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ABSTRACT

Oja, M. (2007): Methods for exploring genomic data sets: application to
human endogenous retroviruses. Doctoral thesis, Helsinki University of Tech-
nology, Dissertations in Computer and Information Science, Report D23, Espoo,
Finland.

Keywords: bioinformatics, exploratory data analysis, gene expression, hidden
Markov model, human endogenous retrovirus, information visualization, learning
metrics, reliability, self-organizing map.

In this thesis exploratory data analysis methods have been developed for analyzing
genomic data, in particular human endogenous retrovirus (HERV) sequences and
gene expression data. HERVs are remains of ancient retrovirus infections and now
reside within the human genome. Little is known about their functions. However,
HERVs have been implicated in some diseases. This thesis provides methods for
analyzing the properties and expression patterns of HERVs.

Nowadays the genomic data sets are so large that sophisticated data analysis
methods are needed in order to uncover interesting structures in the data. The
purpose of exploratory methods is to help in generating hypotheses about the
properties of the data. For example, by grouping together genes behaving similarly,
and hence presumably having similar function, a new function can be suggested
for previously uncharacterized genes. The hypotheses generated by exploratory
data analysis can be verified later in more detailed studies. In contrast, a detailed
analysis of all the genes of an organism would be too time consuming and expensive.

In this thesis self-organizing map (SOM) based exploratory data analysis ap-
proaches for visualization and grouping of gene expression profiles and HERV se-
quences are presented. The SOM-based analysis is complemented with estimates
on reliability of the SOM visualization display. New measures are developed for
estimating the relative reliability of different parts of the visualization. Further-
more, methods for assessing the reliability of groups of samples manually extracted
from a visualization display are introduced.

Finally, a new computational method is developed for a specific problem in
HERV biology. Activities of individual HERV sequences are estimated from a
database of expressed sequence tags using a hidden Markov mixture model. The
model is used to analyze the activity patterns of HERVs.



ABSTRAKTI

Oja, M. (2007): Eksploratiivisia menetelmiä genomitiedon analysointiin—
sovelluskohteena ihmisen endogeeniset retrovirukset. Väitöskirja, Teknilli-
nen korkeakoulu, Dissertations in Computer and Information Science, Raportti
D23, Espoo, Suomi.

Avainsanat: bioinformatiikka, eksploratiivinen data-analyysi, geeniekspres-
sio, ihmisen endogeeninen retrovirus, informaation visualisointi, itseorganisoituva
kartta, luotettavuus, oppiva metriikka, piilo-Markov-malli.

Väitöskirjassa on kehitetty eksploratiivisia data-analyysimenetelmiä genomiaineis-
tojen analysointiin, keskittyen erityisesti ihmisen endogeenisiin retrovirussekvens-
seihin ja geeniekspressioaineistoihin. Ihmisen endogeeniset retrovirukset (human
endogenous retrovirus, HERV) ovat muinaisten retrovirusinfektioiden jäänteitä ja
ovat nyt osa ihmisen genomia. HERV:eistä tiedetään kovin vähän, mutta niille on
löytynyt yhteyksiä joihinkin sairauksiin. Tämä työ tarjoaa menetelmiä HERV:ien
ominaisuuksien ja aktivoitumisen tutkimiseen.

Nykyään genomiaineistot ovat niin suuria, että tarvitaan kehittyneitä data-
analyysimenetelmiä datan mielenkiintoisten rakenteiden löytämiseksi. Eksplora-
tiivisten menetelmien tehtävä on auttaa luomaan hypoteeseja datan ominaisuuk-
sista. Esimerkiksi ryhmittelemällä geenit samoin käyttäytyvien, ja oletettavasti
saman funktion omaavien, geenien ryhmiin voidaan ehdottaa funktio toiminnal-
taan ennestään tuntemattomalle geenille. Eksploratiivisen data-analyysin avulla
muodostetut hypoteesit voidaan myöhemmin varmistaa yksityiskohtaisempien ko-
keiden avulla. Sen sijaan yksityiskohtainen analyysi olisi liian hidasta ja kallista
suorittaa kaikille geeneille.

Työssä esitetään itseorganisoituvaan karttaan (self-organizing map, SOM) poh-
jautuvia eksploratiivisia data-analyysimenetelmiä geeniekspressioprofiilien ja ih-
misen endogeenisten retrovirussekvenssien visualisointiin ja ryhmittelyyn. SOM-
pohjaista lähestymistapaa täydennetään karttavisualisoinnin luotettavuutta arvi-
oivin menetelmin. Uusia mittareita on kehitetty visualisoinnin eri osien suhteel-
lisen luotettavuuden arviointiin. Lisäksi työssä on esitetty menetelmiä, joiden
avulla voidaan arvioida käsin kartalta eroteltujen ryhmien luotettavuutta.

Työssä on kehitetty uusi laskennallinen menetelmä tietyn HERV:ien biologiaan
liittyvän ongelman ratkaisemiseksi. Yksittäisten HERV-sekvenssien aktiivisuusta-
sot pystytään menetelmän avulla estimoimaan ekspressoituneita sekvenssejä listaa-
vista tietokannoista. Uusi menetelmä pohjautuu piilo-Markov-sekoitemalleihin.
Työssä sitä käytetään HERV:ien ekspressioprofiilien estimoimisessa ja analysoimi-
sessa.
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Chapter 1

Introduction

1.1 General motivation and background

The goal of molecular biology is to understand how the cells of a biological or-
ganism work. Part of the research is the study of the purpose and function of all
components of a cell, including proteins and genes. Functional genomics is a field
of molecular biology that attempts to utilize the vast amounts of data produced
by genomic projects to describe functions and interactions of genes and proteins.

The field of molecular biology changed drastically when the new high-through-
put techniques, including whole-genome sequencing and cDNA microarrays, were
developed in the 90’s (Lander, 1999; Butler, 2001; Lockhart and Winzeler, 2000).
Currently1 the sequencing of about 620 species, of which 24 are eukaryotes, have
been completed and new species are being sequenced with an ever increasing speed.
The genome sequence opens doors to whole new kinds of research directions like the
study of gene regulatory elements, human endogenous retroviruses, and other DNA
elements outside the gene sequences. The whole-genome sequence also enables the
design of microarrays containing all the genes of an organism. Microarrays then
allow the simultaneous study of the activity of all the genes.

