, derivative) cooiter
Pregnant leach solution

reagent molecule in acid form



Raff
RaffS
RaffP
RE
RGA
S/ S1H
SISO
SS
SX
TF
vol
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Raffinate solution of the extraction step
Raffinate solution from series extractiogpst
Raffinate solution from parallel extractistep
Rich electrolyte solution

relative gain array method

Stripping step

single input — single output

state space model

solvent extraction

transfer function model

reagent volume percent in the organic solution
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1 INTRODUCTION

Copper (Cu) and its alloys are widely utilized ingeeat variety of industrial
machinery and equipment, infrastructure tubes aides, and a range of consumer
products such as cars and cell phones. Copperynaiglrs in copper-iron sulphide
and copper sulphide mineral form. The largest pcedsiof copper ore are Chile, the
USA, Indonesia, Peru, Australia, Russia and Chikeskalyk and Alfantazi, 2003,
Norton and Leahy, 2006)

The world production of copper in 2004 was abou8@6 metric tons, of which 88 %
was from primary copper refining and 12% from theatment of copper-containing
scrap. The main refining options are hydrometaitadg and pyrometallurgical
processes. Currently, around 20 % of the coppers omee processed by
hydrometallurgical methods, with copper cathodedpotion accounting for over
2.700 metric tons annually. The largest producdreapper by leaching, solvent
extraction and electrowinning processes are Chil@36 metric tons), the USA (584
metric tons), Peru (167 metric tons) and Zambian(@®ic tons) (Edelstein 2004)

Hydrometallurgical treatment is preferred for oxilil copper ores such as cuprite
(Cu20) and low grade secondary ores such as chi@d@u2S). In the future, the
most common copper ore, chalcopyrite (CuFeS2),atsm be industrially processed
by hydrometallurgical methods with improved leachtechniques, such as pressure
leaching and bio-oxidation leaching. The oxidizexpmer ores are found in South
America, the southwest of North America, Austraiad Southern Africa. A typical
hydrometallurgical processing chain for copper oomsists of leaching, solvent
extraction and electrowinning. Copper rich slaghfrother metallurgical processes
can also be treated by hydrometallurgical meth@dabashi, 1999, Seward, 1999,
Kordosky, 2002, Munnik et al., 2003, Rydberg et, &8004, Hyvarinen and
Hamalainen, 2005).

The importance of hydrometallurgical copper prodrctis increasing strongly:
between 2000 and 2004 hydrometallurgical coppedymrtion increased in Chile by
19%, in the USA by 5%, in Peru by 31% and in Zanby&7%. Since the industrial
production of copper by the leaching-solvent exiomc and the electrowinning
process started in the USA in around 1970, the gotigm of hydrometallurgical
copper production out of the total mined copperdpaion has increased from 1,2 %
to 38% in 30 years. The reason for this is the etepi of the rich, copper ore bodies
that provide suitable raw material for pyrometajioal processing, and the tightening
of environmental requirements which favour hydraatietgical processing over
pyrometallurgical processing. (Bartos, 2002, Kokyp2002, Edelstein 2004)

Therefore, the development of new technologiesntyease the performance and
profitability of industrial copper leaching, solweextraction and electrowinning
processes is very important. During the past dedadedevelopment has focused has
on process technology. The leaching efficiency basn increased by the new
leaching processes, for example pressure leachiggg(inen and Hamalainen, 2005)
and bioleaching. New chemicals and equipment hiseenhanced the performance
of the solvent extraction and electrowinning preess (Habashi, 1999, Kordosky,
2002).

However, the major challenge in the field of coppesiching-solvent extraction-
electrowinning, the development of an advancedrobsistem for industrial plants,
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has still not been resolved (Bergh et al.,, 200IrgBeand Yianatos, 2001, JAmsa-
Jounela, 2001, Hodouin et. al., 2001). Basic conéwel PID controllers and basic

measurements, possibly with online copper and iypaoncentration analyzers, are
currently used in most plants (Flintoff, 1993, HaghD., Saloheimo, K., 2000, Bergh
and Yianatos, 2001). However, the lack of suitathy@amic models for industrial

applications has prevented the development of amhprocess control systems for
the copper solvent extraction process. A considerammount of work was carried out
on the modeling laboratory-scale solvent extractioixer-settler cascades in the
1970s and 1980s but, due to computational regnistiand inadequate industrial
online measurements, model development did nothre¢be stage of industrial

applications (Wilkinson and Ingham, 1983, Inghanalet 1994). Recently, Aminian

et al. (2000) published a steady-state model faropper solvent extraction and
electrowinning pilot plant, and Komulainen et &005, 2006) a dynamic model for
an industrial copper solvent extraction process.

The primary control aims are the maximization ofodarction, rejection of
disturbances in the leach solution copper concemtrand pH level, a reduction of
process variation, and fast adaptation to the noimal operating point. An
advanced control system with higher level optimigieould be developed in order to
meet these aims.

Due to the long time delays and complex interastionthe copper solvent extraction-
electrowinning process, one possible multi-inputltrautput (MIMO) approach
would be model predictive control (MPC). MPC iseetive in handling time delays
and constraints, and the future process outpulsilaged on the basis of the process
model, can be easily visualized for the processatpes. MPC is widely used in
several application areas in the process industimetuding the refining, chemical,
and papermaking industries (Qin and Badgwell, 2008PC applications have
recently emerged in the metal and mineral industifer example for the control of a
flotation bank (Hodouin et al., 2000) and the cohwf a pilot flotation column
(Nunez et. al. 2006).

The economic benefits of maximizing the total capm®duction and minimizing the
production costs by process control methods wowddsignificant for industrial
copper solvent extraction plants. Assuming thatdabtrol system does not increase
production costs and the copper price is 1,67%4bsrage LME 2005), a production
increase of 5% would be equivalent to 60 milliollats per year for a copper solvent
extraction-electrowinning plant with an annual protibon of 365000 tonnes.

1.1 Research problem and asserted hypothesis

The production of copper by leaching, solvent-esticen and electrowinning
processes is increasing considerably due to thieti@p of rich copper ore bodies and
the tightening of environmental restrictions. Sing®lustrial utilization of the
technique began in the late 1960s, process techpyaevelopment has focused on
the process chemicals and equipment. Industriatpldo have basic level automation
systems but, to date, advanced process contramgstor industrial copper solvent
extraction processes have not been reported ititénature. However, the financial
benefits gained with an advanced control systemldvba considerable. The use of
process control methods in copper solvent extraatiectrowinning plants would
maximize the throughput, enable the process taibeloser to the optimal operating
point, provide fast adaptation to the most optinoperating point, and reject
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disturbances from the leach solution. Thus, an ek process control system would
maximize total production, increase the productainthe best (grade A) quality

copper cathodes, while minimizing the consumptidrcloemicals and energy per
produced copper tonne.

The focus in this thesis is on performance improseimof the copper solvent
extraction process through the utilization of psseontrol methods. In order to
investigate the benefits of a process control sydie an industrial copper solvent
extraction process, this thesis aims at develogiymgamic process models and, based
on these, an advanced control system for the cmbeent extraction process.

The hypotheses of the thesis are:

1. Dynamic process models utilizing only industoaline process measurements are
able to describe the behaviour of an industrialpepsolvent extraction process. The
dynamic models enable development of an advanaecegs control system for the
copper solvent extraction process.

2. Utilization of the advanced process control tetyg significantly increases the
performance and profitability of an industrial ceppsolvent extraction process
compared to the utilization of a manual contrchtsgy.

In order to prove the hypotheses, the followingsdsave to be performed:

1. To develop static and dynamic models of the eopgolvent extraction
process.
2. To construct a process simulator on the basigh®fprocess models, and to

verify the modeling accuracy with industrial data.

3. To linearize the dynamic models, and to deskgn dontrol strategy on the
basis of these linear models.

4. To develop an optimization algorithm for maximgthe copper production

5. To design single input-single output (SISO) coliegrs for set-point tracking
and disturbance rejection.

6. To design a multi input-multi output (MIMO) caaller, and to compare the
SISO and MIMO control strategies on set-point tnagkand disturbance rejection.

7. To test the controller performance with indwudtdata. In order to assess the
benefits of the control system, the controller perfances in the simulation
environment are compared to the data from an indbgtant under manual control.

The first and second tasks increase our understgndi the dynamic process
phenomena, enable control system development, emddp a test bench for the
control strategies. The third to sixth tasks previtde optimizer and the SISO and
MIMO control strategies for the industrial coppelvent extraction process. The
profitability and performance of the control systame asserted within the seventh
task.
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1.2 Scope and content of the thesis work

The scope of this thesis is dynamical modeling,usation, optimization and control
of an industrial copper solvent extraction plant.

An overview of hydrometallurgical processing, witihhe focus on industrial
hydrometallurgical processing of copper with leadhi solvent extraction and
electrowinning, is given in Chapter 2. A literatueview of the state of the art in
modeling and control of the industrial copper satvextraction process is presented
in Chapter 3.

The development of steady state and dynamic makiagt<ulfill the requirements and
restrictions of an industrial copper extractionnplas described in Chapter 4. The
dynamic model of a unit process consists of a floy part and a mixing part in
which the equilibrium value is calculated on thesibaof the steady state
McCabeThiele diagram model. The dynamic modelsilarstrated with a copper
solvent extraction process consisting of one mseedtier pair for both extraction and
stripping.

The industrial case process is introduced in Chaptédhe current control strategy
and a preliminary analysis of the plant operatios described. The dynamic models
of the unit processes are combined according tedke process flow sheet in Chapter
6. The process simulator, based on this modeltstreics also described at the end of
Chapter 6.

In Chapter 7, the steady state model is paramdtnzin the case process offline data,
and the accuracy of the dynamic models is verigginst the industrial online
measurements.

Linearization of the dynamic process models is gméd in Chapter 8. The control
hierarchy for the case copper solvent extractiavcgss is developed in Chapter 9.
The optimization algorithm and a single input-senglutput (SISO) control strategy
and a multi-input-multi-ooutput control strategyealeveloped on the basis of the
linearized dynamic models in Chapter 9.

The two PIl-controllers and four feedforward com@goss are tuned on the basis of
the transfer function models, and the control pentnce for setpoint tracking and
disturbance rejection is tested in the simulatiovirenment in Chapter 10. The multi
input-multi output (MIMO) controller is tuned ondtbasis of the state space models
of the process, and the performance is comparéaget&ISO strategy in Chapter 11.
The SISO and MIMO strategies are compared to maspetation of the case process
in the simulation environment in Chapter 12.

Finally, the results of the dynamic modeling anchtoal system development are
summarized in Chapter 13. The conclusions and stiggs for future research are
presented in Chapter 14.

The first hypothesis of the thesis is asserted mapgfers 4 to 7; and the second
hypothesis in Chapters 8 to 12.
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1.3 Contribution of the author

In order to meet the challenges of dynamic modedind control development for an
industrial copper solvent extraction process, aaesh project has been carried out in
the Laboratory of Process Control and Automationth&t Helsinki University of
Technology. The author has worked under the sugierviof Professor Sirkka-Liisa
Jamséa-Jounela and Professor Francis J. Doyle ulin@ 2005 at the University of
California at Santa Barbara). The results achiamethe project by the author are
presented in this thesis.

This thesis presents novel dynamic modeling, a Inpx@cess simulator and novel
control strategies for an industrial copper solvextraction process. The three main
contributions of the author are more specificdtlg following:

Development of the novel model combination for theustrial copper solvent
extraction process. The dynamic model is based log flow and ideal mixing
models, in which the equilibrium concentration &calated on the basis of the plant
specific McCabe-Thiele diagram. The dynamic modetdize only industrial
measurements.

Development of the novel copper solvent extractmwocess simulator. The unit
process models are combined in the simulation madebrding to the plant flow
sheet. The parameters of the simulator are tunéd twve offline process data. The
simulator is verified with industrial data.

Development of the novel control strategies for theustrial copper solvent
extraction process. The single input — single ougmd multi input- multi output
control strategies and the optimization algorithra developed on the basis of the
linearized process models.
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2 DESCRIPTION OF THE COPPER SOLVENT
EXTRACTION PROCESS

The copper solvent extraction process is descrilmedhis chapter. First, the
hydrometallurgical processing chain is briefly aduced in Section 2.1. Next, the
copper leaching- solvent extraction- electrowinnprgcess is described in Section
2.2. Finally, the most important physico-chemichépomena, chemicals, equipment
and plant configurations of the industrial coppetvent extraction processes are
described in Section 2.3.

2.1 Hydrometallurgical processes

The role of hydrometallurgical processing has bez@ery important during the past
two decades owing to the tightening of economic amdironmental demands.
Hydrometallurgical processes are widely used tattlew grade ores, recycled
materials, wastewaters and hazardous waste. Senegraheration processes in the
metal industries also rely on hydrometallurgicahteologies.

A typical hydrometallurgical unit process operatagh liquid/solid or liquid/liquid
reactions, in dilute process streams (less thanolll)nat temperatures lower than
50°C. Hydrometallurgical processing is very selectioethe desired metal, and the
ore type can be rather complex and contain very Ilowetal grades.
Hydrometallurgical processing is often more enunentally friendly than the
competing processing options. Hydrometallurgicabcpssing of copper is often
compared to pyrometallurgical treatment, which @stesof the concentration of
grinded ore, smelting, converting, fire refiningdaelectrorefining. For example, in
the copper leaching-solvent extraction-electrowigniprocess chain, part of the
sulphur can be recovered in an elementary formtlagied are no emissions of sulphur
dioxide gas, whereas the pyrometallurgical proogssif copper ore produces
significant amounts of sulphur dioxide emissions.

In hydrometallurgical processing the amounts of raaterial are massive, and the
flow volumes are large due to the slow chemicattieas or mass transport rates.
Therefore, the capital costs related to the prosedstions and raw materials are
substantial. Also the treatment and storage oklamounts of liquid and solid waste
materials can be a concern in some hydrometallairgiperations. (Ritcey and
Ashbrook, 1988, Aromaa, 1990, Hayes, 1993, Biswad ®avenport, 1994,

Moskalyk and Alfantazi, 2003)

Hydrometallurgical processing from ore to produshsists of four basic steps: size
reduction, leaching, solution purification and ppé&ation. Additionally the grinded
ore can be concentrated and activated and, afiehileg, the solid particles can be
separated from the liquid. The processing chaprésented in Figure 2-1.
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Figure 2-1: General flowsheet of hydrometallurgicalprocessing [Aromaa, 1990, Hayes, 1993].

The mined ore, or other feed material, is firsttg&ted by crushing, concentrating
(e.g. flotation), activation by chemical changed grhysical modifications (e.g.
agglomeration) or roasting. Next, the process ogtin the leaching stage are
oxidative leaching, acid leaching, alkaline leaghimetathetic leaching, irrigation
leaching (in situ, dump and heap), percolationHeay; and bacterial leaching. If the
liquid contains solid particles after leaching, @agpion can be done by filtration,
thickening and clarification (including coagulatjofiocculation), counter-current
decantation or with other equipment like centrifsigend hydrocyclones. Solution
purification techniques include precipitation of porities (pH controlled,
hydrothermal, crystallization, cementation and tetdygtic processes), solvent
extraction, adsorption and ion exchange, membraeepses (reverse 0SMOSIs,
ultrafiltration and electrodialysis), and chemicahctions (oxyhydrolysis). Process
options for metal recovery are electrowinning, cleainreduction, precipitation and
crystallization. The hydrometallurgical processimtpain of the different unit
processes and conditions are designed on the @fagie type of raw material. Each
type of ore, slag matte and recycled material regua tailored processing option.
(Ray et al., 1985, Aromaa, 1990, Hayes 1993, Monietal. 2005)

2.2 Copper leaching — solvent extraction — electrowning process

Copper leaching — solvent extraction and the edagiming process is the main
hydrometallurgical processing chain for oxidized éow grade copper ore.

The first phase in the hydrometallurgical treatmehtcopper ore is leaching. In
leaching, the crushed, oxidized copper ore isated with a weak sulphuric acid
solution. The copper rich leach solution is cokectnd clarified by removing the
heaviest impurity particles, for example sandangé settling tanks, called thickeners.
The resulting pregnant leach solution (PLS) is thead to the solvent extraction
process. The composition of the pregnant leachtisaladlepends on the raw material.
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The copper concentration varies from less thanl 1ogB5 g/l, and the pH varies
between 0,8 and 2,5. The main impurities are insanganese, chloride and nitrate.

The second phase in the hydrometallurgical treatnuéncopper ore is solvent
extraction. In copper solvent extraction, the agise@opper leach solution is
concentrated and purified using a copper-selectisganic solution. The solvent
extraction process consists of extraction and tngp processes, both of which may
contain parallel and series unit processes. Cuyreait the industrial operations use
mixer-settler type of equipment, in which the swng flow in a counter current
direction. In mixer units, the phase with the seraNolume is dispersed into the
continuous phase in order to ensure a maximal rirassfer interface. The mixer
units consist of pumping and mixing parts, withadimpellers designed to maintain
the dispersion. The aqueous and organic phasesepegated in settlers. Settlers are
long and shallow in oder to ensure proper phaseragpn, thus minimizing
entrainment. The organic solution is a mix of agamic solvent such as kerosene and
the copper selective extractant. Industrially usedractants are ketoximes and
aldoximes, possibly with modifiers, and mixturestbése. The extractant blend is
chosen according to the leach solution, operatingditions and plant design.
(Kordosky, 2002, Robinson, 2003, Vancas, 2003, Rygllet al., 2004)

The third phase in the hydrometallurgical treatm@ntopper ore is electrowinning.
In this process, the concentrated aqueous coppetiosy the rich electrolyte, is

electrowon to form 99,999% pure copper cathodeseléatrowinning, the copper
concentration of the electrolyte is typically beeme32 and 37 g/l, the sulphuric acid
concentration between 160 to 180 g/l, and the audensity around 240 — 320 A/m2.
The current efficiency can be up to 95%. Most etseinning operations use rolled
anodes of Pb-Ca or Pb-Sr-Sn due to their low cmmosate and dimensional stability.
Stainless steel blanks are used as starter cathodeprove current efficiency and
copper quality. In the larger plants, the coppehades are mechanically stripped
from the steel blanks. (Bergh and Yianatos, 20airdkisky, 2002)

Examples of the copper solvent extraction and elecming processes can be found
in Sole et al. (2005), Munnik et al. (2003) and \¢het al. (2001), Jenkins et al.
(1999).

2.3 Copper solvent extraction process

The copper solvent extraction process has two ifipuss, the leach solution and the
lean electrolyte solution, and one recycling flothe organic solution. In the

extraction stage, the copper is extracted from l#aeh solution into the organic
solution. In the stripping stage, copper is stripprm the loaded organic solution
into the electrolyte solution. The result of stiqpp the rich electrolyte, is blended
and fed to the electrowinning process, where 99©3fure copper cathodes are
produced. A general flow diagram of the processrchaillustrated in Figure 2-2.

(Biswas and Davenport, 1994, Rydberg et al., 2004)
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Figure 2-2: General flow diagram of copper solvenéxtraction process.

The main chemical reaction taking place in the eopwlvent extraction process is
described in Section 2.3.1, and the chemical anygipal side reactions of the copper
solvent extraction process in Section 2.3.2. Thecgss chemicals, equipment and
plant configurations used in industrial copper salvextraction plants are discussed
in Section 2.3.3.

2.3.1 The main chemical reaction in the copper solvent extraction
process

In the copper solvent extraction process, the mhanomenon is the mass transfer of
copper between the agueous and organic solutidms.nfass transfer of copper is
based on cation exchange reaction, where the coppgrare forming chelates with
copper selective reagent molecules. The equilibradirthis cation exchange reaction
can be affected by adjusting the acidity of theesmmys solution.

The equilibrium reaction is as follows:
Cu® (aq) + SO (aq) + 2RH(org) —~ CuR(org)+2H " (aq) + SO (aq) (2-1)

In the extraction units, the copper ions form cogmpbk with reagent molecules in an
acid (pH ~1.8, ~5 g/l b5Oy in PLS solution (Kordosky, 2002) over the tempearmat
range 15 — 25 °C (Kordosky, 2006). The copper ¢betavery stable in as low pH as
1.8. The proper pH range for extraction dependgherreagent characteristics, ferric
concentration and the other impurities in the leaolution. Each reagent has an
optimal pH for the most selective extraction of pepfrom the other metals present
in the leach solution. Too low a pH can change dbailibrium reaction to prefer
breaking of the chelate.

The copper-rich organic solution is led from exti@t to the stripping units, where
the strongly acid environment (~160 — 180 g#SKy, Kordosky, 2002) catalyses
disruption of most of the organic copper complexgse chelate breaking reaction
can be presented as follows:

CuR(org+2H (aQ+ SQ ( ap—~ Ci( 9¢ $A RE2 RH 9 (2-2)

In the stripping units, high acidity is preferredarder to achieve fast mass transfer.
However, due to the increased amount of acid mithe downstream electrowinning

facilities and the corrosive effect on the equiptnarthe electrowinning process, the

acidity should remain under 200 g/I.
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In the copper solvent extraction process it is @sseto maintain the optimum within
the copper mass balance; the amount of coppercexdrdrom the leach solution in
the extraction units has to be stripped into thexteblyte solution in the stripping
units.

The exact equilibrium for the liquid-liquid extramt system can be calculated from
the ternary phase data or equilateral-triangulagmims (Robbins, 1984). Assuming
the solubility of organic and agueous phases camebgkcted, simpler methods can be
utilized. Thus, in industrial practice methods,lsas the McCabeThiele diagram, also
known as the Fenske diagram, are widely used (Mi83, Robbins, 1984, Hayes,
1993).

The equilibrium copper solvent extraction unit meses can be studied by
formulating an equilibrium constatfor the system:

K = [CURZ][E H+]2
[cu" |RH]"
where [CuR] is the copper complex concentration in the orggrtiase, [H+] the

hydrogen concentration in the aqueous phase*JGhe copper concentration in the
agueous phase and [RH] the reagent concentratittre iarganic phase. (Hayes, 1994)

(2-3)

The kinetics of the solvent extraction includeshbibte mass transfer and the chemical
reaction in the heterogeneous system. The extraiioontrolled by the diffusion or
chemical reaction rate. Diffusion is affected by tmass transfer surface area and
concentration of the slowly diffunded reagents. Téte of the chemical reactions on
the phase surface is affected by the surface dhem,activity of the reacting
components, and the molecular geometry.

In the copper solvent extraction process, the cbanmneaction rate is affected by the
solubility of both phases, the distribution andization coefficients, and the volumes
of both phases. The reaction rate is defined by:

- y

_k [cv [ R]
[H]

, where ki is the rate constant for the forward reaction,’][Hhe hydrogen

concentration in the aqueous phase,’[Cthe copper concentration in the aqueous
phase and [Rthe reagent concentration in the organic phase.

r

(2-4)

2.3.2 The chemical and physical side reactions in the copper
solvent extraction process

The main chemical side reaction is the extractibimam from the leach solution into
the organic solution in the extraction units. Ofdyric (F€") iron forms complexes
with the organic solution, and it can thereforett@nsferred chemically from the
leach solution via the organic solution to the &tdgte solution. The reaction rate is
dependent on the acidity of the leach solution #ral selectivity of the organic
solution. The ferrous and ferric ions accumulatethe electrolyte and prevent
maximum possible copper transfer from the orgarotut®n to the electrolyte
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solution. To prevent ferrous and ferric loadinglo# electrolyte, small amounts of the
electrolyte are bled to the extraction units.

The main physical side phenomena are the trangferpurities with entrainment and
the accumulation of crud. Ferrous tHemanganese (M#), and other impurities can
pass from the leach solution to the electrolyteitsmh only as aqueous entrainment,
i.e. in aqueous droplets within the imperfectly amgped organic solution from the
extraction units to the stripping units. In elebtsis, the presence of iron reduces
current efficiency and decreases copper productdanganese is converted to
permanganate, which circulates back to strippingl disrupts the reagent in the
organic phase. Since the reagent is the most eixgenkemical in the plant, this
causes severe financial losses. In order to mimmizrch losses, a mixer-settler unit,
called the washing or scrubbing stage, is addeddmst the extraction and stripping
processes. The aim of the washing stage is to rentloe entrained PLS solution
containing impurities and to strip the ferric iofit®m the organic solution. A
concurrent strategy is to bleed small portions he# electrolyte solution from the
electrowinning process to the washing stage orabitiee extraction stages in order to
remove the excess iron. The choice of reagent,exoppd acid concentration in the
wash stage aqueous solution, and the mixer retetitite, also affect the transfer of
impurities in the solvent extraction process. (Kaskly et. al., 2000, Virnig and
Olafson, 2002)

All the solvent extraction plants contain at lesstall amounts of crud, gelatinous or
crystalline emulsions of solid particles, in theuagus and organic solutions. The
solid particles and biological material in the leaolution, as well as precipitates and
silica generated during changes in the pH in theersi are sources of crud formation.
Crud formation is especially fast in a low pH rangesmall amount of crud improves
separation of the dispersion of the organic andeags phases in the settler, but
excess crud causes severe problems. (Biswas arehpat, 1994, Kordosky, 2002,
Ritcey, 2002, Tetlow 2003)

2.3.3 Process chemicals, equipment and plant configurations of
the copper solvent extraction process

The organic solution in the copper solvent extacprocess consists of a solvent and
a reagent. The high viscosity of the reagents mtaighey have to be diluted in the
organic solvents. The preferred solvent charadiesiare a flash point of over 60 °C,
difficultly vaporizable, and a specific gravity afound 0,8 in order to ensure good
separation from the aqueous solution. The solvargsusually different mixtures of
paraffin, and aromatic and naphthalene hydrocarbigeskerosene. The aromatic
compounds increase copper solubility to the orgaalation, but slow the kinetics of
extraction and stripping. (Biswas and Davenport4]l 3®rdosky, 2002)

The reagents are typically hydroxy oximes: saligfdoximes, ketoximes and their
mixtures. Ketoximes are readily soluble in kerosemsistant to heating and do not
require modifiers. Compared to the aldoximes, aelowcidity can be used in
stripping ,and small amounts of particles, likeladl silicates and flocculents, are
allowed in the pregnant leach solution. Howeveg, éRtraction strength, kinetics and
selectivity for ferric are inferior to those witlidaximes. The salicyl aldoximes are
strong extraction chemicals with good extractiomekics and selectivity against
ferric. The aldoximes dissolve easily in kerosear@] separate rapidly from the acid
agueous solutions. Stripping requires such a haythitg that equilibrium modifiers,

such as tridecanol and nonylphenol, are necesktglifiers prevent decomposition
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of the aldoximes and form stable complexes witicats possibly present in the
leach solution. Possible side effects are crud #&biom, organic losses due to
entrainment in the raffinate leach solution, andiesys entrainment to stripping.
Mixtures of ketoximes and aldoximes combine theergiths of these hydroxyl
oximes, good extraction capability, fast kinetisglectivity, stability and an even
better stripping ability. In mixtures ketoximes I&®e aldoxime modifiers.

Commercial ketoximes include LIX64N, LIX65N, LIX84nd aldoximes LIX860,

LIX612N-LV, acorga P5100, acorga PT5050 and thetunexLIX 984. (Kordosky et

al., 1987, Biswas and Davenport, 1994)

Typical process instrumentation in industrial cappavent extraction plants includes
the measurement of flow rate, temperature, and.l&@nductivity measurements in
mixers, pH-meters, and online measurements of tbeper and impurity
concentrations may exist. The copper and impussags, phase ratio, breaking time,
and other diagnostic measurements are performetthédoyprocess operators and the
laboratory. (Bergh and Yianatos, 2001)

The only equipment in industrial copper solventastion plants is the mixer-settler.

Copper transfer between the aqueous and organgeghiakes place in mixers, and
the phases are separated in settlers. Differeremai@signs are utilized, for example,
in the Outokumpu VSF technology the organic andeaga flows are combined in a
dispersion pumping unit followed by two mixers (Ngmet. al. 2003). Most of the

modern settlers are large and shallow. (Kordosk322&obinson, 2003)

The unit process configurations of the industri@ngs vary from a simple 2 series
extraction steps with one stripping step to morenglex configurations with 1
parallel extraction step, 2 series extraction stépsashing step and 2 stripping steps
(Kordosky, 2002, Sole et al., 2005). The relatiomsbetween the extraction and
stripping units and the copper concentrations ocarvibualized using the McCabe-
Thiele diagram. (Mills, 1983, Robbins, 1984, HayE393 (p. 277))

Different design aspects of solvent extraction apen using mixer-settlers have been
studied by Galvez et al. (2004) and Pinto et &08). Galvez et al. (2004) developed
a graphical method to study the different flow dguafations between the unit
processes, including the organic and aqueous eyokide the mixer-settler pairs
and bypass flows. In their approach, the slopgbkebperating lines in extraction and
stripping are first transformed so as to be theesand are therefore presentable at the
same scale (e.g. 0 — 8 g/l Cu), and the analysishen performed with the
experimentally determined equilibrium curves. Thetmod enables easy design and
comparison of the different flowsheets.

Pinto et al. (2004) developed a complex steadye stahulation model to test the
selectivity of the similarly extracted metal spaciender different mixing conditions.
The studied parameters included the mean resid#nee the dispersion phase hold
up and the agitation speed. The optimal parameters found using multiobjective
optimization, illustrated with a case study of ziand cadmium extraction in a
sulphuric acid environment. This method helps itirozing the process conditions,
but requires detailed models of the process andsinidl measurements of the phase
hold up and residence time.

Cognis has developed a statistical program forghésy copper solvent extraction
plants with different reagents and varying tempeest and copper and acid
concentrations. The accuracy of the statistical ehoslas tested by comparing



24/188

measured and predicted stripped organic valuesnaotavith the reagents LIX 612N-
LV, LIX 860N-1 and LIX 8180, as described by Kordgset al. (2006). The
agreement between the predictions and measuremaemdgr varying copper
concentrations (30-55 g/l), acid concentrations0¢180g/l) and temperatures (35 -
41°C) was very good. The copper recovery was alsyaed using the Cognis
Isocalc model for the extraction circuit. An incsean temperature increased copper
production under the assumption that the extracéfiiciency is higher at higher
temperatures.
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3 MODELING AND CONTROL OF THE COPPER
SOLVENT EXTRACTION PROCESS - STATE OF
THE ART

A state of the art review of the modeling approached the control challenges for
copper solvent extraction process are presenteddeedssed in this chapter. First,
the steady state models of the mixer-settler cascade reviewed in Section 3.1.
Next, the dynamic models of the mixer-settler cdesaare presented in Section 3.2.
Finally, the control challenges are discussed itiGe 3.3.

3.1 Steady state models of the mixer-settler cascade

The steady state of a copper solvent extractiowgs® can be studied using mass
balance equations and equilibrium diagrams, forngta, equilateral-triangular
diagrams and McCabeThiele diagrams. McCabe-Thielgram is widely used in the
industry for plant design and production optimiaati (Mills, 1983, Robbins, 1984,
Hayes, 1993 (p. 277), McCabe et al., 1993, Anof020

In the McCabe-Thiele method, the theoretical efuuim values for extraction and
stripping are determined on the basis of the inogncopper concentrations, the ratio
between the aqueous and organic flow rates, and@uhed equilibrium isotherms.
The basic assumptions of the method are a steady ahd immiscibility of the
solutions under normal process conditions. The tpkrapproximately in a steady
state if the flow rates are constant and the imomcentrations and reagent volume
per cent in the organic solvent are not changiRgbpins, 1984)

An example of the McCabeThiele diagram is preseme#figure 3-1, where each
triangular step, presenting one unit processmiger-settler pair, is iterated to fit the
equilibrium isotherms and the operating lines. Slope of the operating line for one
mixer is the aqueous to organic ratio betweenrnheming flows.

A
core

Extraction equilibrium
isotherm

Stripping
operating
line

Stripping
equilibrium

c

Extraction
operating line

Figure 3-1: The McCabe-Thiele diagram for a process with one uhprocess for

both extraction and stripping, marked with the dasted triangles. The extraction

and stripping equilibrium isotherms and operating ines are marked with solid

lines. The horizontal axis is the copper concentran in the aqueous phase and
the vertical axis the copper concentration in the iganic phase.
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The extraction equilibrium isotherm is determinsdaanonlinear function between the
copper concentrations of the organic and aquedus@ts with constanté andB as
follows:

o = Ac™
c+B

(3-1)

The equilibrium isotherm for stripping can be appmoated with a linear function
between the copper concentrations of the organd agueous solutions with
constantsC andD as follows:

¢ =CE*+ D (3-2)

The constantsA, B, CandD, depend on the reagent concentration in the ocgani
solution, acidity of the aqueous phases, tempegataf the solutions, and the other
metals (impurities) that could be extracted, likerit. The copper concentrations of
the input flows and the flow ratios also affect gguilibrium isotherm curves. The
following articles by Doungdeethaveeratana and S@d@98), Aminian and Bazin
(2000) and Bazin et al. (2005), are referred texasnples of the parameter estimation
techniques for the copper solvent extraction praces

Doungdeethaveeratana and Sohn (1998) determinedextraction equilibrium
parameters for a CuS®,SOs- LIX860 (2%)-kerosene solution by contacting
agueous copper solution with the organic solutibrvaxious organic to aqueous
volume ratios. The resulting equilibrium isotherargmeters wer@ = 1,071 and® =
0,037. With the same data the equilibrium constént(see Equation 2-3), was
estimated to be 297 £ 5.

The equilibrium constants with different Cu$B.,SO, -reagent-solvent
combinations were summarized by Aminian and BaZ@00Q). The equilibrium
constant varied between 3,7 and 297 depending@wortianic reagents and solvents
used. Aminian and Bazin studied the equilibrium stant with a aqueous solution
containing both copper (I1) and iron (lll) with agic solution LIX984-Orform SX-1.
The resulting equilibrium constant was 15,0 + 4,2.

A data reconciliation method with equilibrium caoast estimation for batch solvent
extraction data was developed by Bazin et al. (R0UBe experimental data were
created by mixing the organic LIX-Orform SX-11 sobm and the aqueous copper
solution in separation funnels for 15 minutes sgraperature of 25 °C and measuring
the initial and final copper and acid concentragiah both phases. The initial copper
and acid concentration of the aqueous phase andrffamic to aqueous ratios were
varied. The data reconciliation algorithm was baeadthe mass conservation and
chemical equilibrium equations. In comparison te dtlization of raw measurements
for calculating the copper recovery and performarncdices, when the data
reconciliation method was used the standard dewistof the indices were decreased.
Data reliability and the performance indices ageasal for process optimization and
control. Thus, a data reconciliation algorithm, ierpented in Microsoft Excel using
Solver for the nonlinear optimization, has beemftbto be an excellent tool for data
preprocessing for steady state models.

