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Abstract
Background: Conventionally, the first step in analyzing the large and high-dimensional data sets
measured by microarrays is visual exploration. Dendrograms of hierarchical clustering, self-
organizing maps (SOMs), and multidimensional scaling have been used to visualize similarity
relationships of data samples. We address two central properties of the methods: (i) Are the
visualizations trustworthy, i.e., if two samples are visualized to be similar, are they really similar? (ii)
The metric. The measure of similarity determines the result; we propose using a new learning
metrics principle to derive a metric from interrelationships among data sets.

Results: The trustworthiness of hierarchical clustering, multidimensional scaling, and the self-
organizing map were compared in visualizing similarity relationships among gene expression
profiles. The self-organizing map was the best except that hierarchical clustering was the most
trustworthy for the most similar profiles. Trustworthiness can be further increased by treating
separately those genes for which the visualization is least trustworthy. We then proceed to
improve the metric. The distance measure between the expression profiles is adjusted to measure
differences relevant to functional classes of the genes. The genes for which the new metric is the
most different from the usual correlation metric are listed and visualized with one of the
visualization methods, the self-organizing map, computed in the new metric.

Conclusions: The conjecture from the methodological results is that the self-organizing map can
be recommended to complement the usual hierarchical clustering for visualizing and exploring gene
expression data. Discarding the least trustworthy samples and improving the metric still improves
it.

Background
Statistical data analysis usually consists of two successive
phases: exploratory and confirmatory. In the first phase,

the data is inspected and explored to form hypotheses that
are then verified in the second, confirmatory phase.
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For data sets measured with microarrays, the exploratory
phase is particularly important for two reasons. First, if the
number of plausible research hypotheses is very large, it is
advisable to narrow them down with thorough explora-
tion. A search for correlates of cancer types is one example.
Second, all microarray studies generate a large amount of
data as a side product. The database can be explored later
for other purposes.

In this paper, we study one of the main tasks of explora-
tory data analysis: visualization of similarity relationships
among high-dimensional data samples. We will focus par-
ticularly on the similarities, although the methods may
additionally reveal clusters (groups of mutually similar
data) and their similarity relationships. Visualizing simi-
larities in high-dimensional (from a few to hundreds of
dimensions) data items is a difficult task since the displays
can be at most three-dimensional in practice. In particu-
lar, it is impossible to project the samples in such a way
that all similarity relationships are preserved. Hence, the
methods need to make compromises regarding which
kinds of relationships to visualize.

On one side of the coin, the visualizations should be trust-
worthy, in the sense that samples appearing similar (prox-
imate) in the visualization can be trusted to be similar in
actuality. The other side of the coin is whether all original
proximities become visualized. This dualism is analogous
to precision and recall in information retrieval and
classification.

We argue that, for data exploration, it is more important
that the initial visualizations are trustworthy. The other
side of the coin is important but not equally so. The prox-
imities that are visible on the display are salient, and if
they are not trustworthy the whole display is misleading.
In contrast, if all similar samples cannot be placed proxi-
mate, the consequence is only that potentially useful dis-
coveries may be overlooked. Since both goals cannot be
achieved simultaneously, we argue that the compromise
should initially be made in favor of trustworthiness,
which will guarantee that at least a portion of the similar-
ities will be perceived correctly. Afterwards, the potentially
overlooked similarities may be hunted for by alternative
visualizations.

To our knowledge, studying trustworthiness of visualiza-
tions of similarity is a new idea. Projection methods have
been compared earlier for other kinds of data [1,2] but the
criterion has been the capability of preserving (all) the
actual distances instead of the proximities (neighbor-
hoods). This option biases the comparison in favor of
methods that directly aim at optimizing the distances. An
additional problem is that, in our opinion, the trustwor-

thiness of proximate samples is more important than
accurate preservation of all distances, as argued above.

We have designed a measure of how trustworthy the prox-
imate points on a display are. We use it to compare the
trustworthiness of three unsupervised methods, hierarchi-
cal clustering [3], self-organizing map (SOM) [4], and
multidimensional scaling (MDS) [5]. Of these, hierarchi-
cal clustering is an extremely popular tool in the bioinfor-
matics community [6–8], and self-organizing maps have
been applied as well [9–12].

In the first part of the paper, these unsupervised tools will
be applied to functional genomics data measured by DNA
microarrays in gene knock-out mutation experiments [8]
and in different tissues [13]. Functionally similar genes
are sought by visualizing the similarity of the expression
profiles of 1410 (after preprocessing) yeast genes, meas-
ured in 179 knock-out mutations. Likewise, the similarity
of 1600 mouse genes will be studied based on their
expression profile over 45 tissues.

In the second part of the paper, we address another major
question in visualization of similarity, and as a side note
in clustering in general: how to measure similarity. Gene
expression measurements in a variety of treatments poten-
tially include valuable information about the function
and co-regulation of genes. The important variation is,
however, hidden within all the biological and measure-
ment noise in the high-dimensional expression space.

For the knock-out mutation data, the question is which
mutations to select, and how to weight the mutations so
that the functionally meaningful variation is emphasized
and irrelevant variation suppressed. Moreover, the
weighting should be different for different genes, that is,
at different locations of the expression space.

The learning metrics principle [14,15] is a new approach to
finding important aspects of data, and expressing them in
a way usable by standard data analysis and data mining
methods. In general, the learning metrics principle refers
to using certain differential-geometric methods for deriv-
ing metrics to data spaces, based on the interrelationship
between the (primary) data set and auxiliary data. The
metrics are called "learning metrics" because they are
learned from the two data sets.