The high-throughput techniques output huge sets of genomic data. For exam-
ple, a single human microarray assay, where all human genes are studied in one
particular condition, outputs about 12 MB of data. Respectively, the human DNA
sequence contains 3 billion base pairs. These data sets are so large that traditional
data analysis methods based on simple visualizations and manual browsing of the
data are not able to handle them. The amount and dimensionality of data is
too large to grasp without the help of computational methods that process and
summarize the data and present it to the data analyst in a concise, more easily
understandable, format.

This thesis introduces computational methods for analyzing functional ge-
nomics data sets. The approaches introduced here can be considered to be forms of
exploratory data analysis (EDA). This term was first introduced by Tukey (1977).
He defined EDA as a means to explore the data with the help of simple visualiza-
tions and summaries; in this thesis the term EDA is used to denote more advanced
data analysis methods, including visualization, clustering, probabilistic modeling
and combinations of these.

1On November 13th 2007, according to NCBI Entrez Genome Project database
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CHAPTER 1. INTRODUCTION

EDA enables the analyst to understand the data better and to learn something
about the structure of the data, such as clusters of similarly behaving genes. EDA
results in the generation of hypotheses about the properties of the data or about the
system underlying the data. The analysis result can be, for example, assignment
of hypothetical functions to genes in a gene expression study. The hypotheses
generated by EDA can later be confirmed with more detailed analyses.

The explorative phase of data analysis is particularly important when the data
to be studied is huge, like it usually is in functional genomics, and when the
knowledge of the system, where the data is coming from, is limited. Using EDA,
the limited resources (money, time, and effort) can be focused on a smaller, well
selected set of interesting objects, for example, on a set of genes that were found
to be related to a particular cancer subtype in an exploratory analysis of a gene
expression data set. The set of interesting genes can be studied more closely in the
laboratory using experimental techniques that would be too expensive and time
consuming to be applied to all the genes.

In this thesis the focus is on two kinds of genomic data: gene expression data
and human endogenous retrovirus sequences. Both data types are described in
more detail in this thesis. Here the general properties and challenges posed by
these data sources are briefly outlined.

Gene expression data comes from microarray measurements of gene activity.
The data is usually measured for the purpose of studying the function of genes.
Finding their function is interesting per se, but also as a link in the research aiming
at new drugs for diseases. Analysis of gene expression data is challenging because
the data sets are huge, the data noisy and the system underlying the data, the
cell, complex.

Human endogenous retroviruses (HERVs) are virus-derived repetitive elements
in the human genome. Little is known about the functions and properties of
HERVs. However, as they originate from viruses they might have the potential to
harm the human host and have, in fact, been implicated in some diseases including
cancer and autoimmune diseases. The amount of HERV sequence data and the
length of the sequences pose a challenge to many traditional sequence analysis
methods, such as multiple alignments or phylogenetic trees. The HERV sequences,
as repetitive elements, are very similar to each other; this causes problems for many
laboratory techniques that can be used to study the activation of genetic elements.

This thesis presents computational approaches that can, to some extent, tackle
the challenges in analyzing large genomic data sets such as gene expression or
HERV data. First of all, a data analysis approach based on self-organizing maps
(SOM; Kohonen, 1982, 2001) is proposed for grouping and visualizing gene ex-
pression and HERV data.The SOM has previously been used extensively and suc-
cessfully in large variety of data analysis tasks (Oja et al., 2003). Furthermore,
SOMs are well suited for the analysis of huge data sets and able to handle high-
dimensional data. The noisiness and high dimensionality of gene expression data
is taken into account by choosing the distance measures carefully and by applying
the learning metric principle (Kaski and Sinkkonen, 2000, 2004) to automatically
learn an appropriate distance measure from data.

The SOM-based exploratory analysis is complemented with estimation of the
reliability of visualizations produced by SOM. The reliability of visualization is
especially important in EDA, where the visualization is the center point of the
analysis process. New measures are developed for estimating the reliability of
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1.2. CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

different parts of the visualization display. Furthermore, methods for assessing the
reliability of groups of samples manually extracted from a SOM visualization are
introduced.

In the last part of the thesis a biologically motivated probabilistic model is
introduced for estimating the activities of HERVs. The model is able to handle
the high sequence similarity of HERVs. The new model can be used to explore
the HERVs and make hypotheses about which HERV sequences are active. The
HERV expression data obtained by the new model could then be analyzed using
the SOM approach introduced (for gene expression data) in the first part of the
thesis.

The thesis is on the borderline between biology and computer science in the
sense that the biological problems guide the selection and development of the
methods proposed here. The SOM-based approaches introduced in this thesis can,
however, be applied to other genomic data sources that have similar characteristics.
The probabilistic model for HERV sequences introduced in the last part of the
work is more purely bioinformatics: the model has been specifically developed for
a particular biological problem. Still, it can also be used to study the activities of
other repetitive genomic elements besides HERVs.

1.2 Contributions and organization of the thesis

This thesis is about exploratory data analysis approaches for the study of the
functions and properties of genes and human endogenous retroviruses. The specific
contributions are:

• the application and development of new self-organizing map-based exploratory
data analysis approaches for gene expression profiles and HERV sequences

• methods for estimating the reliability of SOM visualization displays and of
groups of data samples manually extracted from them

• the development and application of a hidden Markov mixture model for es-
timating activities of HERV sequences based on databases of expressed se-
quences (ESTs).

The thesis is organized as follows. In Chapter 2 the biological basis of the
work is given. The chapter introduces gene expression data and human endoge-
nous retroviruses. Chapter 3 describes EDA and computational methods that are
used or extended in the thesis. Chapter 4 outlines the SOM based exploratory
data analysis approach for gene expression data and discusses the choice of met-
rics and the estimation of reliabilities of different visualization methods. Chapter
5 describes a SOM-based EDA approach for HERV sequence data and introduces
new methods for estimation of the reliability of SOM based data analysis. Chap-
ter 6 presents a probabilistic model for the estimation of the activities of HERV
sequences from EST data. Chapter 7 summarizes the conclusions of the thesis.
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Chapter 2

Genes and human

endogenous retroviruses

This chapter gives a brief introduction to the biological application areas studied in
this work. The chapter begins by giving the basics of genomes, genes and proteins.
Then the measurement techniques and typical features of gene expression data are
introduced. Gene expression data is analyzed in Publications 1-2 (see Chapter 4).
The rest of the chapter concentrates on human endogenous retroviruses, the main
application area in this thesis (Publications 3-7; Chapters 5-6).

