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Abstract. Human endogenous retroviruses (HERVs) are remnants of
ancient retrovirus infections and now reside within the human DNA.
Recently HERV expression has been detected in both normal and dis-
eased tissues. However, the patterns of expression of individual HERV
sequences are mostly unknown. In this work we use a generative mixture
model, based on hidden Markov models, for estimating the activities of
individual HERV sequences from databases of expressed sequences. We
determine the relative activities of sixty HERVs from the HML2 group in
five human tissues, i.e. we estimate the expression profile of each HERV.
This allows us to gain insight into HERV function.

1 Introduction

Human endogenous retroviruses (HERVs) are remains of retrovirus infections
that occured millions of years ago. They are viruslike DNA sequences that reside
within the human genome. HERV sequences form 8% of the human genomic
DNA [3, 4].

Retroviruses can move and copy their DNA to other locations in the genome.
These copying events will eventually yield several mutated versions of the original
virus. A group of such sequences is called a HERV group and it may contain
hundreds of very similar sequences. Most of the HERV sequences are heavily
mutated and/or broken due to genomic rearrangements and have partially lost
the typical retroviral structure consisting of 4 genes (gag, pro, pol and env) and
two long terminal repeat sequences (LTRs), one at each end of the retrovirus
sequence.

In this paper we study the HML2 group because it is the youngest and as
such has the largest proportion of full length HERVs and the smallest number
of mutations. Thus, it has the most potential for containing active HERVs.

HERVs are interesting for two reasons: they can express viral genes in human
tissues and their presence in the genome may affect the function of nearby hu-
man genes. Retroviral activity might cause disease; retroviral mRNAs have been
detected in schizophrenia, autoimmune diseases and cancer [2, 10] although a
causal role of HERVs in these conditions is highly uncertain. In addition, a few
retroviral genes have adopted functions beneficial to the human host [8].
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In this work we study activities of individual HERV sequences in various tis-
sues, i.e. will estimate the expression profile of each HERV. The profile contains
measurements from several tissues and thus enables us to study the differential
expression patterns of individual HERVs. This leads to better understanding
of the function of individual HERVs. For example, HERVs that are more/only
active in the brain tissue may have functions related to neurodegenerative dis-
eases or to normal brain functions. This profiling approach is widely used in the
study of human gene function, see for example [17]. In contrast, the only work
that we know of where individual HERVs have been studied in several tissues is
[16], where a small set of full-length HERV-K elements (HML2 is a subgroup of
HERV-K) were studied using a heuristic method.

We have earlier studied the overall expression of individual HERVs (one ex-
pression value for each HERV without distinguishing between different tissues
and conditions). In this work we extend the approach to estimation of expression
profiles over various tissues. Furthermore, we analyze the expression profiles of
individual HERV sequences. In contrast, most previous studies of HERV expres-
sion report activities only for HERV groups (e.g. [13]); the only exceptions we
know of are [6] where HERVs are searched from gene mRNAs but activities are
not compared across HERVs and [16] mentioned above.

To find evidence of HERV expression, we use a large public database of
expressed sequence tags (ESTs). ESTs are short and noisy samples from mRNA
sequences. The amount of ESTs originating from a particular HERV is evidence
of its activity. However, it is nearly impossible to match an EST sequence to
only one HERV sequence: Each EST will match several HERVs very well due
to the similarity of the HERV sequences within a HERV group and the noise
(sequencing errors) in the ESTs. We have introduced earlier a probabilistic model
[11] to handle the uncertainty in EST to HERV matching. In the methods section
we describe how this model can be used for estimating HERV expression profiles.
The expression profiles for the HERV sequences of the HML2 group are presented
in the results section.

2 Methods

In [11] a generative mixture model, based on hidden Markov models, for esti-
mating the activities of individual HERV sequences from ESTs was introduced.
Below we briefly describe this model and then move on to describe how it can be
used when the aim is to estimate expression profiles instead of overall expression
values.