In this paper, metrics will be learned in two case studies to
measure differences between gene expression profiles,
and used in visualizing similarities of the profiles in the
yeast data. In the first experiment, the auxiliary data is
selected to be functional classes of the genes, and in a sec-
ond experiment the activity of the genes in the tissues of
another organism. The crucial assumption underlying the
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learning is that differences in primary data (gene expres-
sion) are assumed important if they cause changes in the
auxiliary data. The metric of the primary data space is
adjusted locally to measure only the important differ-
ences, as illustrated in Figure 1. The adjustment may be
different in different locations of the space.

Formally, in the first case study with the knock-out muta-
tion data [8], we have an expression data matrix contain-
ing measurements in n = 179 different treatments
(columns) for N = 1400 different genes (rows). We know
the functional class for each of the N genes that we will
analyze. The method is generally applicable in such set-
ups, assuming n is not too large compared to N, to avoid
overfitting of the metric. Technical details of how to esti-
mate the metric are given in the Methods section.

We will use the new metric to find the set of genes for
which the new metric is the most different from the usual
similarity measure (correlation or Euclidean); their visual-
izations and clusterings with the usual metric are possibly
misleading. Finally, the similarities of all genes in the new
metric will be visualized.

The methods are, additionally, briefly validated with
another data set. The primary data are the gene expression

profiles of human genes measured in different tissues
[13], and the auxiliary data are the activities of the
homologous mouse genes in a set of tissues. The abstract
setting is almost identical to that in the yeast study: each
human gene belongs to one or multiple classes that corre-
spond to the mouse tissues. If the homologous mouse
gene is expressed in the tissue number i, the human gene
belongs to the class number i.

The necessary condition for applying the learning metrics
principle is that a suitable auxiliary data set is available.
This is the case when learning metrics-based exploratory
analysis of the primary data is used to complement super-
vised learning (regression, classification). When classify-
ing genes to different functional groups or tissues to
disease types, for example, learning metrics-based visuali-
zations can reveal relationships among the groups, high-
light outliers, or even help the discovery of new groups.
These kinds of auxiliary data are typically constructed
manually, and hence are costly. Alternatively, the auxiliary
data can be constructed automatically to summarize
another data set, for example the mouse gene expressions
in this paper. Then the aspects of the primary data that are
related to the auxiliary data will become emphasized in
the visualizations.

In summary, this paper (i) compares visualizations gener-
ated by a set of commonly used methods with a new cri-
terion, trustworthiness; and (ii) presents a method for
adjusting the metric to further improve the visualizations.

Results
Trustworthiness of the visualizations
We consider a projection onto a display trustworthy if all
samples close to each other after the projection can be
trusted to have been proximate in the original space as
well. Measuring such trustworthiness requires specifying
what is meant by 'proximate', and how to quantify possi-
ble non-trustworthiness of the proximate samples.

The details of the measures and their motivation are given
in the Methods Section. In summary, we use simple non-
parametric definitions to avoid biases in favor of any of
the projection methods. The k nearest samples will be
regarded 'proximate', and results will be reported for sev-
eral values of k. If the proximate samples are not also
neighbors in the original space, their rank distance from
the neighborhood will be measured to quantify the mag-
nitude of error. Our trustworthiness measure M1 (Eq. 3) is
essentially the average trustworthiness over all data.

We compared the trustworthiness of four visualization
methods: Sammon's projection, non-metric MDS, SOM,
and hierarchical clustering (see the Methods Section). All
were applied in the standard textbook way. Sammon's

Schematic illustration of the change of metric by functional classes of genesFigure 1
Schematic illustration of the change of metric by functional 
classes of genes. The expression of three genes, x, y, and z, 
has been measured in two treatments. The ellipses are kinds 
of contour lines; compared to the point x, on each line the 
distribution of functional classes differs by the same amount. 
In the new metric that takes the contour lines into account 
(on the right), y is much closer to x. A gene at y is more 
likely to have a similar functional classes than at z, which is 
expressed by the new metric.
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mapping and non-metric MDS were selected to represent
MDS methods since they have beneficial properties; Sam-
mon's mapping emphasizes the preservation of short dis-
tances which are the focus of our trustworthiness measure
as well. Non-metric MDS tries to preserve rank orders of
distances, which is the error measure we use. For hierar-
chical clustering, there are lots of variants; we compared
all variants available in the Cluster program by Eisen [16]:
centroid linkage, complete linkage, and single linkage.
Complete linkage gave clearly better results than the other
variants and is the only one included in the results below.

All methods used the same inner product (correlation)
metric, which is the most commonly used metric for gene
expression data sets. Additional justification for the choice
is that correlation metric works well for classification of
the specific yeast dataset (preliminary studies). It is imper-
ative to use the same metric for all methods to keep the
results comparable. In principle, the whole study could be
repeated for different metrics. However, it is unlikely that
the conclusions would change; in an earlier experiment
[17] on Euclidean metrics for non-biological data sets, the
conclusions were the same.

Trustworthiness
The results are shown in Figure 2. We focus on trustwor-
thiness of relatively small neighborhoods, of the order of

some tens of genes, which are perceived to be most sali-
ently proximate in displays such as Figure 8. In this range,
hierarchical clustering is the best for the smallest neigh-
borhoods (k < 10), and SOM after that. The excellent per-
formance of hierarchical clustering at very small
neighborhood sizes was to be expected as it explicitly con-
nects the closest points first.