2.1 The genome

The genome contains the genetic information of an organism. Genes are a part of
the genome. The genome is basically a collection of deoxyribonucleic acid (DNA)
molecules called chromosomes. A DNA molecule is a sequence of nucleotides that
are held together by a backbone. There are four different kinds of nucleotides in
DNA: adenine (abbreviated A), cytosine (C), guanine (G) and thymine (T). The
sequence formed of these nucleotides contains the genetic information. The DNA
molecule almost always exists as a pair of molecules bound together by hydrogen
bonds connecting the nucleotides of each strand of DNA (Watson and Crick, 1953).
The connected nucleotides always pair up A to T and C to G. This base pairing
property implies a copying mechanism of DNA: a strand of DNA can be built
by using the other as template. Ribonucleic acid (RNA) has a structure similar
to DNA and uses the same nucleotides, with the exception of using uracil (U)
instead of thymine. RNA can base pair with DNA, the mechanism is used in gene
transcription where DNA is copied into RNA.

The human genome sequence contains genes, but also other genetic elements
such as control elements for genes, telomers, centromeres, and repetitive elements
including transposable elements (TE) (IHGSC, 2001). Transposable elements are
DNA sequences that contain a machinery enabling them to copy their sequence and
insert it to other locations in the DNA. In the human genome the gene sequences
actually form only about 2% of the whole DNA sequence whereas the diverse kinds
of repetitive elements make up 45% of the sequence (IHGSC, 2001). In this work
we will study genes and then human endogenous retroviruses that are one type of
TEs.

4
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2.2 From genes to proteins

The process by which a gene’s DNA sequence is converted into a functional pro-
tein is called gene expression. First, the DNA sequence of the gene is transcribed
into messenger RNA (mRNA), using the base pairing property of DNA and RNA.
Then the mRNA sequence in translated into protein with the help of ribosomes
and transfer RNAs (tRNAs). The tRNAs implement the genetic code connect-
ing triplets of RNA (called codons) with particular amino acids. The process of
transcription and translation is outlined in Figure 2.1.

In a broad sense, a gene consists of a promoter region, a 5’ untranslated region
(UTR), exons, introns and a 3’ UTR (see Fig. 2.2). Only the exons will appear
in the final protein product of the gene. The promoter contains binding sites for
transcription factors (TFs), the RNA polymerase and other proteins needed for
initiation of transcription. The 5’ UTR contains signals for translation initiation
and the 3’ UTR contains the polyadenylation site signaling the end of the gene
sequence. Introns are spliced out of the mRNA sequence before translation, leaving
only the exons in between the UTRs (see Fig. 2.3). For some genes there exist
alternative splice variants with different combinations of exons included in the
final gene product. An open reading frame (ORF) is a portion of a genome which
contains a sequence of nucleotides that could potentially encode a protein.

The genes are basically the same in all the cells of a multicellular organism.
However, the cells in different parts (tissues) of the organism are very different,
i.e. they exhibit different phenotypes. The differences are due to the cell type
specific expression of genes: only some of the genes are active in each tissue.
Such differential expression of genes is possible because there are mechanisms for
controlling (regulating) gene expression.

The regulation can happen at any level of the gene expression process. The
rate of transcription is controlled by transcription factors. TFs are special proteins
that bind the DNA near the gene promoter and interact with each other and the
RNA polymerase used to read the gene DNA into RNA. TFs bind to special
transcription factor binding sites or to enhancer elements located further away
from the gene. There also exist mechanisms that control the gene expression before
or after transcription. Chromatin modification processes will reveal the promoter
for TFs. After transcription, the rates of mRNA degradation and translation are
regulated. Furthermore, the ready protein can still be modified by adding, for
example, sugar residues. All these regulation steps affect the final amount and
function of the protein.

The gene regulation process is still poorly understood, even though several steps
of the process have been identified. The full regulation mechanisms of individual
genes are generally unknown. However, more information is available for frequently
studied lower organisms, such as the baker’s yeast, than for the considerably more
complex higher organisms, such as humans.

The information about the functional interactions of genes has been collected
to databases (see section 2.5), and is represented there as pathways. A pathway is
a cascade or network of genes that affect each other. For example, one gene codes
for a transcription factor that then binds to the promoter of another gene and
activates it. Examples of cellular processes that have been presented as pathways
are signal transduction (response of the cell to external signals) and the cell cycle.
Genes that are parts of the same pathway have, by definition, related functions.
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Figure 2.1: Transcription and translation. See text for details.
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2.3 Measuring gene expression

Gene expression measurements are usually carried out to study the function of
proteins. The idea is that if it is known in which situations the proteins are
produced, some clues to their function can be obtained. Furthermore, proteins
(genes) that are activated at the same time are likely to be under the same control
mechanism and thus parts of the same biological process or pathway. This process
of assigning a function to a gene based on co-expression is referred to as the ’guilt-
by-association’ method (Lockhart and Winzeler, 2000). Actually, the logic goes
the other way, i.e., functionally similar genes or genes under the same control
mechanism tend to be active at the same time. The ’guilt-by-association’ method
is a commonly used practice that seems to work, but it should be noted that it is
not without fault.

There exist several laboratory methods for the task of determining the expres-
sion levels, the amount of mRNA, of genes. The expression levels will give indirect
evidence about the abundance of the final functional protein product of the gene.
It is difficult to measure protein abundance levels on a large scale, but mRNA is
easier to study due to the base pairing property of DNA/RNA.

A list of available techniques for measuring gene expression is given for example
in Lockhart and Winzeler (2000). In this section only those two methods, microar-
rays and expressed sequence tags, that are used in this thesis will be reviewed.

2.3.1 Microarrays

The activities of genes can be measured using microarrays, which are able to
simultaneously read the expression levels of thousands of genes (Schena et al.,
1995; Lockhart et al., 1996; Nature Genetics Supplement, 1999). A microarray
provides a way to get a “snapshot” of gene activity. It reports which genes were
active, and at what levels, in a cell population at a specific time and in a specific
condition.

Microarrays can by manufactured in several different ways, but the most com-
monly used types of microarrays are cDNA1 (also referred to as spotted) microar-
rays (Schena et al., 1995) and oligonucleotide arrays (Lockhart et al., 1996). A
cDNA microarray is a small glass or plastic slide upon which a field of spots has
been laid. Each spot contains thousands of copies of a probe, designed to match the
mRNA sequence of a specific gene. The probe cDNA sequence is complementary
to the mRNA sequence of a given gene and will base-pair only with that mRNA
sequence. In spotted microarrays the probes are synthesized beforehand and are
then ”spotted” onto the slide. In contrast, in oligonucleotide arrays the probe
sequence is synthesized directly onto the slide nucleotide by nucleotide.

