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Grouping and Visualizing Human Endogenous
Retroviruses by Bootstrapping Median
Self-organizing Maps

Merja Oja, Gyran Sperber, Jonas Blomberg, and Samuel Kaski

Abstract— About eight percent of the human genome consists The HERVs stem from several kinds of retroviruses. Func-
of human endogenous retrovirus sequences. Human endogenougions of HERV sequences in the human genome will probably
retroviruses (HERV) are remains from ancient infections by correlate with their origin, and vary according to which dn

retroviruses. The HERVs are mutated and deficient, but they still f f fi | + till tin th HERV
may give rise to transcripts or may affect the expression of huma Ot Tunctional parts are still present In the sequences.

genes. The HERVs stem from several kinds of retroviruses. The categories formed according to sequence similarity could
possible current functioning of the HERV sequences may reflect capture these relationships, and thus help in studyingifums

the origin of the HERVs. Hence, the classification of the diverse of HERVS.

HERV sequences is a natural starting point when investigating A traditional way of classifying HERVs is to group them

the effect of HERVs in humans. The current HERV taxonomy ding to the similarity of a short . th . ..
is incomplete: some sequences cannot be assigned to any clagdCCording to the simi arity of a short region, the primerdity

and the classification is ambiguous for others. A Median Self- Sit¢ (PBS), from which their transcription (activationpigs
Organizing Map (SOM), a SOM for data about pairwise distances [4], [5]. In this grouping obviously a lot of information is
between samples, can be used to group all the HERVs found in Jost, and recently the HERVs have been grouped according to
the human genome. It visualizes the collection of 3661 HERV phylogenetic analyses based on one of their gepek{6]
sequences found by the RetroTector system, on a two-dimensiain . ’
display that represents similarity relationships between individual [7_] or env([8]. Th_e phylogenetic trees are CO_nStrUCted together
sequences, as well as cluster structures and similarities of cluster With representatives from exogenous retroviruses, toatae
The SOM, as any dimensionality reduction method, necessarily other widely used option; to classify HERVs according tarthe
has to make compromises when representing the data. In this similarity to types of exogenous retroviruses, from whickyt
work we extend the visualizations by bootstrap-based estimates presumably stem
on which parts of the visualization are reliable and which not, The t ’ f HERVS is still far f lete. Th
and use the SOM to find potentially new HERV groups. e_ axonomy 0 S Is stll 1ar from pomp ete. The
groupings based on the PBS have been revised somewhat to

present the groups with different origins (review of cutren
groups in [3], [9], [10]). But as new instances of HERVs are
detected from the human genome, it has become obvious that
) ) these groupings (classes) are not adequate. Some sequences

About eight per cent of human DNA consists bfiman can not be assigned unambiguously to any class. In addition,
endogenous retroviruses (HERV}]. Human retroviruses, some current classes are mixed with sequences from other
such as HIV, are viruses capable of copying their genetie Cogjasses in phylogenetic trees constructed from large HERV
into the DNA of humans, and they become endogenous ongflections. Furthermore, sequences from some classea@app
they have been copied to the germ-line. During the time thie more than one branch. A new classification able to resolve
HERV sequences have inhabited the human genome they h@ése problems is needed. A better and clearer classificatio
become mutated and broken in crossovers or when transposgfsendogenous retroviruses will also help organize theative
have moved to overlap them. Hence the sequences are NeisYovirus universe as most retroviruses are endogenous.
and incomplete, but it has been suggested that they may hav@he phylogenetic methods are based on a multiple align-
functions in regulating the activity of human genes, and MaJent of the sequences. Due to the exponential computational
produce proteins under some conditions [2], [3]. complexity of the alignment step, they can operate on only
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I. INTRODUCTION



be reduced. The SOM operates in a data driven mannerThe SOM can be used to order nonvectorial data such as
producing a visualization of the cluster structures in théad DNA sequences by a variant of the method in which each
set. The SOM can reveal groups of similar sequences, anddel on the map becomes theneralized mediaaf the input
visualize their relationships to other groups. The SOMldigp samples mapped into the neighborhood of the model [12].
the similarities in a two dimensional plane, and enables tf®r this method it is sufficient that some similarity measure
visualization of many neighbors per sequence. In additign, is definable between each sample and each model, as well
using SOM to group the HERV sequence data, we can geas between all pairs of the data samples. This variation of
visualization for all the data at the same time. the SOM, called the Median SOM, resembles the Batch Map

The Median Self-organizing Map [11], [12] is a variant ofnethod [11], [25].