A steady state model of an industrial copper leaght+ solvent extraction and
electrowinning plant was developed by Saarenpa@2)19he aim of the model is to
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estimate the building and operational costs aneétjugpment dimensions of the plant.
The heap leaching model is a linear function basedhe amount and grade of the
copper rich ore, leaching time and leaching yidlde solvent extraction model is
based on the McCabe Thiele diagram. The inputsherd®LS copper concentration
and flow rate, electrolyte copper concentratiomgaoic to aqueous ratios in the
mixers, and mixer efficiencies. The electrowinnimgdel is based on the cathode
area, current efficiency and growing period. Thedelowas developed in the

Microsoft Excel environment and illustrated withetHhow sheet calculation and the
cost estimate of the industrial copper leachingeal extraction —electrowinning

plant in Zaldivar, Chile.

A multivariable model of the electrowinning procedshe Zaldivar copper leaching,
solvent extraction and electrowinning plant wasealeped by Katajainen (1998). The
lean electrolyte copper concentration was modelgd & linear combination of the

lagged variables of rich electrolyte copper conegin and flow rate, cathode
currents, acidity of the rich and lean electrolgtdutions, chloride concentration and
temperature of the electrolyte solution. The mdiébd the operational data was good
within similar operating conditions as in the madgl data set, with a standard
deviation of 0,23. With the other data sets theddad deviation increased to 0,66.
The model gives a good starting point for dynamiceddel development for the

electrowinning process.

A steady state model of an industrial copper sdhextraction and electrowinning

plant was developed by Aminian et al. (2000). Thedet for the solvent extraction

considers mass transfer in the mixers. The inpluisscomodel are the copper, iron and
acid concentrations, and the aqueous and orgaowe rfates. The mixer model is

based on mass conservation and it includes botisfeato the interfacial surface of
the phases and the reaction rate over the surfBige. equilibrium curves are

experimentally defined. The output copper conceiotneof the mixer unit is modeled

as:

+ %P or
TR g L e 4
dBF |:H|nt:| [RHlm] |: |nt:|

whereV®? is the mixer volumefor the organic solutid#,°® the organic flow rategs

the mean diameter of the organic droplés,the reaction rate constant, the

equilibrium constant, RH the reagent concentrataovd H the hydrogen ion
concentration at the interface. The indices n,g,rarare partial reaction orders.

(3-3)

The input variables of the electrowinning model #@ne copper, iron and acid
concentrations, electrolyte flow rates, temperatunad voltages. The steady state
model predicting the output copper concentrationtled electrowinning has the
following form:

CeI _Fel el _ 1 M ,7| 3-4
out Foilt in FOeL:t F ( - )

where concentrations are marked withelectrolyte flow rates with®, z (=2) the
charge of copper iork; the Faraday consta¥lc, the atomic weight of copper, the
current efficiency, antithe total electric current.
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The models were combined to agree with the flowesbé the pilot plant consisting
of two series extraction units, one stripping wamt an electrowinning process. The
model parameters were first calibrated with oneadadt and the model was then
tested with other data set. The measurements aadysstate model predictions were
compared and had good agreement. The simulator beanused to increase
understanding of the steady state process andrtorpethe optimization of copper
solvent extraction and electrowinning plants. Tteady state models also provide a
good starting point for the development of the dyitaprocess models necessary for
the control studies.

A mass balance monitoring prototype with data red@tion for an industrial copper
solvent extraction and electrowinning process heenlreported by Suontaka et al.
(2004, 2003). The inputs to the monitoring modekevthe flow rate and copper
concentration measurements. In order to filter tileasurement noise, a static data
reconciliation based on the mass conservation emsatvas used. The mass balance
model assumed steady state operation and constpiiibeum isotherms. The
predictions of the mass balance model were compaoedhe output copper
concentrations in order to monitor performance hef process. The prototype was
tested with plant history data and the operatigaiciple of the application was
found to be successful. The aim of the monitoriggfesm was to assist operators with
process control, and was implemented in the MidtoExcel environment. The
system can be used to monitor other copper solgetnaction and electrowinning
plants with only small plant-specific modifications

Since relatively few articles have been publishedsteady state modeling of the
copper solvent extraction process, three papersrideg) approaches to modeling
solvent extraction with mixer-settler equipment geferred to here. Abdeltawab et al.
(2002) studied the effect of agitation speed angeaqgs to organic flow ratio on the
extraction of rare earth metals in a laboratorylescaixer-settler column (with 5

extractions, no stripping stages). The basic foathh of the steady state output
concentrations sums the input concentration withstage efficiency weighted

difference between the equilibrium and input com@ions as follows:

Cor =Co° + a(c

out

. 3

K,aVv R™

et )= e v | ] ) @9
(o]

The equilibrium curve between the aqueous and argeoncentrations is linear,
where the coefficient consists of the equilibriuomstantc. times the third order term
of the ratio between the reagent"[Rand the hydrogen ion [M] concentrations at
the droplet interface. The interface concentratieasl to detailed models of the mass
transfer coefficients and the interfacial areae $tage efficiency is defined with an
overall mass transfer coefficiei,, organic flow rateF°'9, interfacial areag, and
mixer volumeV. The model was very successful in predicting teady state effects
of agitation speed, aqueous feed solution pH, hachtimber of stages.

Nishihama et. al. (2003) developed a steady-staideinfor the extraction of rare
earth ions with EHPNA (2-ethylhexyl phosphonic aoino-2-ethylhexyl ester) in
the presence of EDTA. The model, based on matbatdnce equations and the
experimentally verified equilibrium curves, at @ifént pHs and reagent loadings, was
developed to design a separation process with atecaurrent mixer-settler cascade.
The emphasis in this steady state model was motheprocess equipment design
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than on further dynamic model development. Testlegrly implied that there was an
increase in extraction with an added scrubbingestagd a mixer-settler cascade of 10
extraction steps and 1 washing (scrubbing) steppr@sosed for this system. As was
the case for the steady state model described kghBahi et al. (2002), the lack of
stripping steps for the process partly preventspanmon with the industrial copper
solvent extraction process, in which the total penfance is strongly connected to the
effects of organic solution recycling between tkeraction and stripping steps.

3.2 Dynamic models of the mixer-settler cascades

The basic structure of a continuous dynamical méaoleh mixer-settler cascade was
summarized by Wilkinson and Ingham (1983). The rhdde one extraction step
consisted of an ideal mixing model describing a eniand a plug flow model
describing a settler. The assumptions were: (1jepemixing in the mixer, (2)
equilibrium is immediately achieved in the mixeB) the aqueous and the organic
solutions are immiscible, (4) flow rates for bothages are constant, (5) plug flow
separately for both phases in the settler, anch@6jnass transfer in the settler. The
mixer model structure was expressed as follows:

dc9y° or or or a4 % .
IG™ - os (eo() - ) +wal 1) - €1)) &0

wherew is the stage specific organic solution hold-ughe mixer x the stage specific
mass transfer coefficient aral is the interfacial area of the extraction stage. |

equilibrium the driving force(c:] * (t) —c'(t )was recommended to be close to zero,

out
which implies that the term will have an arbitranigh value. The equilibrium
equation used to calculat® was assumed to be linear and the parameters otnsta

The settler output valuey ..., Was a time-delayed value of the mixer output value
defined as follows:

Cglrj?, settler = C%rl?t mixer(t_ t |) (3'7)

where the time delay-(t,) is calculated by dividing the phase volume in sieéler
with the flow rate (see equation 4-39).

A more exact approach was to model the hydrodynafféct between the mixer and
settler, and to model the settler with a seriegde&l mixers. In the detailed settler
model the settling volume was divided into perfgctliixed stages with back mixing
streams, separately for both phases.

In Ingham et al. (1994), the mixing model was fartmodified by adding an
entrainment flowgeny, Which is the total flow of the organic dropletsthe incoming
agueous flow, as presented in Equation (3-8). Tdid-tp volumenr was assumed to
be proportional to the flow rate of the phase, #mal hold-up was replaced by the
mixing volume V. The equation for mixing was presented as follows:
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Vo 952 o (con( + g, @000 - 1+ 9 G00) +x 4 G (- 61X U

dt
(3-8)
where V¥ and V?9 are the organic and aqueous volumes in the mast g, the
percentage of the entrained flow. The mass transdefficientx was derived from

two film theory using the phase specific film caefints k™ and k*9, and the
derivative of the equilibrium curve® % = f(c3%).

aq|,org
ag _ k*k

K+ K OF (™)

(3-9)

Instead of the mass transfer coefficient teamthe Murphree stage efficiency can be
used. However, as indicated by Wilkinson and Inghérfi83), the Murphree
efficiency coefficient changes considerably more@myoperating point changes than
the coefficients in the previous approach. The Muep efficiency was determined
as:

¢ — ¢
E=——a (3-10)
Cln - COUI

The settler model consisted of plug flow and mitkedv regions, where the latter

represents the turbulent flow region and the bagkigiphenomena in the settler. The
output organic concentration from the plug flow rebdias a time-delayed value of
the mixer output organic concentration, as in Eiguat3-5). The output concentration
for the well-mixed region was calculated as follows

dcor%
out,s __
0 ke = g, LF (0~ 2 f0) @11

wheregs is the percentage of the well mixed region ofgatler.

A dynamic model describing the transfer mechanismopper extraction in mixer-

settler is described by Hoh et al. (1989). The iomous-flow stirred tank reactor
model is chosen to represent the process unitttemdeaction is described with the
following equations:

L G R () s
ke (0 (o RH) W (9 -2 F*Y/ F I 69 - ¢2(3))
o(H"), () +2(6 (0 - G3(9) (3-12)

(e + F/ Foo o) - 2(9)) ff d H) (9 +2( € (9- €2(1))
(c(RH),, (9 -2 F*2/F o (1) - ¢2(0))

where k; is the reaction rate constar8,the interfacial areax is the equilibrium
constant (=4.0), ¢(RH) the organic reagent coneéintr and c(H) the hydrogen ion
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concentration. If one of the phases is recyclethftbe settler back to the mixer, then
the kS term becomes dependent on the aqueous phase elavith a polynomial
correlation, as follows:

k S=3.78-16.6 + 281° - 162 \J[ 1/3,0. (3-13)

where the aqueous hold up with the recycle flovesafecycie IS determined as
follows:
Faq + Faq
n

recycle

aq aq org org
I:in + I:recycle + I:in + I:recycle

(3-14)

The output concentrations of the mixer-settler @mé lagged with a time delay
calculated by dividing the total volume by the softhe flow rates.

The model was configured for an experimental sysietin one extraction step, one
washing step and five stripping steps. The inpugmpaeat leach solution contained 1.6
g/l copper and 0.016M 130, the organic solution contained 12.5% LIX64N redgen
in kerosene, and the aqueous stripping solutiondg{bBl,SO,. The model fit to the
experimental data was very good. On the basiseoéiperiments the authors suggest
that the organic to aqueous ratio be kept nearl®.@&djusting the flow rates or the
recycle flow rates.

An example of applying Murphree efficiency to madgl solvent extraction with
mixer-settler equipment is described by Salem aneir&h (1990). They applied a
dynamic model to describe the dynamic behaviouhefmixer-settler cascade. In the
model, a linear equilibrium isotherm dependent ba temperature and aqueous
equilibrium concentration was assumed. The expetiahefaboratory system
consisted of a mixer-settler cascade with fouraetion steps and a water-toluene-
acetic acid medium. With the model, the effectagtation speed, temperature and
holdups and the optimal number of extraction stagese studied. The dynamic
model gave adequate fit to the experimental data.

Aminian et al. (1998) used the previously presemtgaamic mixer-settler model to
study the residence times of an extraction caspddeplant with two extraction and

one stripping stages. The tracer experiment for dali@ction was carried out with

lithium chloride. The best model structure to ddszithe residence time distribution
of the lithium chloride impulse response was a mixedel with two ideal mixers,

and a settler model with two parallel models, mifiow to the ideal mixing series,

and most of the flow to the plug flow in series lwitwo ideal mixers. The

electrowinning model consisted of one perfect mixgh a very small bypass of plug
flow and two perfect mixers in series. The simulatresults were very consistent
with the experimental data.

A discrete, pulsed flow model for a rare-earth enlv extraction cascade was
developed by Wichterlowa and Rod (1999). The modebhe mixer-settler pair was
separated into one mixing and several settlingsstepwhich each of the steps had
equal time intervals. In the mixing step, the metals transferred between the
agueous and organic phases according to the liegaitibrium relationship. The
settling steps were modeled as ideal mixers, stgartor each phase. The discrete
output concentration in the ideal mixing step witlass transfer was presented as
follows:
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or or or —_ or é\, |]Tl a a or or
ougt] (t + 1) ( )Cmtg + O’ E:mtg (1 a) mtg V aq + mvorg (\/ qu? +V gClntg)
R Org COfg t + F org At Eorg t
- (l_a,) out (t) o (t) (3-15)
a aq ~aq aq org ~org org org
G (V292 (1) + F29AL B2 (1) +vo9c (1) + F AL 22 (1))

whereF4t is the pulsed volume entering each ideal mixieg 3t*Y andV°' the ideal
mixer volumes for the aqueous and organic phas#s vailf of the entering pulsed
phase volumes, and® and1°' the ideal mixer phase volumes minus half of the
entering pulsed phase volunma.is the linear slope of the equilibrium curve, afd
the efficiency. The equilibrium curve is a nonlindanction of the steady state
efficiency, concentrations and volumes. The moded applied to neodymium and
praseodymium extraction with DEHPA in a mixer-settlascade of 6 extraction and
6 stripping stages. The system was tested on laygratale extraction equipment
with 30 mixer-settlers, each having a volume of l&g¥s. The model could be used
for the industrial copper solvent extraction praceand was characterized by
relatively stable mixer and settler volumes, floates and flow ratios. However,
division of the mixers and settlers into ideal mixisteps should be done carefully.

3.3 Control of the copper solvent extraction process

The control of the copper solvent extraction anatedevinning processes relies on
the operators actively manipulating the setpoiatstie basic controllers. This means
that the control loops are decentralized, with nadrsetpoints for flow rates, levels,
motor speeds, stirring speeds, pumps and valvese $ine process includes long time
delays and complex interactions between the vasabbptimal performance and
productivity of the plant is seldom achieved. (Ber@006, Bergh and Yianatos,
2001).

The measured variables for the control system tilgicansist of sensors for flow
rates, levels, temperatures, pressures, pH anducbtwity. Online concentration
analyzers have recently become more common (Hu@hem)d Saloheimo, K.,2000).
The manipulated variables in solvent extraction thee flow rates, levels, stirring
speeds and addition of extraction chemicals. Irctedeinning the manipulated
variables are voltage, current density, temperatumct the addition concentration of
chemical compounds. In solvent extraction the mpmblems, which can be
formulated as measured disturbance variables émné&ol system, are changes in the
PLS pH level and copper concentration (Bergh Andndios, 2001). Bergh et al.
(2006) suggested dividing the control structureaactopper solvent extraction pilot
plant into three levels. The first level consistsbasic local controllers of flows and
levels. The second level, hydrodynamic supervisamtrol, controls the flow rates
between the process units, the recycle flow rateke process units, and the stock
solution levels. The aim of the second level is tmimize aqueous and organic
entrainments by adjusting the setpoints of the fagel controllers. The third level,
metallurgic supervisory control, adjusts the organi aqueous flow ratios according
to the metallurgical model of the process. The agam aqueous flow ratios are
given as setpoints for the second level control.
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The control system for the solvent extraction arettebwinning plant has several
tasks, such as keeping the operation within thetgdiimits, maximizing throughput
and rejecting disturbances. These tasks, with tleeption of safety-related issues,
can be formulated into a set of control objectivBergh and Yianatos (2001)
proposed that the main control objectives for coppelvent extraction and
electrowinning processes are maximization of thepction rate while fulfilling the
product quality constraints, for example high quadf the copper cathodes.

There are several challenges associated with acdgi¢lvese control objectives. Bergh
and Yianatos (2001) state that, to date, the ldckdequate mathematical models
applicable for industrial plants has preventeddbeelopment of control systems for
copper solvent extraction and electrowinning preessHowever, development of the
dynamical models and the control system should ®ttoo complicated. The
responses in extraction, with mixer-settler typeeqfiipment, are sluggish and rather
stable due to the relatively low throughputs angdahold-up volumes (Wilkinson
and Ingham, 1983). The steady state effect of nlassrite changes can be easily
calculated from the equilibrium scheme, for examplehange in the aqueous to
organic flow rate changes the slope of the opegaline in the McCabe Thiele
diagram, and subsequently also the output of theesponding unit process.

Aqueous and organic entrainments, crud formatiom gimase separation times are
problems that could be solved with appropriate aipey practices, separation
equipment, chemicals or with control strategiesp@agposed by Bergh et al. (2006).
However, entrainments could pose a possible coptaillem if measurements of the
emulsion band and dispersion characteristics eaist, the phenomenon could be
modeled. In eletrowinning, problems such as opamabf the baths are more of
maintenance/equipment development issues. (BerdjfYematos, 2001).
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4 MODEL DEVELOPMENT FOR THE COPPER
SOLVENT EXTRACTION PROCESS

The first aim of this thesis is to develop dynamicaldels for an industrial copper
solvent extraction process in order to facilitaygnamical behaviour studies and
control system design and testing. In this chagtegpper solvent extraction process
with one extraction unit and one stripping unifiist described in Section 4.1. Next,
the equilibrium state models (Section 4.2) and dyinamodels (Section 4.3) with
parameter estimations are developed for a coppezrgcextraction plant.

4.1 Description of a copper solvent extraction pross

The copper solvent extraction process to be modaiadists of two processes. In the
extraction process copper is extracted from theeagsi phase into the organic phase,
and in the stripping process copper is strippednftbe organic solution into the
electrolyte solution. Both the extraction and i processes consist of one or
more unit processes; at the industrial scale, thikepunocesses are solely mixer-settlers
(Robinson, 2003). In the mixer the minor phase igp@&lsed and mixed with the
continuous phase in order to maximize the intealaarea for the mass transfer of
copper. In the settler the organic and aqueousegha® separated by gravity.

The process to be modeled consists of three magarss, the PLS solution to the
extraction unit, the lean electrolyte solution te tstripping unit, and the organic
solution recycling between the extraction and pirg units (Figure 4-1). The
controlled variables are the copper concentratadrtbe raffinate, the rich electrolyte
and the organic solutions, the manipulated vargladee the flow rates, and the
disturbance variables are the incoming copper auratgons of the PLS solution and
lean electrolyte solution. A summary of the varésbis given in Table 4-1.
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Figure 4-1: The solvent extraction process. The injis are the copper concentration of the PLS,
c(PLS), and lean electrolyte, c(LE), and the flowates of PLS, F(PLS), organic, F(LO), and lean
electrolyte, F(LE). The controlled variables are tle copper concentration of the raffinate, c(Raff),
rich electrolyte, c(RE); and the copper concentratins of the recycled organic stream after
stripping, barren organic, c(BO), and after extracion, loaded organic, c(LO).

Table 4-1: Controlled, manipulated and disturbancevariables of the copper solvent extraction
process.

Classification Variable name Abbreviation

Controlled variables | Raffinate copper concentration | c(Raff)

Loaded organic coppe concentratian  ¢(LO)

Rich electrolyte copper concentration ¢(RE)

Barren organic copper concentratign  ¢(BO)

Manipulated variables PLS flow rate F(PLS)
Electrolyte flow rate F(LE)
Organic flow rate F(LO)

Disturbance variables PLS copper concentration SIPL

Lean electrolyte copper concentration c(LE)

4.2 Equilibrium state model of the copper solvent exaction process

The equilibrium state model of the copper solveditaetion process is based on the
McCabe-Thiele diagram. The McCabe-Thiele diagrathésdesign flowsheet of the

industrial copper solvent extraction processes, @mel necessary equilibrium

isotherms are measured offline. The informationdedefor the equilibrium state

model are the copper concentrations after each protess, the flow rates,

efficiencies of each extraction and stripping step=l the equilibrium isotherms for

extraction and stripping. The theoretical equilibni values for extraction and

stripping are determined from the McCabe-Thielegdien, as presented in Figure
4-2. Each step in the diagram represents one rsedler pair.
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Figure 4-2: The McCabe-Thiele diagram for the modedd process with one unit process for both
extraction and stripping, marked with dashed triandes. The input and output variables are
presented in Table 4-1. Extraction and stripping egilibrium isotherms and operating lines are
marked with solid lines. The horizontal axis is thecopper concentration in the aqueous phase and
the vertical axis the copper concentration in the ianic phase.

The equilibrium isotherm for extraction is nonlinead for stripping it is linear, as
presented in Equations (3-1) and (3-2). In ordecalzulate the equilibrium output
copper concentrations from each unit process, thiatpwvhere the equilibrium
isotherm and the inverse operating line overlaptbdse determined. The calculation
is illustrated in Figure 4-3. The inverse operatlmg is first determined, and the
equation for the theoretical equilibrium poxitin the extraction is then derived. The
equilibrium pointsc®® and c®% for extraction are calculated on the basis of this
theoretical variable. The theoretical equilibriumirg and the equilibrium points are
then derived for the stripping process and, finathe steady state equations are
simplified and presented for the solvent extracpamt with one extraction unit and
one stripping unit.
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Figure 4-3: Calculation of the output concentratiors (G,) for extraction with the nonlinear
extraction equilibrium isotherm and the efficiencycoefficienta. The input copper concentrations
are marked with ¢, and the equilibrium copper concentrations with g

The slope of the inverse operating line is the tiegaatio between the aqueous and
the organic flow rates to the mixef®? / F°". The inverse operating line is drawn
through the input copper concentratigies®,, ¢”9,). The inverse operating line is

determined as follows:
oY = — Faq/ F o9 [gad +(qnorg + qnaqu: at}/ F org) (4-1)

In the extraction, the theoretical equilibrium \aludor the aqueous copper
concentrationx*, is calculated by setting the equilibrium isotheamd the inverse
operating line (Equation 4-1) equal, as follows:

aq
¢ = —Ci\i 5 =- Faq/ Foore®i+ ( G+ F a’}/ F OrgEchal) (4-2)

For clarity, the coefficients of the inverse opergtine are replaced with andb, and

the second order equation is solved in relatioth& aqueous copper concentration

c® as follows:

aq
or :—AC =ac+b
c+B
= a(c®)?+(Ba- A+ h &+ Bb=0 (4-3)

= ™ :%a(—(Ba— A+Bx(Ba A I -4 aB\?‘)

The negative square root is chosen because theivposiquare root produces
unfeasible solutions (due to multiplication witfaterm, wherea has negative value.

This follows from the assumption that flow rates @ositive in Equation 4-2). The
coefficients of the inverse operating lireandb, are replaced back to the original
variables. The theoretical equilibrium agueous epmoncentration is now:
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-1 a or or a or
w:(Z':T/':W][é_(‘BEFq/F "= Ak (@ GO F)) (4-4)

_\/(_B D:aq/Forg_ A+(qgrg+ q:qDFaq/ Forg))z +4 BDFa7/ For% %org_i_ gacDFaﬂ E or)]

The output copper concentrations for the aqueou$ @ganic phases are the
theoretical values weighted with the efficiency

Cou = X" H1-a) LG (4-5)
o = G F™/ P+ (4 GF Y ) (@-6)

For clarity, the extraction equilibrium isotherm linearized around the operating

point (opl), represented by the agueous coppereadration €5, Co;)- The slope of

the linearized curve is the derivate of the eqlim curve evaluated at the
linearization point (Taylor series expansion). Timearized extraction equilibrium
isotherm is defined as follows:

Alga)
o = Acs B (4-7)
(B+ G’

AB

(B+cp)’

org —

The theoretical equilibrium point is calculated $stting the inverse operating line
(Equation 4-1) equal to the linearized extractiguikbrium isotherm, and solving
this in relation to agueous copper concentratfinThe theoretical equilibrium point
x* is now defined as follows:

Corg — Acaq + B - _ qslql:”:aq/ Forg+( FI:‘org_'_ ﬁanFal?/ For%
e+ ocF £ ) & 9

= X = —
A+Faq/Forg

The output copper concentrations in the extractioithy the linearized equilibrium
isotherm curve, are formulated explicitly as a comabon of the input concentrations.
The aqueous output copper concentration can beegsga by combining Equations
(4-4) and (4-7) as follows:

Corg +cX I:H:aq Forg_ D
n HQFI / 3 + (1_ a,l ) miq
A + Faq/Forg

=c (1_ai )A F™ + F™ + o g Fo — a ED? Fos
n AForg + Faq q“ AForg + Faq AForg_'_ Faq

The organic output copper concentration is caledlas a combination of Equations
(4-5) and (4-9), as follows:

ag —
Cout -

(4-9)
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qorg _ qﬁq D:aq/ Forg

org _ Aor al ori 3 " Un
Cou? - |ng+ai[q|: q/F g)m A"‘Faq/Forg +qt;q)
_ _ N (4-10)
=c™ aAF™ |+ o AF+1-a)F™ + g BF™
in AForg + Faq qn AForg+ Faq AForg_'_ Faq

In stripping, the parameters of the linear equlibr isotherm areC and D. The
theoretical equilibrium point* is solved as in extraction. The inverse operalimg
is set equal to the equilibrium isotherm, and theesmus copper concentratiah is
solved as follows:

™9 = CIE™+ D=— F*/ Fo0x+ ¢+ ¢MOF*Y F°9
Icr:rg + qiq D:aq/ F org) _ D (4-11)
C+F/F

The output copper concentrations for stripping aqamw be expressed as a
combination of the input concentrations. The aqgemutput copper concentration in
stripping is a combination of (4-4) and (4-10):

0+ GNF™ F*9- D

ngt = i C + Faq/ Forg + (1_ ai ) Ij;iq
org aq org org (#12)
s d-a)CF™+F™ | @9 aF | aDF
" CF%9 + F " |CF™+F™| | CF™+ F™

The organic output copper concentration in striggga combination of Equations
(4-5) and (4-11), as follows:

oo :—(F""q/F"rg) oA (1-a,)CF° + F™ - afF° | | aDF"
out n CForg + Faq n CForg+ Faq CF 0rg+ Faq

(e + Gy F )

_ [ a,CF™ } Org[CF”“(l—ai)Fﬂ [ a, DF * }
=G| ~cog —cag | T Gn +
CFo9 + F2 CF9+ F CF°9 + F™

(4-13)

The equilibrium state model for the plant is dediwsing these equations. The steady
state concentrations from each mixer-settler careygessed as a function of the
incoming concentrationgif), flow rates F), stage efficienciesa)), and equilibrium
isotherm parameter®\(B;,C,D). For the extraction step E, the agqueous and argan
output copper concentrations are derived from Eogoat(4-9) and (4-10) with the
variables listed in Table 4-1:
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c(Raff) = ¢ PL$|:(1_CIE)AEF(LO)+ F(PLS:|+ ¢ B a. R LO :|_|:h a. A% R LO
A F(LO)+ F(PLS ARLO+ RPLS | AE LD E PO

(4-14)
C('-O)=0(PLS{A aeAF(PLY } ¢ B@{A RLO+(-a,) R PLS}{A a. B EPLS |
A F(LO)+ F(PLY A R LO+ R PL$ AE LD F PLS

(4-15)

For the stripping step S, the aqueous and orgautigud copper concentrations are
derived from Equations (4-12) and (4-13) usingwheables listed in Table 4-1:

o(RB = (LB (1—aS)CF(LO)+ F(LE) + ¢LO ag F(LO) B ag DF(LO
B CF(LO)+ F(LE) CRLO+ RLB| | CR LO+ R LB
(4-16)
o(BO) = { LB a'SCF(LE) + ¢LO CH( LO)+(1—aS) F(LE N ag DH LB
- CF(LO)+ F(LE) CHLO+ H LB CK LO+ K LB
(4-17)

The steady state of the system can be solved fhm®etequations by substitution.
Estimation of the equilibrium isotherm parameteitse efficiencies and recycle
corrections are explained in more detail in théofeing sections.

4.2.1 Estimation of the equilibrium isotherms

The isotherm curves for extraction and strippirg asumed to be almost constant, or
to change at a significantly slower rate than ttleeoprocess dynamics, e.g. the flow
ratios determining the operating lines.

The extraction and stripping equilibrium isotherame nonlinear functions of various
process variables, such as temperature, pH anceneagrength. However, only
offline measurements of the pH level of the leashitson, acidity of the electrolyte
solution and reagent volume in the organic sohsrtusually available. Therefore,
the extraction and stripping equilibrium isotherare approximated by manipulating
the equilibrium Equation (2-3), as described in é&a{1993, p.227 — 228).

Assume that total volume of the organic phase fR] the concentration of hydrogen
ions [H] do not change throughout the equilibrium reactidFherefore, in
equilibrium, the sum of the organic reagent molesuvith copper ions [CyRand
the organic reagent molecule with hydrogen ion [RHassumed to be constant and
described as follows:

CuR]+[ RH® =[ R® = constan (4-18)
[CuR]+[ RH

By rearranging this, we get:

[RH]" =[ R’ -[ CuR] (4-19)

Assume that the concentration of [GliIRan be approximated by the organic copper
concentrationc® and the copper ion concentration by the aqueouspeso
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concentratiorc®®. Now by replacing Equation (4-19) to the equililni Equation (2-
3), the following equation for the equilibrium caoast is formulated:

_ [lew]fH] (e
[cu? ][RP -[cuR]) c“H{e(R?- ¢

and by rearranging this equation we get the formth&f extraction equilibrium
isotherm with the extraction equilibrium constaat

(4-20)

pr - K BRI _ (BOE -
C(H")? + k. & o H")?/Kk + ¢

For the stripping equilibrium isotherm the equatisnthe samewith the stripping
equilibrium constantks but, since the acidity is much higher, the hydrogen
concentration becomes the determining term, an@do@tion simplifies into a linear
form with the estimation error term

2 2
oo - KSR _ kDR 08 wo)
C(H+)2 +Ks [taq C( H+)2

4.2.2 Estimation of the extraction and stripping efficiencies

The efficiency of extraction and stripping is atfst by the reagent concentration in
the organic solution and the acidity of the aquesnlation. The retention time in the
mixers and settlers also have an effect, espediathey are too short. (Ritcey and
Ashbrook, 1988)

The efficiency for each unit process is estimatedtioe basis of the theoretical
equilibrium valuex (aqueous) ang (organic), the input concentratiag, and the
actual equilibrium value,;, as follows:

ag _ ~aq org __ org
a,E = CIn Cout = QH Cout (4_23)

aq __ org __
Go =X G Y

Calculation of the efficiency for the extractionituis presented in Figure 4-3. The
output concentrations,,; are determined by drawing an inverse operating from

the input concentrations, towards the extraction equilibrium isotherm. Thanp
where this line and the equilibrium isotherm owverla the theoretical equilibrium
value for the aqueous and organicYy concentrations. These values are then weighed
with the efficiency parametest to obtain the output values,: The efficiency
parameter typically has values close to 1; valuewa 1 are possible for real plants
because the efficiency is a theoretical measungh@dm et al., 1994)

4.2.3 Estimation of the recycle corrections

It is often possible within the mixer-settler unitsrecycle one of the phases in order
to change the aqueous to organic phase ratio wittlmanging the flow rates. If the
recycle flow rates are not measured, then the aguem organic flow ratios in the
mixer have to be estimated from the steady stata dathe plant. The recycle
correction is based on the mass balance of copptirei mixer. The aqueous copper
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mass is multiplied by the recycle correction caedint, cf, to equal with the organic
copper mass as follows:

of (' ) = - F( a7 %) @29

The correction coefficient can now be estimatediftbe steady state data of the plant
as follows:

_rorg [ ~org _ ~org
of = :;q ((;:_C‘::u)t) (4-25)

n out

4.3 Dynamic models of the copper solvent extractioprocess

A mechanistic model approach was preferred fordynreamic model in order to be
able to describe the detailed process phenomereadyhamic model development
was started from the basic formulation for mixeftises presented in Wilkinson and
Ingham (1983). This approach was chosen due tostloeessful earlier studies
described in Chapter 3. The dynamic models aredbasedeal mixing and plug flow
models. In this work, the ideal mixing model is niwd to utilize the equilibrium
values calculated with the equilibrium state modEhe assumptions used by
Wilkinson and Ingham (1983) that are applicableéhe developed dynamic model
are: (1) perfect mixing in the mixer, (2) immisdityi of the two phases, and (3) no
mass transfer or back-mixing in the settler (plloyvj. In this work, the following
assumptions are added: (4) the equilibrium curvilaénmixer is a plant specific non-
linear equilibrium isotherm, (5) the mass transteefficientsK;, the equilibrium
isotherm parameterd and B for extraction, andC and D for stripping, and the
efficiency coefficientseg;, are not constant, but estimated from the offlplant
measurements. (6) The phase volumes are calcuatede basis of the phase flow
rates and total equipment volumes, and (7) hydranya effects are neglected. (8)
The equilibrium and the phase ratio in the mixee aeached gradually, not
immediately as in Wilkinson and Ingham (1983).

The copper mass transfer is calculated from thel idexing Equation (3-6), where
the equilibrium valuec* is determined on the basis of the equilibriumestaindel
described in the previous section. The variablesnaarked as follows: flow rates F,
the mixing volumed/,,, organic concentratiors'®, aqueous concentration¥, mass
transfer coefficient&;, efficiency parameters. The settler, which always follows the
mixer, is described by a pure time delay

In extraction, copper is transferred from the amigeto the organic phase. The
extraction unit operation is modelled by differahtequations of the concentrations
for both the organic dc®(t)/dt) and aqueous phasesif®(t)/dt), where the

equilibrium output value* is calculated from the equilibrium state model:
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d org Forg
th(t) - 1vm(t) Feo(t—t) - <o) |+ K[ <) - €9 (9] (4-26)
d aqg Faq
th(t) - m(t) () - ()] - K[ () - 9 (D] (@-27)
¢ (1) = 9( ¢ (t- 1), €9, F°(D, F*(9.a,, A B (4-28)

where the incoming copper concentrations are mankidsubscript O and the copper
concentrations in the mixer with subscript 1. Tkdtler is taken into account by
delaying the mixer output concentrations for theemys phasewith a time delay
and for the organic phase with a time delay

c(Raff)(§ = ¢*(t- 1) (4-29)

c(LO)(t) = g°(t- 1) (4-30)

In stripping, copper is transferred from the orgatu the electrolyte solution. The
stripping unit operation is modeled by differentguations of the concentrations for

both electrolyte dc”'(t)/dt) and organic ¢ (t)/ dt) phases, taking into account the
equilibrium concentration* calculated from the equilibrium state model:

def' () _ F() 5

. vk LICALCIR S0 (@-31)
d org org | o

2 0B O e -] k6~ (1] @)
o (1) = h( g (t- 1), &'(, (9, F(9.a ,,C, D (4-33)

where the incoming electrolyte copper concentratiare marked with subscript O,
and the electrolyte copper concentrations in theemiith subscript 1. Since the
organic solution comes from the extraction unite tincoming organic copper
concentrations are marked with subscript 1 andotiganic copper concentrations in
the mixer with subscript 2. Rich electrolyte conication (c(RE)) is the time delayed
(t3) value of the electrolyte concentration, and baroeganic (c(BO)) is the time
delayed {;) value of the organic concentration in the stmgpunit.

c(RE() = ¢ (t-t) (4-34)
c(BO)(1) = ¢°(t- 1) (4-35)

Since the organic solution is recycled from thépping unit back to the extraction
unit, c(BO) iscy® andt, is same af in Equation (4-26) and Equation (4-28).
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These four equations (4-26, 4-27, 4-31, 4-32) adinary differential equations that
can be solved with standard techniques. These anant models have four states,
copper concentrations of aqueous and organic phasexh extraction and stripping
units.