The gene expression levels are measured with microarrays using the following
procedure (Quackenbush, 2001). First the mRNA is extracted from the sample.
The mRNA is converted to cDNA and labeled, typically with a fluorescent dye,
before it is hybridized (letting the mRNAs in the sample to base pair with probe
sequences on the array) onto the microarray. In the last stage of the process the
microarray is scanned with a laser, and intensity of the fluorescence is recorded
for each spot. The above applies to both spotted and oligonucleotide arrays with
the exception that in spotted arrays two samples are hybridized together onto the

1Complementary DNA (cDNA) is constructed by building a strand of DNA using RNA,
usually mRNA, as a template
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same array. The samples are labeled with different colors and they will compete
to bind to the probe sequences. In the end, the intensities of the two colors in a
spot will be relative to the amount of that gene’s mRNA in the two samples. An
example of a scanned cDNA microarray image is shown in Figure 2.4.

The microarray technology is not error free. Typical problems with the arrays
include probes that do not match the intended gene and probes that match several
genes. Furthermore, dust particles or some other impurities that have ended up on
the slide may ruin the hybridization process in some parts of the slide. Imperfec-
tions in the measurement process lead to erroneous data values. Some of these can
be detected during a quality control process and indicated as missing. Noisiness
of microarray data is discussed separately below.

2.3.2 Typical gene expression data

Gene expression is usually measured in several conditions, for example in different
tissues, different diseases or patients, different environmental conditions, or at
different time points. Nowadays a typical microarray contains all the known genes
of an organism. The measurements of gene activity in various conditions form the
expression profile of that gene. The characteristic profile of a gene is related to
its function and can be likened to a fingerprint. Similarly the gene activities in a
condition can be seen as a characteristic transcriptional pattern of that condition.

Gene expression measurements output a gene expression matrix with p genes
measured in N conditions; a row in the matrix represents the N -dimensional gene
expression profile of one gene. The gene expression data matrix is often visualized
using green and red to indicate increased and decreased (up- and down-regulated)
expression levels with respect to a reference sample. Such a visualization is show
in Figure 2.5.

Gene expression data sets are often huge; p is usually tens of thousands, and N
can vary between less than ten and about a thousand. Already the sheer quantity of
the data makes it hard to study. For example, when genes are analyzed the number
of samples p is prohibitively large for some computational methods. Furthermore,
the dimensionality of microarray data poses a challenge for statistical analyses.
In a case where the conditions are studied, the data can have a thousand times
more dimensions (genes) than samples. This is referred to as the “small N large
p problem” (Antoniadis et al., 2003). The self-organizing map based exploratory
data analysis approach introduced later in Chapter 4 can handle huge and/or high
dimensional data sets. This means that SOMs can be used to analyze either the
genes or the conditions of a microarray data set.

Even though the microarray measurement techniques have improved rapidly,
the quality of microarray data is often not as high as would be desired. The data
contains both biological and measurement noise. Biological noise comes from the
natural biological variation between individuals or between different cells. Because
the cell is so complex, there are many processes that affect the gene expression
levels going on at the same time. Each process will cause variation, some of which
is irrelevant from the point of view of the current analysis task. Measurement
noise can come from a variety of sources: from techniques used to prepare the
biological sample or from the processes of amplification and labeling, or from the
array itself. It has been noted that different analysis platforms (cDNA arrays and
oligonucleotide arrays from various manufacturers) give different results (Järvinen
et al., 2004). Furthermore, microarrays prepared in different laboratories have
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Figure 2.4: A scanned image of a cDNA microarray. Each spot represents one gene, the spots
are colored according to the gene expression level. Red means that the gene is more active in the
sample than in the control, green marks higher activity in the control and yellow means equal
expression in the two cases.

Figure 2.5: Typical gene expression data matrix. Each row represents one gene and each column
one array. The size of the matrix is 403 times 98. The data is a subset of the data from Hughes
et al. (2000), where gene expression was studied in various mutated yeast strains. The red-green
coloring is commonly used to represent microarray data. Red means that the expression log-ratio
between sample and control is above 0, green the opposite, and black equal expression.
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different characteristics. The between laboratory variation shows up clearly in a
visualization of an atlas of gene expression data sets (Venna and Kaski, 2007a).
This reflects how much noise biological and measurement variation can bring. The
noise is in some cases so high that it drowns the weak signals from lowly expressing
genes (Tu et al., 2002). By selecting the metric for comparing gene expression
profiles appropriately some of the irrelevant variation can be attenuated. The
choice of metric is discussed in Chapter 4.

Preprocessing and normalization issues are very important in microarray data
analysis. Normalization is done to make different arrays comparable and to reduce
the noise. Quality control steps during the preprocessing ensure that low quality
samples are discarded. The thesis does not propose new approaches to preprocess-
ing and normalization of microarray data, even though the issue is briefly discussed
in Section 4.2.

2.3.3 Expressed sequence tags

Microarrays cannot be designed if the gene sequences are unknown. In such a case
the expressed sequence tagging (EST) technique can be used for gene discovery and
gene sequence determination, and also for measuring the activity level of genes.

Expressed sequence tags (ESTs) are short and “noisy” samples of mRNAs
present in a cell population. A collection of ESTs is constructed in the following
way. First, the mRNA is isolated from the sample and reverse transcribed into
cDNA. The cDNAs are inserted into vectors2 to construct a cDNA library. A
random sample of the clones in the library is then selected for one-shot sequencing.
The cDNA may be sequenced from either end; forward sequencing produces an
EST that matches the beginning of a gene and reverse sequencing products match
the end of the gene’s mRNA. The EST sequences are relatively low quality (the
reverse transcription and/or sequencing steps cause errors) fragments whose length
is limited to approximately 500 to 800 nucleotides. Furthermore, the quality of the
sequencing usually deteriorates towards the end of the EST. The EST sequences
are submitted to GenBank and eventually to dbEST, a database of ESTs (see
section 2.5).

One gene typically produces several mRNA sequences, which leads to several
ESTs originating from the same gene. UniGene is a database where the ESTs
have been grouped to clusters, each representing one potential gene. An EST
cluster can be used, for example, to design probes for microarrays (Quackenbush,
2001).

2.4 Human endogenous retroviruses

2.4.1 Retroviruses

Retroviruses are viruses whose genetic material is in the RNA format; for example
the human immunodeficiency virus (HIV) is a retrovirus.