SOM capable of handling sequence data. It can be used omn this work, the Median SOM has been applied to the
any nonvectorial data where pairwise distances can be defipeoduction of similarity diagrams, and showing the clusigr
between all input samples. Here we use pairwise distandeadency of HERV sequences. The similarities between the
between HERV protein sequences. sequences were computed by the FASTA method [26].

The reliability of the results is always a major issue The generalized median is in practice often approximated
in data analysis. The SOM is a dimensionality reductioy the set median. The generalized median is defined as the
method which represents a high-dimensional data set in a twnypothetical data sample from which the sum of distances to
dimensional display. Any dimensionality reduction methothe other elements in a data set is minimized. Similarlystte
will have to make compromises, and so will SOM. Sommedian is the data sample from which the sum of distances
sequences are represented with lower precision in ordertéothe other elements of the data set is minimized. The set
achieve a good overall projection of the data. For a comparaedian is an exact copy of one of the data samples in the
tive study between SOM and some alternatives see [13]. data set.

In this paper we complement our earlier work [14] on me- The computation of the SOM using set medians as models
dian SOMs of HERVs by assessing the reliability of the resultis performed as the iteration of the following two steps. At
We will measure reliability in representing the similaegi the first step, the input (teaching) sequences are mapped to
between sequences in each location on the SOM display. Their best-matching models. At the second step, for each uni
reliability is estimated with the bootstrap method [15]6]1 in the map, a new value for the model is determined as the
a statistical technique developed for estimating the sEmpl set median of those input sequences that were mapped to the
distribution of an interesting random variable, such as thid unit or its neighboring units on the SOM grid. These
mean of a distribution. The bootstrap has been used in theo steps, namely, searching best-matching models for each
context of clustering [17]-[21] and phylogenetic trees][22input sequence, and computation of the new models as the
[23] to estimate the repeatability of the observed groupingset medians of sequences mapped into the neighborhood of
Here we will use the bootstrap method to estimate the sasach unit, are repeated, until the models can be regarded as
pling variability of the observed neighborhoods on the SOlgtationary.
display.

We will apply the combination of median SOM and boot- . o
strap to grouping and visualizing a collection of 3661 HERP: The SOM visualization
sequences found from the human genome. We extract newrhe SOM grid is visualized as a two-dimensional display.
groups of sequences, and suggest that these could be fiéw visualization represents the similarities of the ingan-
HERV classes. ples. Samples located at proximate units are similar to each

other whereas samples located far from each other are typica
II. METHODS dissimilar.
o . To get insight into the cluster structure of the data, the
A. Principle of the Median SOM distances between neighboring units are visualized widly gr

The Self-Organizing Map (SOM) [11], [12] is an algorithmscale coloring of the unit boundaries on the SOM display. A
used to visualize and interpret large high-dimensionah datluster is an area of the map where the units are close to
sets. We will outline the SOM algorithm here only brieflyeach other i.e. the unit boundaries inside a cluster hav lig
An overview of the basic SOM algorithm can be found fotoloring. Borders between clusters appear as dark edges or
example in [24] or in the book [11]. The Median SOMareas on the map where distances between neighboring units
algorithm is explained in more detail in [12]. are considerably larger.

The SOM consists of a regular grid of units. A model,
normally a vector representing the inputs, is associated wi . . L
each unit. The map attempts to represent all the availaple inC- Reliability of the SOM visualization
samples using the restricted set of models. At the same timéfThe SOM algorithm aims at placing proximate points of
the models become ordered on the grid so that similar mod#ie input space to SOM units that are neighbors (or even into
are close to each other and dissimilar models far from eattte same unit). Here we want to measure the performance
other. The input samples are mapped onto the SOM grid @b the SOM in this respect. We ask the following question:
their best-matching models (the model closest to the inplifittwo sequences are observed as neighbors on the SOM, is
sample). this co-occurrence reliable? We will use the bootstrap oteth



[15], [16] to measure the sampling variability of the obsetv stability would lead tof; ; being either 1 (always neighbored)
proximities. or 0 (never neighbored).