Preservation of the original neighborhoods
As discussed in the Background Section, all methods make
a compromise between trustworthiness and preservation
of the original proximities. The latter kinds of errors result
from discontinuities in the projection; we measured them
by how well neighborhoods of data points in the original
data space were preserved. Non-parametric measures were
again used to avoid biases. The neighborhood of size k of
an expression profile is defined as those k profiles that
have the smallest distance (here, strongest correlation)
from the profile. If a profile becomes projected away from
the neighborhood, the error is quantified by rank dis-
tances on the display. The measure M2 (Eq. 4; for details,
see the Methods Section) summarizes the errors for all
expression profiles. For these data sets, the SOM and mul-
tidimensional scaling (Sammon and non-metric MDS)
are the best for preserving small (k < 50) original
neighborhoods (Fig. 3). Hierarchical clustering is by far
the worst.

Trustworthiness of the visualized similarities (neighborhoods of k nearest samples)Figure 2
Trustworthiness of the visualized similarities (neighborhoods of k nearest samples). Sammon: Sammon's mapping, NMDS: non-
metric multidimensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with the ultrametric distance measure 
and with the linear distance measure. RP: Random linear projection is the approximate worst possible practical result (the 
small standard deviation over different projections, approximately 0.01, is not shown). The theoretical worst case, estimated 
with random neighborhoods, is approximately M1 = 0.5. a) Yeast data. b) Mouse data.
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Improving the trustworthiness
Trustworthiness can be improved by discarding the least
trustworthy data samples and analyzing them separately.
Figure 4 shows the increase of trustworthiness as the
number of discarded samples is increased. It is striking
that although the performance of most of the other meth-
ods increases rapidly, they do not reach even the starting
point of the SOM before nearly one third of the data set
has been discarded. The ultrametric measure (see the
Methods Section) of similarity for hierarchical clustering
has the smallest improvement rate.

Visualization of functional similarity by learning metrics
A main problem in comparing gene expression profiles is
to choose which properties to compare, that is, how to
define the similarity measure or, equivalently, the metric.
When comparing knock-out mutation profiles of genes,
the relevant mutations need to be selected and scaled suit-
ably for each gene.

There is not enough prior knowledge to do this manually,
and our goal is to learn automatically the proper metric
from interrelationships between the expression data set
and another data set that is known to be relevant to gene
function: the functional classification of the genes. In an
additional study, the primary data are the gene expression
profiles of human genes measured in different tissues, and

the auxiliary data used to guide the learning are the activ-
ities of the homologous mouse genes in a set of tissues
[13].

Details on how to learn the metrics are described in the
Methods Section [14,15]. In summary, the metric is such
that functional classes change uniformly in the new met-
ric. If some of the knock-out mutations have only a weak
correlation with the functional classes, they contribute
only weakly in the measured similarity among expression
profiles. The similarity measure focuses on those differ-
ences that are relevant for the functional classes.

The metric is defined as a local scaling of the expression
space, which makes it very general; the contributions of
the knock-out profiles to the similarities may be different
for different genes.

We applied the new metric to one of the visualization
methods, the SOM, and compared the results with the
same method in the standard correlation metric. For tech-
nical details of combining of the SOM and the learning
metrics, see the Methods Section.

We began by measuring quantitatively whether SOMs in
learning metrics represented the functional classes better
than those in the standard inner product metric. In short,

Capability of the visualizations to preserve the similarities (the neighborhoods of size k) of the original data spaceFigure 3
Capability of the visualizations to preserve the similarities (the neighborhoods of size k) of the original data space. Sammon: 
Sammon's mapping, NMDS: non-metric multidimensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with 
the ultrametric distance measure and with the linear distance measure. RP: Random linear projection is the approximate worst 
possible practical result (the small standard deviation over different projections, about 0.01, is not shown). The theoretical 
worst case, estimated with random neighborhoods, is approximately M2 = 0.5. a) Yeast data. b) Mouse data.
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a standard estimator is used to predict the (probability)
distribution of functional classes for each SOM unit, and
when a new expression profile is projected to the SOM,
the accuracy of the prediction is computed. A standard
accuracy measure, the log-likelihood, was used. The pre-
diction is derived from the same probability estimator
that is used for computing the learning metrics (cf. the
Methods Section). The estimator has a free parameter
called 'kernel width'; the value that produced the best
results was selected for the subsequent experiments. The
results shown in Figures 5 and 6 confirm that the new
metric yielded more accurate results for the two data sets
for a wide parameter range.

We finally used the SOM in learning metrics to visualize
similarity relationships of the knock-out expression pro-
files of yeast genes, and picked up sample findings as
demonstrations. To make the display as trustworthy as
possible, 10% of the least trustworthy genes were dis-
carded. If desired, the genes most similar to them can be
later sought by directly comparing expression profiles.
The entire analysis process is summarized in diagram
form in Figure 7.

The learning metrics SOM is shown in Figure 8. The dis-
play visualizes similarity relationships; if two genes are
proximate in it, they can be reasonably well trusted to
behave similarly. Clusteredness of the data is shown by
the U-matrix visualization of the SOM (Figure 8. for
details see the Methods Section), revealing several lighter
areas with mutually relatively similar genes, and darker
areas in between, where the genes are relatively more
different.