Retroviruses are parasites that use the host cell machinery to replicate. The
retroviruses hide within the host genome and may lay dormant for a long period
before they become infective again. The retroviruses can spread the infection from

2In molecular biology a vehicle for transferring genetic material into a cell is called a vector.
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Figure 2.6: Life cycle of a retrovirus. The RNA of the infecting retrovirus is released into the cell,
reverse transcribed and then inserted into the host genome. The genes of an active retrovirus
are transcribed by the host machinery and retroviral proteins are produced. New virions are
compiled from the virus particles.

within the host, i.e., new cells are infected by viruses produced in the already
infected cells.

The life cycle of a retrovirus begins when it infects a host by releasing its RNA
into the infected cell together with a reverse transcriptase (RT) protein. The RT
protein then copies the viral RNA-genome into DNA, which is then inserted into
the host DNA sequence. The virus will remain in the host genome and copy itself
into other locations. An active virus will use the host transcription machinery to
transcribe and then translate its genes into proteins. When enough virus proteins
have accumulated new viruses will be assembled from these proteins. Each new
virus will also contain a copy of the viral RNA (see Fig. 2.6). When the new virus
copies are released from the host cell, it will die.

A typical retrovirus genome consists of long terminal repeat sequences (LTR),
one in each end of the genome, and four genes: gag, pro, pol and env (Coffin et al.,
1997). The LTR elements function as promoters for the viral genes and also in
the process of insertion into the host genome. The gag and env genes code for
structural proteins that are used to build new retrovirus particles. The capsid
and envelope of the retrovirus are shown in Figure 2.6; the gag gene codes for
the capsid proteins and env for the envelope proteins: surface glycoprotein and
transmembrane protein. A single retrovirus gene may transcribe several proteins,
thus a protease that can cleave amino acid chains to form individual retroviral
proteins is needed; this is produced by the pro gene. Finally, the pol gene codes for
the reverse transcriptase described in the previous paragraph and for the integrase.
Integrase protein is needed in the process of integrating the retrovirus genome
into the host DNA. The protease is used to cleave a pol-polyprotein to form the
integrase and reverse transcriptase proteins.

Retroviruses have been classified into seven genera: alpharetroviruses (like
the avian leucosis virus), betaretroviruses (mouse mammary tumour virus), gam-
maretroviruses (murine leukemia virus), deltaretroviruses (human T-lymphotropic
virus), epsilonretroviruses (walleye dermal sarcoma virus), lentiviruses (human im-
munodeficiency virus 1) and spumaviruses (human foamy virus).
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2.4.2 Human endogenous retroviruses

Endogenous retroviruses are viral sequences within the host DNA (Gifford and
Tristem, 2003). In contrast, exogenous retroviruses are retroviruses that can exist
as virus particles outside the host cells, and are integrated into the host DNA only
as a part of their life cycle. An exogenous retrovirus becomes endogenous when
it infects a germ line cell and the viral DNA is inherited by the children of the
infected host along with the host genome sequence (Gifford and Tristem, 2003).

Human endogenous retroviruses (HERV) are remains of ancient (hundreds or
tens of millions of years ago) retrovirus infections. The HERVs, as transposable
elements, have been able to move and copy their DNA to other locations in the
genome; such copying has yielded several mutated versions of the original virus.

Some of the HERVs have lost the typical retrovirus structure through mutations
and various genomic rearrangements, and now contain mutated versions of one or
several of the viral genes and zero to two LTRs. The present-day mutated and
fragmented HERVs are mainly unable to move and copy themselves. Naturally,
older elements have had more time to mutate and generally are less intact. The
age of the retroviral element can be estimated from the sequence similarity of its
two LTRs: they are identical upon integration and mutate afterwards.

Human endogenous retroviruses have been classified to HERV groups (some-
times also referred to as families) based on previous studies on their evolutionary
origins. A group consists of a set of sequences mutated from the same original in-
fecting virus; a group may contain hundreds of very similar sequences. There are
about 40 groups, different sources listing different numbers (Mager and Medstrand,
2003).

HERV groups have been more loosely classified into three main classes. Class
I contains endogenous retroviruses that are similar to gammaretroviruses, class II
HERVs are similar to betaretroviruses and class III elements are remotely similar
to spumaviruses. Class III contains the oldest, most mutated elements, and class
II the youngest nearly intact elements.

2.4.3 Function of human endogenous retroviruses

The functions of HERVs can be grouped into two categories: the retroviral function
and the genomic function. Retroviral functions of HERVs are related to their
origin as viruses. It is highly interesting to know that the human genome contains
sequences that can express viral genes in human tissues. The genomic functions
are related to their presence in the genome where they can affect the functioning
of nearby human genes.

The knowledge about the functions of HERVs is still limited and much work is
needed to understand the opportunities and hazards that the HERV may present.
The subsections below review what is known about HERV function and what are
the most important open questions.

Retroviral functions of HERVs

A retrovirally active HERV could act like a normal infecting retrovirus (Gifford
and Tristem, 2003). The active HERV would be able to transpose or to produce
virus particles that can re-infect other human cells. Even a partly active HERV
can have some of the functions of an active virus, depending on which HERV genes
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are expressed. For example, a HERV can transpose if functional RT and integrase
proteins are present. Similar HERVs may also be able to work in a co-operative
manner, such that the necessary HERV genes are expressed from different genomic
locations. Such activity can produce new chimeric HERVs or cause transposition
of HERVs that are usually incapable of transposition (Gifford and Tristem, 2003;
Blomberg et al., 2005). Active HERVs in the germ line cells can introduce new
HERV integrations to the human population, while transposition or re-infection
events happening in the somatic cells will only affect the current host.

Retroviral expression has been detected in human tissues, but still little is
known about the actual functions of the HERVs or the extent of the expression.
As the expression is generally measured for groups of HERVs at a time (see, e.g.,
Seifarth et al., 2005; Hu et al., 2006), it is not known how many individual active
HERVs there are. HERV expression has been studied in various situations. The
results show that HERVs are activated in numerous conditions, in both health and
disease.

Retroviral expression has been detected in numerous patients suffering from
various diseases, for a review see Blomberg et al. (2005) and Nelson et al. (2003).
Retroviral transcripts or protein products have been detected in schizophrenia
(Shastry, 2002; Frank et al., 2005), cancer (Wang-Johanning et al., 2003; Depil
et al., 2002; Patzke et al., 2002; Hu et al., 2006) and autoimmune diseases (Portis,
2002; Christensen et al., 2003). However, HERV expression has been detected also
in healthy individuals, see, e.g., Hu et al. (2006). Thus, the connection between
HERVs and disease remains highly uncertain. It is not known whether HERVs
cause the disease or are expressed because some mechanism normally inactivating
HERVs is broken down in diseased cells. In some cases, the expression can be
normal in the sense that also healthy cells express HERVs.