The bootstrap method [15] is applicable to the following The pairwise frequencie ; are collected into a matrif
problem: Given a random sampk = (X;, Xo, ..., X,,) from of size N x N, whereN is the number of sequences in the
an unknown distributior”, estimate the sampling distributiondata set. The matrix is symmetric and has ones on the diagonal
of some prespecified random varialitéX, F'), on the basis of (a sequence is always a neighbor to itself). This matrix @n b
observed data. The sampling distribution aR(X, F') is esti- used to compute summary statistics accounting for thelggabi
mated by producing new sample$ with replacement fronx  of groups of sequences. Here we will use a simple average over
and computingR(x*, F’) for each samplex*. The histogram the pairwise frequencies of the included sequences, bet oth
of R(x*, F) values represents the sampling distribution. Theptions could be used as well.
sampling distribution can then be used to estimate e.g. théMe measure the reliability of each map unit by computing

mean, variance and confidence intervals RiX, F'). the average stability among the sequences in that unit:
The bootstrap approach has been used in clustering [17]- 1
. - ) . oo 1 » o
[21] to estimate the stability of the discovered clustets. | k= o1 Z figs 2

is assumed that the cluster composition should not change
radically between two samples of the same underlying d%ereNk

\c/i;ting::ittlon\}vgteffsrehrlrt at;]: Ilﬁierlngr IS rr]ct)bl:st tro slammlc A measure similar to (2) can be computed for larger groups
aoiity, an assume tha presents the rea stre of sequences as well, for instance for clusters of SOM units.
of the data. This reasoning can also be applied to SOMs: if

the neighbors of a sequence are retained in SOMs constructed
from different samples, we can assume that those are rgliaBl. Collection of human endogenous retroviruses

neighbors. . _ The data set consists of 3661 HERV sequences automati-
The bootstrap approach has been previously applied @y collected from the human genome by RetroTe€i¢27],
self-organizing maps in [;8]. .The article describes 5|gn'|f_ 28]. The RetroTectd®) is a program developed for the
cance tests for the quantization error and for the stabiliigection of endogenous retroviruses and similar strastur
of neighborhoods on the SOM. In this article we will nofy genomes. It uses a combination of expert knowledge and
aim at a significance test but will look at the stability of thgnachine learning to detect the retroviral-like parts in@ess.
neighborhoods in each map unit separately. ¢ |ocates known conserved features and strings them tegeth
We will estimate the confidence of the SOM visualization by, longer chains. This is combined with alignment (paitvi
counting how often a pair of sequences appear as neighborging known sequences) through dynamic programming.
bootstrap repetitions of the SOM. Confidences for individua The cyrrent data set contains all the HERV sequences from
map units in the V|sua||zat|o.n are derived as averages 'heer the April 2003 (hg15) version of the human genome, from
sequences in that map unit. The next section describes Qifich thepol gene sequence can be found. The data contains

i#7,1,j € unit k

is the number of sequences in the uhit

algorithm for bootstrapping SOMs. DNA and translategbol protein (“putein) sequences for the
pol area. In addition, the primer binding site is known for 1159
D. Bootstrapping the SOM sequences. Finally, the RetroTector's estimate of the gienu

The data set is sample® times with replacement to (alpha., beta-, gamma:, delta- or epsilonretrovirus, spuon

. - entivirus) of the retrovirus is available as well.
produceB bootstrap data sets of the size of the original data o o .
h . . The HERVs have traditionally been classified on two differ-
set. Some samples will appear several times in a bootstraj

data set, and some samples will be missing S grounds. The first classification stems from the tRNA used
A self—’organizing map is computed from ea.ch bootstrap d taprime DNA synthesis [4], [5]. The classes are named after
atde primer binding site (PBS); for instance the viruses that

set to produce3 bootstrap SOMs. The bootstrap data set use: . .
to construct a bootstrap map is then discarded and the arigiﬁre primed by leucine (L) tRNA are called HERVL and those

data set is projected to each of the bootstrap maps. Thus eUtclzhzmg arginine (R) HERVR. The PBS based classification i

g owever, incomplete in such cases where HERVs of different

data sample has a location on each of the bootstrap maps. . . .
h " . origin are primed by the same tRNA, or when the PBS
We estimate the stability of the neighborhood separately fo L
Sequence is missing from the HERV.