4.3.1 Calculation of the mass transfer coefficients

The mass transfer coefficient K describes the spéd#ue concentration change in the
mixers. It is inversely related to the process tocoastant: the higher th€ value, the
shorter the time constant. The mass transfer coefiK is approximated from the
process model by setting it to a steady state amidgga small value (a tuning
coefficient 0.01 was found that gave appropriateetidynamics) to the difference
term (C,,, — C,..*) -

d
V== F (G, = G~ K(Gu Gu) V=0

- F (G~ Guw - F(Go ~ Guw)
V(G = Gou”™ Vig

(4-36)

Using this procedure the K values are between 8006-1/s for the studied process.
Wilkinson and Ingham (1983) suggested giving antraty high value for thek-V
term. The modelling approach in Ingham et. al. @)99 slightly different; they use a
constant mass transfer coefficiéht 25 1/s.

4.3.2 Estimation of the mixer and settler phase volumes

The mixing model includes the mixer volumé;,, and the settling model settler
volume, Vs, both for the aqueous and organic phases. Siece #te no measurements
of the volumetric ratio between the organic anddfhaeous phases in the mixer and
the settler, the ratio is assumed to follow theomimg flow ratio to the mixer, as
suggested by Ingham et al. (1994, p 186). ConsidetthatV represents the total
volume of the equipment, the volume of the orgaiase can be represented as:

=

Vo9 =y (4-37)
FOI’g + Faq
and the volume of the aqueous phase as:
aq
VRV -
FOI’g + F aq

4.3.3 Estimation of the time delay for the plug flow model

The plug flow model describing the settler has paeameter, a time delay The
organic mean residence time (delay) is the totgkwic volume divided by the
organic flow rate, which simplifies into the totablume divided by the total flow
rate:
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F org
g VO
po 2V e aEn Ve (4-39)
F org F org F org + F aq

and the aqueous mean residence time (delay) imthleaqueous volume divided by
the aqueous flow rate, simplifying into the sammrfas the organic time delay:

o
w VO
td =V I — F9 +F& — Vs (4-40)
Faq Faq F0f9+|:aq

Thus, the time delay for the aqueous phase andiergaase in the settler are equal.
The result is justified by the operating practidetlee case industrial copper solvent
plant: The flow rates organic and aqueous phasdbkersettler are maintained on
equally levels in order to minimize problems on tinganic/aqueous interphase layer
such as entrainment and thickening of the emulsiger.
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5 DESCRIPTION AND THE PRELIMINARY ANALYSIS
OF THE INDUSTRIAL CASE PROCESS

The industrial case process is described and apnary analysis of the process is
performed in this chapter. The industrial case @secand a preliminary analysis of
the control structure are presented in Section&data filtering method is developed
for the case process data in Section 5.2.1. Pratesscterization is performed with
the case process data in Section 5.2: The typpadating points are determined using
a clustering technique, and the maximum variataftfie controlled, disturbance and
manipulated variables are calculated.

5.1 Description of the industrial case copper solvénextraction
process

The studied solvent extraction process consistwf unit processes, one parallel
(E1P) and two series (E1S, E2S) mixer-settler uinitsextracting copper from the
agueous phase into the organic phase, and one-gaiéar unit (S1H) for stripping

copper from the organic solution into the electi®lgolution, as illustrated in Figure
5-1. Between the third extraction unit (E2S) and $ftripping unit (S1H) there is a
washing mixer-settler unit and an organic storage,t marked as ‘Tank’ in Figure
5-1. In the washing unit, the organic solutiongsubbed with water to remove most
of the iron. The copper concentration of the orgasolution does not change
significantly in the washing unit.

The inputs of the process are the pregnant ledctiso (PLS) flow rate and copper
concentration, the lean electrolyte flow rate an@per concentration, and the flow
rate of the organic solution. The organic solutismecycled in the process, but the
flow rate can be manipulated through the orgarucagge tank.

The outputs of the process are the raffinate agdroc copper concentrations from
the extraction units, and the rich electrolyte @aden organic copper concentrations
from the stripping unit. The measured state vaesiare the partial organic copper
concentration, ¢(BO1) and c¢(BO2), and the parti&lS Pcopper concentration,
c(PLS1), together with all the output copper coricgions.
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Figure 5-1: The copper solvent extraction processThe output variables are the copper
concentrations of the raffinates c(RaffP) and c(Rd§), rich electrolyte, c(RE), and the copper
concentrations of the recycled organic stream, baen organic, c(BO) and loaded organic c(LO).
The input variables are the flow rates of PLS, F(PBS) and F(PLSP), organic, F(LO), and lean
electrolyte, F(LE), and the copper concentration oPLS, ¢(PLS) and lean electrolyte, c(LE).

The online measurements consist of two organic &md aqueous copper
concentrations and four flow rates. The offline sweaments include pH of the PLS
solution (pH), acidity of the electrolyte soluti¢excid), the reagent volume per cent in
the organic solvent (vol) (for description of tleagent, see Section 2.3.3). The offline
measurements also include four organic and fivee@igs copper concentrations. The
measurements with information about the measuretgpat(online/offline) are listed
in Table 5-1.

In the copper solvent extraction and electrowinnpignt there are no advanced
control systems. The process operators changdaivadtes in the solvent extraction

process and current amperages in the electrowirprimgess in order to keep the lean
electrolyte copper concentration within the targatue. The lean electrolyte copper
concentration target value is set in order to maenthe production of copper

cathodes by the plant management. The control tatei@nd strategy are further
discussed in Chapter 9.

A preliminary classification of the controlled, mamlated and disturbance variables
of the copper solvent extraction plant was perfarroge the basis of the operational
and process knowledge. The possible controlledakibes are the outputs of the
extraction and stripping processes; rich electeolgbncentration, c(RE), raffinate
concentrations c(RaffS) and c(RaffP), and orgaoiacentrations c¢(LO) and c(BO).
The manipulated variables are the four flow ratiethe leach, organic and electrolyte
solutions. The measured disturbance variablestardeach and electrolyte solution
concentrations. This classification is presente@iahle 5-1.
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Table 5-1: Controlled, manipulated, disturbance andstate variables of the industrial copper
solvent extraction process. The measurement typenlne/offline, is indicated on fourth and fifth
column, with an indication of the online and offlire measurements.

Classification Variable name Abbreviation| Online| Offline
Controlled Rich  electrolyte  copperc(RE) X X
variables concentration
Loaded organic copperc(LO) X X
concentration
Raffinate = series  copperc(RaffS) X X
concentration
Raffinate parallel copperc(RaffP) X X
concentration
Barren organic copperc(BO) X X
concentration
Manipulated PLS series flow rate F(PLSS) X
variables
PLS parallel flow rate F(PLSP) X
Organic flow rate F(LO) X
Electrolyte flow rate F(LE) X
Disturbance PLS copper concentration c(PLS) X X
variables
Lean electrolyte  copperc(LE) X X
concentration
Reagent volume percent [ivol X
organic solution
pH level of the PLS solution PH X
Acidity of electrolyte solution| Acid X
State variables Partial PLS coppax(PLS1) X
concentration
Partial organic copperc(BO1) X
concentration after E1P step
Partial organic copperc(BO2) X

concentration after E1S step

5.2 Preliminary analysis of the case copper solvenéxtraction

process

The aim of this preliminary analysis is to develpmata filtering method, and to
define the typical operating points and the maximuariations of the process

variables for the further modeling and control &sd The analysis is performed on
the basis of the two online and offline industdata sets. The data filtering method is

described in Section 5.2.1, the typical operatingnis are determined in Section
5.2.2, and the maximum variation of the processab#s is analyzed in Section

5.2.3.
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5.2.1 Data preprocessing

Filtering of the industrial data is necessary doarteasurement noise and outliers
(Ray, 1989, p.28-30). In the copper solvent exiactprocess, because all the
measurements contained frequent outliers and mdstthe online copper
concentrations differed from those given by rekaldbboratory analysis, bias
correction for the online copper concentrations yuasified. The filtering method is
described in detail in Section 5.2.1.1, and the b@rection in Section 5.2.1.2.

5.2.1.1 Noise filtering for the online measurements

The clear outliers, i.e. those over or under theimim limit of each variable, were
first removed. A zero-phase digital filtering methwas then applied: because the
dynamic model structure is of the first order, otilg main trends in the process data
were of interest for comparison to the simulatethd@he Matlab filtfilt —algorithm
(The MathWorks, 2006), which applies first orddtefing to forward and backward
directions of the data vector (Matlab Help man@afanidis, 1990), was used.

Averaging periods from 3 to 30 sample times westetd and compared on the basis
of the sum of squared errors (SSE) index and viexamination. The average sum of
squared errorsaSSE between the measuremegtsand the filtered measuremennts
is defined as follows:

N

aSSE=%Z( vim Y

i=1

(5-1)

The average sum of squared errors for the onliressarements are presented in Table
5-2. The averages of the squared error sums ahethigr the variables with higher
values. The squared errors between the measurenaaatsfiltered signals are
considerable for all the variables with all thedliing periods. This suggests that there
is significant measurement noise, and filterinthexefore necessary.

Table 5-2: Average sum of squared errors for the dme measurements with different averaging
periods (3, 6, 12, 18, 24 and 30 sampling times).

period 3 6 12 18 24 30
c(PLS) 0.1606 0.1609 0.1612 0.1614 0.1615 0.1617
c(RaffS) | 0.0065 0.0065 0.0066 0.0066 0.0067 0.0067
c(RaffP) | 0.0010 0.0011 0.0011 0.0011 0.0011 0.0011
c(LE) 20.2950 | 20.2985 | 20.3151] 20.3113 20.298 8228
c(RE) 35.8249 | 35.8738| 35.93200 35.9615  35.986 86.00
c(LO) 2.6428 2.6464 2.6477 2.6505 2.6553 2.660¢
c(BO) 0.2534 0.2535 0.2536 0.2538 0.2539 0.2540
F(PLSS) | 0.5618 0.5665 0.5716 0.5744 0.5774 0.580b
F(PLSP) | 0.5110 0.5225 0.5304 0.5347 0.5381 0.541p
F(LE) 0.1329 0.1396 0.1537 0.1648 0.1739 0.1823
F(LO) 0.3092 0.3117 0.3160 0.3198 0.3237 0.3276

For the PLS copper concentration an averaging gperid sample times or less gave
relatively noisy signals, whereas the period ofsa@ple times removed too much
variation from the data for modeling purposes. Areraging period of 12 sample
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times produced low residuals (aSSE 0,16), and Visxamination of the data

confirmed that the filtered signal followed smogtithe raw data. As can be seen
from Figure 5-2 for the PLS copper concentratitrve ¢lynamic changes in the data
are still present and the noise has been removed. PIIS copper concentration
residuals are approximately white noise, as caseba from Figure 5-3.

Original and filtered data
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Figure 5-2: The original data with the outliers (ddted, red) and filtered data (solid, black)
measurements of the PLS copper concentration.

Residual between original and filtered data
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Figure 5-3: Residuals between the original measuresnt data with the outliers and filtered
measurements of the PLS copper concentration.

5.2.1.2 Bias correction for the online copper concergtion
measurements

Due to severe bias between the online and thenefftopper concentrations, it was
necessary to apply bias correction. Recursive egeession with an external output
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algorithm was chosen for the bias correction. Tigerdhm with a forgetting factor of
0.95 was used to estimate the bias coeffididmttween the onling(t) and offlineu(t)
measurements with the recursive least squares thedbdollows:

y(t) = bLu(t) + &9 (5-2)

, Wheree(t) is the residual term.

The averages of the online concentration measursneerd the laboratory assays
were used for the calculations. The inverse of dbgection coefficient (1/b) was
applied to correct the online copper concentratoeasurements. The method
successfully corrected the level difference betwede online and offline
measurements. For example, the bias coefficienthef PLS copper concentration
measurements was around 1.05. For the noise-tilt@ne bias-corrected PLS copper
concentration measurement (ff+bias), the coppeceaatnation level corresponds to
the laboratory measurements (laboratory) and thén mr@nds of the original
measurement data (original) are more clear, astifited in Figure 5-4.

Otiginal and bias corrected data
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Figure 5-4: The original PLS online concentration neasurement (dotted, red), bias corrected
concentration measurements (solid, black) and theboratory measurements (dashed, blue).

5.2.2 Operating points of the case process

The aim was to find the typical operating pointsnirthe industrial plant data. The
studied variable set included offline measuremeasitshe PLS, raffinate, barren
organic, loaded organic, rich electrolyte and letectrolyte copper concentrations,
and the averages of the online measurements d?ltBeparallel and series, organic
and electrolyte flow rates.

The operational data were clustered with the Malateans algorithm using the

squared Euclidean distance measure. The numbdéusiérs was chosen according to
the distance sums and the cluster means illustaatéte process data. The number of
clusters should be as small as possible, whilengeaismall distance sum between the
data points and the cluster centres, and givingaal gepresentation of the whole data
set. Silhouette plots are used to illustrate how-separated the resulting clusters are.
The silhouette plot displays a measure of how ckeeh point in one cluster is to
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points in the neighbouring clusters. Points that\ary distant from the neighbouring
clusters have the value 1. If a point is not esglgcclose to any of the clusters, the
silhouette value is —1.

On the basis of the distance sums and cluster n@atied into the process data, the
cases with 3,6 and 9 were examined in more ddtad.corresponding silhouettes are
illustrated in Figure 5-5, Figure 5-6 and Figur&’.5The case with three clusters
separates one extreme point and clusters the festeodata points into two well
separated large clusters. The case with six chisgteparates two extreme points,
while clustering the rest of the points into themealler groups and one well separated
large group. The case with nine clusters sepathteg extreme points, one large
group and five smaller groups, two of which arewetl separated.

Cluster

1 ] 1
0z 04 0E 08 1
Silhouette Yalue

o

Figure 5-5: Silhouette of three clusters.

Cluster

0 02 0.4 0. 08 1
Silhouette Yalue

Figure 5-6: Silhouette of six clusters.
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Figure 5-7: Silhouette of nine clusters

The cluster centers were illustrated by plottingnthinto the process data, as shown in
Figure 5-8 for the six-cluster case. Three clustgese not enough to cover the
different operating points, whereas with 9 clust®me of the cluster centres were
almost the same. With six clusters the four noramal two of the extreme operating
points were covered well, as illustrated in Fig6r8 and Figure 5-9. The distances
between the closest data points and the mathereltister centres were small. Only
the two normal operating points from the start afredata set (first and fourth circle
in both Figure 5-8 and Figure 5-9 were considepgdurther study. In the following,
these two operating points are called the firstrajpeg point (DP1) and the second
operating point (DP4).
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Flow rates
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Figure 5-8: The flow rates of the PLS parallel, PLSseries, lean electrolyte and loaded organic.
The data points closest to the cluster centres amdrcled. The first and fourth circles (around
samples 2 and 46) are operating points DP1 and DR#osen for further study.
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Figure 5-9: Copper concentrations of the PLS, barre organic, loaded organic, lean electrolyte
and rich electrolyte. The data points closest to #hcluster centres are circled. The first and fourth
circles (around samples 2 and 46) are operating pts DP1 and DP4 chosen for further study.
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5.2.3 Analysis of the process variation

The online process data were studied in order terohne the maximum and normal
variation in the controlled, manipulated and disturce variables. The studied data
set included filtered online measurements of th& Rbaded organic, rich electrolyte
and lean electrolyte copper concentrations, andPife parallel and series, organic
and electrolyte flow rates. The data filtering nuethis described in Section 5.2.1. .
The variation was determined as the average ofatteolute errors between the
filtered online measurement datand the moving daily average, as follows:

o _1 n - :} n _ 1 i+p ]
Varlatlon—nDi;h{ | nDiZ:;,Y 2p+1j;p Y‘ (5-3)

wherey is the filtered online measurement at timer(ils the number of data points in
one week, ang is the number of data points in one day. The tianandex is scaled
by dividing it with the nominal value of the variab

The data set included 18 weeks of operational entieasurements of the controlled,
manipulated and disturbance variables. The vanatiomm the possible controlled
variables (CV), manipulated variables (MV) and waibaince variables (DV) are
presented in Table 5-3.

Table 5-3: Variations of the online measured contited (CV), manipulated (MV) and
disturbance (DV) variables.

CV_|cv [cv cV cV_ MV MV MV MV PV bV
c(RE) | c(LO) | c(RaffS) | c(RaffP)| c(BO)| F(PLSS) F(PLSPJ F(LE) | F(LO) | c(PLS) | c(LE)
% % % % % % % % % % %
W1 | 1.30 | 3.20 | 15.30 | 1031 | 2.92] 1.99 3.04 125 1.47 302 | 1.58
W2 | 0.79 | 056 | 1.87 3.54 0.75| 1.35 1.14 1.87 110 20.9 1.00
W3 | 084 | 1.53 | 7.64 3.30 0.69] 1.06 0.95 1.1p 065 735 1.16
W4 | 129 | 1.80 | 9.33 6.18 241 267 2.68 220 131 126 152
W5 | 097 | 2.45 | 9.03 6.54 3.03] 0.90 1.22 247 095 723 1.18
W6 | 1.10 | 2.84 | 8.99 9.25 2.72] 050 0.49 061 100 80.7 1.47
W7 | 088 | 1.98 | 6.36 5.15 1.96] 0.83 0.43 038 084 708 0.95
W8 | 082 | 1.45 | 1147 | 9.23 2.62] 031 0.20 181 0.85 890.| 0.96
W9 | 093 | 1.44 | 821 9.62 1.78] 0.11 0.17 270 0.75 708 1.47
W10 | 0.86 | 1.18 | 6.54 7.55 2.06] 1.06 0.36 228 096 950.| 1.13
Wil | 1.35 | 3.00 | 8.15 7.33 2.01] 059 0.34 2.80 0.75 840.| 1.71
W12 | 1.19 | 2.35 | 1012 | 1262 | 222 2.69 0.65 341 1521.37 | 1.71
W13 | 1.18 | 0.70 | 6.62 7.47 1.68] 1.50 0.25 2.6 1.05 391.| 1.81
W14 | 084 | 1.62 | 5091 5.47 2.49]  0.54 0.42 211 093 041.| 1.01
W15 | 2.44 | 1.30 | 13.02 | 9.48 1.93 1.64 1.54 2.73 110 .131 | 3.09
W16 | 1.51 | 0.96 | 9.32 7.82 2.62] 067 1.71 1.38 1.10 930.| 2.29
W17 | 159 | 1.22 | 17.06 | 10.47 | 258 155 2.38 2.63 1.05.78 | 2.64
W18 | 1.42 | 0.93 | 7.69 6.75 2.48]  0.50 0.41 2.94 045 670.| 2.27
Min | 0,79 | 056 | 1,87 3,30 0,69| 0,11 0,17 038 0,45 670, | 0,95
Max | 2,44 | 3,20 | 17,06 | 12,62 | 3,03 2,69 3,04 311 1,47357 | 3,09
Mean| 1,18 | 1,70 | 9,04 7,67 2,16] 1,14 1,02 2,06 1,041,401 | 1,61

The maximum variation in the rich electrolyte, cjRbaded organic, c(LO) and
barren organic c(BO) copper concentrations was éatv2,5 — 3,2 %. The variations
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in the raffinate copper concentrations, c(RaffSJ afRaffP), are significantly higher
(between 12 — 17%) than for the other controlledatdes. The average variation in
the raffinate copper concentrations is 7,7 — 9@¥¢h is very large compared to that
for the other variables. This might imply that theffinate copper concentration
measurements are less accurate than the otherrcoppeentration measurements,
and thus should not be used as controlled variabléege further studies.

The maximum variations for the manipulated variab{®V), the PLS series and
parallel, organic and electrolyte flow rates, wameund 2,8 — 3,1%. The largest
average variation was in the electrolyte flow r&@&E) and the smallest average
variations in the organic flow rate F(LO) and PL&ailel flow rate F(PLSP). The
disturbance variables (DV), PLS and lean electeolgbpper concentrations, had
maximum variations of between 3,1 — 3,6%. On theraye the variations were
between 1,4 — 1,6%.

The following suggestions for the modeling and ocoingtudies are formulated on the
basis of this analysis; the maximum realistic clesndgor the controlled and

disturbance variables are less than +5% aroundchiosen operating point. The
maximum changes in the manipulated variables a®tlgan £3% around the chosen
operating point. This study also suggests thatr#inate copper concentrations
should not be used as controlled variables, simedarge variations in these variables
might indicate serious measurement inaccuracy.a¥an starting from 0,5 % in the

rich electrolyte copper concentration is significéor the production of the copper

cathodes.

5.2.4 Remarks on the quality of the process data

Based on the preliminary analysis of the availaiiéne and offline data from the
case industrial copper solvent extraction plarg, rdmarks are given on the process
data quality.

Most of the online copper concentration measuresmeand the flow rate

measurements have some noise, but after the diatanfy, these measurements can
be considered to be reliable. The online raffinared loaded organic copper
concentration measurements have high noise levél ainsome periods possible
measurement inaccuracies. Therefore, the intetpretaf these three variables
should be done carefully.

The offline measurements of the intermediate coppecentrations, pH, acidity and
reagent volume percent are considered to be relidltie problem with pH, acidity
and reagent volume percent measurements is theskongling interval.

The internal recycle flow rates in the mixer-setilmits are adjusted with manual
valves, and thus these are not measured on thé plaarefore in this study, these
recycle flow rates have to be approximated.
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6 MODELS AND THE DYNAMIC SIMULATOR FOR
THE INDUSTRIAL CASE PROCESS

The steady state and dynamic models are presemgdthe dynamic simulator
described in this Chapter.

The steady state and dynamic models, presentedhaptér 4, , are modified to
conform with the flowsheet of the industrial casegess described in Section 6.1 and
Section 6.2 respectively. The dynamic process sitoul based on these modified
models, is described in detail in Section 6.3.

The process is illustrated in Figure 5-1 and thailalle process measurements are
listed in Table 5-1.

6.1 The equilibrium state models of the case process

The steady state copper concentrations in eachr+aetder can be expressed as a
function of the incoming copper concentratiows),( the flow rates K), the stage
efficiencies @), and the equilibrium isotherm parametessh;,C,D). For simplicity,
the extraction equilibrium isotherm is linearizegan to the operating points,
represented by three aqueous copper concentratfinscii, cz;. Equations are

determined for the three extraction steps EP, lakd the stripping step S. The
equations are derived from those for a plant wite extraction unit and one stripping
unit presented in Chapter 4 in Section 4.2. Notd the full nonlinear equilibrium
isotherm is used for the simulations in Chapter 7.

For the parallel extraction unit, EP, the agueond arganic equilibrium copper
concentrations are:

o(RaffP = ¢ F,Ls{(l—aEP)AEPF(LO)+ F(PLSF)}+ ¢B e R LQ PH g B R LO }

A..F(LO)+ F(PLSH ‘A, R LO+ E PLS A FL> F PLS
(6-1)

o(BOY) = ((PLS{A Ocp Acn F(PLSP }L ¢ BQ{AP R LO+(-aw) R PLSP}{A a.. B E PLYP ;L
A F(LO) + F(PLSR A R LO+ K PLSP A F L F PLS
(6-2)

For the first series extraction unit, E1, the agiseand organic equilibrium copper
concentrations are:

(1—aE2)/1E2F(LO)+F(F’Lsﬂ+ ¢ Bg{ ag, R LO H a, B KL l
B

A,F(LO)+ F(PLSS ‘A ELO+ E PLS A(FL® (FPL
(6-3)

c(Raffg = ¢ PLS{
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¢(BO2) = o PLY)| —

0 AF(PLSS | (o & R LO+(-ae,) RPLSS | ac, B ( PLSS
A.,F(LO)+ F(PLSS

A FLO+ FPLSS A (F DO (F PLS
(6-4)

For the second series extraction unit, E2, the @guand organic equilibrium copper
concentrations are:

(1_aE1)AE1F(LO)+ F(PLS9 g R LO aEléi F(LO)
— + € BQ)| — - =—=
[ A,F(LO)+ F(PLSS] [ A FLO+ EPLSS| |[ LA(FDO (FPLS
(6-5)

c(PLSl) = PLS{

G AF(PLS |, (gl A RLO+(-ag) RPLSS | au 8 F PLPS
A FLO+ FPLSS AF DO (FPLB
(6-6)

(Lo =d PLSL&EF(LOH F(PLSS

For the stripping unit, S, the aqueous and orgaqiglibrium copper concentrations
are:

(L-as)CF(LO) + F(LE)| ¢ Lol % F(LO | [ asDF(LO
CF(LO)+ F(LE) CRLO+ RLB| | CRLO+ R LB
(6-7)

¢(RB) = ¢ LB[

aCF(LE) ], ¢ o CRLO+U-a0)F(LB],[__asDR(LY
CF(LO)+ F(LE) CHLO+ H LB CK LO+ K LE
(6-8)

c(BO) = C(LE){

Calculation of all the copper concentrations in steady state requires iteration due
to organic solvent recycle between the extractimh stripping units [c(BO) - ¢(BO1)

- ¢c(BO2) - c(LO) - c(BO)], and the aqueous recymdween series extraction units E1
and E2 [c(PLS) — c(PLS1) - c(RaffS)]. The steadgtestequilibrium copper
concentrations of the solvent extraction plant barevaluated using this set of eight
equations.

6.2 The dynamic models of the case process

In the extraction process, copper is transferrethfthe agueous to the organic phase.
Each of the three extraction unit operations areetied by differential equations of
the concentrations for both the organisY? (t)/ dt) and aqueous phasesgt(t)/ dt).

The equations are derived from those for a plath whe extraction unit and one
stripping unit presented in Chapter 4 in Sectich 4.
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For the parallel extraction unit, EP, the aqueaod arganic copper concentrations
after the mixer are determined as follows:

d org(t) — F10rg(t) org org org or

th VoD D™ (t=to) =& () |+ Ky (9 - ¢ (9] (6-9)
d aq(t) — F1aq(t) aq aq org or

th V(D () - e() - K[ g™(9 - ¢ (9] (6-10)

where the equilibrium value is calculated from #wguilibrium state model with the
following variables:

o (1) = 9§ (t- 1), €(9, (), F*(9.a . A B (6-11)

For the first series extraction unit, E1, the aqeand organic copper concentration
after the mixer are determined as follows:

de®(9) _ ()
dt Vmix,z(t)

ferot-t) - () ]+ K[ ()~ S (D] (6-12)

de() _ F(Y
dt Vmix,z(t)

D) - () |- K[ ()~ ¢ (D] (6-13)

where the equilibrium value is calculated from #wguilibrium state model with the
following variables:

¢ (0= 9 ¢ (t- V. &, B0, B0, A B (614

For the second series extraction unit, E2, the aegieand organic copper
concentration after the mixer are determined devid:

de®(t) _ R™()
dt Vmix,S(t)

fezo-t) -]+ K[ (0 - &7 ()] &15)

de() _ Ry
dt Vmix,S(t)

Hes(t) — c3%() | = Ko ()= (9] (6-16)

where the equilibrium value is calculated from #wguilibrium state model with the
following variables:

g (1) = (G (t-t,), &9, F(), F(9.a ,, A B (6-17)

The parallel raffinate copper concentration, c(Rgftifter the EP settler is the time
delayed value of the aqueous copper concentration the EP mixer.
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c(RaffA() = ¢*(t= 1) (6-18)

The series raffinate copper concentration, c(Rafffgr the E1 settler is the time
delayed value of the aqueous copper concentratoon the E1 mixer.

c(Raffg( )= ¢'( t+ §) (6-19)

The loaded organic copper concentration, c(LO),raie E2 settler is the time
delayed value of the organic concentration fromEBamixer.

c(LO)(1) = ¢ (t-t,) (6-20)

In the stripping unit, copper is transferred frdme brganic to the electrolyte solution.
The stripping unit operation is modelled using d#fgial equations of the

concentrations for both the electrolytéct®(t)/dt) and organic ¢c”(t)/dt) phases
as follows:

d el(t) — F1€I(t) el el el ek

Cat V0 fes' @ -¢'() |+ K[ ')~ ¢ (9] (6-21)
dczrg(t) — F40rg(t) org org el ef

V(D Pege(t-t) - () |- K,[ ()~ &' (D] (6-22)

where the equilibrium copper concentration is dalad from the equilibrium state
model with the following variables:

¢ () =h( g (t- 1), (D, F"(9, F(9.e ,,C. D (6-23)

The rich electrolyte concentration (c(RE)) is thedidelayed value of the electrolyte
concentration, and the barren organic concentrgti(B0)) is the time delayed value
of the organic concentration in the stripping unit.

c(RE(D=¢'(t-1) (6-24)

c(BO(D) = g°(t-t) (6-25)

The organic tank and wash stage between the exinaemd stripping stages are
modeled as a lumped time delay.

6.3 Dynamic simulator for the industrial case proces

The aim of the simulator is to facilitate studies the dynamic behaviour of the
solvent extraction process, and to provide a tesich for the control system. The
simulation model describes the real time behavmfua continuous copper solvent
extraction process, and considers only the massfewraof copper.
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6.3.1 Overall structure of the simulator

The dynamic simulator of the process was constructethe basis of the dynamic
models described earlier in this chapter. The ymétration models were implemented
in the Matlab Simulink environment according to thilant flowsheet, as shown in
Figure 6-1. The model of the extraction process istm®f three mixer-settler unit
models, one in parallel (E1P) and two in series (BAG E2S). The stripping process
model consists of one mixer-settler unit model (FIHhe organic storage tank model
(Tank) is located between the extraction and stnigppirocesses.

v .............................
C(PLS), F(PLSP) .................... ’ E)](-IFI’)aCtlon
’ > c(RaffP), F(RaffP)
c(BO1)
F(BO1)
A 4
Extraction
> E1S
c(PLS1)
F(PLS1) : » c(RaffS), F(RaffS)
c(BO2)
F(BO2)
v
C(PLS), F(PLSS) .......... ’ E)z(tsracnon
c(LO)
F(BO3)
Wash&Tank
[=T(0) [ — c(LO)
A\ A 4
Strippin
C(LE), F(LE) e > Sll—ﬁ)p g o(80)
. F(BO)
» c(RE), F(RE)

Figure 6-1: Simulation model of the copper solvenéextraction process. The parallel extraction
unit is marked with E1P, the first series extractiom unit with E1S, and the second extraction unit
with E2S. The stripping unit is marked with S1H andthe organic storage tank with ‘Tank’. The
input variables (left) are the copper concentratios ¢c(PLS) and c¢(LE) and the flow rates F(PLSP),
F(PLSS), F(LO), F(LE). The state variables are thentermediate copper concentrationsc(BO),
c(BO1), ¢(BO2), c(LO), c(PLS1) marked with italics. The output variables (right) are the copper
concentrations ¢(RE), c(RaffS) and c(RaffP).

The inputs of the simulator are the copper concBaibs of the leach and electrolyte
solutions, ¢(PLS) and c(LE), and the flow ratestloé parallel and series leach
solutions, the organic solution and the electroggkition, F(PLSP), F(PLSS), F(LO),
F(LE). The intermediate copper concentrations arep#rgal leach solution c(PLS1)
from the second extraction step, the barren orgaoiecentration c(BO) from

stripping, the first partial organic concentratiofiBO1) from the parallel extraction
step, second partial c¢(BO2) organic concentratiomffirst series extraction step, and
the loaded organic concentration ¢c(LO) from theomecseries extraction step. The
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loaded organic copper concentration is then lethéotank model, which is a pure
time delay, and then to the stripping stage. Theuwutopper concentrations from the
model are the raffinate parallel and series comagahs, c(RaffP) and c(RaffS), and
the rich electrolyte concentration c(RE). The inpatiables, state variables, output
variables, parameters and constants of the siroalatiodel are listed in Table 6-1.

Table 6-1: Input variables, state variables, outputvariables, parameters and coefficients of the
simulation model.

Classification | Variable name Abbreviation

Input variables | PLS Cu concentration c(PLS)
Lean electrolyte Cu concentration c(LE)
PLS parallel flow rate F(PLSP)
PLS series flow rate F(PLSS)
Organic flow rate F(LO)
Electrolyte flow rate F(LE)

State variables | Partial PLS copper concentration PLS8()

First partial organic copper concentration c(BO1)

Second patrtial organic copper concentration c¢(BO2)

Loaded organic Cu concentration c(LO)
Barren organic Cu concentration c(BO)
Output variables Rich electrolyte Cu concentration (RE)
Raffinate series Cu concentration c(RaffS)
Raffinate parallel Cu concentration c(RaffP)
Parameters Mass transfer param. K1, Ko, K3, K4
Efficiencies 01, 02, 03, 04
Recycle correction param. cfy, ch,chs, cfy
Extraction isotherm param. AB
Stripping isotherm param. C,D
Constants Mixer volume Vi
Settler volume Vs
Extraction time delay t(extr)
Stripping time delay t(strip)

6.3.2 Overall structure of the unit process simulation model

The extraction and stripping units are modeled asmbination of mixing and plug
flow models, as shown in Figure 6-2. The inputs He tnixer are the incoming
aqueous and organic flow rates,,? and Fi,*9, and the incoming aqueous and
organic copper concentrations,’® and ¢i,”"%. These inputs and the parameters are
first led to the mixer model, where the mass tranef copper between the phases is
calculated. The resulting mixer output copper cotreéions, Cour: * and Coum 2, are
then led to the aqueous and organic settler motielthe settler model the mixer
output copper concentrations and the flow rateslal@yed. The outputs of the mixer-
settler unit model are the aqueous and organic ezoppncentrationsgos and
Couts © , and the flow rate§ous? andFous . The tank model is a pure time delay
(Equation 7-5).
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Figure 6-2: Overall structure of the mixer-settlermodel.

6.3.3 Detailed structure of the unit process simulation model

The structure of the mixer-settler model is illustchin more detail in Figure 6-3 with
the equations for the stripping unit. The calculai®based on the dynamic models of
the plant presented in Chapter 6.2. The parametersaiculated from the offline data
according to the equations presented in Chapt2ranti Chapter 4.3.