The retroviral function of a HERV can also work to benefit the humans. There
are at least two known examples of HERV-derived human genes. A HERV env
gene, dubbed syncytin, has been found to be expressed during an essential step in
formation of the placenta (Mi et al., 2000). Another env gene, called syncytin-2,
is also performing beneficial functions in the placenta (Blaise et al., 2003; Muir
et al., 2004).

In order to understand the connection between HERVs and disease, the ques-
tion that needs to be answered is whether the expression is different between
healthy and disease cases. Furthermore, to get insights into potential HERV func-
tion it is essential to study how HERV expression differs from tissue to tissue. It
would also be informative if the activity could be pin-pointed down to some indi-
vidual HERV locations. Then also the control of the activation could be studied,
starting from the analysis of transcription factor binding sites surrounding the ac-
tive HERV in the DNA. Basically, HERV gene activation is regulated using the
same mechanisms as the “normal” genes.

Genomic functions of HERVs

The HERVs can affect the host by providing alternative promoters and enhancers
to host genes, see, e.g., Jordan et al. (2003), Britten (1997) and Medstrand et al.
(2005). The HERV LTR sequences, originally designed to activate the virus genes
in humans, contain strong activation signals. Thus an LTR sequence nearby a
human gene start site may have an effect on the gene activation levels. In some
cases the gene is naturally read from the HERV promoter and in some cases the
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HERV regulation is abnormal and may cause disease. The regulatory effect of
HERVs can be studied by analyzing the genome sequence: the known promoter
and enhancer areas around genes can be screened for retrovirus-like sequences as
done by Jordan et al. (2003).

In addition to promoters and gene start sites, the HERV sequence can also offer
alternative polyadenylation sites to nearby genes, i.e., alternative ending points
for a gene in the DNA sequence. In principle, also the splice signals in HERV
sequences can be detected by nearby genes causing some portion of HERV DNA
to be included into a gene transcript as a new exon (Blomberg et al., 2005).

The HERV sequences offer a pool of sequences for recombination. The HERVs
can recombine with similar HERVs in other parts of the genome or with exoge-
nous viruses similar to the endogenous ones (see Bosch and Jobling, 2003; Löwer,
1999). The recombination can result in a more active HERV or it can affect the sur-
rounding genome, for example, by bringing a gene close to a functional retroviral
promoter and causing the gene to be more actively transcribed. HERV recombi-
nation may also cause a harmful deletion of genetic material (Bosch and Jobling,
2003).

Genomic disruptions happen also when active HERVs transpose to new lo-
cations, and hit a gene. A transposition can destroy genes or other necessary
elements in its insertion site, thus causing more damage to the cell (Löwer, 1999).
Upon insertion into an exon or intron area the retrovirus will knock out the gene
or change the protein product. Part of the HERV may even be included into the
resulting protein. When inserted near a gene the HERV and especially its LTR
elements can have an effect on the regulation of the gene.

2.4.4 Human endogenous retrovirus data

It is estimated that about eight per cent of the human genome is of retroviral
origin (IHGSC, 2001). There are a little over 3000 (Sperber et al., 2007) retrovirus
integrations that contain at least one retrovirus gene. In addition, there are thou-
sands of single LTR sequences. The exact amount is difficult to estimate, because
a conclusive search for single LTRs from the whole genome has not been carried
out yet.

The HERV data used in this thesis are HERV sequences detected automati-
cally from the human genome by the program RetroTector (Sperber et al., 2007).
RetroTector additionally annotates the HERVs; it estimates the structure of the
element (presence and locations of LTRs and viral genes), the age of the element,
the intactness of viral gene reading frames etc. It further classifies the HERVs
into groups, based on sequence similarity to known representatives of the group.
Some sequences remain unclassified because they are not similar to the reference
sequence of any group.

The RetroTector program is constructed so that it will find chains of retro-
viruslike sequences. Each chain is scored and high scoring chains are reported as
HERVs. For the data set used in this thesis the cut-off for reporting a chain as
a HERV was set rather low. This was done, so that older more fragmented and
mutated HERVs would not be missed. In some cases the (low scoring) HERV
sequence may contain also other DNA between retroviral segments.

Some challenges of retrovirus data are: the amount of sequences, the length
of sequences (full length retrovirus is about 10000kb long), and the similarity of
the sequences. Sequences within a HERV group can be almost identical. The
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amount of HERV sequence data and the length of the sequences pose a challenge
to many traditional sequence analysis methods, such as multiple alignments or
phylogenetic inference. In this work an alternative approach is introduced for
analyzing large sequence collections (see Chapter 5). The similarity of HERVs
causes problems for many laboratory techniques that can be used to study the
activation of genetic elements (see the next section). A solution for estimating the
activities of individual HERVs is proposed in Chapter 6.

2.4.5 Measuring HERV activity in the laboratory

Several laboratory methods exist for studying HERV activity. The drawback of
many of these methods is that they can estimate HERV activity only on the group
level, i.e., the activity is a pooled measurement from all members of the HERV
group.

Reverse transcription polymerase chain reaction (RT-PCR) is a technique for
amplifying a defined piece of a ribonucleic acid (RNA) molecule. The RNA strand
is first reverse transcribed into its DNA complement, followed by amplification
of the resulting cDNA using polymerase chain reaction (PCR). PCR itself is the
process used to amplify specific parts of a DNA molecule. RT-PCR can be used in
the task of HERV transcription analysis using primers that will only amplify the
desired sequences, for example the members of one HERV group. A primer is a
short nucleotide sequence that will base pair with single stranded DNA and allow
the synthesis of the second strand to begin. RT-PCR primers are designed such
that they will base pair only with the desired sequence and not with other DNA
in the sample. In the case of HERVs it is difficult to design primers that would
target only one member of the group of highly similar sequences. For this reason
the primers for HERVs are designed such that they match all members of the
group. Activity of HERV groups has been studied with RT-PCR for example by
Hu et al. (2006), Muradrasoli et al. (2006), Andersson et al. (2005) and Forsman
et al. (2005).