each pair of sequences. Here we will consider the immediat . S .
neighborhood on the map (the same map unit and its borderi rhe other widely used option is to classify HERVs to three

i - T
units); other choices of neighborhood size are possibleedis Wcﬂgssgs according to. their similarity to types of exogenous
; ; . ) retroviruses, from which they presumably stem (see [2], [7]
We count the frequency; ; of samplesi and j appearing as -
; ; | [8], [10]). Class | HERVs are related to gammaretroviruses
neighbors on the bootstrap maps: . L - L
such as Feline leukemia virus or Gibbon ape leukemia virus
B . .o
) ", Neighbors(i, j,b
fij= Limt gB (i.g )-, 1) 1A “putein” is an estimated protein sequence for the ancietrovial
element. During evolution the retroviral element has goneutin deletion

WhereNeighbors(i j b) is an indicator function that returns 1and insertion mutations in addition to point mutations. In thestruction of
e the “putein”, the locations of deletion and insertion muiasi are estimated

if ¢ andj are neighbors on bootstrap sampljeand otherwise and the translation of the DNA sequence is shifted accolylitggproduce a
zero. The frequency; ; gets values between 0 and 1. A perfedtil length protein sequence (with minimal amount of stop cagjon




and include HERVH and HERVW, among many other suleffective width covered the nearest neighbors on the hexago
groups. Class || HERVs are related to betaretroviruses @doumap grid. The distance matrix used in the median SOM algo-
Mammary tumor virus) and alpharetroviruses (Rous sarcomtim was based on the FASTA similarity scores [26] of the
virus) and include several types of HERVK elements (thgol protein sequences. The FASTA scores were computed with
HML groups [29]). Class Ill HERVs are distantly related talefault parameters: BLOSUM50 substitution matrix, pgnalt
spumaviruses (Human foamy virus) and include HERVL arfdr opening a gap= —10, and penalty for continuing a gap
HERVS. =-2.

For 2462 sequences in the data set a classification base8ince the lengths of the sequences varied greatly, we nor-
on sequence similarity of translatgubl protein sequences malized the effect of sequence length in the FASTA scores
to a groups of previously characterized HERV sequenceshg using the Tanimoto distance [31]. First, the FASTA scores
given. The classification follows to some extent the primevere computed for each pair of sequences. These scores were
binding site-based grouping, with extra classes for setggnconverted to Tanimoto similarities,

with same PBS but different origins, and for groups with £, 7)
no identified PBS. This classification reflects the current s(i,j) = 7 ')+f(" N 1G)) (3)
state of the HERV classification, however only 67% of Lt 527 b

the data set could be rigorously classified in this mannavhere f(i,7) denotes the FASTA similarity score between
The classification is one of the following: ERV9, ERV3sequences and j. The Tanimoto similarities are between 0
HERVRb, HERVI, RHERVI, HERVE, HERVW, HERVH, and 1. The similarities were converted to the Tanimoto dista
HUERSP3, MER41, HERVT, MER66, HERV48, HERVFRD by taking the negative logarithm of the Tanimoto similarity
HERV19, HERVFb, HERVFc, HERVADP, HERVS, HERVL, d(i,j) = —log s(i, j).
HERVL66, HML1, HML2, HML3, HML4, HML5, HMLSG, The 20-by-30-unit Median SOM of HERV sequences is
HML7, HML8, HML9, HML10. The nomenclature of the shown in Fig. 1. The shade of gray represents the distance
HERV classification is not always the same, mappings betwelegtween the models of adjacent map units.
different names are offered in [9], [10]. Besides the map shown in Fig. 1, we also computed several
other maps with different random vector initializationsnfar
Ill. SOM OF THE HUMAN ENDOGENOUS RETROVIRUS  gata clusterings were generally observed on different maps
COLLECTION The map in Fig. 1 gave the best quantization error.