The novelty in the display, compared with standard SOM
displays of gene expression data, is in the metric. Proxi-
mate genes both behave similarly in the mutation experi-
ments, and are likely to have similar functional classes.
Knowledge about the functional classes has been incorpo-
rated in the theoretically justified method described in the
Methods Section, such that the display still shows cor-
rectly similarities among the expression profiles. The
main thing that has changed is that the mutation experi-
ments are weighted to bring forth better the differences
related to gene function.

We will next analyze as demonstrations three sample find-
ings from the SOM. There is an interesting small group or
subcluster of nine genes (number 1 in Fig. 8) associated

Improvement of trustworthiness of the yeast data visualiza-tions when q least trustworthy genes are discarded from the visualizationFigure 4
Improvement of trustworthiness of the yeast data visualiza-
tions when q least trustworthy genes are discarded from the 
visualization. Initially, the size of the neighborhood was k = 
20 but was gradually decreased to keep its ratio to the 
number of the remaining data points constant. Sammon: Sam-
mon's mapping, NMDS: non-metric multidimensional scaling, 
SOM: self-organizing map, HC: hierarchical clustering, with 
the ultrametric distance measure and with the linear distance 
measure. The sudden steps in the trustworthiness of hierar-
chical clustering coincide with the changes of the neighbor-
hood radius k.
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Accuracy of SOMs of knock-out yeast gene expression data in representing the functional classes of the genesFigure 5
Accuracy of SOMs of knock-out yeast gene expression data 
in representing the functional classes of the genes. Techni-
cally, the goodness measure is the log-likelihood of the esti-
mator of the conditional probability density of the classes at 
the closest SOM unit for each data point. The horizontal axis 
is the 'smoothness' of the density estimator. Dashed line: 
SOM in learning metrics, dotted line: SOM in inner product 
metrics, solid line: the approximate upper limit, i.e. the esti-
mate computed at the data point instead of at the SOM unit.
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with mitochondria. Four of the genes are additionally
associated with branched-chain amino acid biosynthesis
(YJR016C, YHR208W, YLR355C, YCL009C). These were
grouped with three genes related to fermentation and car-
bohydrate utilization (YOL059W, YER073W, YKL120W),
and genes involved in the threonine and lysine, as well as
leusine biosynthesis (YDR234W, YER086W). All the genes
with a known function in this cluster were located to
mitochondria.

Assuming the new metric is more informative than the
standard correlation metric, it is particularly interesting to
know for which genes the metric has changed the most.
All old analyzes with the standard correlation metric have
potentially yielded misleading results. Such genes were
sought by comparing how many of the closest neighbors
were different in the two metrics, and emphasized by
underlining the gene names in Figure 8.

The area number 3 is an example where the metric has
changed. The analysis of functional classifications and
annotations of the area revealed that 8 out of the 17 genes
were associated with transcription and DNA repair
(YMR179W, YAR007C, YBR088C, YDR501W, YDL101C)
or cell cycle (YAL024C, YHR153C, YMR198W). Two genes

are protein tyrosine kinases (YDL101C, YGL179C), and as
the former is involved in DNA damage response, it is pos-
sible that also YGL179C mediates similar kind of func-
tion. The gene YJL196C may be an outlier in this area; it is
associated with fatty acid elongation. The rest of the genes
in this cluster have an unknown function.

Finally, we sought the display for groups of genes belong-
ing to known pathways. Some of these groups occurred
proximate on the SOM. The genes involved in purine bio-
synthesis occurred together on the area number 2. These

Accuracy of SOMs of human gene expression data in repre-senting expression of homologous mouse genesFigure 6
Accuracy of SOMs of human gene expression data in repre-
senting expression of homologous mouse genes. Technically, 
the goodness measure is the log-likelihood of the estimator 
of the conditional probability density of the classes at the 
closest SOM unit for each data point. The horizontal axis is 
the "smoothness" of the density estimator. Dashed line: SOM 
in learning metrics, dotted line: SOM in inner product met-
rics, solid line: the approximate upper limit, i.e. the estimate 
computed at the data point instead of at the SOM unit.
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and other proximate genes had been classified under
nucleotide metabolism. In addition, the gene YDL241W,
whose function is unknown, was located nearby. Hence,
it might be worthwhile to examine closer whether this
gene is also related to nucleotide metabolism or the
purine biosynthesis pathway.

Conclusions
Comparison of unsupervised methods for visualizing
similarity of gene expression profiles revealed that the
self-organizing map (SOM) was the most trustworthy
except for the most similar gene expression profiles, where
hierarchical clustering was the best. The less important
other side of the coin is whether there are discontinuities
in the mapping. In this latter regard, the relative goodness
of the methods depends on the data (see also [17]). In the
comparisons with gene expression data, the SOM has
hitherto performed well.

The learning metrics principle was then applied to derive
a new location-specific metric based on functional classes
of the genes. The resulting metric measures changes in
gene expression but weights the changes according to how
much they contribute to changes in the functional classes.
The metric is a step toward a more comprehensive picture
of the functional similarity of the genes, incorporating
prior biological knowledge in the measurements.

The basic learning metrics method considers the auxiliary
data as a classification of the primary data into mutually
exclusive classes. This restriction can be easily relaxed by
considering multi-class data as samples from the class dis-
tribution at the point. Generalizations to hierarchical
classifications and other more general types of auxiliary
data are also possible and will be considered in later work.

Methods
Data
Three different gene expression data sets were used in the
experiments.