In the mixer model the incoming online copper coniions, &, and online flow
rates,Fi,, are first led to the aqueous to organic raticQ)Adynamics filter (1/(as+1)),
which describes the slowness of the phase ratimgehan the mixer. Next, the
equilibrium copper concentratioef? is calculated according to Equation 6-7. The
calculation of the equilibrium copper concentrati@guires measurements of the
copper concentratiorg,m, and flow rateFi,m together with the parameters of the
equilibrium isotherm €,D Equation 4-22), the efficiency: (Equation 4-23) and the
recycle corrected organic to aqueous ratioEguation 4-25). Since the equilibrium
value does not change immediately, the equilibruatue is filtered with (1/(bs+1)).
The filtering enhances the numerical convergencehef integration of the mass
transfer equations. The mass transfer in the strgppnit between the organic and the
agueous phases is calculated according to Equat@h &d Equation 6-22. The
inputs and parameters for this calculation arectiygper concentrations,n, and flow
rates Finm, the equilibrium copper concentratiai®, the mixer volumes for the
organic and aqueous phas¥s;{" Equation 4-37 an¥,c? Equation 4-38), and the
mass transfer coefficienk (Equation 4-36).

The settler model is a pure time lag for the orgamd aqueous phases. The organic
copper concentratiotym ° and flow rateFi,,,>® from the mixer model are delayed
according to Equation 6-25, where the time delaycafulated on the basis of
Equation 4-37. The aqueous copper concentraigsf® and flow rateFin,, * from the
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mixer model are delayed according to Equation 6s2here the time delay is
calculated on the basis of Equation 4-38.

Aq. flow in Org. flow in
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FinacI Finorg
\ 4
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1
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Eq. isotherm A,B,C,D P )
Efficiencya c¥ < Cfe Fipp?  [@===-[===mmmmmopommomo s correction cf
- . org -
Eq. 4-22, Eq. 4-23 Eq-(;" 10) Finm Eq. 4-25
Equilibrium dynamics
1
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exp(-P%s) exp(-8%)
Eq. 6-25, Eq. 4-39 Eq. 6-24, Eq. 4-40
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Figure 6-3: Detailed structure of the mixer-settlermodel with equations for the stripping unit.
The input variables and parameters are marked withdashed rectangles. Calculations are
marked with solid rectangles.

The inputs and outputs of each mixer-settler unitlehare listed in Table 6-2, and
the equations of the parameter estimation andyhardic calculations in Table 6-3.

Table 6-2: The inputs and outputs of each mixer-stér unit model.

Classification| Variablg E1P E1S E2S S1H

Inputs ¢ c(PLS) (1) c(PLS1) () c(PLS) (1) c(LE) (1)
¢ c(BO) (1) c(BO1) (1) c(BO2) (t) c(LO) (t)
F29 F(PLSP) (1) F(PLSS) (t3} F(PLSS) (1) F(LE) (t)
For F(LO) (t-t) | F(LO) (t-ts-ty) F(LO) (tu-ti-t) | F(LO) (B

Outputs ¢ C(RaffP) C(RaffS) C(PLS1) C(RE)
¢ C(BO1) C(BO2) C(LO) C(BO)
F24 F(PLSP) (t-1) | F(PLSS) (t-4t,) | F(PLSS) (t-) F(LE) (t-t,)
F°r F(LO) (t-t-ty) | F(LO) (tte-ti-t) | F(LO) (t-ti-to-ts) | F(LO) (t-b)
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Table 6-3: The equations of the parameter estimatio and dynamic calculation of each mixer-

settler unit model.

Classification Equation name E1P E1S E2S S1H
Parameters Equilibrium  isotherm| Eq. 7-2 Eq. 7-2 Eq. 7-2 Eq. 7-
Estimations A.B, C,D 4
Efficiencya Eq. 4-23 Eq. 4-23 Eq. 4-23 Eq. 4-
23
Recycle correctionf Eq. 4-25 Eq. 4-25 Eq. 4-25 Eq. 4-
25
Mass transfer coeK Eq. 4-36 Eq. 4-36 Eq. 4-36 Eq. 4-
36
Mixing volume agq.| Eqg. 4-38 Eq. 4-38 Eq. 4-38 Eq. #-
Vmi><aq 38
Mixing volume org.| Eq. 4-37 Eq. 4-37 Eq. 4-37 Eq. #-
Vi 9 37
Settler delay ag™ Eq. 4-40 Eg. 4-40 Eg. 4-40 Eq. 4-
40
Settler delay org™™ Eq. 4-39 Eg. 4-39 Eg. 4-39 Eq. #-
39
Dynamic Equilibrium calculation| Eq. 4-3 & Eq. 4-3 &| Eq. 4-3 &| Eq. 4-
Calculations Eq. 4-4 Eq. 4-4 Eq. 4-4 10
Mass transfer aq. Eg. 6-10 Eqg. 6-13 Eqg. 6-16 Eq| 6
21
Mass transfer org. Eqg. 6-9 Eg. 6-12 Eg. 6-15 Eeq.| 6
22
Settler aq. Eq. 6-18 Eg. 6-19 Eg. 6-19 Eq.| 6-
24
Settler org. Eq. 6-20 Eq. 6-20 Eq. 6-20 Eq. | 6-

25
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7 SIMULATION RESULTS OF THE COPPER
SOLVENT EXTRACTION MODEL

The aim of this chapter is to verify the dynamic misdoy comparing the simulated
data to the industrial data. The input data aregmtesl in Section 7.1. The parameters
are estimated for the equilibrium state models dyaamic models in Section 7.2.
The simulation results are presented for two indalstiata sets in Section 7.3.

7.1 Input data for the simulation study

The input data for the simulation studies include tlata sets. The online inputs
consist of PLS and lean electrolyte copper conatintrs, and flow rates for the two
PLS streams, organic solution and electrolyte smiutThe offline inputs for the
parameter estimations include measurements oftthef phe PLS solution, acidity of
the electrolyte solution, reagent volume of theaoig solution, and six aqueous and
four organic intermediate copper concentrations I@alb-1). The online
measurements of the copper concentrations andrétes, together with extrapolated
offline measurements of the pH, acidity and reagehime per cent in the organic
solution, are illustrated in the following.

The online copper concentrations, extrapolatedra&fineasurements and flow rates
of the first data set are presented in Figure Td ia Figure 7-2. This data set is
characterized by three slow wave types of chang#enPLS grade and an almost
constant decrease in the pH of PLS, together wiglgds step changes in the flow
rates, as shown in Figure 7-1 and Figure 7-2. Ealheanteresting periods are the
flow rate changes during sampling period [800, 1Ed@ [2000, 2300], and changes
in the lean electrolyte concentration during sangpperiod [1300 — 1600].
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Figure 7-1: PLS and lean electrolyte copper concerdtions, reagent volume per cent in the
organic solution, pH of the PLS solution and acidi of the electrolyte solution.
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Figure 7-2: Flow rates of the PLS series, PLS parkl, organic solution and electrolyte solution.

The online copper concentrations, extrapolatedraflineasurements and flow rates
of the second data set are presented in Figureadd3Figure 7-4. This data set is
characterized by a slow rise in both the PLS coppacentration and reagent volume
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per cent in the organic solution after samplingeti000. The lean electrolyte
concentration change considerably during the wpeleod, and there is a decrease in
the flow rates around sampling period [2200 — 2500]
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Figure 7-3: PLS and lean electrolyte copper concerdtions, reagent volume per cent in the
organic solution, pH of the PLS solution and acidi of the electrolyte solution.
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Figure 7-4: Flow rates of the PLS series, PLS parkl, organic solution and electrolyte solution.
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7.2 Estimation of the simulation model parameters

The parameters for the steady state and dynamiclmetvdetures are estimated in this
section. The parameter estimation for the equilaristate model, based on the
McCabe-Thiele diagram approach, is first preserftée. parameters of the extraction
and stripping equilibrium isotherms are determime@ection 7.2.1. The parameters
for the efficiencies and the recycle correctiors estimated in Section 7.2.2. Finally,
the parameters for the dynamic structures of thgpeonsolvent extraction model are
estimated in Section 7.2.3.

7.2.1 Estimation of the equilibrium isotherm parameters

The first aim of this section is to determine thestant parameters for the extraction
and stripping equilibrium models on the basis @& ttominal equilibrium isotherm
models, and the experimental and simulated equufibrisotherm data. The second
aim is to determine the equilibrium isotherm pareergefor the first and second test
data period.

7.2.1.1 Estimation of the constant parameters of thequilibrium
isotherm model

The basic structure for the extraction equilibriusotherm between the organig) (
and agueousx] copper concentration consists of squares of ¢éagent volume per
cent (vol) and the pH level (pH) with the reagegmédfic constanipand the inverse
reaction constang, and is defined as follows:

o = AcY _ RO _ ¢(vo)’Oc
B+c™  o(H)?/K+C" @10 ™)+ c™
(7-1)

For the modeling there are 144 data points fronsif@ilated equilibrium isotherms,
and for validation 2 data sets with 16 data poifite variables are the initial aqueous
and organic concentrationg,(and yp), the reagent volume percent in the organic
solution (vol), the pH of the solution, and the diftium values for the aqueous and
organic concentrations. In order to get a gootbfithe equilibrium isotherm over the
whole operating range, the criterion applied in eiditting is minimization of the
absolute error sum between the measurements anel predictions.

The following model structure describes adequatedyl the extraction equilibrium
data:

o0 = @vol) [£™
P(H™)? (™ c) + ™

(7-2)

The constant parameters agzx(.51 ¢=253.80]. The model fit is good, the absolute
error sum is 2.77, and measurement and the prddici@ts overlap very well, as can
be seen from Figure 7-5.
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Extraction equilibrium isotherm
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Figure 7-5: Validation datapoints (0) and predicteddata points (*) of the extraction equilibrium
isotherm.

The basic structure for the stripping equilibriurotierm consists of squares of the
reagent volume per cent (vol) and acidity (acidjhvihe reagent specific constapt
and the inverse reaction constant and the estimation error tersn The stripping
equilibrium isotherm is defined as follows:

c(R)* ¥ LW vo)® ¢ N

¢ =C*+ D= S E=————
c(H")?/Kq aXacid)

(7-3)

The simulated modeling data for the stripping efuilim isotherm include 165 data
points, with 24 data points close to the normalrageg conditions. The model
validation data include two real isotherms measundte plant, including a total of 6
data points. The variables are the initial concéiotneof the aqueous solutiory), the
reagent volume per cent in the organic solution) (e acidity of the solution (acid),
and the equilibrium values for the aqueous androcgaoncentrations«(andy).

The following model structure with the parameteruesl [¢#=0.48, ¢=0. 75, {=-
0.04] describes adequately well the stripping éguiim data:

o=@ Wb T e % (7-4)
w| (acid)

The model has adequate fit to the measurementandsecseen from Figure 7-6.
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Stripping equilibrium isatherm
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Figure 7-6: Validation data points (0) and predictel data points (*) of the stripping equilibrium
isotherm.

7.2.1.2 Estimation of the equilibrium isotherm paraméers

The constant equilibrium isotherm parameters arerdebed from the available
laboratory equilibrium measurement set, includingle®a points for the extraction
equilibrium isotherm curve and 3 data points fag #tripping equilibrium isotherm
line.

The varying equilibrium isotherm parameters arewdated from Equation 7-2 and
Equation 7-4 on the basis of the reagent volumecest in the organic solution, pH
of the PLS solution and acidity of the electrolgtdution, as well as the initial values
of the input concentrations in the aqueous andricgzhases.

The changes in the equilibrium isotherm parametarghk first test period are shown
in Figure 7-7. The isotherm parameterdecreases anB increases during the test
period, leading to a lower extraction potentiacopper from the PLS solution to the
organic solution.
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Scaled equilibriurn isotherm pararmeters
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Figure 7-7: Scaled values of the varied equilibriumisotherm parameters: A and B for extraction,
and C and D for stripping for the first test period.

The changes in the equilibrium isotherm parametergtheé second test period are
shown in Figure 7-8. In the figure the isothermapaeterA increases significantly
during the test period, leading to a higher extoacpotential of copper from the PLS
solution to the organic solution.
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Figure 7-8: Scaled values of the varied equilibriumsotherm parameters: A and B for extraction,
and C and D for stripping for the second test perid.

7.2.2 Estimation of the efficiency and recycle correction
parameters

The aim of this section is to determine the efficlerand recycle correction
parameters for the constant parameter and variedmeder approaches. The
efficiency of a mixer-settler unit is defined in Edqwn 4-23 and the recycle
correction in Equation 4-25.
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Both of the two available offline measurement dseéés included around 35 data
points. The plant operation was assumed to be stafite small daily variation. As a
result it was therefore also assumed that the nefflicopper concentration
measurements, average flow rates and estimatedibeigum isotherms would
represent the steady state of the process.

In the varied parameter approach, the efficienayracycle correction parameters are
calculated directly on the basis of the offline sil@@ments, and no optimization is
necessary to fit the parameters.

In the constant parameter approach, optimizatiorecessary to fit the parameters to
the offline data sets. The optimization for the pagter estimation is explained in
detail in the following.

An optimization model is constructed on the badishe equilibrium state models
presented in Section 6.1. The parameter estimagidtased on minimizing the error
between the equilibrium state model outputs andntleasurements, listed in Table
7-1. If the steady state assumption is valid, théh optimal parameters all the error
measures approach zero.

Table 7-1: Inputs, outputs, estimated parameters aherror measures for all four unit processes.

Stage| Inputs and constant Outputs | Estimated Error
parameters parameters measure

EP c(BO),c(PLS), Ces(BO1), | aep,clep c(RaffP)-
F(PLSP),F(LO), A,B Ces{RaffP) Ces{RaffP)

E1S Gs(BO1), c(PLS1), Ces(BO2), Qe1,Cfer c(RaffS)-
F(PLSS),F(LO), A,B Ces{RAfFS) Ces{RAffS)

E2S | &s(BO2), c(PLS), Ces(LO), | agp,Cfe c(PLS1)-
F(PLSS),F(LO), A,B Ces{PLS1) Ces{PLS1)

c(LO)-Ces(LO)

S Gs(LO), c(LE), Ces(BO), | agcfs C(RE)-Gs(RE)

F(LE),F(LO), C,D. Ces{RE) c(BO)-Gs(BO)

It is assumed that the parameters are differenthiotwo offline data sets. Therefore,
both are optimized separately with the Matlabcurvefit algorithm for nonlinear
curve-fitting. The cost function aims to minimizeetlerror measures presented in
Table 7-1. In order to minimize the recycle loopeets, the errors between the offline
measured and estimated copper concentrations obdlren organic (c(BO)) and
partial PLS (c(PLS1)) concentrations are weightedtemn the cost function than the
errors between the offline measured and estimatp@er concentrations of the rich
electrolyte (c(RE)) and loaded organic (c(LO)). Thestcfunction is defined as
follows:

Cost:102| A BOeas( )= € B )+ 1oZ| ¢ PLY),.{ = ¢ PLH ()

(7-5)

+Z|C(Rameas( i) - C( Ra es( )| +Z| (t LQ meaéj B ¢ LQ egt)|

i=1

In order to demonstrate the approach, the errarthtosecond data set are illustrated
in Figure 7-9 and the average absolute error suengigen in Table 7-2.
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The error sums are not exactly zero, which impned the steady state assumption is
not fulfilled in the constant parameter approacbwever, considering the possible
inaccuracy of the offine measurements, the fitsidgficient. Thus, the constant

efficiency approach is tested in the simulatiordgtu

Table 7-2: Average absolute errors for the differehcopper concentrations.

Error sum| c(RaffP) | c(RaffS)| c(PLS1)| ¢(LO)| c(RE)| c(BO)

0.0565 | 0.0961 | 0.0794| 0.3117 0.4692 0.1612

Measured

Loaded organic concentration [0 Optimized

Scaled value
o

Scaled value
o

Scaled value
o)

Scaled value
]

Offline sarmpling time

Figure 7-9: The scaled values of the loaded organicich electrolyte, partial PLS and barren
organic copper concentrations; measured (red, soljdand estimated (blue, dotted) for the second
data set.

7.2.2.1 Efficiency and recycle correction parametertor the first test
period

The constant efficiency and recycle correction peters are optimized for the first
offline test data set. The parameter values arenishio Table 7-3.

Table 7-3: Efficiencies and recycle corrections fomominal (NOM) and changing equilibrium
isotherm (l) models.

Model | « EP O E1 O E2 os Cpr cf E1l cf E2 Cfs
(NOM) | 0.9591 | 1.0036 | 0.8892 | 0.8351 | 0.9728 | 1.1951 | 0.9854 | 0.9523
() 0.9710 | 1.0670 | 0.7900 | 0.8432 | 0.9787 | 1.0720 | 0.8836 | 0.9171

The varied efficiency and recycle correction parargeare calculated from the first
offline data set. The parameter values for the fest period are shown in Figure 7-10
and Figure 7-11. All the parameters are close talthpugh larger variation occurs
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simultaneously with very high or low reagent voluper cent points. This is natural
since the efficiency is strongly dependent on thguildrium isotherm. The
parameters for stripping do not change signifigargince the equilibrium isotherm
parameters are relatively stable, as can be seenHrgure 7-10.
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Figure 7-10: Varied efficiencies for the extractiorand stripping stages.
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Figure 7-11: Estimated recycles for the extractiomnd stripping stages.
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7.2.2.2 Efficiency and recycle correction parameter$or the second
test period

The constant efficiencies and recycle correctiorapeters are optimized for the
second test data period. The parameter values r@sermged in Table 7-4. The
efficiency evaluation with the constant equilibriusotherm is a challenging task due
to the significant changes in the real equilibriusotherm. With the varied
equilibrium isotherms the optimization of the efficcy parameters is better, although
the efficiencies seem to change as the equilibragtherm parameter changes.

Table 7-4: Efficiencies and recycle corrections fomominal (nom) and changing equilibrium
isotherm (I) models.

Model | a EP O E1 O E2 as Cpr cf E1l cf E2 Cfs
(NOM) | 0.9421 | 0.9478| 0.9577 0.8783 1.0738 1.2738 8&80831.1299
0] 1.0859 | 0.6655| 1.0157 0.9242 1.0519 1.3181 @@94Q.0195

The varied efficiency and recycle correction partrseare calculated for the second
test data set. The parameter values are showngure=i7-12 and Figure 7-13. The

efficiencies are slightly lower than for the fitsist data set, and there is much more
variation in the recycle correction parameters, ttlusudden drops in the flow rates

and concentrations.
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Figure 7-12: Varied efficiencies for the extractiorand stripping stages.
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Recycle correction of the parallel extraction step

value

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Recycle correction of the first series extraction step

value

500 1000 1500 2000 2500 3000 3500 4000 4500

Recycle correction of the second series extraction step

value

i i i i 1 i i i
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Recycle correction of the stripping step

value

09k
08k

a 500 1000 1500 2000 2500 3000 3500 4000 4500 £000
Sampling time

Figure 7-13: Estimated recycles for the extractiomnd stripping stages.

7.2.3 Estimation of the other parameters

Estimation of the mass transfer paramétdor the dynamic model, and constants for
the dynamics of the phase ratio change and thdilmquin changes, as well as the
time delay constants, are presented in this section

The mass transfer parameteris calculated on the basis of Equation (4-36). The
constant parameter is estimated on the basis ofateeage offline measurement

values. For the varied parameter approach, the massfer parameter is estimated

from the offline measurements.

Changes in the organic and aqueous flow ratestitiveraqueous to organic ratio and
subsequently the interfacial area for the coppessmiansfer in the mixers. The new
balance between the phases does not settle immlgdiAs no measurements of the
phenomenon are available, in this study it is t#oeee assumed that the change
follows first order dynamics with a time constant ® sampling times (filter
(1/(2s+1)).

The change in the equilibrium value is not immeglidue to the reaction kinetics.
Since measurements are not available (or even lpesksecause this is a purely
theoretical issue), it is assumed that the chanliews first order dynamics with a
time constant of 2 sampling times (filter (1/(2s)t1)

The time delay of the mixer-settler combinatiorssimated on the basis of the mean
flow rate and the volume of the settler, as defife@@dan organic solution in Equation
4-39 and an aqueous solution in Equation 4-40. dtganic tank time delay is
combined with the time delay of the wash stage. driganic phase was approximated
to consume half of the total volume in the waskhetsettler.
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torg - VOI’g = Vtank + 05|]/S
tank Foro =

(7-6)

The time delays of the plug flow models for thetlset and the organic storage tank
are calculated on the basis of the volumes ancageeitow rates. The time delays of
the first and second test periods are presentédhie 7-5.

Table 7-5: Time delays of the plug flow model partdor the first test period. The unit is one
sampling time.

Test Extraction, | Extraction, | Stripping, | Stripping, | Organic storage
period | organic agueous organic agueous tank+wash stage
1 1.4 1.4 1.6 1.6 1.6
2 1.3 1.3 1.8 1.8 1.8

7.3 Simulation results

The aim of this section is to choose the best msttatture to describe the dynamic
behaviour of an industrial copper solvent extractmocess. The model structures
with different parametrization approaches and téfigation indices are presented in
Section 7.3.1. The simulation performances forfite# and second test periods are
then described in Section 7.3.2 and Section 7Bttlly, the simulation performance
is studied in detail in Section 7.3.4.

7.3.1 Model structures and methods for the simulation study

The models are constructed with different comborai of constant and varied
parameters. For the nominal model (NOM) all theapsaters are constant. For the
equilibrium isotherm model structure (I) the eduilum isotherm model parameters
are varied, i.e. estimated from the offline procedat. For the equilibrium isotherm
and efficiency model (El), the equilibrium isotherefficiency and recycle correction
parameters are varied on the basis of the offlnoegss data. The effect of the mass
transfer coefficient adaptation is tested with adeidhat included adaptation in all the
parameters (EKI).

The simulation model is constructed in the Matlaln@ink environment, and
integrated with the odel5s algorithm. The two teia sets consist of online and
offline measurements, which are first filtered witte method described in Section
5.2.1. The parameters are first calculated offlamel then the simulation is run
through, starting from the first measurement valuesnot from the steady state.

The verification consists of visual examinatiorntlod models ability to follow process
trends, and two residual indices: the average ates@rror (aae) and integral of the
absolute error (iae), both of which are calculasa percentage of the nominal value
of the variable.

The total results of each model structure are coetpaith a scaled sum of the errors.
The error for each output copper concentrationviled by the corresponding error
of the nominal model, as follows:
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5 .
total, = Sy (7-7)
i=1 Q,NOM

Since there are five outputs, the total error sontfe nominal model is 5.
7.3.2 Simulation performance for the first test period

The input data and the parameters of the firstgesod are described in Chapters 7.1
and 7.2.

The statistical results for the first test period presented in Table 7-6 and Table 7-7.
In the tables, the columns represent the diffememdel structures. The first five rows
present the error sums for each output copper otrat®n, and the sixth row the
total sum for each column.

The results clearly show that adaptation of theildgwm isotherm parameters
improves the result. Adding the efficiency parameselaptation decreases the
residuals even more for all the other variablesepk for the loaded organic copper
concentration. Adding the mass transfer parameies ¢hot improve the result and,
therefore, the visual model comparison is perforraaly for the nominal (NOM),
equilibrium isotherm (), and equilibrium isothemmith efficiency (EIl) varied models.

Table 7-6: Average absolute error percentage for # different models.

aae NOM| | El EKI

c(LO) 3.06 | 2.74| 3.24] 3.25

c(BO) | 4.00 | 4.86| 3.04] 3.0

c(RE) 143 | 1.32] 1.25] 1.2%

c(RaffS)| 39.67] 18.38 15.53 15.%7

c(RaffP)| 21.86] 7.45| 5.76 5.76

total 5 3.84 | 3.35| 3.36

Table 7-7: Average integral of absolute error for he different models.

NOM|1 |EI |EKI

c(LO) |0.31 | 0.28 0.32 0.38
c(BO) | 0.18 | 0.22 0.13 0.14
c(RE) | 0.64 | 0.60 0.5 0.57
c(RaffS)| 0.11 | 0.05 0.04 0.04
c(RaffP)| 0.08 | 0.03 0.02 0.02
total 5 3.89 3.26 3.35

For the rich electrolyte copper concentration thanges are well predicted with all
the models, although at the beginning and end eftést period there is a clear
difference. The good fit to the model can be exy@diby the dependence on the lean
electrolyte concentration, which causes a similece in all the models. The
deviation at the end is caused by analyzer calthratround sampling time 2800.
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Figure 7-14: Rich electrolyte copper concentration;measured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

The loaded organic copper concentration was extsenwsy before filtering, and the

reliability of the filtered measurements was notyvgood either. Therefore, for this
test period the trends are more important. The meadih adaptation in only the

equilibrium isotherm parameters best fits the indaisdata. However, the organic
copper concentrations generally should have sintlands, and here the barren
organic copper concentration measurement was nedieble. Therefore, the model
with both parameters varied might be the best sineg it fits best to the trends in the
barren organic copper concentrations, as presantédgure 7-16. The rise in the
level at 2800 due to analyzer calibration cannotdqgured by any of the models.
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Figure 7-15: Loaded organic copper concentration; rmasured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

The fit of the ElI model to the barren organic d@aéads is relatively good, whereas
the nominal model has the worst fit. The model w#taptation in only the
equilibrium isotherm model (I) is also slightly offie trends. The efficiency and
recycle correction parameter adaptation clearlyp$dab capture this un-modeled
phenomenon.
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Figure 7-16: Barren organic copper concentration; reasured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

The prediction accuracy of the raffinate seriespsppconcentration is dependent on
the chain of three extraction stages, and the gtieds of all the models in the middle
of the period deviate from the measurement. Thedti® the nominal model is

different from that for the measurements, althotlgh level change is corrected by
including adaptation in the equilibrium isotherm$ie adaptation of the efficiencies
increases the fit to the data, as can be seernxéon@e during sampling period [300,
1000].
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Figure 7-17: Raffinate series copper concentrationmeasured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

For the raffinate parallel copper concentration ibeninal model has different level
than the measurements, but the trends are similae level is corrected by
introducing adaptation to the equilibrium isotheparameters, and the fit is further
increased with the efficiency parameter adaptation.
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Figure 7-18: Raffinate parallel copper concentratio; measured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

The model with adaptation in both the equilibrisatherm and efficiency parameters
described the industrial data the best. The motetof the industrial data was
adequate. The model follows the main trends cabgetbw rate, concentration and
chemical changes. In order to get more confidendbe model, the second data set
was tested with the same model structures.

7.3.3 Simulation performance for the second test period

The input data and the parameters of the secohgeesd are described in Chapters
7.1 and 7.2.

The statistical results for the second test pesiedpresented in Table 7-8 and

Table 7-9. In the tables, the columns represendifferent model structures. The first
five rows present the error sums for each outpppeo concentration, and the sixth
row the total sum for each column.

The results clearly imply that including adaptationboth the equilibrium isotherm
and efficiency parameters is necessary. Adaptatiothe mass transfer coefficient
does not improve the predictions and is therefatenecessary. With the ElI model
the average absolute error percentages are astactry level for the electrolyte and
organic copper concentrations and, consideringntige level of the raffinate copper
concentrations, the raffinate predictions are \grgd.

Table 7-8: Average absolute error percentage for #different models.

aae NOM| | El EKI

c(LO) |5.26 | 5.40| 1.3(

c(BO) |6.87 | 5.15| 1.6

0
7
c(RE) 1.85 | 1.69| 1.42 1.42
4
1

c(RaffP)| 19.13] 47.68 6.0

)
7
2
c(RaffS)| 41.84] 38.79 8.94 8.
3
)

total S 6.11 | 1.79 1.79
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Table 7-9: Average integral of absolute error for he different models.

iae NOM] | El | EKI
c(LO) | 0.60 | 0.62 0.15 0.15
c(BO) | 0.29 | 0.22 0.0 0.07
c(RE) | 0.86 | 0.79 0.66 0.66
c(RaffS)| 0.30 | 0.28 0.06 0.06
c(RaffP)| 0.06 | 0.14 0.0 0.02
total 5 5.08 1.79 1.79

Figure 7-19 shows the process data and the modédigtions for the rich electrolyte
copper concentration. The prediction with the nahmodel (NOM) gives excellent
results for rich electrolyte copper concentratidncreasing the modeling level
decreases the result for the rich electrolyte doastically improves the results for the
other variables. The best prediction ability foe tlatter part of the test period is

gained with adaptation in both the equilibrium feym parameters and efficiency
parameters.
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Figure 7-19: Rich electrolyte copper concentration;measured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

Figure 7-20 presents the process data and modeicpoas for the loaded organic
copper concentration. The constant parameter apiprimathe model loaded organic
copper concentration is not successful becausehiuege in the organic copper level
is due to the increase in the reagent volume pet icethe organic solution. The
varied equilibrium isotherm model (1) successfyhedicts the change, but the level
IS not correct due to the constant efficiencieshef extraction stages. The fit of the
equilibrium isotherm and efficiency parameter mo(d) predictions match well the
loaded organic copper concentration measurementss €Rperiment clearly
demonstrates the need to change both the equitibigotherm and efficiency
parameters simultaneously.
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Figure 7-20: Loaded organic copper concentration; rmasured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

The barren organic copper concentration measuremaam model predictions are
presented in Figure 7-21. The quality of the baroeganic copper concentration
predictions are very similar to that of the loadgdanic copper concentrations. The
constant parameter model (NOM) cannot adapt tcchiamge in the reagent volume
per cent. The equilibrium isotherm model (1) su#ficly well predicts the changes,
and the (El) model even better. Adaptation in theildrium isotherm and efficiency

parameters is clearly necessary.
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Figure 7-21: Barren organic copper concentration; reasured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

Figure 7-22 presents the process data and the moatdttions for the raffinate series
copper concentration. The raffinate series presheti suffer drastically from the
deviations between the true and utilized equililbriusotherm and efficiency
parameters. The constant extraction isotherm pdemsmgive too high an extraction
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rate, which pushes the raffinate to the minimurovedld level, as can be seen for the
nominal (NOM) and equilibrium isotherm model (I) peximents. The predictions
with varied efficiency and equilibrium isotherm pareters are very reasonable and
match well with the measurement data.
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Figure 7-22: Raffinate series copper concentrationmeasured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

Figure 7-23 presents the process data and the npoddictions for the raffinate
parallel copper concentration. The quality of theffinate parallel copper
concentration predictions is similar to the qualdf the raffinate series copper
concentration predictions. Due to the change in réegent level in the organic
solution, nominal model prediction fails. For thguéibrium isotherm varied model
(I) the efficiency is too high, and the raffinatvél is almost at the minimum value
possible. This is therefore corrected by addingptada efficiency. The match
between the measurements and the varied (El) naoeeklatively good.
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Figure 7-23: Raffinate parallel copper concentratio; measured (dotted, black), nominal (nom)
model (dashed, blue), equilibrium isotherm paramete varied (I) model (solid, red), and
equilibrium isotherm and efficiency parameter varied (El) model (dash dotted, magenta).

The interplay between the equilibrium isotherm #ralefficiency is demonstrated by
the organic and raffinate copper concentratiorsctianges in the reagent volume per
cent induce a change in the equilibrium. The euidim isotherm adaptation is thus
necessary and, on the basis of the experimentgptaine of the efficiencies is
crucial. The average absolute error percentagesreasonably good for all the
measurements with the (EI) model: less than 2%tler electrolyte and organic
copper concentrations, and less than 10% for tke leliable raffinate copper
concentrations.

7.3.4 Simulation performance under input changes

The simulation performance is further evaluatedhwive examples with distinct
changes in the input variables. The examples avserthfrom the two test data sets.
The simulation performance is evaluated with inflatv rate changes in Section
7.3.4.1, then with a change in the input copperceatrations in Section 7.3.4.2, and,
finally, with a change in the reagent volume pertae the organic solution in Section
7.3.4.3.

7.3.4.1 Simulation performance under input flow ratechanges

During sampling period [800, 1100] in the first @atet, the flow rates are first raised
and then lowered again. This causes a clear effébe process, as shown for the rich
electrolyte copper concentration in Figure 7-24 &ordthe raffinate parallel copper
concentration in Figure 7-25. Detailed analysigha figures of the rich electrolyte
and raffinate parallel copper concentrations duritgs time reveal that the
simulations follow the trend, although the smaleriations in the data are not
captured by any of the models. The residual mighdllbe to measurement noise or to
unmodeled phenomena in the process, like rapidgdsam the reagent volume and
pH, both of which are measured only offline.
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Figure 7-24: Rich electrolyte copper concentratiorfor sampling period [800, 1100] in the first
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter
varied (El) model (dash dotted, magenta).
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Figure 7-25: Raffinate parallel copper concentratim for sampling period [800, 1100] in the first
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter
varied (El) model (dash dotted, magenta).

During sampling period [1800, 2100] in the firstalaet there is a downward peak in
the PLS and organic flow rates, and during samptiegod [2000, 2300] there is a
downward peak in the electrolyte flow. These changause peaks in the rich
electrolyte and raffinate parallel copper concerrs, as illustrated in Figure 7-26
and Figure 7-27.

For the rich electrolyte copper concentration tloeviewward step in the electrolyte
flow rate causes a downward peak around samplng #100. The upward steps in
the organic flow rate and the electrolyte flow raseise oscillations between [2100 -
2350] in the rich electrolyte copper concentratiamd a larger downward peak
around 2300. All the models follow the changes wtaE model with adaptation in the
isotherm and efficiency parameters (EIl) havinglibst fit.
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The flow rate changes in the PLS parallel and sdtev rates and the organic flow
rate cause a mild upward peak in the raffinate llghreopper concentration around
sampling period [2000, 2100]. The models adequditdigw the trends.
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Figure 7-26: Rich electrolyte copper concentratiorfor sampling period [2000 - 2300] in the first
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter
varied (El) model (dash dotted, magenta).
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Figure 7-27: Raffinate parallel copper concentratio for sampling period [2000 - 2300] in the first
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbrium isotherm and efficiency parameter
varied (El) model (dash dotted, magenta).

A drop in the flow rates around sampling periodd@22500] in the second data set
causes a downward step in the rich electrolyte @oppncentration and an upward
peak in the raffinate series copper concentraténjllustrated in Figure 7-28 and
Figure 7-29. The rich electrolyte copper conceitratrends are the best followed by
the model structure with adaptation in both theildgjium isotherm and efficiency
(El), although the other models follow the flowaahanges adequately well, too.

The upward peak in the raffinate series conceomatetween sampling period [2300
- 2450] is best followed by the model structurelvatlaptation in both the equilibrium
isotherm and efficiency (El). The nominal modelsture has similar trends to the
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measurement data, but the level is well abovedfimate series copper concentration
measurements. The model structure with adaptatiothé equilibrium isotherm

parameters (I) dampens the upward peak.

Rich electrolyte copper concentration

Scaled value

""""" Measured
= ===Sim(norm)
Sirn(l)

i i I i I i i i
2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
Sampling time

Figure 7-28: Rich electrolyte copper concentratiorior sampling period [2100, 2600] in the second
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter

varied (El) model (dash dotted, magenta).
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Figure 7-29: Raffinate series copper concentratiofor sampling period [2100, 2600] in the second
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter

varied (El) model (dash dotted, magenta).