A. Computation of the SOM

The SOM was computed in two stages. In the first oB. Bootstrapping the SOM

ganization ;tage, the sequences were em?OdEd into vdac_toria}.he confidence of the SOM was estimated with the boot-
representations and the basic self-organizing map ahgorit strap procedure. We resampled the data set 100 times and
was useld ttcl)qspread tZe ?OM mOdf/:Sé(.) Coé%,t/lhe :Nho.lti feat%%nted the frequencies of each pair of two sequences appear
spac;e.d nF' cftshecon dslaget € Median | dat?ortlh ml RS as neighbors on the bootstrap maps. Then we computed
apphied. st the model vectors were replaced by e l0Gg reliability score (2) for each map unit. A visualizatioh

set medians of the data. The computation was then contin o o P
using FASTA-based [26] sequence similarities. This tvagst l{ﬁ§ reliability scores for each map unit is presented in Eig.

training scheme has proved to be useful in earlier studigf [1

[14], [30]. The rough ordering attained in the first stagebées: IV. REsuLTS
faster learning of the Median SOM. The SOM reflects the division of HERVs into the standard
In the first stage, we used 4-gram histogram representati@tasses I-lll. The darkest borders in Fig. 1 divide the map

of the DNA sequences of the HERpOI genes. The feature into three major and a few small areas (see Fig. 3). Each
vectors were 256-dimensional and normalized to unit lengtinajor area contains sequences of mainly one genus. The
For the 3661-sequence data set, we selected a 20-byspomaviruslike sequences (Class Il HERVs: HERVL and
units hexagonal SOM in order to achieve a resolution ¢fERVS) are separated to the lower left corner. Similarly,
approximately 6 samples per unit. The 256-dimensional inodbe betaretroviruslike sequences (Class Il HERVs: the HML
vectors were initialized randomly. The SOM was computegroups) form their own area on the upper left side of the map.
using the Batch Map algorithm for vectors with standard@he right side of the map is covered by gammaretroviruslike
parameter values [11]. The SOM algorithm is robust to tH€lass 1) elements like HERVH and HERVW.
exact choices of the parameters [11]. Here the width of theThe SOM display was visually compared to phylogenetic
Gaussian neighborhood function decreased linearly frortw 15trees (not shown) constructed from the same data set. The
4 during the 20 iterations of the organization phase and fromain groupings were similar in both methods. Both method
4 to 1 during the 20 iterations of the finetuning phase of tiseparated the three major groups as well as some smaller
algorithm. ones (like HERVE, HML5, HML6, HERVH, HERVF). The
The SOM models were then converted to sequences M had some interesting differences when compared to
setting the model to the set median of the sequences in the phylogenetic trees. Some classes that were separate in
unit in question and its neighboring map units. the phylogenetic trees were mixed together on the SOM (for
Ten iterations of the Median SOM algorithm were theexample the ERV9, HERVW and HUERSP3 area described
carried out. A Gaussian neighborhood function was used. léder in the text). Furthermore the SOM found several groups
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Gray scale coded reliability of the map units. Theatsglity value
(from O=black to 1=white) tells the average stability of theighborhoods
of the sequences in each unit. In a white (or light gray) unistraf the

reliable
Tose

005
unreliable

sequences appear together on all of the bootstrap maps.

Fig. 1. The SOM of human endogenous retroviruses. The labethea
figure are manually assigned names for different areas of the Tineplabels
describe the class of the sequences in each area (class rikend&RVADP,
HERVH, HERVRb etc. have been abbreviated by dropping theRW#Erom
the beginning). The question marks are used to mark areas wiasteof the
sequences are unclassified. The gray scale coloring desctiile distances
between map units; black denotes large distance and whité. Sthaldarkest
borders divide the three major groups (classes I-lll; see Bjgand lighter
borders the different groups inside the major groups.

consisting of mainly unclassified sequences. These groups
were not visible on the phylogenetic trees. In what follows
we describe examples of interesting groups from the raiabl
areas of the SOM.

The map has an area where ERV9, HERVW and HUERSP3
sequences are mixed together (marked with “1” in the figures)
A more detailed picture of this area, showing the mixing of
the classes, is presented in Fig. 4. This group of sequences i
also a stable structure according to the bootstrap (see2Fig.
The mixing of the class labels in this group of sequences
suggests that the old classifications of these sequences nee
to be updated either to form a fourth independent class or to
form one large class of all the sequence in classes (ERV9,
HERVW and HUERSP3).