The first data set was provided by Hughes et al. [8]. It con-
sists of expression measurements for all yeast (Saccharo-
myces cerevisiae) genes in 300 knock-out mutations. They
had derived error estimates based on replicated measure-
ments, and tested whether the expression of the genes dif-
fered significantly from noise. We selected a subset of the
data containing saliently expressed genes and mutations
that induced expressions. Only genes and mutations with
at least two measurements that differed significantly from
noise (P < 0.01) and were expressed over 2-fold when
compared to the control were selected, resulting in a data
set of the size of 1410 genes measured for 179 mutations.

We have (similarly as in [18]) compared different pre-
processing methods (normalization of measurement
error, standard deviation, length and/or mean), with the
classification error of a k-nearest neighbor classifier as the
performance measure. For this data, the following alterna-
tive gave the best performance: the data was preprocessed
by dividing each measurement by its estimated measure-
ment error, and then the standard deviation of each muta-
tion was normalized. Finally, all gene expression profiles
were normalized to unit length.

The auxiliary data for the first gene expression data set was
selected from the MIPS functional classification [19] for
yeast. The classification consists of over two hundred
classes at different levels of hierarchy. Many of the func-
tional classes are known to correlate with gene expres-
sions, although some classes undoubtedly are very
heterogeneous at the level of gene expression. A set of 46
classes were selected from the various levels of functional
classification, in order to obtain non-hierarchical and a
priori as coherently behaving classes as possible.

The second data set [13] was used to confirm the findings
on trustworthiness. Expression of over 13000 mouse
genes had been measured in 45 tissues. We selected an
extremely simple filtering method, similar to that origi-
nally used in [13]. Of the mouse genes significantly (aver-
age difference in Affymetrix chips, AD > 200) expressed in
at least one of the 45 tissues, a random sample of 1600
genes was selected, preprocessed as described above, and
visualized based on their profile of expression in the tis-
sues. The variance in each tissue was normalized to unity.

The third data set was created for an additional validation
of the learning metrics. The data were taken from the same
publication as the second one [13], but now consisted of
over 13000 human genes measured in 46 tissues. From
these genes, a set of genes with known homologues in
mouse and expressed (AD > 200) at least in one human
tissue, were selected, resulting in 3724 genes. The
comparison of different preprocessing methods (loga-
rithm, normalized tissue variances, none) and distance
metrics (Euclidean, inner product) for the third data set by
k-nearest neighbors method resulted in the use of inner
product as a similarity metric, and with no
normalizations.

The auxiliary data for the third, human gene expression
data was derived from the expression level of homologous
mouse genes. Each class corresponded to one mouse
tissue, and human gene was assigned to the class, if the
homologous mouse gene was clearly expressed in that
tissue. The limit was that it must belong to the fourth
quartile of that gene's expression over all mouse tissues.
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Visualization of the similarity relationships of the yeast genes with a SOM in learning metricsFigure 8
Visualization of the similarity relationships of the yeast genes with a SOM in learning metrics. The names of the genes have 
been marked on the SOM units (every second hexagon) onto which they have been mapped, and the units having no genes 
have been marked with dots. The hexagons in between each pair of SOM units are so-called U-matrix units (see the Methods 
Section) whose gray shades indicate clusteredness in the region (light: cluster; dark: sparse area). The 202 genes for which the 
metric is the most different from the usual inner product metric have been underlined. Three sample areas analyzed briefly in 
the text have been circled and numbered.
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Only those mouse tissues (21) for which there was an
equivalent in human tissues were considered as classes.

Methods for visualizing similarity
Hierarchical clustering constructs a tree or dendrogram
that visualizes similarity and clusteredness of data. For an
example tree of gene expression data, see [7]. Data
samples are located in the leaves of the tree, and similar
samples occur in proximate branches. There are several
variant methods for constructing the trees [3]. Here we
will use the Cluster program by Eisen [16] that
progressively agglomerates pairs of most similar clusters
together. The program offers three variants of the cluster-
ing algorithm that differ on how the distance between
clusters is defined. The first variant is centroid linkage,
where the distance between clusters is defined as the dis-
tance between the means of the clusters. The second vari-
ant is complete linkage, where the distance between
clusters is defined as the maximum distance between
points in the clusters to be joined, and the third variant is
single linkage, where the distance between clusters is
defined as the minimum distance between points in the
two clusters.

The tree produced by the clustering algorithm can be cut
at any level to obtain disjoint clusters. Here, we are not
interested in clusters per se, however, but in the visualiza-
tion of similarity. The hierarchical clustering algorithms
do not directly define such similarity, so we have devised
two different definitions that are the best we could think
of. The simple method is to order the leaves into a linear
order according to how far from each other they are in the
tree. The ordering is not unique; we have fixed it by using
the method recommended by Eisen: in non-unique cases,
use the order provided by a one-dimensional SOM.

Since it can be argued that ordering by the one-dimen-
sional SOM is somewhat arbitrary, we additionally
include an alternative that is in a way more justified. Dis-
tance between leafs is the distance measure directly
induced by the dendrogram, that is, the ultrametric dis-
tance [3].

The self-organizing map (SOM) [4] is an algorithm that
maps high-dimensional data nonlinearly onto a low-
dimensional lattice in a topology-preserving manner. As
with hierarchical clustering, the SOM can be used as both
a nonlinear projection and a clustering method; clusters
can be extracted from the computed SOM (see e.g. [20]).

The SOM is a discrete lattice of map nodes (marked by the
dots and labels in Fig. 8). There is a model vector  mi
attached to each map unit i. A data sample x is projected
onto the SOM display to the node having the closest
model vector mw, defined in the basic SOM by

Here d is the distance measure, which in this paper is the
inner product (correlation).