7.3.4.2 Simulation performance under input copper cacentration
changes

During sampling period [1300 - 1600] in the firsta set there is a peak in the lean
electrolyte copper concentration. The effect on tioh electrolyte and raffinate
parallel copper concentrations are illustrated igufe 7-30 and Figure 7-31. The
peaks in the rich electrolyte copper concentratimnfollowed with a small lag (~20
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sampling times) by all the model structures. Tlamlelectrolyte copper concentration
change does not have any significant effect on rhiinate parallel copper
concentration, and the copper concentration reneitise same level with only small
variations. The best model structures are thosdn wdried parameters of the
equilibrium isotherm (I) and the equilibrium isothe with efficiency (El). The
downward peak around sampling time 1350 is notarpt by any of the models.
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Figure 7-30: Rich electrolyte copper concentratiorfor sampling period [1200, 1700] in the first
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter
varied (El) model (dash dotted, magenta).
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Figure 7-31: Raffinate parallel copper concentratim for sampling period [800, 1100] in the first
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm
parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter
varied (El) model (dash dotted, magenta).

7.3.4.3 Simulation performance under disturbances

There is a change in the reagent volume per cenlhanorganic solution starting
around sampling time 1200. This causes significaahges in the loaded organic and
rich electrolyte copper concentrations, as preseint&igure 7-32 and Figure 7-33.

In this case, the importance of adaptation of theildrium isotherm and the
efficiency parameters is highlighted in the loadedanic copper concentration. The
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model structures with adaptation in the equilibriparameters (I) and adaptation in
both the equilibrium isotherm and efficiency (Ed)ldéw the rising trend in the loaded

organic copper concentration, but are lagged bytab0 sampling times from the

beginning of the change. This is due to the detathe offline measurement of the
reagent volume per cent in the organic solutiore Bhst model structure is the one
with adaptation in both the equilibrium isotherndatficiency (EI).

For the rich electrolyte copper concentration itee in the reagent volume per cent in
the organic solution does not have as drastic facteds for the loaded organic copper
concentration. This is due to the smaller changethe linear stripping equilibrium
isotherm. All the model structures follow well thech electrolyte copper
concentration trends.
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Figure 7-32: Loaded organic copper concentration flosampling period [1100, 1900] in the second
data set; measured (dotted, black), nhominal (nom) odel (dashed, blue), equilibrium isotherm

parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter

varied (El) model (dash dotted, magenta).
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Figure 7-33: Rich electrolyte copper concentratiorior sampling period [1100, 1900] in the second
data set; measured (dotted, black), nominal (nom) odel (dashed, blue), equilibrium isotherm

parameter varied (I) model (solid, red), and equilbbrium isotherm and efficiency parameter

varied (El) model (dash dotted, magenta).

7.4 Concluding remarks

The dynamic models were tested with two data sgigesenting the normal operation
of the industrial case copper solvent extractioanpl The effect of parameter
adaptation was studied using different parametamadpproaches and by comparing
the results to the nominal case.

The models followed the output copper concentratiends smoothly for the major
input changes in the flow rates and copper conagofrs, and the residuals between
the simulated values and measurements were sutficismall. The changes in the
reagent volume per cent in the organic solutionewanly followed by the model
structure with adaptation in the equilibrium isathegparameters. A further increase in
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the simulation performance was gained by using tatiap in the efficiency and
recycle correction parameters. This underlinesniessity of adaptation, especially
for the extraction process in the equilibrium isoth, efficiency and recycle
correction parameters. Adaptation of the mass feapsrameter did not significantly
affect the results, and thus the constant massféamparameters are used in the
further studies.

The smaller peaks in the measurement data werexptdined by any of the models.
This might be due to measurement noise or to mogl@iaccuracies. The modeling is
unable to describe rapid changes in the reagenimmlper cent in the organic
solution and the pH level, because both of thesersmasured only offline. Adaptation
to the changes in the reagent volume per centdarotganic solution and pH level is
also lagged due to the offline measurement delay.

The model with adaptation in both equilibrium isatim parameters and efficiency
parameters (El) was chosen for further studies tdubetter overall results and a
model structure that gives more information abdet process state. The efficiency
parameters describe the unit process efficientias deldom are 100% in industrial
plants. Thus, these parameters could be used ¢oigication of the performance of
the plant.

Variations not captured by this (El) model can e ¢tb inaccuracy of the data and
process upsets that are can not measured (formatiorud/emulsion, heavy rain).
Therefore, the operating conditions of the proctssuld be verified before applying
the model.

The model can be applied to similar copper solhextaction plants using mixer-
settlers by modifying the flow configuration betwe¢he mixer-settlers, and by
adapting the equilibrium isotherm, efficiency aedycle correction parameters.
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8 LINEAR MODELS OF THE COPPER SOLVENT
EXTRACTION PROCESS

The aim of this chapter is to study the linearityl®e dynamic process models and to
develop linear process models for further controtppses. The linearity of the

dynamic process models, i.e. the applicability red superposition principle, is first

studied in Section 8.1, and the order of the lizear models then determined in
Section 8.2. Finally, the dynamic process modets lmearized to state space and
transfer function forms, and the linear model predns compared to the industrial

data in Section 8.3.

8.1 Linearity of the dynamic models

The constraints of extraction and stripping (etuilim isotherms) cause
nonlinearities in the seemingly linear combinatadrseveral mixing — plug flow sub-
models. Therefore it is essential to study the sgvef the nonlinearities and to
determine whether such nonlinearities are smalughdo enable linear controllers to
be used to control the process efficiently.

According to Glad and Ljung (2000), the outputsadinear system are the weighted
sum of the past and present input values at alegimA linear system has the
following properties: invariance under scaling, iigdy and frequency fidelity. The
combination of the two first properties is the sypsition principle, which is tested
in this study.

The output variables in this study are the riclctetdyte and loaded organic copper
concentrations. The input variables are the PLS &ah electrolyte copper
concentrations, the PLS series and parallel, ocgamd electrolyte flow rates, and the
reagent volume per cent in the organic solutiore @perating points for the study are
DP1 from the beginning of the first data set, and4Cfrom the beginning of the
second data set, as described in Section 5.2.2inpe changes were chosen to be
+5% of the nominal value, which is the maximum inhpariable change according to
the plant variation study described in Section®.2.

8.1.1 Scaling invariance

Invariance under scaling is studied by comparirey rdsponses of the outputs with
input changes of different magnitudes, for exanglehange of 5% of the nominal
value of the input variable. The response is caledl as the difference between the
output at time t and the output before the changie input at time 0, divided by the
magnitude of the input change at time 1. Thus #spanses between input and
outputy is calculated as follows:

G(t) = YO = ¥O) ©-1)
u@@) - u(0)

The scaling invariance applies if there are no ineakities or asymmetries. The

system has nonlinearity if the responses (at tinfertthe input changes of different

magnitudes and the same sign, for example +1% &#6l are different. The system

has asymmetry if the absolute value of the gaih&iree t) with input changes of the

same opposite signs and same magnitude, for exadleand +5%, are different.
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The nonlinearity and asymmetry are evaluated bgutaiing the percentual absolute
difference between the +5% steady state gain amdtdady state gains with different
input change magnitudes. The scaling invariance liegppadequately if the
nonlinearity and asymmetry of the responses are. mil

The scaling invariance is tested at the chosenatipgr points DP1 and DP4 by
introducing £1%, +5%, and +10% changes to all teees input variables of the
dynamic process models and then collecting theoresgs of the output variables, rich
electrolyte and loaded organic copper concentratibBmrmaximum change of +10% is
tested in order to get more confidence about thelte

The steady state gains, i.e. the gains after thenman response is reached, are first
determined. The steady state gains for each inpiyub variable pair are compared in
order to determine whether there are any nonlitiearor asymmetries. The responses
for each input-output variable pair are then phbbtte order to confirm the results for
the whole time range.

8.1.1.1 Rich electrolyte copper concentration

The steady state gains of the rich electrolyte eopgoncentration at the first
operating point DP1 are presented in Table 8-1.rmrost of the input variables the
gains are relatively similar between the positind aegative input steps, but for the
organic flow rate F(LO) and reagent volume per ¢enot) there are asymmetries of
less than 20%, and mild nonlinearities of aroun®%20

Table 8-1: Steady state gains for rich electrolyteopper concentration responses at operating
point DP1.

C(RE) | F(PLSS)| F(PLSP) F(LO)| F(LE)| c(PLS) c(LE)] vol

+1% | 0.1452 | 0.1320 | 0.0189] -0.5347 3.1491 0.9819 16.02
+5% | 0.1448 | 0.1313 | 0.0177] -05149 3.1337 0.9816 96.01
+10% | 0.1441 | 0.1303 | 0.0164 -0.4920 3.1108 0.98110176.

1% | -0.1455 | -0.1323 | -0.0196 05452 -3.1561 -0.982D.0226
5% | -0.1459 | -0.1330 | -0.0212 0567% -3.1686 -0.9825.0249
-10% | -0.1463 | -0.1338| -0.0237 0.5980 -3.1823 -0.9820.0286

The responses of the rich electrolyte copper canagon to the step input changes at
the first operating point DP1 are presented in Fg8-1 and Figure 8-2. The
responses appear to be linear with first order pfae delay dynamics, except for the
F(LO) response, which is of the second order wétto plus time delay type. The PLS
and electrolyte copper concentrations, c(PLS) gh#); together with the electrolyte
flow rate, F(LE), have the largest impact on tlod lectrolyte copper concentration.
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Figure 8-1: Responses of the rich electrolyte coppeoncentration to input changes in F(PLSS),
F(PLSP), F(LO),F(LE), c(PLS),and c(LE) at operatingpoint DP1.

The response to reagent volume per cent changpeially interesting with inverse

dynamics, as can be seen from Figure 8-2. Sincexhet time dynamics of reagent
volume blending to the organic solution are notwnpblending is assumed to be
instant. At this operating point DP1, the effectanf increasing reagent volume per
cent is small for a rich electrolyte copper concaiin. The inverse effect is due to
the increase in the organic solution copper comagah via the organic recycle

between the stripping and extraction steps.

Reagent valume percent in.arganic solution
0.2 T T T T T T

scaled step response

i : i : ; :
10 20 30 40 50 =i] 70 a0
sample time

Figure 8-2: Responses of the rich electrolyte coppeoncentration to input changes in the reagent
volume per cent at operating point DP1.

The steady state gains for the rich electrolytepeopconcentration at the second
operating point DP4 are shown in Table 8-2. Thagare relatively similar between
the positive and negative input steps, except lier drganic flow rate F(LO) and
reagent volume per cent where there are high asymesief up to 50%, and mild
nonlinear behaviour of up to 35%. For the changénPLS copper concentration the
asymmetry and nonlinearity are around 10%.
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Table 8-2: Steady state gains for rich electrolyt&opper concentration responses at operating

point DP4.

C(RE) | F(PLSS) | F(PLSP) F(LO) F(LE) c(PLS c(LE) Vol%
+1% 0.0853 0.0955 0.0886 -0.5472 2.8738 0.9626 80.1C
+5% 0.0821 0.0933 0.0782 -0.5274 2.7236 0.9614 56.09
+10% | 0.0782 0.0905 0.0675 -0.5046 2.5287 0.9509 820.0
-1% -0.0869 -0.0966 -0.0944 0.5576 -2.9487 -0.963P.1160
-5% -0.0900 -0.0987 -0.1070 0.5798 -3.0883 -0.9648.1320
-10% -0.0936 -0.1012 -0.1246 0.6099 -3.2249  -0.9650.1545

The responses of the rich electrolyte copper canagon to the input step changes at
operating point DP4 are presented in Figure 8-3FRgdre 8-4. The responses mainly
follow the first order plus time delay dynamics,cegt for the organic flow rate,

F(LO), which is of the second order with zero ptime delay type. The PLS and

electrolyte copper concentrations, c(PLS) and c¢(lded the electrolyte flow rate,

F(LE), have the greatest effect on the rich elégieacopper concentration.

scaled step response

F(PLSS)

F(LE)

0.1

| 02 I'
s
| o
.y
| wld)

Joost}

0.1

Lo

Y —

01k e

05k =

| 02f-g

0.25

i FRR S
-0.1
20 40 BO EO

sample time

0

5

I 1
20 400 BO 80
sample time

i PR
20 40 BO BO
sample time

5

T
20 40 B0 &0

sample time

[ —
20 40 BO EO
sample time

PR S T

-1
20 40 B0 &0
sample time

Figure 8-3: Responses of the rich electrolyte coppeoncentration to input changes in F(PLSS),
F(PLSP), F(LO),F(LE), c(PLS),and c(LE) at operatingpoint DP4.

The response to a change in the reagent volumeepeiis especially interesting with
inverse dynamics, as can be seen from Figure 8@ effhct of increasing the reagent
volume per cent at operating point DP4 is largemtlat the first operating point
(DP1). However, decreasing the reagent volume et cesults in decreased
stripping after the increased stripping periodatshe first operating point for the rich
electrolyte copper concentration. The inverse éffecdue to the increase in the
organic solution copper concentration via the oigaeacycle between the stripping
and extraction steps.
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Figure 8-4: Responses of the rich electrolyte coppeoncentration to input changes in the reagent
volume per cent at operating point DP4.

8.1.1.2 Loaded organic copper concentration

The steady state gains for the loaded organic coppacentrations at the first
operating point DP1 are presented in Table 8-3. Gams are relatively similar,
except for the organic and electrolyte flow rated,O) and F(LE), and the reagent
volume per cent, for which the asymmetry and nealiity are about 10%.

Table 8-3: Steady state gains for loaded organic pper concentration responses at operating
point DP1.

C(RE) | F(PLSS)| F(PLSP) F(LO)| F(LE)| c(PLS) c(LE)] Vol%

+1% 0.0997 0.0909 -0.1492 -0.0516 2.1661 0.0858 5291
+5% 0.0994 0.0904 -0.1442 -0.0497 2.1556 0.08b55 511
+10% | 0.0990 0.0897 -0.1384 -0.0475 2.1401  0.08b2 1489

-1% -0.0999 -0.0912 | 0.1518] 0.0526 -2.1708 -0.08§59.1539

-5% -0.1002 -0.0916 | 0.1572] 0.054¢ -2.1793 -0.0860.1561

OO

-10% | -0.1005 | -0.0922 0.1642 0.057% -2.1886 -0.0860.1594

The responses of the loaded organic copper comtemtito the input step changes at
operating point DP1 are presented in Figure 8-5rgdre 8-6. All the step responses
follow first order plus time delay dynamics. Theimaffecting inputs are the PLS

copper concentration and organic flow rate, c(PB8Y F(LO), and the reagent

volume percent.
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Figure 8-5: Responses of the loaded organic coppeoncentration to input changes in F(PLSS),
F(PLSP), F(LO),F(LE), c(PLS),and c(LE) at operatingpoint DP1.

The response of a change in the reagent volumegmerat operating point DP1 has a
larger effect than a change in the organic floveras can be seen from Figure 8-6
and Figure 8-5. The response is relatively linead symmetric, with dynamics of a

higher order plus time delay form. An increasinggent volume per cent in the

organic solution increases the organic copper cunaton due to the larger copper
ion complexation potential.
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Figure 8-6: Responses of the loaded organic coppesncentration to input changes in the reagent
volume per cent at operating point DP1.

The steady state gains for the loaded organic coppecentrations at the second
operating point DP4 are presented in Table 8-4. Jdias are relatively linear, and
the asymmetries and nonlinearities are weak, betvié8o and 20%, for the organic
and electrolyte flow rates, F(LO) and F(LE), and thagent volume percent.
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Table 8-4: Steady state gains for loaded organic pper concentration responses at operating
point DP4.

C(RE) | F(PLSS)| F(PLSP) F(LO)| F(LE)| c(PLS) c(LE)] Vol%

+1% 0.0678 0.0761 -0.1781 -0.0419 2.289 0.0682 16B.2

+
+5% 0.0653 0.0743 -0.1789 -0.0405 2.1683 0.06¥Y3 05®2
+10% | 0.0622 0.0721 -0.1782 -0.0390 2.0118 0.0661 1940.

TS

-1% -0.0691 -0.0770 0.1773] 0.042¢ -2.34 -0.0680.2225

) /6
-5% -0.0716 -0.0786 0.1747, 0.0440 -2.4542 -0.0696.2354
-10% -0.0745 -0.0806 0.1696 0.0460 -2.56p1 -0.0700.2533

The responses of the loaded organic copper comtiemirto the input step changes at
operating point DP1 are presented in Figure 8-7Fgdre 8-8. As at operating point
DP1, the step responses all seem to be of a filstr @lus time delay form. The main
affecting inputs are the PLS copper concentratiosh the organic flow rate, c(PLS)
and F(LO), and the reagent volume percent.
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Figure 8-7: Responses of the loaded organic coppeoncentration to input changes in F(PLSS),
F(PLSP), F(LO),F(LE), c(PLS),and c(LE) at operatingpoint DP4.

The response of the reagent volume per cent chiargightly larger than the change
in the organic flow rate, as can be seen from E @48 and Figure 8-7. The response
is weakly nonlinear (15%) and asymmetric (20%)hvdynamics of higher order plus
time delay. Increasing the reagent volume per getlhe organic solution naturally
increases the organic copper concentration dueetéatrger copper ion complexation
potential.
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Figure 8-8: Responses of the loaded organic coppesncentration to input changes in the reagent
volume per cent at operating point DP4.

8.1.2 Additivity

Additivity is tested by changing two or more inpaitsthe same time and comparing
the output change to the sum of the output chafrges experiments in which one

input is changed at a time. For example, for ttaeléal organic copper concentration,
simultaneous changes in the PLS series flow ratletla® PLS copper concentration
(combo) are compared to the sum of the loaded argapper concentration changes
(sum) for the separate experiments in which the Bé&Ses flow rate and the PLS
copper concentration are changed. This is denated a

combo= ¢ LQ|F(PLSS+ ¢ PL$

(8-2)
sum= (( LQ|F(PLSS + (: Lq¢PL$

Additivity of the responses of the rich electrolytsnd loaded organic copper
concentration is studied at operating point DPhv&% step changes to the input
variables. Since the number of all possible inmurhisinations is relatively high, only

the most common cases, with changes in two indutseasame time are studied. The
collected outputs are compared to the sum of ositfoim separate 5% input step
change experiments. The tested input combinatigns a

* both PLS series and parallel flow rates, F(PLSS){PLSP)

* PLS series flow rate and organic flow rate, F(PL&®) F(LO)

» organic and electrolyte flow rate, F(LO) and F(LE)

* PLS series flow rate and PLS copper concentrai{@l.SS) and c(PLS)

» organic flow rate and electrolyte copper concemnat~(LO) and c(LE)

» electrolyte flow rate and electrolyte copper cortiion, F(LE) and c(LE)
» organic flow rate and PLS copper concentrationj(&nd c(PLS)
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8.1.2.1 Rich electrolyte copper concentration

The differences between the response combinatiotdsams for the rich electrolyte
copper concentration at operating point DP4 areerigally evaluated in Table 8-5.
These differences are transformed into percentagesviding the difference with the
total response change, as shown in Table 8-6. Tifezathces are less than 0.06% of
the nominal value of the rich electrolyte coppenamtration, which implies that the
additivity principle is applying very well. The i@snses are almost identical from the
summed outputs and the input change combinatioms)iustrated for the input
changes in the PLS series and parallel flow raiésgure 8-9.

Table 8-5: Differencies between the gains of the tputs of combined input changes and sum of
separate input changes for rich electrolyte coppeconcentration responses in operating point

DP4.

cRE) +5% -5% | -5% +5% | +5% +5% | -5% -5%
F(PLSS)&F(PLSP] 0.0143 | 0.0143 | -0.0149] -0.0132
F(PLSS)&F(LO) | -0.0319 | -0.0244 | 0.0275 0.0307
F(LO)&F(LE) 0.0113 | 0.0126 | -0.0098 | -0.0144
F(PLSS)&c(PLS) | 0.0194 | 0.0232 | -0.0257| -0.0146
F(LO)&c(LE) -0.0110 | -0.0135 | 0.0117 0.0131
F(LE)&c(LE) -0.0043 | -0.0053 | 0.0046 0.0050
F(LO)&c(PLS) -0.0387 | -0.0590 | 0.0503 0.0512

Table 8-6: Percentual differencies between the gasnof the outputs of combined input changes
and sum of separate input changes for rich electrgte copper concentration responses in

operating point DP4.

c(RE) +5% 5% | -5% +5% | +5% +5% | -5% -5%
F(PLSS)&F(PLSP) - - 3.78% 2.89%
F(PLSS)&F(LO) | - - 7.80% 8.51%
F(LO)&F(LE) 1.52% 1.77% 2.25% 3.44%
F(PLSS)&c(PLS) | 7.34% 10.04% | 4.29% 2.04%
F(LO)&c(LE) 0.74% 0.95% 0.67% 0.75%
F(LE)&c(LE) 0.20% 0.24% 0.44% 0.50%
F(LO)&c(PLS) 9.78% 30.35% | 8.36% 8.48%
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Figure 8-9: Responses of the rich electrolyte coppeoncentration to 5% changes in the series
and parallel PLS flow rates, F(PLSS) and F(PLSP). Bsponse from simultaneous input changes
in solid curves (combo), and the sum of responsa®im separate experiments with dashed curves
(sum).

8.1.2.2 Loaded organic copper concentration

The differences between the response combinatiotissams for the loaded organic
copper concentration at operating point DP4 areerigally evaluated in Table 8-7.
The differences are transformed into percentagedivagding the difference by the
total response change, as shown in Table 8-8. Tfexzahces are less than 0.2% of
the nominal value of the loaded organic copper entration, and thus the additivity
principle is applying well for the loaded organmpper concentration. The responses
are almost identical for the summed outputs andirthat change combinations, as
presented in Figure 8-10 for input changes in th8 Beries flow rate and organic
flow rate.
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Table 8-7: Differencies between the gains of the tauts of combined input changes and sum of
separate input changes for loaded organic copper noentration responses in operating point

DPA4.

c(LO) +5% -5% | -5% +5% | +5% +5% |-5% -5%
F(PLSS)&F(PLSP] 0.0113 | 0.0113 | -0.0119] -0.0104
F(PLSS)&F(LO) | -0.0193 | -0.0114 | 0.0144 0.0176
F(LO)&F(LE) 0.0049 | 0.0054 | -0.0044 | -0.0060
F(PLSS)&c(PLS) | 0.0154 | 0.0184 | -0.0204| -0.011p
F(LO)&c(LE) -0.0102 | -0.0134 | 0.0109 0.0129
F(LE)&c(LE) -0.0016 | -0.0019 | 0.0017 0.0018
F(LO)&c(PLS) -0.0136 | -0.0336 | 0.0243 0.0250

Table 8-8: Percentual differencies between the gasnof the outputs of combined input changes
and sum of separate input changes for loaded orgamicopper concentration responses in

operating point DP4.

c(LO) +5% -5% | -5% +5% | +5% +5% |-5% -5%
F(PLSS)&F(PLSP) - - 3.79% 2.89%
F(PLSS)&F(LO) | 4.52% 2.37% 11.70% | 13.23%
F(LO)&F(LE) 2.02% 2.15% 1.27% 1.83%
F(PLSS)&c(PLS) | 7.34% 10.04% | 4.30% 2.04%
F(LO)&c(LE) 2.41% 3.45% 6.34% 7.01%
F(LE)&C(LE) 0.99% 1.21% 2.35% 2.64%
F(LO)&c(PLS) 1.97% 5.67% - -
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Figure 8-10: Responses of the loaded organic coppeoncentration to 5% changes in the PLS
series and organic flow rates, F(PLSS) and F(LO). &ponse from simultaneous input changes in
solid curves (combo), and the sum of responses froseparate experiments with dashed curves
(sum).

8.1.3 Summary of the linearity study

The linearity of the dynamic models at both ope@points DP1 and DP4 is studied.
The scaling invariance and additivity are sufficignapplicable for both output

variables, i.e. the rich electrolyte and loadedaarg copper concentrations. In the
scaling invariance study the asymmetry betweerptsitive and negative changes is
less than 20% on the average. The steady statedgierence for changes with the
same sign is less than 20% on the average, andthieuprocess is only weakly
nonlinear. Since the controllers will keep the @sx around its desired operating
point, the nonlinearities will not seriously affébe controller performance.

On the basis of the responses, the following suge®or linearization to the transfer
function form can be mad#éhe models should be formulated to be of the @irder
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plus time delay form, except for the organic flaterresponse to the rich electrolyte
copper concentration and all the reagent volume get responses, which are of the
second order with zero plus time delay form.

8.2 Determining the order of the linearized procesmodels

Since the dynamic model has proved to be adequbelgr, the minimum order for
the linear state space model has to be determibach mixer-settler model is first
formulated in the first order plus time delay tri@ndunction, and the sub-models are
then combined according to the case plant flowshE®® models are combined in
order to present the output copper concentratisrs lanear combination of the input
variables. The order of the state space modelstermined on the basis of these
models.

8.2.1 Linear model of one unit process

Due to the severe nonlinearities of the dynamic@se model (multiplications and
divisions of the input variables), the linear modéthe output copper concentrations
is assumed to be a linear function of the two imqautcentrations and two input flow
rates. It is assumed that the dynamics in oneproitess follows the first order plus
time delay form, as follows:

o' rh rg Ql q hal (e i rg hl e s q
SHOE husﬂcf 0+ ~ gy o1 FO T FO

(8-3)

Assume that changes in the input concentrationecagsponses with identical time
dynamics, but different gains. The responses ferittput flow rate changes are also
assumed to behave similarly, but with differenihgaiThis yields:

org hll @ s® rg hﬂ Eb s q h31 BE fs® rg hl De fie® q
Y= WO T CO T B B

[mm‘::g(@ h, 06 3]+ [%DE““’( Bt ROF()S

h25+l Q s+l
(8-4)
Assume that the time delays can be Pade approxdnaatéllows:
h,
1-—==s
2_
e—hl35 ~ 2 = h3s (8_5)

Now the output copper concentrations can be fortedlas follows:
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org .._2_ 3S 1 rg q
9= g B9+ BOGOH

2-h,s 1
2+ h,sh s

[ 80O H0.FO)
(8-6)

8.2.2 Linear model of the copper solvent extraction process

In this section the linear models of the unit psses are combined according to the
plant flow sheet presented in Figure 5-1. The ptamisists of four unit processes, and
an organic storage tank and a wash stage for @ solution.

For simplicity, in the derivation of the linear ptamodel, the first order plus time
delay (FOPTD) models are marked withds follows:

Cout (9= R(I G ( 3+ M BT 0)sF()s ,h) §%) (8-7)

As the volume of the tank is significantly smallban that of one settler, in the
following analysis the organic tank and the orgapiase of the wash stage are
approximated with a constant organic time dety (

Since the output flow rates from settlers S1H, EAPS and E2S, marked as F(BO),
F(BO1), F(BO2), F(PLS1), are not measured, theyehavbe approximated from the
flow rates and equipment volumes. In the processntixer and settler volumes are
approximately constant, and the maximum deviatromfthe normal operating point
during process changes is about 5%. The mixerssattters are identical and the
organic surface depths are very similar in eactiesefAssume that the flow rate is
approximately constant and the settler aqueousegahic volumes are not changing,
then the time delays in the mixer-settlers for dhganic §) and aqueousd) phases
are approximately constant. Now the missing flowe raneasurements can be
expressed as:

F(BO)(9 = H LO Oe* (8-8)
F(BOL)(9 = F(LO D" (8-9)
F(BO2)(s) = F(LOOe** (8-10)
F(PLSL)(9= H PLS¥1 €& (8-11)

The detailed models for each of the unit procesdiest developed, and these models
are then combined to model the output copper cdratens of rich electrolyte and
loaded organic as functions of the measured inpaables.
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The output copper concentrations of the first etiod unit process E1P are
formulated as follows:

c(BA)(9= h($ ¢ B B+ [t )s(c PDE)s ;(H  F RQ+s,(h 6 F PUSI
(8-12)

c(RaffB( 3= u( 3 € BR )= 0 )(c PAS) s (U ¢ FRP+s,( ) (s F BLSI
(8-13)

The output copper concentrations of the secondaetdn unit process E1S are
formulated as follows:

c(BO2)(9= f(9 ¢ BAQ)( 3+ f( 3 PLY )8 ,(f)s(F BP )+s ,(f) { F RS
(8-14)

c(Raffg( $= M € BD()s ,0)c PUB)+s,(Y ¢ FBO+s,( ¥ (s FHLS
(8-15)

The output copper concentrations of the third etiba unit process E2S are
formulated as follows:

c(LO)(9=g(9 ¢ BQ)( p+ H )s(c PUB)s @) (F BPO)+s ,(9 6 F PKS
(8-16)

c(PLI)(9= k( 3 € BQ)( )+ K )s(c PDS)s ;(K ¢ F BO)+s,(k & F P
(8-17)

The output copper concentrations of the stripping process S1H are formulated as
follows:

c(BO)(9= J(9€LQ( 3+ j( pC LK )3 40)sF UO)s ,()s(F ME)
(8-18)

C(RE(9=R(3 €LY s+ fA)s(cE)s ;) (F MO+ ,(P & FLE
(8-19)
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Now the output concentrations of loaded organic(and rich electrolyte c(RE) can

be expressed as a combination of Equations 8-1236-& follows:

1
O = Ok(3- a3 (S P B
[c(PL(S[ g 3 A B K )z 0)s(F)sh) 8- L) (B)s{9] s
+c(LE)(9[ (9 f(3 1 B A ¥
+F(LO)9[ a(9 53 KM B &+ g)sf)sE+ (0 s(D gH ¢
+0(9 LI h(3 i(3+A- (3K B 4)s¥]
+F(PLSI( ¥ o B A s k)s L0)s(f) %8+ () <B) s(9]
+F(PLSP(3[ o( 3 A B 40 )}
+F(LE)(9[ (9 f(3 B L H]

_ B.(9
R = |
R = k(9= a(3 (3 M P X

[c(PL(S[ o B A B K )3 0)s(f) sh)sl- (f) (B) s(9] s
+c(LE)(9[ a(3 f( 3 M b B

+F(LO)(9[ a(9 (3 3 &+ g)sf)sE+ (@ (D (he®
+0,(9 LI R(3 (3+@L- H(BKB 4)s¥]

+F(PLSY( 3 o B0 )sk)s ,0)s(f) s>+~ () «B) s(g]
+F(PLSP(3[ o( 3 A B 40 )}

+F(LEX(9[ a(9 (3 U 3 A H]

+p,(9ALB($+ B( 3 F LY+ p(9 A LB($

(8-20)

(8-21)

Using Equations 8-11 — 8-13, the organic recyclenteconsisting of the term
fo(s)k(s), is caused by the PLS recycle in the series eidracunits and term
g1(s)fi(s)hu(s)jr(s) by the loaded organic recycle through all the pnilcesses, can be

analyzed, as follows:

1
1-f,()k(9-a(3 (3 B B
~ 1
1- leﬁ_fzas EkZlEb_kBs_ glmé%s LDést tﬂlD_erhS in]_ehs
fos+l k,stl g,s+1 f,31 hs1l js1l

1

1 E?_ f13S f21 [k21 52‘ kzss_ 911Df11D h11 O j11 DZ_(gl3+ hl3+ j13) S

1_
fs+l 2+ fus| k,st1 2+ ks g,81 hsl sl 2( g f ) |t
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_ (fas*)(2+ s (oot (2 koW @33 B8 isH 2( g B )):
[(fos*D)(2+ fos)(kosr D(2 ko @83 bs)( ds) 2( o b ))
(2 1,9)f k(2 k3 (0o D( B3 ( Ls(2( @ b )
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(8-22)

The order of the numerator is 8 and the ordersi@fdenominator terms are 8, 6 and
4. If the organic recycle term can be neglectedmfiEquations (8-27) and (8-28),
then the highest denominator orders for the loamtgdnic copper concentration are
[6 8 8 6 6 8] and for the rich electrolyte concatibn [8 10 10 8 8 10], with the
corresponding inputs [c(PLS), c(LE), F(PLSS), F(PLSF(LO), F(LE)]. If the
recycle (Equation 8-29) of the highest denominaiwter of 8 is included, then the
highest denominator order is 16 for loaded orgamid 18 for rich electrolyte. Thus,
for the state-space model identification, modeleosdf between 6 and 18 should be
tested.

8.3 Identification of the linear models

The aim of this section is to linearize the dynapriccess models to state space (SS)
and first or higher order plus time delay trangtarction (TF) forms. The state space
model matrices and transfer function model parareedee first identified from the
modeling data using the Matlab system identificatioolbox (Ljung, 2006), and the
models are then verified by applying the inputstted verification data sets to the
linear models and comparing the linear model ostpiat the outputs of the
verification data sets.

The output variables are the rich electrolyte, &mhadrganic copper concentrations,
c(RE) and c(LO). The input variables are the floates of the PLS series, PLS
parallel, organic and electrolyte, F(PLSS), F(PLIR)LO) and F(LE), the copper
concentrations of PLS and lean electrolyte, c(Pa®) c(LE), and the reagent volume
per cent in the organic solution, vol.

The models are identified from the simulated da&ealise the industrial data does not
have enough excitation for model indentificationeThodeling data are created with
dynamic process models by introducing a pseudoomantinary signal, PRBS
(Soderstrom and Stoica, 1989, pp.96 —97), withraplitude of+ 5%, bandwidth [0
0.1] and length 4000 samples to all the 7 inpunnoleés. The input-output data are
collected and subspace identification performedr (flole N4SID identification
algorithm, see Ljung, 2006).

The state space models (SS) with 2 - 24 statesdargified from the PRBS data
separately for both outputs. Each state-space medeékentified separately, model
order reduction techniques are not used. The spatee model for the loaded organic
and rich electrolyte copper concentrations, c(L@J e(RE), is defined as follows:
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x=M,x+ M,[F(PLS$ K PLSP ELD F LE (cP)S (c)E Yol

[c(LO) o(RE)]T = M x- M[ R PLSB € PLSP (F DO (F DE (c PLS( c)LE ]\T/n
(8-23)

, where the number (n) of states x determines thercoof the coefficient matrices
M,OR™ M,OR™, M,OR>.