The hidden Markov mixture model is a generative model for the set of EST
sequences. It is designed to mimic the actual EST generation from HERVs; each
mixture component is a hidden Markov model (HMM) for ESTs from a particular
HERV (See Fig. 1). The component HMM resembles the profile HMM [7], with
the exception that it is possible to jump from the start state to any of the match
states and from any match state either to the end or to a special EEMIT state
that is used to emit the low quality end of an EST. The match states, one for each
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Fig. 1. The structure of the HMM mixture. The model is constrained by sharing pa-
rameters. The shaded box is the basic block of the sub-HMM and is repeated length-2
times. It is identical in all sub-HMMs; all other parameters are shared except the
emission distribution of the match state which varies between blocks, according to the
HERV sequence each sub-HMM corresponds to. EEMIT-state emits the low-quality end
part. The plates illustrate that the same model is learned separately for each tissue.

position of the HERV sequence, can either emit the nucleotide in that position
of the HERV sequence (with probability pt) or one of the other nucleotides
(with probabilities (1 − pt)/3). The parameter pt is shared between all match
states in the mixture model. The EEMIT states and all the insert states share
parameters: they emit nucleotides using the same distribution. The transition
parameters are also shared throughout the mixture (see Fig. 1). In summary,
the component HMM generates data that roughly matches a subsequence of the
source HERV, but with mismatches, insertions, deletions, and a low-quality end
part.

The mixture model corresponds to one large HMM where the first transition
chooses one of the N HERV-specific sub-HMMs (see Fig. 1). The Baum-Welch
algorithm is used to learn the whole mixture. The learned probabilities of the
first transition (the mixture weights) are estimates of the HERV activities. We
use heuristics to reduce HMM training time to reasonable limits [11].

The hidden Markov mixture model can be extended to estimation of expres-
sion profiles. We can simply learn a separate model for each tissue and then
combine the results meaningfully. In practice, we need to collect several sets of
EST sequences, one set for each tissue. Then we learn the model for each EST
set. This results in the relative activity distributions of the HERVs for each
tissue.

The relative activity distributions of HERVs from different tissues can be
combined in two ways to form the HERV expression profiles. 1) The relative
activities of a HERV in different tissues are used directly as the expression profile.
In this setting it is assumed that each EST set, irrespective of its size, is a sample
of all HERV derived mRNAs in the tissue. 2) The relative activities of a HERV in
different tissues are first scaled according to the number of ESTs available from
the tissues. This way the expression profile of a HERV is more clearly related to
the number ESTs available from the HERV and the activity value of the HERV
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can be seen as a probabilistic EST count. In this setting it is assumed that the
size of the EST set is relevant. In this work we will use this second approach.

3 Data

We study the expression profiles of HERVs of the HML2 group. This HERV
group is the youngest one and thus has the largest proportion of relatively intact
elements. It contains sixty members, some of which are full-length, i.e. have
retained the typical retrovirus structure LTR-gag-pro-pol-env-LTR. A few of
these elements even have open reading frames for the env gene, i.e. they could
produce retroviral env proteins.

The HML2 group is the most difficult one to study because the sequences
within the young HML2 group are more similar to each other than sequences
in other groups. It is impossible to match ESTs to individual HML2 HERVs
unambiguously. Our statistical approach is able to alleviate this problem to some
extent. But, even with our method, the activities of nearly identical HERVs will
be correlated.

We studied the expression of HML2 HERVs in five tissue types: brain, lung,
breast, placenta and male reproductive tissues (RT). This selection was mainly
due to the availability of the ESTs, but some of these tissues are also interesting
per se: HERV transcripts have been detected in brain related diseases, HERVs
active in reproductive tissues could produce new HERV integrations and some
HERVs are known to have beneficial functions in placenta. In addition, we know
from earlier studies that HERV-K elements are active at least in testis and brain
tissues [9].

The HERVs were automatically detected from the human genome by the
program RetroTector1. Sixty of the HERVs were similar to HML2 reference
sequence and were included into the HML2 HERV set.

ESTs matching the HML2 HERVs were searched from the dbEST database
[20] with BLAST [1]. The ESTs were divided into tissue-specific sets using eVoc
Ontologies [19]. We used a match threshold of E-value 10−40 in BLAST.

In addition to HML2 HERVs, some elements from other HERV groups were
included in the HERV set. This was done to ensure reliable activity estimates
for the HML2 HERVs: If the extra HERVs would not be included, then EST
originating from them would be distributed over HML2 HERVs, falsely increas-
ing their activity estimates. In other words, adding the extra HERVs reduces
the error due to ESTs that match a non-HML2 HERV better than any of the
HML2 HERVs.