The SOM algorithm computes such values for the model
vectors that (i) the projection becomes ordered: proxi-
mate samples on the SOM display are similarly proximate
in the data space, and (ii) the projection models the data
distribution; each model vector becomes the centroid of
all data samples mapped to it and to its neighborhood on
the map display.

There are several variants of the SOM algorithm; here we
describe the original sequential one that we will later com-
plement with new metrics. We used this 'vanilla' version
of the algorithm in its basic form and without any tricks
not found in basic textbooks, to avoid biasing the study in
favor of SOMs.

During the iterative computation of the SOM, at step t a
data sample x(t) is selected randomly, and the model vec-
tors are updated toward the data sample according to

If inner product is used as the distance measure, the
model vectors should be normalized after the adaptation
step. Here, hw(x), i = α(t) exp (-d(w,i) / 2σ(t)2) is the neigh-
borhood function, where d(w,i) is the distance of the units w
and i on the SOM lattice, and α(t) and σ(t) are piecewise-
linearly decreasing coefficients.

Clustering can be visualized on a SOM display using the
U-matrix [[21], see Fig. 8]. In the gray-shade display, the
light areas contain genes that are mutually more similar
than on the dark areas. Hence, very light areas are clear
clusters and dark stripes are gaps in between them. Tech-
nically, a hexagon is added in between each pair of SOM
units and shaded according to the distance between their
model vectors. The shade of the hexagons of the map
units is the median of the neighboring hexagons.

On a SOM display, the similarity can be defined simply as
the distance on the display plane. This measure does not,
however, take into account the density of the model vec-
tors that is visualized by the U-matrix. Hence, we have
used distances along minimal paths on the map lattice,
with weights equal to the distances between the model
vectors. On light areas, such distances are shorter and on
dark areas they are longer.
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The SOMs of the yeast gene expression data were of the
size of 20 × 25 map units (about 3 genes in a unit on the
average), and were computed in two phases for a conserv-
ative number of iterations. In the first, organizing phase
σ(t) decreased from 11 to 3, and α(t) from 0.2 to 0.02. In
the second, fine-tuning phase σ(t) decreased from 3 to 1,
and α(t) from 0.02 to zero. The best map of 4 randomly
initialized SOMs was selected according to the (local) cost
function [4].

Similarly, the SOMs of the mouse gene expression data
were of the size of 22 × 27 map units (about 2.7 genes in
a unit on the average). In the first, organizing phase σ(t)
decreased from 11 to 3, and α(t) from 0.2 to 0.02. In the
second, fine-tuning phase σ(t) decreased from 3 to 1, and
α(t) from 0.02 to zero. The best map of 7 randomly ini-
tialized SOMs was selected according to the (local) cost
function [4].

Multidimensional scaling (MDS) attempts to represent
the data as points in a small-dimensional space such that
all pairwise distances of data points are preserved. It can
be used for constructing a non-linear projection from the
high-dimensional expression space to a two-dimensional
display plane.

There are several variants of multidimensional scaling that
differ in the details of the cost function. We will compare
two of them, Sammon's projection and non-metric multi-
dimensional scaling (NMDS), that have favorable proper-
ties for the used trustworthiness measure. Sammon's
projection [22] minimizes the mean-square error in the
pairwise distances, normalized by the original distances.
Hence, it emphasizes the preservation of short distances,
which is important for trustworthiness. Non-metric mul-
tidimensional scaling [23] attempts to preserve the rank
order of the distances; the rank order is used to measure
errors in the trustworthiness measure.

Sammon's projection and non-metric multidimensional
scaling do not have parameters to select, but the optimi-
zation can get caught in local minima, depending on the
initialization. We computed the Sammon's projection
with 10 different random initializations and selected the
one with the smallest cost. Non-metric multidimensional
scaling was computed only once because of the very long
computational time.

Measuring trustworthiness and detecting genes for which 
the visualization is suspect
When visualizing similarities of data samples, the local
similarities are the most salient: the first perceptions are
which samples are proximate, and which proximate sam-
ples form groups. Hence, to measure how trustworthy a
visualization is, we should focus on the preservation of

local similarities, i.e., the proximities. To avoid biases in
the comparison studies, we will use a simple non-para-
metric measure of whether samples within a set of closest
samples on the display are in fact closest in the expression
space as well.

Let us first consider some alternative measures. The most
straightforward way of defining the neighborhood would
be to fix a radius and include all samples within the ball
with the fixed radius. The problem would be that, since
the density of data varies, the amount of data within the
ball would similarly vary considerably as well. Addition-
ally, selecting a good neighborhood radius would require
prior knowledge of the data density. These problems can
be solved by defining the neighborhood to consist of the
k nearest neighbors, where k is selected based on the
number of nearby samples we are interested in analyzing.

The second decision that needs to be made is how to
measure similarity preservation within the neighborhood
of proximate samples. In principle, preservation of all dis-
tances could be directly measured, but we discounted this
possibility because it would bias the study in favor of
MDS methods that try to directly preserve all distances.
We considered it enough that the samples are within the
neighborhood. In any case, preservation of distances
within the neighborhoods is taken into account when one
varies the size of the neighborhood, which we did in the
experiments.