Seifarth et al. (2003, 2005) have developed a retrovirus chip that is similar to
microarrays. The chip is composed of retrovirus-specific synthetic oligonucleotides
as capture probes. The retrovirus chip can be used to measure the occurrence of
reverse transcriptase (RT)-related transcripts in biological samples of human and
mammalian origin. The chip detects expression levels of different HERV groups
using probes that target one group specifically.

The presence of antibodies against HERV proteins in the blood serum of a
patient shows that the autoimmune system is reacting against HERVs, i.e., HERV
proteins are being produced somewhere in the patient. The immune response
against HERVs can be studied using the following procedure (see, e.g., Christensen
et al., 2003): Short segments of the HERV protein of interest are designed, syn-
thesized and fixed on a membrane. The serum is then added onto the membrane.
An antibody in the serum will bind to some of the segments on the membrane and
give out fluorescence that can be measured.

All of the above methods target larger groups of HERVs, i.e., give activities
for a group of HERV sequences. However, it would be important to get to the
level of individual HERV sequences; if it were known which individual HERV loci
are activated it would be possible to start to study the control mechanism causing
the activation. For example, active sites could share a specific transcription factor
binding site not present in the inactive HERVs.
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The ESTs can be used to estimate HERV activity similarly as they are used
for studying the activities of genes. The basic idea is to count how many EST
sequences for each HERV there are in the EST database. However, it is not easy to
unambiguously match the EST sequences to the HERV sequences. HERV activity
estimation from EST databases is discussed in Chapter 6, and in Publications 6
and 7.

All of the methods described above can also be used to study gene activity
and basically many methods used to study the function of genes can be applied
to the study of HERVs. After all, the HERVs contain genes. The difficulty is the
repetitive nature of HERV which will, of course, have to be taken into account.

2.5 Biological databases

Knowledge about biological systems has been collected into public databases. Se-
quence information about all human genes and proteins can be found from these
resources. There are also databases for gene expression measurement data. But in
addition to these there is higher level information available. Some databases list
predicted or known functions for genes and proteins. Databases have cross links
to each other, connecting sequence data to expression data for example.

Below is a list of databases used in this thesis.

• Gene Ontology (GO) project provides a classification hierarchy for genes
and proteins. The GO collaborators are developing tree structured ontologies
that describe gene products in terms of their associated biological processes,
cellular components and molecular functions in a species-independent manner.
[http://www.geneontology.org]

• The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000; Kanehisa et al., 2004) contains a database of molecular inter-
action networks such as pathways and complexes.
[http://www.genome.ad.jp/kegg/]

• The MIPS Comprehensive Yeast Genome Database (CYGD) contains
information on the molecular structure and function of the budding yeast Sac-
charomyces cerevisiae. The database offers a functional classification for yeast
proteins. The assignment of yeast genes into classes is done manually.
[http://mips.gsf.de/genre/proj/yeast/]

• RepBase is a database of repetitive elements (Jurka, 2000). It contains con-
sensus sequences for various kinds of repeats, including HERVs. Repeat-
Masker (Smit et al., 1996-2004) is a program that detects repeats from a
given DNA sequence. It is based on the RepBase database. Portions of DNA
that match some entry of the RepBase well enough are reported as repeats.
[http://www.girinst.org]

• UCSC Genome Browser is a resource about the human genome. The
user can select a genome location and then all kinds of information about the
genome area is displayed graphically. Known human genes are shown as well
as gene predictions and transcripts that match that area. The human genome
has been compared to that of other organisms. The browser shows the amount
of conservation between human and chimpanzee, human and mouse, human
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and chicken etc. The Genome browser also shows RepeatMasker annotations
for that portion of the genome.
[http://genome.ucsc.edu]

• dbEST is a database of ESTs. It contains millions of EST sequences for
humans alone and millions more for other species.
[http://www.ncbi.nlm.nih.gov/dbEST/]

• eVOC is an ontology for ESTs. The eVOC ontologies provide an appropriate
set of detailed human terms that describe the sample source of the ESTs.
[http://www.evocontology.org]
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Chapter 3

Exploratory data analysis

This chapter lays out the field of exploratory data analysis and introduces the
self-organizing maps, the exploratory data analysis (EDA) method applied later
in the thesis to group and visualize gene expression data and human endogenous
retrovirus sequences. The review of other EDA methods is limited to clustering
and visualization methods; they are introduced as comparison methods for self-
organizing maps. The methods are described here and used or extended in the
subsequent chapters.

3.1 Exploratory data analysis

Exploratory data analysis (EDA) is a principle on how to conduct data analysis. In
EDA the data set is visualized and summarized to gain insight into the underlying
structure and properties of the data. EDA methods provide a way to look at the
data without making restrictive assumptions about the structure of the data space.
Furthermore, EDA enables the analyst to draw conclusions about the nature of
the process underlying the data set and to generate hypotheses on what kinds of
data future experiments studying the process will create. For example, in Chapter
4 hypotheses are made about the function of yeast genes based on a grouping
of their gene expression profiles; the hypotheses can later be verified by detailed
laboratory experiments.

Examples of low level EDA approaches are simple visualizations such as his-
tograms or box-plots. These visualizations can be used, for example, to unveil the
shape of the probability distributions of different components of the data. Simple
EDA approaches should be used as a first step in any sort of data analysis task
to get an initial feeling of the data and to detect any anomalies in it. Summaries
about the means and variances or about the amount of missing values can reveal
samples/variables that might best be discarded or normalized.

EDA can also be characterized through its opposites. Historically EDA was
considered to be the opposite of hypothesis testing. Hypothesis testing is confirma-
tory whereas EDA can be seen as the means of aiding in forming hypotheses about
the properties of the data. EDA can also be seen as the opposite of structured
probabilistic modeling, where the model structure is relatively firmly fixed based
on prior knowledge. In contrast, probabilistic EDA approaches use very flexible
probabilistic models that can learn some structure, like the shape and modality
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of the data density, from the data. The flexible models make few assumptions,
whereas the structured models try to incorporate all prior knowledge into the sys-
tem. Of course, probabilistic models are not limited to very flexible and structured
models. There is a continuum of models between these two extremes.

3.2 Basics of probabilistic modeling

In probabilistic modeling useful information can be extracted from a data set D
by building a good probabilistic model. Machine learning approaches use flexible
models M characterized by a set of parameters θ to model the density of the data
by p(D|θ,M). This distribution is often referred to as the likelihood of the data
given the model. The task is to learn an appropriate set of parameters such that
the model best fits the data D.

The Bayes’ theorem (see Gelman et al., 2003) connects the conditional and
marginal probability distributions of the data and parameters.