The set of extra HERVs was selected based on a heuristic BLAST activity.
The BLAST activity of a HERV is the number of EST matching that HERV
better than any other HERV. ESTs that match several HERVs equally well are

1 RetroTector is a program used for detecting retroviral sequences in genomes. It
searches for conserved retroviral motifs and then combines the motifs into chains
fulfilling distance constraints. It was developed by Jonas Blomberg and Göran Sper-
ber at Uppsala University [15].
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Table 1. Data set sizes for different tissues. “HERV-EST pairs” is the number of EST
to HERV matches returned by BLAST.

Tissue HERVs ESTs HERV-EST pairs

Brain 94 471 7076
Lung 86 279 4661
Placenta 85 219 2770
Breast 73 164 2987
Male reproductive tissue 89 249 4157

divided to all those HERVs. In our earlier work [11] BLAST activity was shown
to correlate with activity estimates from the HMM model. We included all highly
BLAST active HERVs (those with more than 2.5 ESTs) and then the most active
HERV (still required to have at least one EST match) from each HERV group
into the analysis. The set of extra HERVs was different for each tissue. Table 1
list the data sets sizes for all tissues.

4 Results

The method is able to estimate the relative activities of the HERVs. The activity
profiles for HML2 HERVs are shown in Fig. 2A. Many of the HERVs exhibit
tissue specific expression. There are also some HERVs that are active in all
tissues as well as HERVs that are not active in any of them. The activities of
most HML2 HERVs were previously unknown. A portion of the full-length HML2
HERVs have been studied before in [16] using a heuristic BLAST approach. Some
individual HERVs are analyzed more closely in Section 4.1.

The results show that adding the extra HERVs was necessary to get reliable
estimates for the HML2 HERVs. In each case the probability mass allotted to the
HML2 HERVs was less than half of the total (ranging from 37% in the placenta
to 48% in the lungs). If the extra HERVs would not have been included, then
the probability mass now belonging to them would have been distributed over
the HML2 HERVs, falsely increasing their activity estimates. Furthermore, some
of the non-HML2 HERVs were very active in comparison to the mean activity
level of the HML2 HERVs (see Fig. 2B). The high activity of the non-HML2
HERVs indicates that there is a lot of cross-talk between the HERV groups (the
ESTs retrieved using the HML2 sequences as queries also match HERVs from
the other groups). Some of the cross-talk might be due to portions of the HERVs
that resemble other types of retrotransposons (see section 4.1).

We estimated the reliability of the results with a bootstrap-like method. The
EST data was resampled with replacement 1000 times, and the activities were
reoptimized for each replicate while other parameters were kept fixed (see [11] for
more details). Fig. 3 shows the means and standard deviations of these replicates
for the HERV activities in the lung tissue. The behavior in the other tissues is
very similar. The standard deviations are small compared to the differences in
HERV activities and the means are very close to the activities learned from all
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Fig. 2. The activities of the HML2 (panel A) and non-HML2 (panel B) HERVs. In
both panels the rows depict the HERV activity distributions in different tissues and
the columns the expression profiles of individual HERV sequences. Letters below the
columns are labels for the HERVs analyzed in Section 4.1. The activity values are shown
on a logarithmic scale, as can be seen from the legends on the right. The scale is the same
in both panels. The numbers next to the legend are the probabilistic EST counts for
each gray shade. The highest activity for a HML2 HERV is 24.8 (HERV F in the brain
tissue). The columns have been ordered according to a hierarchical clustering based on
the (unlogarithmic) Euclidean distances between the HERV expression profiles.

data. The standard deviations of the clearly active HERVs (probabilistic EST
count above 5) and almost inactive HERVs (probabilistic EST count below 1)
do not overlap. Thus we can trust the active-looking ones to be truly active.

4.1 Closer look on individual active HERVs

Here we take a closer look on some of the individual HERVs. These have been
selected as examples of the typical expression patterns of the active HERVs
observed in the data. The HERVs analyzed in this subsection are summarized
in Table 2. The labels used to denote the HERVs are letters with no special
meaning.