To verify that this finding is truly present in the data set

and not merely an .a'nifa.Ct caused by the.ViSU‘?‘lizaﬁonr WG. 3. The three major areas of the SOM of human endogenousireses.
compared the classification accuracy within this found s@te visualization shows only the darkest borders from Figwith a suitable

with the expected classification accuracy (computed framerot cutoff). A dark border represents a large distance betwegghboring units,
and a continuous dark borderline separates clusters okesegs from each

samples of the same classes). If the classification accurgfr. Three major areas are visible. They are marked aceptdithe genus
is significantly lower than expected accuracy, it suppdms tof the sequences in each area. The smaller areas (marked witlestion

?2 1

betaretroviruslike

o

gammaretroviruslike

gammaretroviruslike

hypothesis that the classes are really mixed for the HERWrK) contain mainly unclassified sequences of diverse genera
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=] =] LP P p cAN Fig. 5. A selection from the matri corresponding to the area marked with
“2"in Fig. 1 and 2. The sequences in this unclassified arematered in the
figure according to the (nonempty) SOM unit they belong to. ey levels
J P HY indicate the frequency for a pair of sequences to appeareimé¢ighborhood
of each other on the bootstrap repetitions of the map.

’ group of sequences is 0.72 (counted with (2) for the whole

Fig. 4. A close-up of the area where classes HERVW, ERV9 an&REP3 group of sequences). Fig. 5 presents the relevant_ part_ frem t
are mixed together. The gray-scale is the same as in Fig. 1.ektdnside Matrix F. It can be seen that all the sequences in this group

each unit describes the classification given to the seqsempped into  gppear almost always together in the bootstrap repetitibns
the unit. The one letter coding used to represent the class&RV9 (X), ; i .
HERVW (W), HUERSP3 (P), ERV3 (Z), HERVRb (B), HERVE (E), MER41 the map. Th|s uncla_ssnfled compact group of sequences might
(U), MER66 (G), HERVI (), HERV48 (V), HERVFRD (D), HERVH (H) be a previously undiscovered HERV class.

HERV19 (J), HERVFc (C), HERVL (L), HML2 (2) and HML3 (3). Théze

of the letters are proportional to the number of sequencds thit label in

the map unit e.g. largest X denotes 64 sequences, and the sméakely 1 V. CONCLUSION
sequence — the scale is linear in between. The map units thbéle a dot . . . . . o
contain only unclassified data. The Median Self-organizing Map is suitable for visualizing

large collections of sequence data. The major cluster struc
tures visible on the map are in accordance with the current

within the region. knowledge about human endogenous retroviruses. In additio

We compared the K-nearest-neighbor (KNN) classificatidhe relationships of the HERV classes on the SOM are similar
errors in this selected group of sequences (grolpthe to the results obtained by phylogenetic trees constructed f
selected area is marked with “1” in the figures) to the cla$#ERV sequence collections. The phylogenetic trees and the
sification error of the other sequences in the classes ER\BIDM can complement each other when constructing a “final”
HERVW and HUERSP3 (groug). This comparison tells us grouping for all HERV sequences. The phylogenetic trees
whether the nearest neighbors of the sequences in giougepresent the evolutionary connections between groups of
truly are from other classes than the sequence itself, ahisif sequences. The SOM, on the other hand, is well suited for
variation differs from the common behavior for the sequencanalyzing larger collections of sequences simultaneoasty
in these three classes. The comparison was done by compuforgvisualizing them on a two-dimensional display. In thienk
the average KNN error rates (ovéf = 1,2, ...,10) for each we showed that the SOM was able to extract new knowledge
sequence in each group! (and B). The distributions of the from a HERV sequence collection previously analyzed with
classification errors of the sequences in the two sets wgteylogenetic trees.
compared with the Wilcoxson rank sum test. The distribition The SOM of human endogenous retrovirus sequences re-
were found to be significantly different with P-value pf< vealed two new groups of HERV sequences. In forthcoming
1071, articles we will analyze further these two groups of seqesnc

On the map there are also areas which do not have a cleawerify if they truly are new HERV classes and to charac-
interpretation based on either the earlier traditionassifica- terize their properties.
tions, the primer binding sites or the retrovirus generaeseh  Our results demonstrate that visualization of the relighbil
areas are marked with a question mark in Fig. 1. For exampté,the SOM is a valuable help in SOM data analysis. Here
the area marked with “2” in the figures is very reliable basetie bootstrap method was used to estimate the reliability of
on the bootstrap analysis, but only 6 of the 49 sequencemch map unit. The visualization revealed clusters of high
within that area have a classification. The reliability ofsth confidence and areas where the visualized similarities are



unreliable. The overall reliability of the visualizatiorodd [20]
be improved by removing the least reliable sequences. This
approach will be discussed in future work. [21]
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