The third decision that needs to be made is how to meas-
ure errors in trustworthiness for the samples that are
visualized proximate but are in fact different. The simplest
measure would be counts of erroneous data samples. This
would, however, be only a rough measure and hence not
very discriminative between the methods. Hence, we
decided to measure the distance from the neighborhood
even though it might bias the results slightly towards
favoring MDS methods. We made the (arbitrary) decision
to measure the distances in a rank scale.

Based on the above reasoning, we ended up in a measure
of assessing the trustworthiness of visualizations. We
consider a projection onto a display trustworthy if the set
of k closest neighbors of a sample on the display are also
close by in the original space. This is measured for all data
samples.

More formally, let N be the number of data samples and
r(xi, xj) be the rank of the data sample xj in the ordering
according to distance from xi in the original data space.
Denote by Uk(xi) the set of those data samples that are in
the neighborhood of sample xi in the visualization display
but not in the original data space. Our measure of trust-
worthiness of the visualization, M1, is defined by
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where A(k) = 2/(Nk (2N - 3k - 1)) scales the values
between zero and one. The worst attainable values of M1
may, at least in principle, vary with k, and were estimated
in Figures 2 and 3 with random projections and with ran-
dom neighborhoods.

Trustworthiness is one side of the coin; the other is that
some neighborhoods of k points in the original space may
not be preserved because of discontinuities in the projec-
tion. As a result of the latter kinds of errors, not all prox-
imities existing in the original data are visible in the
visualization.

The errors caused by discontinuities may be quantified as
follows, analogously to the errors in trustworthiness. Let
Vk(xi) be the set of those data samples that are in the
neighborhood of the data sample xi in the original space

but not in the visualization, and let (xi, xj) be the rank
of the data sample xj in the ordering according to distance
from xi in the visualization display. The effects of discon-
tinuities of the projection are quantified by how well the
original neighborhoods are preserved, measured by

In case of ties in rank ordering, all compatible rank orders
are assumed equally likely, and averages of the error meas-
ures are computed.

There exists a simple way of increasing the trustworthiness
of a display: discarding the samples for which the display
is the least trustworthy, and analyzing them separately.
We will do this by iteratively finding the data sample that
reduces most the trustworthiness, and removing it from
the visualization. The process is continued until a suitable
number of the most untrustworthy data samples have
been removed, or a desirable level of trustworthiness has
been attained. A similar method can be used to find where
the visualization has broken the continuity of a neighbor-
hood. The idea is to study which neighborhood sample
pairs reduce M2 the most. Locating the sample represent-
ing the center of the neighborhood and the sample miss-
ing from the neighborhood on the visualization will
reveal if separate areas on the display are in fact close by
in the data space.

Learning metrics
The learning metrics principle
The learning metrics [14,15] are based on the assumption
that changes in the primary data space are important if
they cause changes in another (auxiliary) data space.

Formally, denote a primary data sample by x and its func-
tional class by c. During learning, the data occurs in pairs
(x, c). The squared distance measure of the data space is
changed locally to measure the important differences, that
is, the differences among the distributions of the func-
tional classes p(c|x). When the differences are measured
by the Kullback-Leibler divergence DKL, the distances
become locally

 (x, x + dx) ≡ DKL (p(c|x)||p(c|x + dx)) = dxT J(x) dx,

(5)

where J(x) is the Fisher information matrix with parame-
ters x. The conditional distribution p(c|x) can be com-
puted using the Bayes rule from a standard estimator for
the joint distribution, such as Mixture Discriminant Anal-
ysis (MDA2) [24], or obtained directly from a "mixture of
experts" [25]. For more details see [14]. The metric can in
principle be extended to non-local distances by comput-
ing (approximate) path integrals, but for computational
reasons we resort to the local approximations. The
approximation has worked satisfactorily for nearest-
neighbor searches in empirical tests, particularly when
complemented with a kind of regularization: in practice
the metric will often be singular for very high-dimen-
sional spaces, and hence we will add to it a portion of the
Euclidean distance,

 (x, x + dx) ≡ dxT [λI + (1 - λ) J(x)] dx,  (6)

where I is the identity matrix. The coefficient λ is selected
using a validation set. The regularization makes the local
approximations more feasible for non-local distances as
well.

A difference in this paper, compared to the earlier works
on learning metrics, is that the yeast data set lies on the
surface of a hypersphere. For such data, the density esti-
mators should also be defined on the hypersphere. Tech-
nically, instead of using Gaussian kernels, we used the so-
called von Mises-Fisher kernels that are analogs of Gaus-
sians on the hypersphere [26]. (We used 30 kernels.) The
local distances (6) are still Euclidean on the hypersphere,
but in practice non-local distances also need to be com-
puted. When computing distances from x, we have pro-
jected all vectors to the tangent plane of the hypersphere
at x, with the distance from x scaled to be equal to the arc
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length from x. Distances on the tangent plane are then
computed with (6).

Self-organizing map in the new metric
In the first step of a SOM iteration, the best matching unit
is sought in the new metric dL (Eq. 6; cf. also the
discussion after the equation). The steepest descent
update rule for learning metrics turns out [14] to be the
same as in the Euclidean metric. Here, the update is
applied in the tangent plane, and the results are trans-
formed back to the hypersphere. It can be shown that the
resulting update rule moves mi toward x along the shortest
route on the hypersphere, such that their angle reduces by
the fraction given by hwi(t).

The underlined genes in Figure 8, for which the metric had
changed the most, were found as follows. We sought 20
nearest neighbors of each gene, in both the old inner
product metrics and the learning metric. The two sets were
compared, and the proportion of neighbors that had
remained the same was computed. The 202 genes with the
smallest proportion (at most 13 neighbors remained the
same) were selected.