HERV A is full-length element with an open reading frame for the env gene.
This HML2 HERV is known as HERV-K102. It is somewhat active in all tissues
— its highest activity is observed in the breast tissue. The activity is due to
ESTs that match the LTRs and the env gene area of the HERV. This HERV is
a potential retrovirally active HERV that could produce env protein. HERV A



7

pr
ob

ab
ili

st
ic

 E
S

T
 c

ou
nt

0
5

10
15

20
25

30

A BE F G

−

−

−

−

−

−

−
− −

−
− − − − − − − −

−
− − − − −

−

− −
−

−
−

−

− −

−

− −
− − − − −

−
− − −

−

−

−
− − −

−

−

−
−

−

HML2 HERVs Other HERVs

Fig. 3. The activities (probabilistic EST counts) of the HML2 and non-HML2 HERVs
in the lung tissue. The crosses are the means and standard deviations from the boot-
strap resamples (see text for details) and the bars the activities learned from complete
data. The HERVs are in the same order as in Figs. 2A and 2B, but inactive HERVs
(with probabilistic EST count below 10−7) have been left out of the visualization to
save space. The letters below the columns are the labels for the HERVs analyzed in
Section 4.1.

is also mentioned in [16], but no exact details are given. UCSC Genome browser
shows a new hypothetical human protein overlapping the LTRs of this HERV.
This supports our finding that this HERV is retrovirally active.

HERV B is an almost full-length HERV with no open reading frames and a
missing end-LTR. The HERV is active in the brain, lung and male reproductive
tissues. Its activity is concentrated on gag and pol genes. This HERV has been
studied earlier in [16], where it was found to be expressed in the brain, placenta,
testis and prostate tissues. It had low activity in the lung and breast tissues.
These results agree with our observations except for placenta and lung, for which
our results are just the opposite.

HERV C is active only in the male reproductive tissues. The ESTs match this
full-length HERV near the end of pol and at the end-LTR. The ESTs might be
coming from the end of a pol gene transcript, however, ESTs from the beginning
of the transcript are not observed. UCSC Genome browser shows a short gene
sequence, annotated as a retroviral rec gene, between and partly overlapping the
sequence segments detected as active by our method. This further supports the
observation that this relatively intact HERV locus is active.

HERV D exhibits a clear tissue-specific expression: it is active only in the
brain tissues. This non-full-length HERV is active in the gag gene area. However,
there is no open reading frame for a gag protein. The observed expression does
not resemble that of a retrovirally active HERV [4]. Hence, it seems that this
HERV might have been used as a building block for something else than retroviral
proteins.

The data set contains some HERVs that are very active in all studied tissues;
for example, the HERV sequence E. ESTs match this HERV in the end of the pol
gene and parts of env. However, when we look at this genome area at the UCSC
Genome Browser, the pol gene area is annotated there as an L1 repeat. Thus, it
may be that the (probabilistic) EST count of this HERV is actually measuring
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L1 derived ESTs. Similar situation applies to the highly active HERV F, where
the expression also seems to be L1 derived. These HERVs are examples of broken
down sequences that are harder to detect automatically. For these HERVs the
RetroTector program may have misinterpreted some portion of the L1 structure,
which as a retrotransposon is similar to that of a retrovirus, as retrovirus-derived
DNA.

HERV G measures expression of SVA elements that are composite retro-
transposons consisting of an Alu like portion, a tandem repeat portion and a
portion originating from the HML2 LTR sequence [12]. The end portion of the
SVA repeat is about 95% similar to the HML2 LTR. For this reason, some of
the ESTs retrieved using BLAST may actually come from a SVA element. As a
consequence, it is necessary to include a SVA like sequence into the HERV set so
that possible SVA derived ESTs will not confuse the activity estimates of LTR-
containing HML2 HERVs. The SVA-ESTs will match the SVA like “HERV”
better and thus have low probability on matches to HERVs. It turns out that
one sequence in the HERV collection (marked with G in the figures) obtained
by RetroTector is very similar to a SVA element and actually portions of this
sequence are annotated as SVA in the UCSC Genome Browser. It was included
into the HERV set to serve as the SVA like element. The results show that this
“HERV” is very active in all tissues and the activity is in the SVA repeat areas.
This indicates SVA activity in all the analyzed tissues.

5 Discussion and Conclusions

We have used a generative model-based method to estimate the expression pro-
files of individual HERVs rather than those of HERV groups. Such detailed anal-
ysis is vital for understanding the functions and control mechanisms of HERVs.
Our method allows the exploration of expression patterns within a HERV group
and will reveal interesting potentially active HERVs. These can then be studied
further and their activity levels in different tissues can be verified with labora-
tory methods. By contrast, exhaustive search of active HERVs in the laboratory
would be too expensive and/or difficult.