Matrix M4 in this case is [0] since there are no directat$fdrom the inputs to the
outputs. (Ljung, 1987, pp. 82-86)

The transfer function model (TF) parameters arentiied from the PRBS data
separately for both outputs. The transfer functimodel forms are predetermined on
the basis of the step responses (Section 8.1.13t bfahe submodels are of the first
order plus time delay form. The more complex dyr@naire modeled as second order
with zero plus time delay. The transfer functiondeis for loaded organic and rich
electrolyte copper concentrations, c(LO) and c(RiE,of the following form:

[c(LO) o(RE)]T = G| RPLSP EPLIP (FDO (FDE (cPLS( C)LE ]In

alle_clls a21 e_ G1S
b,s+1 b,st1
a,€ ™ a,e ™"
b,s+1 b,st1

alse—%s ay ( d23S+ 1) @8
b135+1 ( Q313+ 1)( l%32 & ])

T | &et 8, €
plot b,s+1 b,st1
€ s € >
bs+1 b.st1
€ 3 € *°
bes+1 bestl

a,e" ay,(-d,s+1) e
L b175+1 (Q?ls-'- 1)( Qn S ) 1)_

(8-24)

whereag;;, bj, ¢; andd; are scalar constants.

The models are tested and verified with three dbfie data sets. The first validation
data set “Validl” is created by introduciag5% input steps, one at a time, to the
simulator inputs and the input-output data areectdld. The operating point for the
validation data set is the same as for the modelaig set. The second validation data
set “Valid2” is created by introducing the induatrinput data to the simulator, and
collecting the input-output data. The third validatdata set “Valid3” consists of the
industrial input-output data.

The model performances are compared to each osigg the fit index. The fit index
is the percentage of output variations that isaépced by the model: the higher the
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percentage, the better the fit. The fit index igeesally suitable when the comparison
is performed at one operating point. (Matlab sysidentification toolbox: Ljung,
2006).

_ norm( neas_ %odel)

fit = {1 = (100%
norm( %eas_ Ymea;

(8-25)

is the measured valu¥,

meas

whereY, .. is the average value of the measured outputs,

Yol 1S the model value. The fit index values are betwje100 100].

m

8.3.1 Linear models for rich electrolyte copper concentration

The models of the rich electrolyte copper conceiatneare identified at two operating
points, the first at DP1 and the second at DP4ba@th operating points, the transfer
function model for the rich electrolyte copper cemication included five first order
plus time delay and two second order with zero pilug delay submodels. The state
space models have 2,3,4,5,6,7,8,10,12,14, 16,0&12and 24 states. The fits of the
linearized models to the validation data sets agsgnted in Table 8-9.

The state space models identified at the first afpeg point DP1 with 16, 20 and 21
states are not successful. The fit of the lineadel®to the step data (Validl DP1)
and to the mechanistic model output data (ValidR1pare good with the transfer
function model and the state space models with rtiae 6 states. The linear model
fit to the industrial data (Valid 3 DP1) is slightpoorer. For the transfer function
model and the state space the models linearizegeaatting point DP4, the fits with
more than 4 states are very good on all the vatidatata sets (Validl DP4, Valid2
DP4 and Valid3 DP4). The best model structuredfaeransfer function model and
the state space models with 8 and 10 states.

Table 8-9: Model fits to the rich electrolyte coppeconcentration responses to the 5% input steps
(Valid 1) at DP1 and DP4, to mechanistic model outgs (Valid2) with the inputs of the first and
second industrial data set, and to the first and s®nd industrial data set (Valid3).

model structure for | Validl Valid2 Valid3 Validl Valid2 Valid3
c(RE) DP1 DP1 DP1 DP4 DP4 DP4
Transfer  function| 89.64 79.34 27.19 90.26 87.54 40.67
(Eqg. 8-30)

State space 2 order| 67.51 69.7 20.36 76.08 78.59 52.39
State space 3 order| 62.89 57.94 23.33 62.15 81.67 37
State space 4 order| 59,07 53.23 28.59 56.05 76.39 52.09
State space 5 order| 70.33 70.2 20.35 71.27 81.9 48.15
State space 6 order| 68.17 66.8 25.87 66.93 80.46 50.21
State space 7 order| 87.37 75.35 14.29 88.27 86.68 37.88
State space 8 order| 91.7 72.96 13.21 89.15 86.23 36.96
State space 10 order 90.9 76.92 16.7 92.58 86.98 38.15
State space 12 order 90.66 78.03 17.74 92.08 85.32 33.41
State space 14 order 92,75 75.77 15.97 91.95 85.03 32.65
State space 16 order - - - 90.43 84.02 30.85
State space 18 order 91.91 75.11 17.22 90.54 83.64 30.2
State space 20 order - - - 90.59 83.68 30.33
State space 21 ordey - - - 91.36 84.77 32.4
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| State space 24 0rdef 90.36 | 74.73 | 1864 | 90.87 | 83.89| 30.58]

Compared to the rich electrolyte copper concemnatneasurements of the first
industrial data set (Valid3 DP1), the linear tramnsfunction and eight order state
space models follow well the dynamics of the preces can be seen from Figure
8-11.

Rich electrolyte coppar concentration measurernents and DP1 models
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Figure 8-11: Rich electrolyte copper concentrationmeasurement of the first industrial data set
(solid), mechanistic model (dashed), transfer fun@in model (dotted), and eight order state space
model (dash dotted).

The rich electrolyte copper concentration measurgsnef the second industrial data
set (Valid3 DP4) are well followed by the lineadzenodels, as can be seen from
Figure 8-12. The dynamics are very similar to thecpss and the mechanistic model
data, with a slight difference in the end of theadzet.
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Rich Electrolyte copper concentration measurements and DP4 models
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Figure 8-12: Rich electrolyte copper concentrationmeasurement of the second industrial data
set (solid), mechanistic model (dashed), transfeufiction model (dotted), and eight order state
space model (dash dotted).

8.3.2 Linear models for loaded organic copper concentration

The models of the loaded organic concentrationdaetified at two operating points,
the first at DP1 and the second at DP4. At bothraipey points, the transfer function
model for loaded organic copper concentration ietlonly the first order plus time
delay submodels, as presented in Equation 8-30. nibdel state space models
identified have 2,3,4,5,6,7,8,10,12,14, 16, 18, 2D,and 24 states. The fits of the
linear models to the validation data sets are pitesen Table 8-10.

At the first operating point DP1, the state spaceleis with 20 and 21 states are not
successful. The fit indices of the linear modelghe first two validation data sets
(validl DP1 and Valid2 DP1) are adequate. Thetbtshe first industrial data set
(valid3 DP1), that has only small changes, are wdhan for the second data set
(Valid3 DP4), that has a considerable level chafige. best models linearized at the
first operating point DP1 are the transfer functiondel and the state space models
with more than 7 states.

At the second operating point DP4, the state spamgels with 12, 21 and 24 states
are not successful. The fit of the transfer funttivodel and the state space models
with more than 4 states are very good on all tHelation data sets (Validl DP4,
Valid2 DP4 and Valid3 DP4). At the second operapogt the best model structures
are the transfer function model and the state spexiels with 8 and 10 states.

Table 8-10: Model fits to the loaded organic coppeconcentration responses to the 5% input
steps (Validl) at DP1 and DP4, mechanistic model tauts (Valid2) with the inputs of the first
and second industrial data set, and to the first ashsecond industrial data set (Valid 3).

model structure | Validl Valid2 Valid3 Validl Valid2 Valid3
for c(LO) DP1 DP1 DP1 DP4 DP4 DP4
Transfer  function 93.82 39.23 4.837 88.44 74.4 62.34
(Eq. 8-30)

State space 2 order| 60.01 31.27 16.05 40.49 64.35 63.55
State space 3 order| 55,71 30.59 16.22 56.36 45.08 48.03
State space 4 order| 51.47 30.6 16.47 48.98 34.71 37.18
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State space 5 order| 52,79 30.04 16.77 79.05 68.91 63.95
State space 6 order| 57.84 36.2 15.63 76.3 68.51 63.6
State space 7 order| 67.72 39.72 13.09 77.92 66.98 63.61
State space 8 order| 75,42 41.6 10.24 81.7 71.3 63.38
State space 10 order 75,43 40.69 10.45 82.65 71.28 63.56
State space 12 order 73.91 41.69 10.39 - - -

State space 14 order 74.6 41.72 9.783 81.45 70.95 63.88
State space 16 order 75.42 41.71 9.271 79.88 70.5 64.13
State space 18 order 76.12 40.26 10.43 76.82 68.4 63.64
State space 20 ordef - - - 78.76 69.34 63.85
State space 21 order - - - - - -

State space 24 order 73.97 40.26 12.01 - - -

At the first operating point DP1, the linearized dets follow the trends of the
dynamic process models (Valid2 DP1) with a sliglifecence between the levels.
The process data (Valid3 DP1) for the loaded o@aopper concentration are of
poor quality, but the state space model was rabtiguccessful in following the
trends. The eight order state space model is ctose mechanistic model, as can be
seen from Figure 8-13.

Loaded organic copper concentration measurements and DP1 models
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Figure 8-13: Loaded organic copper concentration; masurement (solid), mechanistic model
(dashed), transfer function model (dotted), and elgf order state space model (dash dotted).

At the second operating point DP4, the transfection outputs and the outputs of the
state space model with eight states are plottedthsigéne second industrial data set
(Valid3 DP4) with reasonably good fit, as can bensi Figure 8-14. The value of the
loaded organic copper concentration changes mustbrfavith the dynamic process
models than with the linear models, but the finalel is reached relatively

successfully with all the models. The linearizeddels have the same dynamic
changes as the mechanistic models, but they sfitatk the level adaptation for the
loaded organic copper concentration.
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Loaded Organic copper concentration measurements and DP4 models
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Figure 8-14: Loaded organic copper concentration; masurement (solid), mechanistic model
(dashed), transfer function model (dotted), and elgf order state space model (dash dotted).

8.4 Concluding remarks

The scaling invariance was sufficiently applicabled the additivity very applicable
for the output responses of the dynamic models,thus the superposition principle
is adequately applicable for the models. Thereftive,linear model structures were
assumed to be accurate enough to approximate ttardy behaviour of the process.

The dynamic process models were linearized to feearfsinction and state space
model forms. The linear model order derivation leslin a theoretical minimum of

6 - 18 orders for the state space model, assurhatgeach unit process behaves as a
first order plus time delay model, and approximgtthe dead times with the first
order Pade transformation. The responses of thHmgeavariance study revealed that
suitable transfer function models would be of tirstforder plus time delay and
second order with zero plus time delay form.

The linear models were identified using a subspdeatification algorithm. The
modeling data were created by introducing pseudmam binary signals to the
dynamic process models and then collecting thetioptput data. The linear models
were validated against three different data sets, input step change response data
set, one simulated data set, and one industrial skett The model linearization was
successful for the rich electrolyte and loaded wigaopper concentrations. The best
model structures were transfer function models state space models of 8 and 10
orders, which will be used in the further studies.
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9 DESIGN OF THE CONTROL STRATEGIES AND
OPTIMIZATION FOR THE COPPER SOLVENT
EXTRACTION PROCESS

The aim of this chapter is to describe the desigth® control structure, present the
single-input single-output and multi-input multitput control strategies, and develop
optimization for the industrial plant. The contrsystem design is based on the
systematic analysis of the dynamics of the copplest extraction process.

The control aims and current control strategy @f ithdustrial plant are described in
Section 9.1, and the proposed control structuregoted in Section 9.2. The stability,
state controllability and observability of the plaare analyzed in Section 9.3. The
input-output pairing of the manipulated and coméalvariables is performed by
means of relative gain array analysis, as descnbe8lection 9.4. The single-input
single-output and multi-input multi-output contsitategies are designed on the basis
of this analysis in Section 9.5. The structure loé dynamic simulator with the
controllers is presented in Section 9.6. Finalhe bptimization algorithm, based on
the chosen pairing of the controlled and manipdla@iables, is presented in Section
9.7.

9.1 Control objectives and the current control straégy of the case
copper solvent extraction plant

Maximization of copper production is the main goélthe control strategy in the

copper solvent extraction and electrowinning pldifite control strategy in the plant

for solvent extraction is to keep the flow rates hagh as possible in order to

maximize copper mass flow through the process.cimerol strategy in the plant for

the electrowinning process is to keep the curremexages as high as economically
possible in order to maximize the copper cathodeyotion.

In the copper solvent extraction process, the egguy control level of the automation
system consists of PID loops for the flow rateggtdir control levels do not exist. The
operators choose the flow rate setpoints that keeprocess within the target values.
The metallurgists give target values for the le#stteolyte copper concentrations
once a week. The flow rates have restrictions dwethe maximum pumping
capacities, and the aqueous to organic flow ratiagtaining the phase continuities
in the mixers.

Maximum production is not achieved with the curreomtrol strategy. The long time

delays between the control actions and the respoinséhe key process variables,
complex interactions and cause-effect relationshipke control of the process a very
challenging task for a human operator. Therefore tlontrol actions are very

conservative and the process is in a suboptimed &ta most of the time. The current
control strategy also lacks real time optimizatitrat would enable steering the
process to the optimal operating point.
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9.2 Proposed control structure for the case copper ofvent
extraction plant

The problems of the current control strategy cooddavoided by careful control
strategy design and implementation of an advanoettra system. The objectives of
the control system are to enable running the peeeshe optimal operating point,
decrease the plant variation and speed up adaptatiothe changing process
conditions, thus increasing the copper producfidre control strategy is designed on
the basis of the proposed control hierarchy anadmérol structure analysis.

The proposed control hierarchy is illustrated igufe 9-1. The hierarchy for the
copper solvent extraction plant is developed onbsis of the process operational
knowledge and classification of the controlled andnipulated variables. In this
thesis the optimization and stabilizing controldsvare developed. The lower levels
of the hierarchy already exist at the plant.

An optimization algorithm is developed in ordernmximize the production of the
copper solvent extraction process. The optimizakamel provides optimal setpoints
of the controlled variables for the supervisorytcoinevel.

The stabilizing control level consists of a muitput multi-output controller or
several single-input single-output controllers tladtempt to keep the controlled
variables at given setpoints. The supervisory abrévels provide setpoints of the
manipulated variables for the basic control level.

In the copper solvent extraction process the beasittrol level consists of the flow
rate PID loops, which keep the flow rates at theegisetpoints. The basic control
level gives valve opening signals to the final conélements, i.e. the actuators of the
flow control valves at the instrumentation leveheTinstrumentation level consists of
the final control elements, actuators, transmittensl sensors. The measurement
information from the instrumentation level is tramged to the control levels. The
industrial copper solvent extraction process isied below the instrumentation level.
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Figure 9-1: Proposed control hierarchy for the coppr solvent extraction process. The
optimization layer provides the setpoints of the aatrolled variables to the supervisory control
level. The stabilizing control level is based on single-input single-output or multi-input multi-
output control strategy. The stabilizing control lesel provides the setpoints of the manipulated
variables to the regulatory control level. The basi control level gives signals to the final control
elements at the instrumentation level. The measureent information is led from the
instrumentation level to all the upper levels.

The possiblecontrolled variables(CV) are the outputs of the extraction, the loaded
organic and raffinate copper concentrations, aedthtputs of stripping, and the rich
electrolyte and barren organic copper concentratid@ince only rich electrolyte
solution enters the electrowinning process, thie eiectrolyte copper concentration is
chosen as the primary controlled variable. Theimafé copper concentration
measurements are unreliable, as stated in Chafteabd thus the loaded organic
copper concentration is chosen as the secondatyotled variable.

The availablemanipulated variablegMV) are the flow rates of PLS, organic and
electrolyte, F(PLSS), F(PLSP), F(LO) and FLE).

The measureddisturbance variables(DV) are the PLS and lean electrolyte
concentrations and the total PLS flow rate, and uhmeasured disturbance is the
change in reagent volume per cent in the organigien and pH changes in PLS and
acidity changes in the electrolyte solution.
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The restrictions are the organic to aqueous ratioch is related to phase continuity,
pumping capacity, and the organic level in the sarikhe process, together with a
classification of the controlled, manipulated amstudbance variables, is presented in
Figure 9-1.

Leach solution Electrolyte
c(PLS) c(PLS) c(LE)
F(PLSP F(PLSS) F(LE)

LO E(LO)
o )= Tank—<H Stripping—‘

|-> Extraction

v il Organic solution L
c(RaffP)c(RaffS) ¢(RE)

Figure 9-2: Solvent extraction process. Controlledvariables (CV) are marked in bold,
manipulated variables (MV) underlined, and disturbance variables marked in italics.

9.3 State controllability, state observability and &bility

In order to design a control strategy, the statatrodability, observability and
stability have to be studied. The transfer functioatrices are first transformed into
state space form:

X=M,x+ M,u
y = M,x+ M,u

(9-1)

wherex are stateg) inputs andy outputs. In this notation, n is the number ofegan
the number of inputs and the number or outputs. The order of the coefficien

matrices are defined ag, OR™, M, OR™, M,OR™" and M, OR™™.

The observability matrix is determined as:

M3
M3M1
Obs =| MM/ (9-2)

_MSMln_l_

If the rank (column rank) of the observability nratis the same as the number of
states n, then the system is state observable. (Ogata, ,1$¥Kbgestad and
Postlethwaite, 2005, p.131)

The state controllability matrix is determined as:
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Co=[M, MM, MM, - M[M,] (9-3)

If the rank (row rank) of the controllability matris the same as the number of states
n, then the system is state controllable. (Ogat&71$kogestad and Postlethwaite,
2005, p.128)

Controllability and observability conditions areetfitly related to the cancellation of
poles and zeros in the corresponding transfer iomst

In order to study whether the system is input-outpontrollable, the condition
number of the system has to be low (less thaniE))he directionality of the system
is desired to be weak (Skogestad and Postlethwzit@5). The condition number is
calculated as the ratio of the maximum and mininsumgular values of the system at
different frequencies.

The stability is studied by plotting the Nyquisbplof all the controlled variable —
manipulated variable transfer function pairs. & thl point is not circled, then the
subsystem is stable.

For the transfer function model linearized at tiperating point DP1 (DP1TF), the
observability and controllability were studied bgngparing the row rank of the
observability matrix and column rank of the conability matrix to the number of
states of the state space system. Since the rankswmber of states were equal, the
linear model is state observable and state coabigll The condition number,
presented in Figure 9-3, is below 5 for the studredquency range [0, 0.2] and, thus,
the system is input-output controllable. The stgbrequirement with a P controller
can also be met; as can be seen from Figure 9-theaturves are on the right hand
side of the point -1. (For the Nyquist analysishamhe PI controllers, see Section
10.2)

For the transfer function model linearized at tiperating point DP4 (DP4TF), the
observability and controllability were studied bgngparing the row rank of the
observability matrix and column rank of the conability matrix to the number of
states of the state space system. Since the rakswmber of states were equal, the
linear model is state observable and state coabigll The condition number,
presented in Figure 9-4 is below 9 over the stutheguency range [0, 0.2] and, thus,
the system is input-output controllable. The stgbrequirement with a P controller
can also be met; as can be seen from Figure 9-theaturves are on the right hand
side of the point -1. (For the Nyquist analysishamhe PI controllers, see Section
10.2)
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Candition number at different frequencies
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Figure 9-3: Condition number at different frequencies for the transfer function matrix linearized
at the first operating point DP1.

Condition number at different fregquencies
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Figure 9-4: Condition number at different frequencies for the transfer function matrix linearized
at the second operating point DP4.
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Figure 9-5: Nyquist plots of the controlled variabé-manipulated variable pairs of the transfer
function model linearized at operating point DP1. The controlled variable on the first row is the
loaded organic copper concentration, ¢(LO), and oithe second row the rich electrolyte copper
concentration, ¢(RE). The manipulated variables orthe columns are: first PLS series flow rate,
F(PLSS), second PLS parallel flow rate, F(PLSP), thd organic flow rate, F(LO), and fourth

electrolyte flow rate, F(LE).
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Figure 9-6: Nyquist plots of the controlled variabé-manipulated variable pairs of the transfer
function model linearized at operating point DP4. Te controlled variable on the first row is the
loaded organic copper concentration, ¢(LO), and oithe second row the rich electrolyte copper
concentration, ¢(RE). The manipulated variables orthe columns are: first PLS series flow rate,
F(PLSS), second PLS parallel flow rate, F(PLSP), thd organic flow rate, F(LO), and fourth

electrolyte flow rate, F(LE).

Since the linear model of the plant is state cdlatote, state observable and the
system with P controllers would be stable, the brdtrategy can be designed and
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tested with the following steps: pairing the coléw and manipulated variables,
designing SISO and MIMO controllers for the statig control level and optimizing
the algorithm for the optimization level, and implenting and testing these
strategies.

9.4 Pairing the controlled and manipulated variables

In order to design single-input single-output cohlérs, the optimal controller and
manipulated variable pairing has to be determiristol’s Relative Gain Array is

one of the most common methods to investigate lobgractions and to choose
pairing for the controlled and manipulated variablfOgunnaike, 1994 ,Glad and
Ljung, 2004, Seborg et al., 2004, Skogestad antdddosaite, 2005]

The basic RGA matrix is calculated by first evailigtthe process transfer function,
G, at the selected frequeney Then, this gain matriXyl, is element-wise multiplied

by the transpose of its inverse matrix (Hadamar&arur product marked with x),
and the resulting RGA matrix is analyzed.

M =G(w) (9-4)
T
RGA M) = |v|><( M‘l) (9-5)

If there are more inputs than outputs, or vice aetisen the gain matrix becomes non-
square, and the inverse operation is replaced bgseudo-inverse operation.

Skogestad and Postlethwaite (2005) suggest discatte columns or rows with a

sum of the RGA elements of far less than one. Imemottases RGA should be

performed for square sub-matrices.

According to Ogunnaike (1994), the pairing of thput y with output yis possible if
the RGA; value is above 0.5 and not too much larger tharhé.optimum value is 1,
which means that there are no interactions fromother inputs with the considered
input. The closer the value is to 0, the less tipaii affects the output and the bigger
the interactions are with other outputs. The higherRGA value, the more the other
loops oppose the effect from the inputo the output;. Pairing with negative RGA
values is highly unrecommendable, because the mognand closed-loop gains have
opposite signs; the other inputs are more domittatite output, and also the effect of
the other loops has the opposite effect. To vehgy pairing, Glad and Ljung (2004)
suggest evaluation of RGA at other typical frequesc

In this study, the pairing of the controlled vatesh (loaded organic and rich
electrolyte copper concentrations, ¢(LO) and c(R&))h the manipulated variables
PLS series and parallel, organic and electrolye flates, F(PLSS), F(PLSP), F(LO),
F(LE), was first analyzed using a full non-squaratnx RGA for both transfer

function matrices at frequenciesD[O,%]. Analysis of the first controlled variable,

the loaded organic copper concentration c(LO)hatttvo operating points DP1 and
DP5 are presented in Figure 9-7 and Figure 9-§extwely. The analysis of the
second controlled variable, the rich electrolytppmer concentration c(RE), at the two
operating points DP1 and DP5 are presented in &igt8 and Figure 9-10.

For the loaded organic copper concentration thengaat lower frequenciesn0.1)
favours the organic flow rate, F(LO), for both casEor the first case, where the
analysis is performed with the transfer functiontnmalinearized at the operating
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point DP1, at higher frequencies>0.1) the pairing with the PLS series flow rate,
F(PLSS), becomes more favourable, as illustrateéigare 9-7. However, the RGA
values for the organic flow rate pairing do not E®low 0, so this pairing is still valid

over the frequency range.

RGA values for c(LO) at different frequencies

RGA value

_D1 1 1 1 il L il L 1 L
1] 0oz 004 006 008 01 042 014 016 018 02

Fraguency

Figure 9-7: The RGA values for the loaded organicapper concentration, c(LO), pairing with the
organic flow rate, F(LO), PLS series flow rate, F(RSS), PLS parallel flow rate, F(PLSP) and
electrolyte flow rate, F(LE), at frequencies®=0 ... 0.2. The analysis is performed with the

transfer function matrix linearized at the operating point DP1.

The pairing favours the organic flow rate, F(LO), the second case, where the
analysis is performed with the transfer functiontnmalinearized at the operating
point DP4, as illustrated in Figure 9-8. The RGAuea for this pairing are above 0.6

for the whole frequency range.
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RGA values for c(LO) at different frequencies
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Figure 9-8: The RGA values for the loaded organicapper concentration, c(LO), pairing with the

organic flow rate, F(LO), PLS series flow rate, F(RSS), PLS parallel flow rate, F(PLSP) and
electrolyte flow rate, F(LE), at frequencies®=0 ... 0.2. The analysis is performed with the
transfer function matrix linearized at the operating point DP4.

For the rich electrolyte copper concentration, R@A analysis favours pairing with
the electrolyte flow rate. The RGA values for thgairing are above 0.9 at all
frequencies, as illustrated in Figure 9-9 and Fad#10.
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RGA values for c{RE) at different frequencies
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Figure 9-9: The RGA values for the rich electrolytecopper concentration, ¢(RE), pairing with the
organic flow rate, F(LO), PLS series flow rate, F(RSS), PLS parallel flow rate, F(PLSP) and
electrolyte flow rate, F(LE), at frequencies®=0 ... 0.2. The analysis is performed with the
transfer function matrix linearized at the operating point DP1.
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Figure 9-10: The RGA values for the rich electroly¢ copper concentration, c(RE), pairing with
the organic flow rate, F(LO), PLS series flow rateF(PLSS), PLS parallel flow rate, F(PLSP) and
electrolyte flow rate, F(LE), at frequenciesm=0 ... 0.2. The analysis is performed with the
transfer function matrix linearized at the operating point DP4.

On the basis of this analysis, the favourable pgiaf the controlled and manipulated
variables is the loaded organic copper concentrawith the organic flow rate,
c(LO)-F(LO), and the rich electrolyte copper cortcation with the electrolyte flow
rate, c(RE)-F(LE).

This pairing is further studied by performing RGAr fthe [c(LO),c(RE)]x
[F(LO),F(LE)] square matrices at frequenaies 0,1/20,1/10,1/. The RGA values

are presented in Table 9-1. The 1-2 pairing valeaksulated for the c(LO)-F(LO)
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and c(RE)-F(LE) pairs, are close to one at allgtuglied frequencies. Therefore, the
pairing between the loaded organic copper concimravith the organic flow rate,
c(LO)-F(LO), and the rich electrolyte copper cortcation with the electrolyte flow
rate, c¢(RE)-F(LE) is chosen for the control strgtdgvelopment.

Table 9-1: RGA coefficients for 1-2 pairing on theébasis of the transfer function matrix linearized
at the operating points DP1 and DP4.

1-2 [c(LO),c(RE)]x | [c(LO),c(RE)]Ix
pairing/ [F(LO),F(LE)], | [F(LO),F(LE)],
Frequency | DP1 DP4

[0)

0 0.9549 0.9471

1/20 0.9584 0.9681

1/10 0.9726 0.9831

1/5 0.9906 0.9960

9.5 Proposed control strategies for the case coppesolvent
extraction plant

A single-input single-output control strategy amunparable multi-input multi-output
control strategy are designed on the basis of {BA Rnalysis. These strategies are
alternatives for the supervisory control level imetproposed control hierarchy
presented in Section 9.2. In the single-input sirmltput control strategy, the first
control loop consists of the loaded organic coppancentration, c(LO), which is
controlled by manipulating the organic flow rat€l.®). The second control loop
consists of the rich electrolyte copper concerdrgtic(RE), which is kept at the
setpoint by manipulating the electrolyte flow raf€l.E). Pl controllers are used for
the single-input single output strategy.

The additional manipulated variables, PLS flow satE(PLSS) and F(PLSP), are
considered as measured disturbances. The feedtbiweatrollers are constructed to
compensate for changes in the PLS and lean elgetrobncentrations, c(PLS) and
c(LE), and PLS series and parallel flow rates, §8).and F(PLSP), as shown Figure
2-1. The feedforward compensators are of leadypg.tThe parametrization of the
lead-lag compensators is described in Chapter 10.1.
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Figure 9-11: Control strategy: the loaded organic epper concentration, c(LO), is feedback
controlled (FB1) with the organic flow F(LO). The rich electrolyte copper concentration, c(RE),
is feedback controlled (FB2) with the electrolyteléw, F(LE). The disturbances are compensated
with feedforward controllers, for PLS series flow, F(PLSS) with FF1, for PLS parallel flow,
F(PLSP), with FF2, for PLS copper concentration, dPLS), with FF3, and for the lean electrolyte
copper concentration, c(LE) with FF4.

The multi-input multi-output control strategy utdéis the same controlled,
manipulated and disturbance variable structure, thet controlled variables are
changed by manipulating both the organic and albdé flow rates by means of the
model predictive controller. The difference betwdes single input-single output and
multi-input multi-output control strategies is #inated in Figure 9-12.

Compensation of input concentration disturbanceissat-point tracking of the loaded
organic and rich electrolyte concentrations is ddwyechanging the organic and
electrolyte flow rates. A change in the flow ratbsinges the organic to aqueous ratio
in the mixers and, as a result, changes the ouputentration of the process. An
effective way to compensate the concentration hances would be to change the
reagent volume per cent in the organic solution thu¢ to the lack of instrumentation
and measurements, this is not currently a reakzapproach.
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Figure 9-12: The single-input single-output (SISOand multi-input multi-output (MIMO) control
strategies. The SISO strategy utilizes two Pl contilers marked with PI1 and PI2, and the
MIMO strategy utilizes model predictive controller, marked with MPC. The additional
feedforward compensators are marked with FF. The gpoints are marked with the subscript sp.

9.6 Structure of the dynamic simulator with the contollers

The simulation model, presented in Section 6.Figure 6-1, is modified when the

controllers are used. The values of the manipulataiables, i.e. the organic and
electrolyte flow rate measurements, are determinyesumming up the controller and

feedforward compensator outputs. This is illustiaie Figure 9-13, where two PI

controllers and four feedforward controllers ardextito the simulation model. The PI
controllers continue the output on the basis ofdirer between the setpoint and the
measured value of the controlled variable. The fla@dird compensators compare
the difference between the nominal and the measuedde of the disturbance

variables.
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Figure 9-13: Simulation model of the case copper b@nt extraction process with two PI
controllers (P11 and PI2) and four feedforward compensators (FF1, FF2, FF3, FF4). The
manipulated variables are the organic and electrolye flow rates, F(LO) and F(LE). The inputs to
the Pl controllers PI1 and PI2 are the measurementg...c) and the setpoints (sp). In the
feedforward compensators the measurements (...c andF) are compared to the nominal values
of these variables.

9.7 Optimization of the industrial case process

The optimization provides setpoints of the conawlariables for the controllers, and
is the local optimization level of the proposed ttohhierarchy, presented in Section
9.2. The setpoints of the controlled variables d@hd optimal values of the
manipulated variables are determined by solvindittear optimization problem with
the constraints (for linear optimization, see KigyZA999, Hillier and Liebermann,
2001). The controlled, manipulated and disturbanegiables, as well as the
parameters of the optimization problem, are presemh Table 9-2. The optimal
values of the controlled and manipulated variables calculated on the basis of the
values of the disturbance variables and the opétiwa parameters.
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Table 9-2: Manipulated, controlled and disturbance variables, and the parameters of the
optimization problem.

Classification Variable name Abbreviation
Controlled Loaded organic copper concentration c(LO)
variables

Rich electrolyte copper concentration c(RE)
Manipulated Organic flow rate F(LO)
variables

Electrolyte flow rate F(LE)
Disturbance PLS series flow rate F(PLSS)
variables

PLS parallel flow rate F(PLSP)

PLS copper concentration c(PLS)

Lean electrolyte copper concentration c(LE)

Reagent volume percent vol
Parameters Minimum O/A ratio in extraction B1

Maximum O/A ratio in stripping B2

Steady state gains for rich electrolyte copper

concentration

Steady state gains for loaded organic copper

concentration

Continuous direct measurement of the productiors du exist due to the nature of
the electrowinning process (in electrowinning pssceopper cathodes are grown for
one week in electrolysis cells, and weighted offilgrahey are taken out of the cells).
, thus the production is estimated from the comeaicentrations and flow rates of the
rich and lean electrolyte solutions.

The maximization of production, i.e. the copper snisw out of the copper solvent
extraction process, can be formulated mathematieallthe difference in the copper
concentration between the rich and lean electrslytaultiplied by the electrolyte

flow rate, as follows:

P=[c(RE- ¢ LB] R LB (9-6)

The restrictions of the optimization problem are #yueous to organic ratios in the
mixers. In the extraction part the mixers are agito run aqueous continuously, i.e.
the major phase is aqueous, and therefore the iorgaaqueous ratio has to be below
1 (<1). In the stripping part, the mixers are assitoerun organic continuously with
an organic to aqueous ratio of abgie>1). These restrictions can be formulated for
the extraction as follows:

F(LO) F(LO)

F(PLSY <A K PLs.pDS A &)

and for the stripping as follows:
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Mzﬁz

F(LE) (2-8)

The optimization problem can be presented with d¢betrolled, manipulated and
disturbance variables by assuming that the tranfsfiection models of the plant
represent the steady state of the process adeygweddl| as asserted in Chapter 8.
Now the rich electrolyte copper concentration carptesented as:

c(RB= wH PLSy+ wE PLSR w(F D6 ,WF LE Wc PLS (Wwc)kE , w
(9-9)

and the loaded organic copper concentration as:

c(LO) = EF(PLSS+ { R PLSP- 3I’|F LP- af £ LE+ 5I’(C PLS GT(C DE- TV
(9-10)

The constantsy; andr;, are positive, and represent the absolute valtifseosteady
state gains of the transfer function models forldaled organic and rich electrolyte
copper concentrations.

On the basis of these equations (9-9) and (9-b@) ptofit function (Equation 9-7)
can be expressed using the manipulated and disitebariables as follows:

WF(PLSS+ w Rk PLSP+ wE L?F(LE)—MF(LE)Z
+w,c(PLS-(1- w) ¢ LB+ wvol

(9-11)
The maximization of this equation requires a maxmvalue for the organic flow
rate, F(LO). The maximum values of the manipuldted rates can be derived from
the restrictions of the optimization problem. Thgamic flow rate has a maximum
restriction in relation to the minimum of the PUSW rates. Since a maximum value
is desired for the organic flow rate, Equation J94élds:

F(LO),, = B nin{ F(PLSY, R PLSR (9-12)

[((RE - ¢ LB] R LB = [

The electrolyte flow rate, F(LE), has an optimumnpowhich can be calculated by
setting the derivative of the profit function (9)1tb zero. The derivative is taken in
relation to the electrolyte flow rate. Using thetioyal organic flow rate, F(LQ)
Equation (9-12) yields:

F(L) = [ WF(PLSS+ Wk PLSP wE L+ (c PISA- ol c}E ,w]

(9-13)

This is the optimal value for the electrolyte floate if the maximum electrolyte flow
rate limitation is not exceeded, as required indigm 9-8. The maximum for the
electrolyte flow rate is smaller than the optimurgamic flow rate divided by-:

. 1
F(LE) oy = mm{ F(LE)Opt,F F(LO)opt} (9-14)
2

Now the setpoints for the rich electrolyte and k@ddrganic copper concentration can
be formulated on the basis of the optimum manipgdlatariables, the disturbance
variables and optimization parameters, as follows:
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WF(PLS3+ w K PLSP+ S, wE PD{, - W(F D-J;F
+w,c(PLS + w € LE+ w vol

(9-15)

C( RE)sp =

_ nF(PLSS + s { PLSP- 4, K PLB,,— 4 E LEptF
c(LO),, = (9-16)
+rc(PLS) + ¢ LB + rvol
where the minimum of the PLS flow rates is markedFPLShin.
The maximal production can be calculated by sulistg Equations (9-13) and (9-
15) to Equation (9-6) as follows:
WF(PLSS+ w Rk PLSP
[c(RB,~ {LB| R LB, = |+8 WR PLE,.~ WFE LE, € LEue

+w,e(PLY - (1~ w) ¢ LB+ wvo
(9-17)

These setpoints are used as input to the contgoriims (see Chapter 9.5.). The
numerical results of the optimization, i.e. thepsatts, are presented in Chapter 12.