Authors' contributions
SK, EC, JN, and PT developed the overall plan. SK, JN and
MO were responsible for the results with learning metrics
(MO did the actual simulation). SK and JV were responsi-
ble for measuring the trustworthiness of the visualization
methods (JV did the simulations). PT and EC carried out
the biological analysis of the results. All authors read and
approved the final manuscript.

Acknowledgments
This work was supported by the Academy of Finland, in part by grants 
50061 and 52123. We wish to thank Mr. Arto Klami and Mr. Leo Lahti for 
help with some of the simulations.

References
1. Mao J and Jain AK: Artificial neural networks for feature extrac-

tion and multivariate data projection. IEEE Trans Neural
Networks 1995, 6:296-317.

2. Goodhill GJ and Sejnowski TJ: Unifying objective function for
topographic mappings. Neural Comput 1997, 9:1291-1303.

3. Jain AK and Dubes RC: Algorithms for Clustering Data New Jersey: Pren-
tice Hall, Englewood Cliffs; 1988. 

4. Kohonen T: Self-Organizing Map 3rd edition. Berlin: Springer; 2001. 
5. Borg I and Groenen P: Modern Multidimensional Scaling Springer; 1997. 
6. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd

C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander
ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ and Meyerson M:
Classification of human lung carcinomas by mRNA expres-
sion profiling reveals distinct adenocarcinoma subclasses.
Proc Natl Acad Sci USA 2001, 98:13790-13795.

7. Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis
and display of genome-wide expression patterns. Proc Natl
Acad Sci USA 1998, 95:14863-14868.

8. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour
CD, Bennett HA, Coffrey E, Dai H, He YD, Kidd MJ, King AM, Meyer
MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte DD,
Chakraburtty K, Simon J, Bard M and Friend SH: Functional discov-

ery via a compendium of expression profiles. Cell 2000,
102:109-126.

9. Kaski S, Nikkilä J, Törönen P, Castrén E and Wong G: Analysis and
visualization of gene expression data using self-organizing
maps. In Proceedings of NSIP-01, IEEE-EURASIP Workshop on Nonlinear
Signal and Image Processing: June 3–6 2001; Baltimore, Maryland; Pro-
ceedings on CD-ROM 2001.

10. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrowsky E,
Lander ES and Golub TR: Interpreting patterns of gene expres-
sion with self-organizing maps: Methods and application to
hematopoietic differentiation. Proc Natl Acad Sci USA 1999,
96:2907-2912.

11. Törönen P, Kolehmainen M, Wong G and Castrén E: Analysis of
gene expression data using self-organizing maps. FEBS Lett
1999, 451:142-146.

12. Torkkola K, Gardner RM, Kaysser-Kranich T and Ma C: Self-organ-
izing maps in mining gene expression data. Information Sciences
2001, 139:79-96.

13. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth
AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM,
Schultz PG and Hogenesch JB: Large-scale analysis of the human
and mouse transcriptomes. Proc Natl Acad Sci USA 2002,
99:4465-4470.

14. Kaski S, Sinkkonen J and Peltonen J: Bankruptcy analysis with self-
organizing maps in learning metrics. IEEE Trans Neural Networks
2001, 12:936-947.

15. Sinkkonen J and Kaski S: Clustering based on conditional distri-
butions in an auxiliary space. Neural Comput 2002, 14:217-239.

16. EisenLab  [http://rana.lbl.gov/]
17. Venna J and Kaski S: Neighborhood preservation in nonlinear

projection methods: An experimental study. In Proceedings of
the International Conference on Artificial Neural Networks – ICANN 2001;
Vienna Edited by: Dorffner G, Bischof H, Hornik K. Berlin: Springer;
2001:485-491. 

18. Oja M, Nikkilä J, Törönen P, Wong G, Castrén E and Kaski S: Explor-
atory clustering of gene expression profiles of mutated yeast
strains. In Computational and Statistical Approaches to Genomics Edited
by: Zhang W, Shmulevich I. Boston, MA: Kluwer; 2002:65-78. 

19. Mewes HW, Frishman D, Guldener U, Mannhaupt U, Mayer K,
Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S and Weil B:
MIPS: a database for genomes and protein sequences. Nucleic
Acids Res 2002, 30:31-34.

20. Vesanto J and Alhoniemi E: Clustering of self-organizing map.
IEEE Trans Neural Networks 2000, 11:586-600.

21. Ultsch A: Self-organizing neural networks for visualization
and classification. In Information and Classification Edited by: Opitz O,
Lausen B, Klar R. Berlin: Springer-Verlag; 1993:307-313. 

22. Sammon JW Jr: A nonlinear mapping for data structure
analysis. IEEE Trans Comput 1969, C-18:401-409.

23. Kruskal JB: Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis. Psychometrica 1964, 29:1-27.

24. Hastie T, Tibshirani R and Buja A: Flexible discriminant and mix-
ture models. In Neural Networks and Statistics Edited by: Kay J, Titter-
ington D. Oxford University Press; 1995. 

25. Peltonen J, Klami A and Kaski S: Learning More Accurate Metrics
for Self-Organizing Maps. In Proceedings of the International Confer-
ence on Artificial Neural Networks – ICANN 2002; Madrid Edited by: Jos
R Dorronsoro. Berlin: Springer; 2002:999-1004. 

26. Mardia KV: Statistics of directional data. JR Stat Soc [Ser B] 1975,
37:349-393.