The advantage of our method over a simple “find the best matching HERV for
each EST” approach (such as the BLAST activity method described in section
3) is the ability to take uncertainties into account. Our model is able to learn the
underlying activities from data where the error rate (noise) in the ESTs is larger
than differences between two HML2 HERV sequences. In our earlier work [11] we
showed with experiments on simulated data that the HMM model outperforms
the simple BLAST activity estimation method. The difference was most notable
in the case of HML2 HERVs.

The number of ESTs available from each tissue was not as high as we would
have hoped: The EST sets were small with only about three ESTs per HERV.
As a result, the activity estimates are not as accurate as they would have been
with a larger data set. Still, our results were reliable according to bootstrap
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Table 2. Details about the HERVs analyzed in Section 4.1. “Label” is the label of
the HERV used in the text and figures. “Chr”, “strand”, “start” and “end” tell the
chromosome, the strand, and the sequence start and end positions for the HERV, re-
spectively (in the July 2003 version (hg16) of the human genome). “Subgenes” describes
the structure and “group” the group of the HERV. The last column in the upper part
of the table gives the name used for the HERV in [16]. The “orf” columns describe how
intact the retrovirus protein reading frame is: 0 is intact, i.e. the HERV has a open
reading frame for the protein. “Age” is the estimated age of the element measured in
percentage of LTR unsimilarity. The two LTRs of a retrovirus are identical on integra-
tion and mutate afterwards. The “gene context” column gives the gene nearest to or
overlapping with the HERV locus.

label chr start end strand subgenes group name in [16]

A 1 152822428 152813249 - LTRgagpropolenvLTR HML2 K102
B 22 22203232 22213324 + LTRgagpropolenv HML2 22q11
C 11 101103511 101112976 + LTRgagpropolenvLTR HML2 11q22.1
D 7 140863179 140859365 - gagpropol HML2
E 16 35307416 35314276 + polenv HML2
F 1 75265364 75273509 + LTRgagpro HML2
G 19 21682582 21697392 + LTRLTR unknown

label gagorf proorf polorf envorf age gene context

A 3 0 1 0 0.21 3’ LTR the last exon of a hypothetical gene
B 1 5 12 9 - gene IGLL1 2.5 Kb away downs. (antisense)
C 3 0 1 1 0.41 part annotated as retroviral rec gene
D 8 1 16 - - gene SSBP1 1 Kb away downs. (antisense)
E - - 15 2 - nearest gene 20 Kb downstream (sense)
F 2 0 - - - HERV in a long intron of an antisense gene
G - - - - 10.59 gene ZNF100 100b downstream (antisense)

resampling and as such can give valuable pointers to HERVs that should be
studied more closely.

There are few examples of active and potentially protein-coding HERVs.
Most of the active HERVs (such as HERVs B and D discussed in section 4.1)
display fragmented expression that could be explained by RNA mediated activity
or by function as exons, beginings or ends of nearby human genes.

Some of the observed expression may be due to active non-retroviral repeat
sequences. In this study we wanted to study fragmented HERVs in addition
to the full-length elements. The fragmented HERVs are harder to detect and
in the process of ensuring that the more mutated HERVs are not missed some
elements that are combinations of retrovirus and retrotransposon sequences may
be included into the RetroTector produced HERV set. Actually, some of the most
active HERVs were found to contain sequence portions which the RepeatMasker2

2 RepeatMasker is a widely used program for detecting repeats. It relies on a database,
the RepBase [5], of consensus sequences for various kinds or repeats. The repeat
annotations in the UCSC Genome Browser come from RepeatMasker predictions. A
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[14] had annotated as L1, L2 or SVA repeats. The fact that we observe expression
similar to L1 or SVA elements is interesting as these elements have been shown
to be active recently: The comparison of human chimpanzee genomes revealed
thousands of species specific integrations for both L1 and SVA elements [18].
Our results indicate both L1 and SVA elements are still actively expressed in
the human genome.

The hidden Markov mixture model can also be applied to other kinds of
mRNA data sources or to other types of repetitive elements. For example our
method could be used as a post-processing step in a RT-PCR reaction [9] where
a broadly targeting primer (all members of a HERV group are amplified) has
been used. When the PCR products are sequenced, they can be compared to the
members of the targeted HERV group using our hidden Markov mixture model.
This way it can be determined which elements within the group of very similar
sequences are active. This can be done in one or several tissues.
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