135/188

10 TESTING OF THE SISO CONTROL STRATEGY FOR
THE COPPER SOLVENT EXTRACTION PROCESS

The aim of this chapter is to describe the tuning &esting of the single input-single

output (SISO) control strategy in the simulatiorviemnment (see Chapter 6). The

controller tuning, based on the single-input singléput control structure described

in Chapter 9, is first presented in Section 10.le $tability of the process with the

controllers is studied with Nyquist criterion in ¢dien 10.2, and the control loop

interactions in Section 10.3. Finally, the congolperformance is tested against input
disturbances in Section 10.4 and setpoint chamg8gdtion 10.5.

10.1 Tuning of the PI controllers and the feedforwardcompensators

P1 controllers were chosen for the single inpuingle output strategy owing to their
simplicity and wide use in the industry. Since thanipulated variables are flow rates
with considerable noise, both controllers will begplemented without the D term, in
PI form.

Assume that the controlled variable-manipulatedalde interaction can be presented
as a first order plus time delay transfer funcfiom:

G (9=—p_ g (10-1)
P r,s+1

the parameters for the PI controller of the follogvform:

G. = K¢ [1+ Tisj (10-2)

can be derived with the internal model control (IMGning rules. The IMC structure
has only one parametér,to be changed during the tuning procedure. Tirekgaand
the integration timd&; are now determined as follows (Ogunnaike and Ra94, pp.
539):

2rp +a,
= (10-3)
2AK o
T, =1,+0.50, (10-4)
with the restriction that
A> 1.7D17p (10-5)

The PI controllers were tuned starting from the llgstipossible value fot, and then

increasing the value until adequate performance washed for both set-point
tracking and disturbance rejection. The coeffigenitthe P12 controller in the faster
loop, FB2, were tuned first by keeping the FB1 laogen. The coefficients of the PI1



136/188

controllers in the FB1 loop were then tuned by kegghe FB2 loop open and,
finally, both loops were closed and the coeffickewere fine tuned.

The aim of the feedforward controllers is to congaga the effect of the measured
disturbances before they affect the process behavissuming first order plus time
delay model form for the controlled variable — dibtance variable interactions, then:

K $0y4S
G,(9 = . sil g (10-6)
d

The feedforward compensator can be designed by ubm CV-DV model and the
CV-MV model as follows (Astrém and Wittenmark, 1997, 234, Ogunnaike and
Ray, 1994, pp. 571-572):

Gee (9 =

1+rs _,_ 1+7_s
_Gd(s) :_ﬁ p e(ad ap)s: ( p j (10_7)

G,(9 K, 1+74s 1+7,s

The FF controllers were added one by one on theotdpe FB controllers, and the
coefficients were tuned.

The SISO control structure with two Pl controlleemd four feedforward
compensators does not take into account the intens¢ and the control actions are
not limited by rate or magnitude.

10.2 Stability of the process with the PI controlles

The stability of the process with the controllessstudied by plotting the transfer
function combination of the PI controller and thregess into the complex plane. The
process is here represented by the transfer funafothe loaded organic copper
concentration — organic flow rate, c(LO) — F(LQ)r the first feedback loop, and by
the transfer function of the rich electrolyte copgencentration — electrolyte flow
rate, c(RE) — F(LE), for the second feedback lodpe transfer functions are
presented in Section 8.3, and the controllers icti@® 10.1 earlier. The open loop
transfer function for both feedback loops is of fibkowing form:

Gy =G, 05, = Ko(Tis+D) DK" € (10-8)
Ts r,stl

The Nyquist stability criterion is used to determiwhether the process with PI
controllers is stable (Ogunnaike and Ray, 19944 3.5kogestad and Postlethwaite,
2005). The Nyquist plots are illustrated in Figfel for the process linearized at the
first operating point DP1, and in Figure 10-2 fbe tprocess linearized at the second
operating point DP4. Since all the transfer funtipdots are on the right hand side of
the —1 point, the process with the PI controllsrstable, and there is a gain margin of
about 2.5 for all the PI controllers.
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Myiuizt plot of the first feedback loop FBA Myouist plot of the second feedback loop FB2
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Figure 10-1: Nyquist plots of the first (left) andsecond (right) feedback loop for the transfer
function model linearized at the first operating pant DP1.
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Figure 10-2: Nyquist plots of the first (left) andsecond (right) feedback loop for the transfer
function model linearized at the second operatinggnt DP4.

In order to take into account the effects of theplanteractions, MIMO Nyquist
stability criteria are also tested, as suggeste8kngestad and Postlethwaite (2005).
The determinant of the identity matrix plus the mpeop transfer function with the
controllers,det(I+L(s)) should not make any encirclements of the origih(g8) is
stable. In this case we have a2systenG,, with a diagonal controlle.. The open
loop transfer function is defined as follows:

L(S) =G GE - (Gpll Gp12j(Gcl 0 j — ( GpnGcl GplZGc 2] (10-9)
’ Gle Gp22 0 Gcz Gp21Gcl Gp 22G52

Now the determinant is defined as follows:
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1+G_,G, G,,G
det(1+L €)= det” . "1t P22 = %G G, )( * G,,G,) - GwG,G
GGy 1+ G,,G, ( p1l 1)( p22 2) 122 pzlq

(10-10)

The determinant was calculated for the transferctions with first order pade

approximations for the time delays, as defined indfign (8-13). The Nyquist plots

for the transfer functions determined at the fasid second operating points are
presented in Figure 10-3 and in Figure 10-4, respdyg. Since neither of them

encircle the origin, the process with controllerstable.
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Figure 10-3: Nyquist plots of det (I+L(s)) for thetransfer function model linearized at the first
operating point DP1.
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Myquist plat of det(l+L=0)
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Figure 10-4: Nyquist plots of det (I+L(s)) for thetransfer function model linearized at the second
operating point DP4.

10.3 Feedback loop interactions

In order to determine whether it was necessarydw @ecouplers to the control

strategy, the interactions on the feedback loopsevetudied. This was done by

closing one of the control loops while keeping tiieer loop open. The responses to
the open loop output variable were studied by comgahe case with both loops

open and the other loop closed.

10.3.1 Interactions with the closed loop FB1

The interactions under closed FB1 loop were detathby plotting the responses of
the 5% changes in the input variables to the rigttelyte copper concentration
(output of the FB2 loop).

At operating point DP1, the interactions betweee thput changes and the rich
electrolyte copper concentration under the clodgtl Ibop were not strong, as can be
seen from Figure 10-5. The differences between dpen loop and FB1 loop
responses are around 20% for the PLS flow ratescapger concentration. The
interaction is minimal for the lean electrolyte pep concentration. The setpoint
change in the loaded organic copper concentrat@uses a second order with zero
type of response to the rich electrolyte copperceatration, settling to a constant
level after 70 sample times. The interaction isstoing, and therefore a decoupler is
not necessary.
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Figure 10-5: Responses of the rich electrolyte copp concentration to +5% changes in F(PLSS),
F(PLSP), c(PLS), ¢(LE) and setpoint of the c(LO) vih open control loops (OL) and under a
closed FB1 control loop (PI).

The interactions at operating point DP4 for thda retectrolyte copper concentration
were stronger than the interactions at operatingtdP1. The interaction between
loop FB1 and the rich electrolyte copper conceitnatvas significant. When the FB1
loop was closed, the responses to 5% changes iRltBeseries and parallel flow
rates, F(PLSS) and F(PLSP), and PLS copper cormtemty c(PLS), were almost

twice as large as those with both control loopsno@ée FB1 loop had almost no
effect on the response to the change in the leactrelyte copper concentration
c(LE), as can be seen from Figure 10-6. When FBp lwas closed, a 5% change in
the c(LO) setpoint caused a significant and verymasetric change in the rich

electrolyte copper concentration, c(RE), via malapons in the loaded organic flow
rate, F(LO). Therefore, a decoupler could be inetlioh the control strategy.
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Figure 10-6: Responses of the rich electrolyte copp concentration to +5% changes in F(PLSS),
F(PLSP), c(PLS), ¢(LE) and setpoint of the c(LO) vih open control loops (OL) and under a
closed FB1 control loop (PI).

10.3.2 Interactions with the closed loop FB2

The interactions under the closed FB2 loop wererdghed by plotting the responses
of the 5% changes in the input variables to thelddaorganic copper concentration
(output of the FB1 loop).

At operating point DP1, the interaction betweenpldeB2 and the loaded organic
copper concentration was relatively small in DPhéWwthe FB1 loop was closed, the
responses to the 5% changes in the PLS seriesaatlep flow rates, F(PLSS) and
F(PLSP), and PLS copper concentration, c(PLS), ves®than 20% smaller than the
responses with the open control loops. The FB1 Idepreased the effect of the
change in the lean electrolyte copper concentrat{bk), but turned it into an inverse
response, as can be seen from Figure 10-7. WheRBReloop was closed, a 5%
change in the c(RE) setpoint caused as large antef the changes PLS in the series
flow rate to the loaded organic copper concentnatidl O). Because the interactions
of the FB2 loop are relatively small, a decouptenot necessary.
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Figure 10-7: Responses of the load organic coppeorcentration to +5% changes in F(PLSS),
F(PLSP), c(PLS), c(LE) and setpoint of the c(RE) wh open control loops (OL) and under a
closed FB2 control loop (PI).

The interaction between loop FB2 and the loade@mogcopper concentration was
relatively small at operating point DP4. When tli&lHFoop was closed, the responses
to the 5% changes in the PLS series and paratiel fates, F(PLSS) and F(PLSP),
and PLS copper concentration, c(PLS), were sintitathe responses with open
control loops. The FB1 loop decreased the effeth@fchange in the lean electrolyte
copper concentration c¢(LE), but turned it into amerse response, as can be seen
from Figure 10-8. When the FB2 loop was closed¥achange in the c(RE) setpoint
caused as large an effect as the changes in thedke to the loaded organic copper
concentration, c(LO). Because the interactiondhefRB2 loop are relatively small, a
decoupler is not necessary.
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Figure 10-8: Responses of the load organic coppeorcentration to +5% changes in F(PLSS),
F(PLSP), ¢(PLS), c(LE) and setpoint of the c(RE) wh open control loops (OL) and under a
closed FB2 control loop (PI).
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10.4 Disturbance rejection

The aim in this section is to test the disturbamggection performances of the single-
input single-output controllers. The following cariter combinations were used in
this study:

e open loop (OL), no controllers

» only the first Pl controller (FB1)

* only the second PI (FB2)

* both of the two PI controllers (PI)

* both of the two PI controllers with four feedforwlazompensators (PIFF)

Testing was performed by introducing 5% changethéofollowing the inputs and
input combinations one at a time:

* PLS series flow rate, F(PLSS)

* PLS parallel flow rate F(PLSP)

* PLS copper concentration, c(PLS)

» lean electrolyte copper concentration, c(LE)

» simultaneous with different signs for the PLS seflew rate and PLS copper
concentration, F(PLSS)&c(PLS)

* simultaneous with same signs for the PLS paralteV frate and PLS copper
concentration, F(PLSP)&c(PLS)

» simultaneous for the PLS copper concentration alettrelyte copper
concentration c(PLS)&c(LE)

The measure used to compare the controller combisatvas the integral of the
absolute error (IAE) between the constant setpaihtee controlled variables and the
outputs of the controlled variables under contiidle results for the loaded organic
copper concentration are presented in Section LGaAd for the rich electrolyte
copper concentration are presented in Section2.0.4.

104.1 Loaded organic copper concentration

Disturbance rejection performances with differenntcol schemes for the loaded
organic copper concentration in operating pointd @Rd DP4 are elaborated in this
section with numerical and visual examples.

The disturbance rejection results evaluated in ftre¢ operating point DP1 are
presented in Table 10-1, Figure 10-9, Figure 1@id Figure 10-11.

The disturbance rejection with the first Pl corlgnl(FB1) was very good. Opening
the FB1 loop and adding the second PI controll&2(Flecreases the performance to
a similar level as for the open loop case (OL). @sturbance rejection performance
was increased when both loops were closed (PI)fumtiger improved by adding the
feedforward compensators (PIFF), as can be seenTable 10-1.
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Table 10-1: The integral of absolute error (IAE) fo loaded organic copper concentration with
disturbances at the first operating point.

F(PLSS) | F(PLSP)| c(PLS)| c(LE)| F(PLSS)| F(PLSP) | c(PLS)
&c(PLS) | &c(PLS) | &c(LE)
c(LO) |66.5 57.7 134.3 57.9 200.5 191.7 76.4
OL iae
c(LO) |10.2 8.7 20.6 | 83| 30.8 29.3 12.3
FBliae
c(LO) 56.4 48.4 114.3 17.3 1704 162.4 130.3
FB2iae
C(LO) |91 7.8 184 | 41| 27.6 26.2 21.0
Pliae
C(LO) |4.0 1.9 7.1 26| 9.9 7.1 7.2
PIFFiae

In the following visual analysis the open loop m@spes are compared to the PI-
controller performance with both loops closed (Rid to the performance of the two
Pl-control loops with four feedforward compensators

The disturbances in the PLS series at samplingogel®, 1000] and parallel at

sampling period [1000, 2000] flow rates, F(PLSSY) &{PLSP), were adequately
rejected with the PI controllers. Adding the feedfard compensators fastens the
disturbance rejection and considerably decreasesettect of the disturbance, as
shown in Figure 10-9.

02
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Figure 10-9: Loaded organic copper concentration wh a +5% change in F(PLSS) and F(PLSP),
under open loop control (OL), PI controllers (PI), and Pl controllers with feedforward
compensators (PIFF) at the first operating point.

Similar results are obtained for the PLS copperceatration, c(PLS) at sampling
period [2000, 3000]. The lean electrolyte coppencemtration disturbances at
sampling period [3000, 4000] are satisfactorilyectgd with both PI controllers and
additional feedforward compensators, as can befseenFigure 10-10:
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Figure 10-10: Loaded organic copper concentration ith a +5% change in c(PLS) and c(LE),
under open loop control (OL), PI controllers (PI), and Pl controllers with feedforward
compensators (PIFF) at the first operating point.

The disturbance combinations are as effectivelgcted as the single disturbances,
especially with the feedforward compensators, asbeanoted from Figure 10-11 and
Table 10-1.
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Figure 10-11: Loaded organic copper concentration ith a +5% change in c(PLS)&F(PLSS),
c(PLS)&F(PLSP), and c(PLS)&c(LE), under open loop ontrol (OL), PI controllers (PI), and Pl
controllers with feedforward compensators (PIFF) atthe first operating point.

The disturbance rejection results evaluated atsgmond operating point DP4 are
presented in Table 10-2, Figure 10-12, Figure 1@iBFigure 10-14.

Disturbance rejection with the first Pl controligiB1) was very good. Opening the
FB1 loop and closing the FB2 loop (FB2) decreakegerformance to a similar level
as for the open loop case (OL). The disturbanaxtien performance was increased
with both loops closed (PI), and further improvegd &adding the feedforward
compensators (PIFF), as can be seen from Table 10-2
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Table 10-2: The integral of absolute error (IAE) fo loaded organic copper concentration with
disturbances at the second operating point.

F(PLSS) | F(PLSP)| c(PLS)| c(LE)| F(PLSS)| F(PLSP) | c(PLS)

&c(PLS) | &c(PLS) | &c(LE)

c(LO) |45.2 49.2 105.8 36.7 149.9 154.0 69.3
OL iae

c(LO) | 4.7 5.6 120 | 4.0 16.9 17.6 8.0
FBliae

c(LO) |[40.4 44.2 951 | 6.3| 134.4| 138.3 100
FB2iae

C(LO) |4.4 5.0 10.8 1.9 15.1 15.8 11.0
Pliae

C(LO) |21 1.4 45 | 06| 64 5.2 4.2
PIFFiae

In the following visual analysis the open loop m@spes are compared to the PI-
controller performance with both loops closed (Bi)d to the performance of the two
Pl-control loops with four feedforward compensators

The +5% disturbances to the PLS series and parfdiel rates were effectively
rejected with the PI controllers, as can be seemfFigure 10-12. Even better
performance was gained by adding feedforward cosgiers to the control system.
For example, with a +5% change in F(PLSS) the nallegf the absolute error for
open loop control is 45.2, whereas PI control deses the index to 4.4 and PI control
with feedforward compensator down to 2.2. For a ph&llel flow rate disturbance
the rejection is even better: with Pl controlldms 1AE index decreases from 49.2 to
5.0. Adding the feed forward compensators imprdkesndex to 1.4.
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Figure 10-12: Loaded organic copper concentration ith a +5% change in F(PLSS) and
F(PLSP), under open loop control (OL), Pl controlles (PI), and PI controllers with feedforward
compensators (PIFF) at the second operating point.

The disturbances in the copper concentrations & &id lean electrolyte are rejected
satisfactorily, as can be seen from Figure 10-13ididg the feedforward
compensators decreases the IAE index for the PlaBgehfrom 10.8 to 4.5, and for
the lean electrolyte copper concentration fromt@.9.6.
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Figure 10-13: Loaded organic copper concentration ith a +5% change in c(PLS) and c(LE),
under open loop control (OL), Pl controllers (PI), and Pl controllers with feedforward
compensators (PIFF) at the second operating point.

The rejection of multiple disturbances is as susitgsas for single disturbances, as
can be seen from Figure 10-14. The PI control istively good, but adding
feedforward controllers especially well rejected #ifect of the disturbances.
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Figure 10-14: Loaded organic copper concentration ith a +5% change in ¢c(PLS)&F(PLSS),
c(PLS)&F(PLSP), and c(PLS)&c(LE), under open loop ontrol (OL), PI controllers (PI), and PI
controllers with feedforward compensators (PIFF) atthe second operating point.

10.4.2 Rich electrolyte copper concentration

Disturbance rejection performances with differemintcol schemes for the rich
electrolyte copper concentration at operating poDP1 and DP4 are elaborated in
this section with numerical and visual examples.

The disturbance rejection results evaluated at fits¢ operating point DP1 are
presented in Table 10-3, Figure 10-15, Figure 1@idFigure 10-17.

At the first operating point the disturbance reamttwith the second PI controller
(FB2) was excellent. Opening the FB2 loop and algshe FB1 loop (FB1) decreases
the performance to a similar level as for the opmop case (OL). The setpoint
tracking performance with both control loops cloged was slightly worse than with
the FB2 loop alone due to the interactions, espigd@ the disturbance rejection of
the changes in the PLS flow rate and copper coretgort. Thus, adding the



148/188

feedforward compensators (PIFF) improved the resaltsiderably for the lean
electrolyte copper concentration disturbance, aseaseen from Table 10-3.

Table 10-3: The integral of absolute error (IAE) fa the rich electrolyte copper concentration
with disturbances at the first operating point.

F(PLSS) | F(PLSP)| c(PLS)| c¢(LE) | F(PLSS)| F(PLSP) | c(PLS)
&c(PLS) | &c(PLS) | &c(LE)
CO(RE) 83.9 72.8 169.7 669.1 253.3 242.1 506.7
Liae
c(RE) | 97.4 83.1 196.4 680.0 293.5 279.5 491,.0
FB1liae
c(RE) |5.9 51 12.0 40.7 17.9 17.1 34.3
FB2iae
C(RE) | 8.0 6.8 16.0 40.8| 24.0 22.8 31.0
Pliae
C(RE) | 7.7 5.9 15.4 7.4 22.7 21.1 19.5
PIFFiae

In the following visual analysis the open loop m@spes are compared to the PI-
controller performance with both loops closed (Bi)d to the performance of the two
Pl-control loops with four feedforward compensators

The feedforward compensators fasten the disturbegjeetion, although they cause
higher peaks than the PI controllers alone, as shéev the PLS flow rate
disturbances, F(PLSS) and F(PLSP), in Figure 10Fh&.deviation from the setpoint
is smaller with feedforward compensators, as shiowirable 10-3.
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Figure 10-15: Rich electrolyte copper concentrationwith a +5% change in F(PLSS) and
F(PLSP), under open loop control (OL), Pl controlles (PI), and PI controllers with feedforward
compensators (PIFF) at the first operating point.

For the PLS copper concentration, c(PLS) at sampperiod [2000, 3000], the

disturbance rejection performance is similar toghevious ones. The lean electrolyte
copper concentration disturbance rejection at sagleriod [3000, 4000], however,

is significantly improved with the feedforward coemsation, as shown in Figure
10-16.
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Figure 10-16: Rich electrolyte copper concentratiorwith a +5% change in c(PLS) and c(LE),
under open loop control (OL), PI controllers (PI), and Pl controllers with feedforward
compensators (PIFF) at the first operating point.

The simultaneous disturbances are most effectivadjected by adding the
feedforward compensators with the PI controllesssan be seen from Figure 10-17.

¢(RE) with 5% changes to F(PLSS)& ¢(PLS); FIPLSF)& c(PLS),and c(FLS)&C(LE)
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Figure 10-17: Rich electrolyte copper concentratiorwith a +5% change in c(PLS)&F(PLSS),
c(PLS)&F(PLSP), and c(PLS)&c(LE), under open loop ontrol (OL), PI controllers (PI), and Pl
controllers with feedforward compensators (PIFF) atthe first operating point.

The disturbance rejection results evaluated insteond operating point DP4 are
presented in Table 10-4, Figure 10-18, Figure 1@i®Figure 10-20.

The disturbance rejection with the second PI cdletr¢FB2) was excellent. Opening
the FB2 loop and closing the FB1 loop (FB1) hasastit effect on the disturbance
rejection due to high interaction between the lo@sl, for some cases, the
performance drops to worse levels than for the dpep case (OL). The setpoint
tracking performance with both control loops clogéd) was worse than the FB2
loop alone due to the interactions. Thus, addiegféledforward compensators (PIFF)
improved the result considerably for the lean etdgte copper concentration
disturbance, as can be seen from Table 10-4.



Table 10-4: The integral of absolute error (IAE) fa rich electrolyte copper concentration with
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disturbances at the second operating point.

F(PLSS) | F(PLSP)| c(PLS)| c¢(LE) | F(PLSS)| F(PLSP) | c(PLS)
&c(PLS) | &c(PLS) | &c(LE)
CO(RE) 58.4 63.6 136.8 628.4 193.9 199.1 499.8
Liae
c(RE) |100.2 115.4 247.3 6672 347.2 362.5 434.3
FB1liae
c(RE) |3.2 3.5 7.5 35.1| 105 10.8 31.9
FB2iae
C(RE) | 6.5 7.5 15.8 36.4| 22.3 23.3 34.8
Pliae
C(RE) | 6.9 7.0 15.9 59 22.3 22.9 16.5
PIFFiae

In the following visual analysis the open loop m@spes are compared to the PI-
controller performance with both loops closed (Bi)d to the performance of the two
Pl-control loops with four feedforward compensators

The feedforward compensators fasten the disturbaeetion, although causing
higher peaks than the PI controllers alone, as shéov the PLS flow rate
disturbances F(PLSS) at sampling period [0, 100@] gor F(PLSP) at sampling
period [1000, 2000] in Figure 10-18.

c[RE) with 5% changes to F{PLSS) and F(FLSF)
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Figure 10-18: Rich electrolyte copper concentrationwith a +5% change in F(PLSS) and
F(PLSP), under open loop control (OL), Pl controlles (PI), and PI controllers with feedforward
compensators (PIFF) at the second operating point.

The disturbance rejection performance for the Pbfper concentration c(PLS) at
sampling period [2000, 3000] is similar to the poes ones. The lean electrolyte
copper concentration disturbance rejection at sagleriod [3000, 4000], however,
is significantly improved with the feedforward coemsation, as shown in Figure
10-19.
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CiRE) with 5% changes to c(PLS) and c(LE)
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Figure 10-19: Rich electrolyte copper concentratiorwith a +5% change in c(PLS) and c(LE),
under open loop control (OL), PI controllers (PI), and Pl controllers with feedforward
compensators (PIFF) at the second operating point.

The simultaneous disturbances are rejected the Wpesadding the feedforward
compensators with the PI controllers, as can ba &®en Figure 10-20, and Table
10-4.
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Figure 10-20: Rich electrolyte copper concentratiorwith a +5% change in c(PLS)&F(PLSS),
c(PLS)&F(PLSP), and c(PLS)&c(LE), under open loop ontrol (OL), PI controllers (PI), and Pl
controllers with feedforward compensators (PIFF) atthe second operating point.
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10.5 Setpoint tracking

The aim in this section is to test the disturbamggection performances of the single-
input single-output controllers. The following cariter combinations were used in
this study:

. open loop (OL), no controllers

. only the first Pl controller (FB1)

. only the second PI (FB2)

. both of the two PI controllers (P1)

. both of the two PI controllers with four feedfaw compensators (PIFF)

Testing was performed by introducing +5% changethé¢osetpoints of the controlled
variables and their combination:

. loaded organic copper concentration, c(LO)
. rich electrolyte copper concentration, c(RE)
. simultaneous with the same signs for the loadgdroc copper concentration

and rich electrolyte copper concentration, c(LO)RE]

The measure used to compare the controller combisatvas the integral of the
absolute error (IAE) between the setpoints of thetrolled variables and the outputs
of the controlled variables under control. The hasstor the loaded organic copper
concentration are presented in Section 10.5.1 andhfe rich electrolyte copper
concentration in Section 10.5.2.

10.5.1 Loaded organic copper concentration

The setpoint tracking performances with differenntcol schemes for the loaded
organic copper concentration at operating pointd BRd DP4 are elaborated in this
section with numerical and visual examples.

The setpoint tracking performances at the firstrafpyeg point DP1 are numerically
presented in Table 10-5 for all the controller cambons, and illustrated in Figure
10-21 for the open loop (OL), two PI controller YRhd two PI controllers with four
feedforward compensators (PIFF).

The setpoint tracking with the FB1 controller (FBfas excellent. Opening the FB1
loop and closing the FB2 loop (FB2) decrease théopwaance to a similar level as
for the open loop case (OL). The setpoint trackpegformance was minimally
decreased by closing both loops (PIl). The feedfaitvemntrollers obviously do not
affect the setpoint tracking performance, as shiowiable 10-5.
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Table 10-5: The integral of absolute error (IAE) fa the loaded organic copper concentration
with setpoint tracking at the first operating point.

c(LO) | c(RE) | c(LO)

&c(RE)

c(LO) |191.4| 0.0 191.4
OL iae

c(LO) |29.1 | 0.0 29.1
FBliae

c(LO) |191.4| 99.0| 117.6
FB2iae

C(LO) |30.8 | 15.7| 30.2
Pliae

C(LO) |30.8 | 15.7| 30.2
PIFFiae

Tracking of the loaded organic copper concentrattbanges at sampling period
[7000, 8000] is slightly sluggish. The more reaistase with a simultaneous change
in the loaded organic and rich electrolyte coppmrcentration setpoints at sampling
period [9000, 10000] results in far tighter contwath a 10% overshoot, as can be
seen from Figure 10-21. The changes in the ricltrellgte copper concentration

setpoint at sampling period [8000, 9000] cause padkiess than 20% due to the
interactions between the control loops.

c(LT) with 5% setpoint changes in cfLO), c(RE) and both
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Figure 10-21: Loaded organic copper concentration ith +5% changes in c(LO) setpoint, c(RE)
setpoint, and simultaneously to both setpoints, uret open loop control (OL), PI controllers (PI),
and PI controllers with feedforward compensators (FFF) at the first operating point.

The setpoint tracking performances at the secoedatipg point DP4 are numerically
presented in Table 10-6 for all the controller cambons, and illustrated in Figure
10-22 for the open loop (OL), two PI controller YRhd two PI controllers with four
feedforward compensators (PIFF).

The setpoint tracking with the first Pl controll@¢B1l) was excellent. Opening the
FB1 loop and adding the second PI controller (F&82rease the performance to a
similar level as for the open loop case (OL). Thtpaint tracking performance was
minimally decreased by closing both loops (PI). #idd the feedforward
compensators (PIFF) did not affect the performaasean be seen from Table 10-6.
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Table 10-6: The integral of absolute error (IAE) fa the loaded organic copper concentration
with set point tracking at the second operating pait .

c(LO) | c(RE) | c(LO)

&c(RE)

c(LO) |212.0f 0.0 212.0
OL iae

c(LO) |33.7 | 0.0 33.7
FBliae

c(LO) |212.0| 58.7| 167.0
FB2iae

C(LO) | 325 | 6.4 33.1
Pliae

C(LO) | 325 | 6.4 33.1
PIFFiae

The setpoint tracking for the loaded organic coppmrcentration is successful with
both PI controllers. If the controller was more w@ggive, this would result in

disturbances in the rich electrolyte copper conegion. Changes in the rich

electrolyte copper concentration setpoint causg emnlall disturbances, although in
normal operation both setpoints are either raisedezreased simultaneously. The
setpoint tracking during the simultaneous setpohnges results in slightly more
aggressive responses, as can be seen from Figia2. 10

c{LO) with 5% setpoint changes in ciLO), c{RE) and bhoth
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Figure 10-22: Loaded organic copper concentration ith +5% changes in c(LO) setpoint, c(RE)
setpoint, and simultaneously to both setpoints, uret open loop control (OL), PI controllers (PI),
and PI controllers with feedforward compensators (FFF) at the second operating point.

10.5.2 Rich electrolyte copper concentration

Setpoint tracking performances with the differemintcol schemes for the rich
electrolyte copper concentration at operating poP1 and DP4 are elaborated in
this section with numerical and visual examples.

The setpoint tracking performances at the firstrajpeg point with different

controllers are presented in Table 10-7 and Figr23. The setpoint tracking with
the FB2 controller (FB2) was excellent. Opening B&2 loop and closing the FB1
loop (FB1) decrease the performance to a similael las for the open loop case (OL).
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The setpoint tracking performance with both contoalps closed (PI) improved the
result compared to the FB1 case, as can be saanliable 10-7.

Table 10-7: The integral of absolute error (IAE) fa the rich electrolyte copper concentration
with set point tracking at the first operating point.

c(LO) | c(RE) | ¢(LO)
&c(RE)
c(RE) |10.0 906.0/ 906.0
OLiae
c(RE) |66.6 | 906.0, 972.6
FB1liae
c(RE) |10.0 63.1 | 63.1
FB2iae
C(RE) {199 | 64.4 | 815
Pliae
C(RE) {199 | 64.4 | 815
PIFFiae

The setpoint change for the loaded organic coppecentration c(LO) at sampling
period [7000, 8000] causes small peaks of less 208t in the rich electrolyte copper
concentration due to the control loop interactiombe tracking of the setpoint
changes in the rich electrolyte copper concentmatidRE) is is adequately fast and
effective in the single change at sampling peri®a0D, 9000] and the simultaneous
change at sampling period [9000, 10000] cases,aasbe observed from Figure
10-23.

c{RE) with 5% setpoint changes in c(L0), c(RE) and ciLO)&c(RE)
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Figure 10-23: Rich electrolyte copper concentratiowith +5% changes in c¢(LO) setpoint, c(RE)
setpoint, and simultaneously to both setpoints, uret open loop control (OL), PI controllers (PI),
and PI controllers with feedforward compensators (FFF) at the first operating point.

The setpoint tracking performances at the secomdatipg point DP4 with different
controllers are presented in Table 10-8 and inreid®-24.

The setpoint tracking with the second PI contro{fe82) was excellent. Opening the
FB2 loop and closing the FB1 loop (FB1) have a tirasffect on disturbance
rejection due to the high interaction between thep$ and, for some cases, the
performance drops to worse levels than for the dpep case (OL). The setpoint
tracking performance with both control loops clos@gdl) improved the result
compared to the FB1 loop closed, as shown in THDI8.
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Table 10-8: The integral of absolute error (IAE) fa the rich electrolyte copper concentration
with disturbances and set point tracking at the seand operating point.

c(LO) | c(RE) | c(LO)

&c(RE)

c(RE) |0.0 892.0| 892.0

OLiae

c(RE) |423.4| 892.0 1315.4

FB1liae

c(RE) |10.0 56.8 | 56.8

FB2iae

C(RE) [38.9 | 60.8 | 94.2

Pliae

C(RE) [38.9 | 60.8 | 94.2

PIFFiae

The setpoint change for the loaded organic coppecentration c(LO) at sampling
period [7000, 8000] causes peaks of about 35% e rtbh electrolyte copper
concentration due to the high loop interactionse Tacking of the setpoint changes
in the rich electrolyte copper concentration c(REadequately fast and effective in
the single change at sampling period [8000, 900B¢ simultaneous setpoint change
in the loaded organic copper concentration at saguderiod [9000, 10000] causes
slightly more oscillating behaviour, despite theauaately good setpoint tracking, as
can be seen from Figure 10-24.

c{RE) with £% setpoint changes in ¢{LO), c(RE) and c(LO)&c(RE)
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Figure 10-24: Rich electrolyte copper concentratiorwith +5% changes in ¢(LO) setpoint, c(RE)
setpoint, and simultaneously to both setpoints, urat open loop control (OL), PI controllers (PI),
and PI controllers with feedforward compensators (FFF) at the second operating point.

10.6 Concluding remarks

The two PI controllers and the four feedforward pemsators were tuned on the basis
of the linear transfer function models. The contoalp interactions were mild for the
first control loop, but the second loop had largeeractions for the transfer function
model linearized at operating point DP4. Sincedtreer transfer function model did
not have strong interactions, no decouplers weded

The setpoint tracking performance of the Pl cotdrslwas studied with step changes
to the setpoints of the controlled variables, fose at a time and then with
simultaneous step changes. The PI controller peddrvery well for the setpoint
tracking. The disturbance rejection was tested vei#veral step changes to the
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disturbance variables, one at a time and simulizsigoThe changes in the copper
concentrations and flow rates were well rejectethwhie PI controllers. Adding the
feedforward compensators improved the disturbageetion significantly, by around
50 — 70% for the loaded organic copper concentratith the disturbances in the
PLS copper concentration and flow rates, and byrad®0% for the rich electrolyte
copper concentration with the disturbance in tlaa lelectrolyte copper concentration.
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11 TESTING OF THE MIMO CONTROL STRATEGY
FOR THE COPPER SOLVENT EXTRACTION
PROCESS

The aim of this chapter is to describe the tuning gesting of the multi-input multi-
output controller (MIMO) in the simulation enviroremt (see Chapter 6). The basic
principles of the model predictive controller argroduced in Section 11.1. The
controller tuning, based on the multi-input multitput control structure (eight order
linear state space model) presented in Chapterdggcribed in Section 11.2. Finally,
the model predictive controller performance is ddsagainst input disturbances in
Section 11.3 and setpoint changes in Section 11.4.

11.1 Introduction to model predictive control

Model predictive control (MPC) refers to a classcohtrol algorithms in which a
dynamic process model is used to predict and opéimpirocess performance. The cost
function to be minimized has the following form:

J =iyyi[y,(k+ d+ ) — Y k+ d+ || k)]2+iyujA G(k-1+ ) (11-1)
j=1

i=n,

wherey; is the reference trajectoryjs the output prediction and u is the input value,

k is the present moment adds the discrete dead time. The tuning parametershe
prediction horizon rf;-n;), the control horizom,, and the weightgy, and y,. The
output weighty, is punishing the error between the output andeference trajectory,
andy, is punishing the changes in the manipulated viriab

The current control action is obtained by solviogline at each sampling time, a
finite horizon open-loop optimal control problemngsthe current state as the initial
state. The optimization yields an optimal contexjigence, and the first control in this
sequence is applied to the plant.

All the MPC methods share the following four basiements. The process model is
used to predict the future outputs of the proc&bks. future outputs are compared to
the reference trajectory, and the future errorsthedcosts of the control actions to be
made are optimized. Both the cost function and ttaimds are considered in the
optimization. The future inputs are calculated, ahe& next control action is
performed. The strategy and philosophy of the imgetation of the elements differs
between the different methods, but the generattire follows the scheme presented
in Figure 11-1. (Camacho and Bordons 1999, Henk®®8, Mayne, 2000, Rawlings,
2000, Maciejovski, 2002).
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Figure 11-1: The general strategy of MPC. (Camachand Bordons 1999).

The first MPC techniques were developed in the §%3rause conventional single-
loop controllers were unable to satisfy the inciregly stringent performance

requirements. MPC is well suited for high perform@ncontrol of constrained

multivariable processes. The current generationinofustrial model predictive

controllers is based on the assumption of processrity, because this simplifies
model development and controller design. The ewrgdiridynamic models are
identified from test data, and the stability of thaing is assured by testing the
scheme with closed-loop simulations. (Morari ance,L&999, Qin and Badgwell,

2003)

MPC technology has been used extensively in theningf and petrochemical
industries. During the past decade MPC strategie® lalso been applied to other
areas. Adaptation was one of the motivations forQylBnd there is a strong market
incentive for a self-tuning model predictive cotign (Mayne, 2000, Qin and
Badgwell, 2003).

11.2 Tuning of the model predictive controller

Due to the long time delays in the process, a mpodalictive control algorithm was
chosen as the multi-input-multi-output controll€he controller is based on the eight
order state space model identified from the sinedlatata, as presented in Chapter 8.
The plant is described in Chapter 5 and illustrateBigure 5-1. The control strategy
is presented in Chapter 9 and illustrated in Figitdel and Figure 9-12. The control
strategy includes two controlled variables: thedlxh organic and rich electrolyte
concentrations, ¢(LO) and c(RE); two manipulatedaldes: the loaded organic and
lean electrolyte flow rates, F(LO) and F(LE); awmdif disturbance variables: the PLS
and lean electrolyte copper concentrations, c(Rit) c(LE), and the PLS series and
parallel flow rates F(PLSS) and F(PLSP). The mogeédictive controller
performance is compared to that of the Pl contrddle using the same structure of
manipulated, disturbance and controlled variables.

In this work the Matlab MPC toolbox was used. Taeing of the model predictive
controller was performed by changing the followipgrameters (in Equation 11-1):
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prediction horizon rf-n;), control horizon 1), and cost function weights for the
controlled variable weightsyf and manipulated variable rate weighg).(Hard
constraints were not assigned. The initial choiéas the parameters were the
following: the prediction horizon was the longesttling time of the manipulated
variable-controlled variable pairs, and the conbtmtizon was longer than the longest
dead time of the manipulated variable-controlledalde pairs. The rich electrolyte
copper concentration had a larger weight than tbhaddd organic copper
concentration in order to emphasize the importasfcine end product quality. The
manipulated variable rate weights were tuned tadalayge changes and oscillating
behaviour. For the fine tuning of the horizons avelghts, minimization of the iae
index was used. In the following sections the disince rejection and setpoint
tracking performance of the model predictive collgras compared to that of the Pl
controllers.

11.3 Disturbance rejection

The aim in this Section is to test the disturbarmgjection performances of the multi-
input multi-output controller and to compare thefpenance to the single-input
single-output controllers performances. The follogvicontroller combinations were
used in this study:

* open loop (OL), no controllers
» both of the two PI controllers (PI) (see Sectiorl)0

* both of the two PI controllers with four feedfordacompensators (PI+FF)
(see Section 10.1)

* model predictive controller (MPC)
* model predictive controller with four feedforwardrnopensators (MPC+FF)

The testing was done by introducing +5% changes tin¢ following the inputs and
input combinations one at a time:

* PLS series flow rate, F(PLSS)

* PLS parallel flow rate, F(PLSP)

* PLS copper concentration, c(PLS)

» lean electrolyte copper concentration, c(LE)

* simultaneous with different signs for the PLS seflew rate and PLS copper
concentration, F(PLSS)&c(PLS)

* simultaneous with same signs for the PLS paralteV frate and PLS copper
concentration, F(PLSP)&c(PLS)

» simultaneous for the PLS copper concentration alettrelyte copper
concentration c(PLS)&c(LE)

The measure used to compare the controller combisatas the integral of the
absolute error (IAE) between the constant setpahtke controlled variables and the
outputs of the controlled variables under contiidle results for the loaded organic
copper concentration are presented in Section 1L.1aBd for the rich electrolyte
copper concentration are presented in Section2.1.3.
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11.3.1

The rejection of disturbances in the loaded orgaojgper concentration at the first
operating point DP1 with different control schemeselaborated in the following
section, with numerical and visual examples in €ahl-1, Figure 11-2, Figure 11-3
and Figure 11-4.

he results obtained with the model predictive caldr were better for disturbance
rejection than with the PI controllers, as can bensfrom Table 11-1. With the
feedforward compensators, the Pl controllers peréat better in rejecting the
F(PLSS), F(PLSP) and c(PLS) disturbances.

Loaded organic copper concentration

Table 11-1: The integral of absolute error (IAE) fa the loaded organic copper concentration
with disturbances and set point tracking at the fiist operating point.

F(PLSS) | F(PLSP)| c(PLS)| c(LE)| F(PLSS)| F(PLSP) | c(PLS)
&c(PLS) | &c(PLS) | &c(LE)

c(LO) 66.5 57.7 134.3 57.9 200.5 191.7 76.4
oL
c(LO)PI | 9.1 7.8 184 | 4.1 27.6 26.2 21.Q
c(LO) 4.0 1.9 7.1 2.6 9.9 7.1 7.2
PI+FF
c(LO) 7.2 6.1 143 | 7.1 21.4 20.4 20.3
MPC
c(LO) 4.2 2.2 8.0 2.0 11.4 9.1 8.7
MPC+FF

In the following visual analysis the Pl-controllggerformance is compared to that of
the model predictive controller (MPC). The opendaesponses are also presented.

The flow rate disturbances in PLS series F(PLSSaatpling period [0, 1000], and in
PLS parallel F(PLSP) at sampling period [1000, 20@@e rejected with the MPC
faster than with PI controllers, as shown in Figlite?.

c(LO) with 5% changes to FIPLSS) and F(PLSF)

|
1800 2000

Figure 11-2: Loaded organic copper concentration wh a +5% change in F(PLSS) and F(PLSP),
under open loop control (OL), PI controllers (PI),and model predictive controller (MPC) at the
first operating point.

As with the PLS flow rate disturbances, the PLSpawoncentration disturbance at
sampling period [2000, 3000] is more effectivelyeoted with MPC than with PI
controllers. However, a disturbance in the learctedéyte copper concentration
causes larger changes in the loaded organic cappeentration with MPC than with
PI1 controllers, as shown in Figure 11-3. This is tluthe MPC tuning, which favours
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disturbance rejection in the rich electrolyte cappencentration over the loaded
organic copper concentration.

ciLO) with 5% changes to c(PLS) and c(LE)

scaled value

| |
2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Figure 11-3: Loaded organic copper concentration wih a +5% change in c(PLS) and c(LE),
under open loop control (OL), PI controllers (PI),and model predictive controller (MPC) at the
first operating point.

All the combined disturbances are rejected morecéffely with MPC than with Pl
controllers, as can be seen from Figure 11-4. k@tast combination of PLS and lean
electrolyte copper concentration disturbances miptiag period [6000, 7000], MPC
has a lower integral of the absolute error val@ntRI controllers (IAE 20.3 and 21.0
correspondingly), as shown in Table 11-1.

c(LO} with 5% changes to F{PLSS)8 oPLS), FIPLSP)& c(PLS),and c(PLS)c(LE)

scaled value

4500 5000 5500 B000 B500 7000
sample time

Figure 11-4: Loaded organic copper concentration wh a +5% change in c(PLS)&F(PLSS),
c(PLS)&F(PLSP), and c(PLS)&c(LE), under open loop ontrol (OL), PI controllers (PI), and
model predictive controller (MPC) at the first operating point.

11.3.2 Rich electrolyte copper concentration

The rejection if disturbances in the rich electtelgopper concentration at operating
point DP1 with different control schemes is elabedan the following section, with
numerical and visual examples in Table 11-2 andreid 1-5.

The disturbance rejection for the rich electrolyt@per concentration is clearly better
with MPC than with PI controllers, as presentedTable 11-2. Addition of the
feedforward controller for the lean electrolyte pep concentration improves the
disturbance rejection characteristics for MPC. Bitleer feedforward compensators
slightly worsen the result for the rich electrolytepper concentration but, on the
other hand, the result for the loaded organic comoacentration is significantly
improved.



Table 11-2: The integral of absolute error (IAE) fo the rich electrolyte copper concentration
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with disturbances at the first operating point.

F(PLSS) | F(PLSP)| c(PLS)| c(LE)| F(PLSS)| F(PLSP) | c(PLS)
&c(PLS) | &c(PLS) | &c(LE)

c(RE) 83.9 72.8 169.7 6691 253.3 242.1 506.7
oL
C(RE) PI| 8.0 6.8 16.0| 40.8§ 24.0 22.8 31.0
C(RE) 7.7 5.9 154 | 7.4 22.7 21.1 19.5
PI+FF
C(RE) 2.4 1.9 3.3 28.5| 5.6 4.9 29.5
MPC
C(RE) 4.9 2.9 6.7 55 11.2 9.5 8.9
MPC+FF

In the following visual analysis the Pl-controllggerformance is compared to that of
the model predictive controller (MPC). The opendaesponses are also shown.

The PLS series and parallel flow rate disturbarfe@d SS) at sampling period [0,
1000], and F(PLSP) at sampling period [1000, 20@@&, rejected more effectively
with MPC than with PI controllers, as is illustrdt@ Figure 11-5.

c(RE) with 5% changes to F(PLSS) and F(PLSF)

1000
sample time

Figure 11-5: Rich electrolyte copper concentratiorwith a +5% change in F(PLSS) and F(PLSP),
under open loop control (OL), PI controllers (PI),and model predictive controller (MPC) at the
first operating point.

The disturbances in the PLS copper concentratiBh$) at sampling period [2000,
3000], and the lean electrolyte copper concentmatigLE) at sampling period [3000,
4000], are especially well rejected with MPC, aveh in Figure 11-6. The
performance for the PLS copper concentration witRQMis four times better than
with PI controllers (IAE 3.3 and 16.0 correspondyigand the for lean electrolyte
copper concentration almost twice as good (IAE 28:&% 40.8 correspondingly).
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c(RE) with 5% changes ta c(PLS) and c(LE)

scaled value

| | | | | |
2200 2400 2800 2800 3000 3200 3400 300 3800 4000
sample time

Figure 11-6: Rich electrolyte copper concentrationwith a +5% change in c¢(PLS) and c(LE),
under open loop control (OL), PI controllers (PI),and model predictive controller (MPC) at the
first operating point.

The simultaneous disturbances are rejected farrbetith MPC than with Pl
controllers, as can be seen from Figure 11-7, aideTHL-2.

c(RE) with 5% changes to FPLSS)& ¢PLS), FIPLSP)& c(PLS) and c(PLS)AC(LE)

scaled value

i i i i i i
4500 5000 5500 6000 6500 7000
sample time

Figure 11-7: Rich electrolyte copper concentrationwith a +5% change in c(PLS)&F(PLSS),
c(PLS)&F(PLSP), and c(PLS)&c(LE), under open loop ontrol (OL), PI controllers (PI), and
model predictive controller (MPC) at the first operating point.

11.4 Setpoint tracking

The aim in this section is to test the disturbamgjection performances of the single-
input single-output controllers. The following cariter combinations were used in
this study:

» open loop (OL), no controllers
* both of the two PI controllers (PI) (see Sectiornl)0

* both of the two PI controllers with four feedfordacompensators (PI+FF)
(see Section 10.1)

* model predictive controller (MPC)
* model predictive controller with four feedforwardnpensators (MPC+FF)

The testing was performed by introducing +5% change the setpoints of the
controlled variables and their combination:

» loaded organic copper concentration, c(LO)
* rich electrolyte copper concentration, c(RE)
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* simultaneous with the same signs for the loadedrocgcopper concentration
and rich electrolyte copper concentration, c(LO)RE]

The measure used to compare the controller combisatvas the integral of the
absolute error (IAE) between the setpoints of thetrolled variables and the outputs
of the controlled variables under control. The hesstor the loaded organic copper
concentration are presented in Section 11.4.1 andhfe rich electrolyte copper
concentration are presented in Section 11.4.2.

11.4.1 Loaded organic copper concentration

The loaded organic copper concentration setpoawking performance at operating
point DP1 with different control schemes is elabedan the following section, with
numerical and visual examples in Table 11-3 andrieid.1-8.

The results obtained with the model predictive caldr were better for setpoint
tracking than with the PI controllers, as can benskom Table 11-3. The controller
interaction is significantly decreased with MPC;, &xample, the setpoint tracking of
the rich electrolyte copper concentration c(RE) hAaslue of 4.8 with MPC and of
15.7 with Pl controllers. Within the MPC structutke rich electrolyte copper
concentration setpoint tracking had a higher coeffit than the loaded organic
copper concentration, and thus here the loop ictiera counteracts the good result
for the loaded organic copper concentration.

Table 11-3: The integral of absolute error (IAE) fa the loaded organic copper concentration
with set point tracking at the first operating point.

c(LO) | c(RE) | c(LO)
&c(RE)

c(LO) | 191.4| 0.0 | 191.4
oL

c(LO)PI | 30.8 | 15.7] 30.2

c(LO) |30.8 | 15.7| 30.2

PIl+FF

c(LO) 25.7 | 4.8 29.1
MPC

c(LO) 25.6 | 4.9 28.9
MPC+FF

Adaptation to the new loaded organic setpoint [78000] is fast with only small
overshoot. The simultaneous setpoint change foh loétthe controlled variables
results in similar responses between the MPC antbRtroller. However, as can be
seen from the previous table, MPC is slightly betitan the PI controllers (29.1 and
30.2 correspondingly). The effect of the rich alelgte copper concentration setpoint
change is also far smaller with the model predectoontroller than with the PI
controllers (IAE 4.8 and 15.7, respectively).



166/188

c{LO) with 5% setpoint changes in c(LO), c(RE) and both
0B
T T T T T

I i i i i
7500 8000 8500 2000 9500 10000
sample time

-08

Figure 11-8: Loaded organic copper concentration wi a +5% changes in ¢(LO) setpoint, c(RE)
setpoint, and simultaneously to both setpoints, urat open loop control (OL), PI controllers (PI),
and model predictive controller (MPC) at the firstoperating point.

11.4.2 Rich electrolyte copper concentration

The rich electrolyte copper concentration setptiatking performance at operating
point DP1 with different control schemes is elabedan the following section, with
numerical and visual examples in Table 11-4 andreid.1-9.

The disturbance rejection for the rich electrolyt@per concentration is clearly better
with MPC than with Pl controllers, as presentedTable 11-4. The control loop
interactions during setpoint changes is more effelst handled with MPC than with
Pl controllers: for example, during a change in seg¢point of the loaded organic
copper concentration, c(LO), the integral of thesdite error (IAE) index is three
times smaller with MPC than with PI controllersqAand 19.9, respectively). During
the setpoint change in both controlled variablésOg&c(RE), the IAE index is also
significantly smaller than with the PI controll¢t8E 58.4 and 81.5, respectively).

Table 11-4: The integral of absolute error (IAE) fo the rich electrolyte copper concentration
with set point tracking at the first operating point.

¢(LO) | ¢(RE) | c(LO)
&c(RE)

c(RE) | 0.0 | 906.00 906.0
oL

C(RE)PI| 19.9| 64.4| 815

C(RE) |19.9 | 64.4 | 815

PIl+FF

C(RE) 7.7 58.5 | 58.4
MPC

C(RE) 8.1 58.4 | 58.0
MPC+FF

The setpoint tracking is more effective with MPCarthwith Pl controllers, as
illustrated in Figure 11-9. The loaded organic aapponcentration setpoint tracking
[7000 8000] causes a smaller disturbance to tlnediectrolyte copper concentration
with MPC than with PI control (IAE 7.7 and 19.9spectively). The change in the
setpoint of the rich electrolyte copper concentrat@t sampling period [8000, 9000]
is varied faster with MPC than with Pl controll€tAE 58.5 and 64.4, respectively).
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MPC performs especially well with the simultaneosistpoint change in both
controlled variables: the IAE index is 58.4, wherdar Pl controllers the index is
81.5.

C{RE) with 5% setpoint changes in oL0), ¢(RE) and c(LO)&c(RE)

scaled value

L 1 L 1
7500 6000 8500 9000 9500 10000
sample time

Figure 11-9: Rich electrolyte copper concentratiorwith +5% changes in ¢(LO) setpoint, ¢(RE)
setpoint, and simultaneously to both setpoints, urat open loop control (OL), PI controllers (PI),
and model predictive controller (MPC) at the firstoperating point.

11.5 Concluding remarks

The model predictive controller was chosen for thalti input — multi output
controller due to its good dead time handling aleérty comparable structure with
the single input-single output control strategye MPC was designed on the basis of
the eight order state space model. Setpoint trgclimd disturbance rejection were
tested with the same input variable changes ashforPl controllers. As expected,
MPC significantly improved the setpoint tracking dardisturbance rejection
performance compared to Pl controllers. Addingféeziforward compensator of the
lean electrolyte copper concentration improveddiséurbance rejection performance
for the rich electrolyte copper concentration, védasr the other feedforward
compensators did not perform as well with the MPOwever, MPC was able to
minimize the control loop interactions, and the ralleperformance was better than
with PI controllers. Therefore the model predicti@entroller will be the preferred
controller for the further studies.
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12 COMPARISON OF THE CONTROL STRATEGIES
FOR THE COPPER SOLVENT EXTRACTION
PROCESS

In this chapter the benefits of control are vedfiey comparing the single-input
single-output and multi-input multi-output contrgtrategies against the manual
control strategy of the plant in the simulation ieonment (see Chapter 6) with
industrial process data. The strategy for the corspa is presented in Section 12.1.
The total production with the different controlegggies is compared in Section 12.2,
and the variation in the key process indicatorSection 12.3.

12.1 Strategy for the comparison of the control streegies

In order to verify the benefits of the proposedgenanput single-output and multi-
input multi-output control strategies, the perfonoes of the proposed control
strategies are compared to that of the manual @ostirategy of the copper solvent
extraction plant. The control strategies are comgban each other on the basis of the
average copper production, and the average absaiutearound the setpoints on the
basis of the simulated and measured outputs.

The average production is determined as follows:

N

> (c(RE() - LB()) DR LB()

rod == 12-1
p N (12-1)

whereN is the total number of samples.

The average absolute error between the output cappeentratiort and the setpoint
Cspis calculated as follows:

N

> [exp i) = i)
AAE == N (12-2)

The industrial measurements represent the manud#lotstrategy. The setpoints for
the controlled variables are determined as the darye-moving average of the
corresponding industrial online measurement.

The inputs to the simulator with the controllers floe single-input single-output and
multi-input-multi-output control strategies are thelustrial measurements and varied
parameters for the equilibrium isotherm, effici@sciand recycle correction, as
described in Chapter 7. The PI controllers and fteedird (FF) compensators
described in Chapter 10, and the model predictigatroller (MPC) with the
feedforward compensator for the lean electrolytppen concentration described in
Chapterll, are utilized. The setpoints for the died variables are determined by
solving the optimization problem with the offlineogess data, as described in Section
9.7.

In the optimization, the minimum and maximum floates of the industrial data are
considered as additional constraints. Also themiog® aqueous ratios are determined
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on the basis of the maximum value for the extractiad the minimum value for the
stripping from the industrial data.

No assumptions are made about the operation oklderowinning, but the lean
electrolyte copper concentration measurements sge as such. Such an assumption
might affect the control results negatively, sitkee rich electrolyte control loop has
to do extra work to stabilize the disturbances e lean electrolyte copper
concentration. If an electrowinning model existethe electrolyte copper
concentrations could be stabilized at the desiedl$.

The control results are presented for the prododticrease in Section 12.2 and for
the variation decrease in Section 12.3.

12.2 Comparison of the total production with differeat control
strategies

The production increase with the different contstilategies compared to manual
control is presented in Table 12-1. For the fiesdttdata set, the production was
increased by almost 5% and for the second dat&ysetround 2.8%. It should be
noted that since the SISO (PI control) and MIMO @)Rontrol strategies have the
same setpoints, the production increases are egparbe rather similar.

Table 12-1: The production increase with the diffeent control strategies compared to the manual
control strategy.

Production Production
First test data set| second test data set
Pl +4.93% +2.77%
PI+FF +4.92% +2.81%
MPC +4.93% +2.78%
MPC+FF| +4.93%

For the first data set, the production under thecdtitrollers with the feedforward
compensator is presented in Figure 12-1, and uMfeC control with the c(LE)
feedforward compensator in Figure 12-2. The praduds clearly higher and has less
variation compared to that for the manual operagiragtice. The visual comparison
shows that the model predictive controller alsosesuess variation in the production
compared to the PI controllers with the feedforwasthpensators.
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Copper production
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Figure 12-1: Copper production for the first test cata set: industrial measurement (dotted) and
PI+FF controlled in the simulation environment (soid).

Copper production
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Figure 12-2: Copper production for the first test cata set: industrial measurement (dotted) and
MPC+FF controlled in the simulation environment (sdid).

For the second data set, the production is motdestaith the MPC controller, as
shown in Figure 12-4, compared to the Pl controfjeaduction presented in Figure
12-3. However, the production under MPC has morellswariation, whereas the
production with PI controllers has slower dynamics.
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Copper production
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Figure 12-3: Copper production for the second tesfata set: industrial measurement (dotted) and
PI controlled in the simulation environment (solid)
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Figure 12-4: Copper production for the first test cata set: industrial measurement (dotted) and
MPC controlled in the simulation environment (solid.

12.3 Comparison of the process variation with diffeent control
strategies

The decrease in variation with the different cohstoategies for the loaded organic
and rich electrolyte copper concentrations are goriesl in Section 12.3.1 and in
Section 12.3.2.

12.3.1 Variation of the loaded organic copper concentration

The decrease in variation in the loaded organipeoponcentration with the different
control strategies is shown in Table 12-2. Thed?tiwllers and MPC were almost as
good at decreasing the average absolute error bytati% for the first data set.
Adding the feedforward compensators decreasedvibeige absolute error between
the measurement and the setpoint, especially ®oPihcontrol strategy, to 80%. For
the second data set, both the PI controllers andC Mre almost as good at
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decreasing the average absolute error by arourtD3®for the loaded organic copper
concentration. Adding the feedforward compensatieseased the average absolute
error for the PI control strategy to 38% for thaded organic copper concentration.

Table 12-2: The variation decrease for the loadedrganic copper concentration with the different
control strategies compared to the manual controltgategy.

AAE c(LO) AAE c(LO)
First test data set| second test data set
Pl -71.09% -30.17%
Pl+FF -80.43% -37.78%
MPC -71.20% -37.03%
MPC+FF| -73.49%

For the first test data set, the PI controller vitie feedforward compensators better
tracks the setpoint for the loaded organic coppercentration, as shown in Figure
12-5, than the MPC with the feedforward compensatsrpresented in Figure 12-6.
The optimization for this data set reduces theaetpof the loaded organic copper
concentration to a lower level than the measurentrritthe flow rate is higher and

therefore more copper is transferred from the paagiteach solution to the organic

solution.

Loaded arganic copper concentration

Scaled value

""""" Measured
Caontrolled | -
———Set-point |-

i i ; i . i i ; i
200 400 500 800 1000 1200 1400 1600 1800 2000
Sarmpling time

Figure 12-5: Loaded organic copper concentration fo the first test data set: industrial
measurement (dotted, black), PI+FF controlled in tle simulation environment (solid, blue), and
setpoint (red, dashed).
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Loaded arganic copper concentration
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Figure 12-6: Loaded organic copper concentration fo the first test data set: industrial
measurement (dotted, black), MPC+FF controlled in he simulation environment (solid, blue),

and setpoint (red, dashed).

For the second test data set, the setpoint trageniprmance of both controllers are
good for the loaded organic copper concentratisnjlastrated for Pl controllers in
Figure 12-7 and for the MPC in Figure 12-8. Thesktt is slightly lower than the
industrial measurement and the organic flow rageetore higher in order to achieve

higher copper extraction.

Loaded arganic copper concentration
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Figure 12-7: Loaded organic copper concentration fothe second test data set: industrial
measurement (dotted, black), Pl controlled in the imulation environment (solid, blue), and

setpoint (red, dashed).
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Loaded arganic copper concentration
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Figure 12-8: Loaded organic copper concentration fothe second test data set: industrial
measurement (dotted, black), MPC controlled in thesimulation environment (solid, blue), and
setpoint (red, dashed).

12.3.2

The decrease in variation in the rich electrolytgpper concentration with the
different control strategies is shown in Table 12FBe PI controllers and MPC are
almost as good at decreasing the average absototeby about 80% for both data
sets. Within the first data set, adding the feasléwd compensators decreases the
average absolute error between the measurementbhe@sdtpoints, especially for the
Pl control strategy, up to 80%. Within the secomdiadset, adding the feedforward
compensators decreased the average absolute @rtbiefP| control strategy to 80%
for the rich electrolyte copper concentration.

Variation of the rich electrolyte copper concentration

Table 12-3: The variation decrease for the rich etdrolyte copper concentration with the
different control strategies compared to the manuatontrol strategy.

AAE c(RE) AAE c(RE)
First test data set second test data set
Pl -75.15% -70.61%
Pl+FF -84.11% -82.17%
MPC -81.33% -78.74%
MPC+FF -91.75%

For the first test data set, the setpoint trackiog the rich electrolyte copper
concentration is more effective with the MPC witkedforward compensator, as
shown in Figure 12-10, than with the PI controllesigh feedforward compensators,
as presented in Figure 12-9. The rich electrolydpper concentration setpoint is
higher than the measurement, but the flow ratéghts/ lower.
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Rich electrolyte copper concentration
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Figure 12-9: Rich electrolyte copper concentrationfor the first test data set: industrial
measurement (dotted, black), PI+FF controlled in tle simulation environment (solid, blue), and

setpoint (red, dashed).
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Figure 12-10: Rich electrolyte copper concentrationfor the first test data set: industrial
measurement (dotted, black), MPC+FF controlled in he simulation environment (solid, blue),

and setpoint (red, dashed).

For the second test data set, the rich electralypper concentration setpoint tracking
is successful with both controllers, as shown flocdhtrollers in Figure 12-11 and for
MPC in Figure 12-12. The setpoint is almost atghee level as the measurement.
For this data set, the maximum flow rate constsaingstrict the increase in

production.
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Rich electrolyte copper concentration
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Figure 12-11: Rich electrolyte copper concentrationfor the second test data set: industrial
measurement (dotted, black), Pl controlled in the imulation environment (solid, blue), and

setpoint (red).
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Figure 12-12: Rich electrolyte copper concentrationfor the second test data set: industrial
measurement (dotted, black), MPC controlled in thesimulation environment (solid, blue), and
setpoint (red).

12.4 Concluding remarks

The control strategies were compared to the maoparating practice of the
industrial copper solvent extraction plant. Thequation was raised by up to 5% for
the first data set, and on the average by 3% fersécond data set. The variation
around the setpoints was decreased for the ridtrelgte copper concentration by 70
— 90%, and for the loaded organic copper conceoitrdty between 30 — 80%. The
performance increase was slightly higher with theQvithan with the PI controllers.
Adding the feedforward controllers improved thepsatt tracking performance for
the PI controllers especially.
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The results could be improved by adding an eleatroivg model that would provide
more realistic lean electrolyte copper concentretifor the solvent extraction model.
By stabilizing the rich electrolyte copper concatitm, the lean electrolyte copper
concentration would also have less variation aedotieduction could be increased.
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13 SUMMARY OF THE MODELING AND CONTROL
RESULTS FOR THE  COPPER SOLVENT
EXTRACTION PROCESS

A mechanistic model has been developed to destnbealynamic behaviour of an
industrial copper solvent extraction process. Tloeleh consists of a combination of
steady state and dynamical models. The models aemsnly the mass transfer of
copper, which is the main phenomenon in the indlbtrutilized mixer-settler
equipment. The McCabe-Thiele diagram based approsab chosen for the
equilibrium state model due to the availabilitytbé required measurements and its
wide industrial and academic acceptance. The dynambdels were based on
modified ideal mixing and plug flow assumptionseTdynamic mixing models utilize
the equilibrium state models to determine the doyuiim values.

The novelty of the modeling lies in the combinatairthese models. The mechanistic
model framework is general, and can be extendaepresent the behaviour of any
industrial copper solvent extraction plant.

The mechanistic model structure was modified taeegnt the case process plant
configuration and a process simulator was consdicthe model parameters were
fitted to the offline data, which were assumed ¢present the steady state of the
process. Verification of the mechanistic models wagied out with two industrial
online data sets. The different model structuresewkested in the simulation
environment, and the structure with the varied ldojuim and efficiency parameters
was found to fit the industrial data the best.

For control development purposes, the mechanistdets were linearized around
two operating points. The linear transfer functemmd state space models followed
adequately well the trends in the industrial dats.sThe single input-single output
controllers were designed on the basis of the tearisnction models. The linearized
system was found to be observable and controllable controlled variable —

manipulated variable pairing was performed usirggrtative gain array (RGA). The

PI controllers were designed and tested for setpiaoking and disturbance rejection
at the two operating points with very successfallts.

The model predictive control structure was chosernthie multi input - multi output
controller due to its good time delay handling gapularity in a range of other
industrial applications. The MPC was designed anlihsis of the eight order state
space model. The setpoint tracking and disturbaegection performance of the
model predictive controller was improved compawethat of the the PI controllers.

The controllers’ performances were compared tontia@ual control practice in the
simulation environment with two industrial datasseThe benefits of the control
system were verified by comparing the variatiortha controlled variables and the
copper tonnes produced. An optimization algorithraswdeveloped to give the
setpoints for the SISO and MIMO controllers. Wiltie tP| controllers the variation in
the rich electrolyte copper concentration was deswd by 70-80%, and with MPC
the decrease was around 80 - 90% on the averagecdpper mass production was
increased by about 3-5% with both types of corgrsl|
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14 CONCLUSIONS

Novel dynamic models and a novel simulation toeltfee industrial copper solvent
extraction process have been developed in this Widr& models facilitate studies on
the dynamic behaviour and development of contratesy for industrial copper
solvent extraction plants. The model structure i\ddéd into unit processes, and
therefore can be easily modified to represent wiffe plant configurations. With the
dynamic models the cause and effect relationshipth® process can be easily
illustrated, and an understanding of the procesxipies taught. A simulator, based
on the dynamic models, could be used as an op&rdataming tool and as a plant
optimization tool.

The dynamic models are necessary for the developofem control system. In this
work, two novel control strategies have been desigifhe single input-single output
and multi input — multi output control strategias the stabilizing control level, and
the optimization algorithm on the optimization leweere based on linearized process
models. Due to the simple controller structuresetlasn phenomenological process
models, the control system should be easily acdepyeindustrial partners. Testing
the control system in the simulation environmerdveid a significant increase in the
performance and profitability of the operation. §lgreatly encourages the testing of
the control system in an industrial plant.

In the future, the solvent extraction models ccaddextended by modeling the mixer
as series of two or more mixing units and addingkbaixing models for the settlers.
In most of the copper solvent extraction plants rtiger is series of two to three
mixing units and this addition might increase tleeumacy of the modeling. The
settler time delays could be set to be time variamd the model parameters could be
estimated from the online measurements directly.

Since the operating data from industrial plantsdféen problems with accuracy/ non-
existents of some measurements, it would be bealkefa use a pilot plant to collect
data, especially online data of variables thahie study were available only offline.
Thus, for further model development it is suggesiedcollect data from a well

instrumented pilot plant under normal operating dittons in different operating

points. Including online measurement copper comagans, pH, acidity and reagent
volume percent from all the unit processes of tlaatpwould enhance the modeling
as well as the control.

The dynamic solvent extraction model should be doetb with a dynamic
electrowinning model. This would enable even ma@alistic studies of the process
chain behaviour, and enable real time optimizabbra network of several solvent
extraction and electrowinning processes. Sincetrel@mning is a more complicated
process than solvent extraction, a simple approaobh as adaptive data based
models, could provide the easiest basis for funthedeling and control studies.

One critical issue in industrial copper solventragtion plants is the control of the

impurity level, for example of iron, manganese amibride levels. Since an x-ray

analyzer is also able to measure concentrationeset species, the impurities could be
added to the control system. Dynamic models thadtde the different mass transfer
paths of each species should therefore be developed

A ratio controller for the parallel and series Piléav should be added to the control
structure in order to optimize copper extractioonirthe total available PLS. If an
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electrowinning model is added, a new control stirectshould be designed. For the
combined model the electric current in electrowmgnishould be an additional
manipulated variable. Model predictive control a@bube a convenient control
algorithm for the combined system due to the gooi@raction and time delay
handling properties. Application of nonlinear mogetdictive control could further
enhance the control performance due to the ahditgxplicitly take into account the
process nonlinearities. However, the performancéhef nonlinear MPC algorithm
should be compared to the performance of the liMRC algorithm to justify the
development and maintenance costs associated dtistrial use of a more complex
process model.

With the dynamic models, the simulation tool and ttontrol system, a plant-wide
operator support system can be developed and tfampance and profitability of an
industrial copper solvent extraction process sigaiftly improved.
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