P (θ|D,M) =
p(D|θ,M)P (θ|M)

P (D)
, (3.1)

where p(D|θ,M) is the likelihood, P (θ|M) is the prior for the model parameters,
P (D) is the marginal distribution of the data and P (θ|D,M) is the posterior
distribution of the model parameters given the data D and the model M .

Inference

A common method for inferring the parameters of the model is the maximum
likelihood approach where those parameters that maximize the likelihood are se-
lected. For simple cases an analytical solution can be found, but for more com-
plicated cases methods such as the Expectation Maximization (EM) (Dempster
et al., 1977) algorithm or sampling approaches must be used.

Bayesian estimation focuses on finding parameters of the posterior distribu-
tion of the model. This is usually done by sampling the posterior distribution
using MCMC methods (see Gelman et al., 2003). If a single set of parameter val-
ues is needed, the values maximizing the posterior probability of the model, the
maximum a posteriori estimate, can be used (see Gelman et al., 2003).

Mixture models

A mixture model is a probability distribution that is a combination of other proba-
bility distributions (see McLachlan and Basford, 1988; McLachlan and Peel, 2000).
The probability distribution of the data p(x), where x is a sample from the distri-
bution, has the form

p(x) =

K
∑

i=1

aip(x|φi), (3.2)

in the case when all K mixture components are from a parametric family of density
distributions. Above ai are the mixture weights that sum up to one and p(x, φi)
are the component distributions, each with its own parameters φi. Mixture models
are used, for example, in clustering and density estimation tasks.
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Density estimation

Density estimation is the construction of an estimate of a probability density func-
tion of the data (see Silverman, 1986). The unobservable density function is the
density according to which a large population is distributed; the observed data is
usually thought to be a random sample from that population.

There are parametric and unparametric approaches to density estimation. The
popular unparametric Parzen estimate of the density function is constructed by
setting an identical kernel (a density function) at the location of each observed
data point and by constructing the density function as a mixture of these (Parzen,
1962). The Gaussian distribution is commonly used as the kernel, but other choices
are possible as well. In parametric approaches the density distribution is presented
using parametric density distributions, usually a mixture of them, see Eq. 3.2 and
Silverman (1986).

3.3 Selected exploratory data analysis methods

This section introduces some commonly used exploratory data analysis methods
for gene expression data (metric vectors). Most of the methods can be adapted
also to work for biological sequence data (or a pairwise distance matrix of the
sequences). The review is limited to clustering and visualization methods. They
are included as comparison methods to self-organizing maps, that are used in later
parts of this thesis to group and visualize gene expression data and human endoge-
nous retrovirus sequences. The basic version of SOM is introduced here, while the
adapted versions are introduced later when they are applied in the biological prob-
lem setting.

3.3.1 Clustering methods

Clustering is the process of partitioning a data set into groups so that the data
samples in one group are similar to each other and are as different as possible from
samples in other groups (see Jain and Dubes, 1988). Clustering is a commonly
used approach in gene expression analysis. The aim is to find natural clusters
of similar genes. The clusters can then be analyzed to discover the function of
uncharacterized genes. The assumption is that genes that have similar expression
profiles also have similar functions (Lockhart and Winzeler, 2000; Quackenbush,
2001). The gene expression data matrix can also be analyzed in the other direction;
the conditions (on the columns of the matrix) are studied instead of genes (on the
rows of the matrix). For example, patients are clustered to groups sharing similar
gene expression patterns (Bhattacharjee et al., 2001; Golub et al., 1999).

In clustering the number of data samples is reduced by grouping similar samples
together, making the manual data analysis task easier: only a small number of
cluster representatives need to be analyzed instead of thousands of original data
samples.

Hierarchical clustering

There are two types of hierarchical clustering (HC) methods: agglomerative, which
merge clusters into bigger ones, and divisive, which divide clusters. Of these
agglomerative clustering approaches are more common and are also very popular in
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Figure 3.1: Hierarchical clustering result. The figure shows the same hierarchical clustering result
twice (left and middle). On the right are the three clusters that were obtained by cutting the
dendrogram at the level indicated by the dashed line. The 5-dimensional binary samples are
visualized with a black and white matrix that is ordered according to the dendrogram from the
clustering. On the left is an ordering that you might get from a standard implementation of
hierarchical clustering, the branches and leaves are in no particular order. In the middle the
leaves are ordered such that neighboring samples are as similar to each other as possible. Notice
how the branches of the tree have been flipped over to achieve the new ordering.

gene expression data analysis (Eisen et al., 1998; Hughes et al., 2000; Bhattacharjee
et al., 2001).

In the beginning of a agglomerative hierarchical clustering each data sample
forms its own cluster. Then the two closest clusters are merged together to form a
new cluster. This process is repeated until all samples belong to one cluster. The
decisions on which two clusters or samples to combine depend on the choice of
distance measure. An example is the complete linkage method where the distance
between clusters is the maximum distance two samples, one from each cluster, can
have. The sequence of mergings can be displayed graphically in a tree-like form
called the dendrogram. The dendrogram can be cut at some level to extract a set
of disjoint clusters (see Fig. 3.1 right; Jain and Dubes, 1988; Hand et al., 2001).

The data samples are visualized with the dendrogram as the leaves of the
clustering tree (see Fig. 3.1). The branches of the tree are side by side in the
visualization, and the order in the branches and leaves induces a linear ordering
for the data samples (in the left part of Fig. 3.1 the order of the samples is A, B, E,
D, C). The problem is that adjacent samples in the linear order are very dissimilar
at those points when leaves from different branches of the tree are placed side by
side (for example samples B and E in the left part of Fig. 3.1). Furthermore, the
order is not unique, as any branch can be flipped over (like is done for the lower
branches in Fig. 3.1: order of the samples has changed from EDC to CDE). These
problems can be alleviated in part by optimizing the order of the leaves such that
the dissimilarities between neighboring points are minimized (Bar-Joseph et al.,
2001, 2003). A result of such an optimization is shown in the middle of Figure 3.1.

When the hierarchical clustering has been performed for both genes and condi-
tions, the dendrogram can be used to order the rows and columns of an expression
data matrix as shown in Fig. 3.2.

Another problem with the trees from HC is that they are sensitive to small
variations in the data that may affect the agglomeration process, see, e.g. Man-
giameli et al. (1996). Furthermore, the dendrograms will be huge for large data
sets. It is then hard to extract the essential cluster structures from them.

Probabilistic approaches to hierarchical clusterings have also been presented.
These have the beneficial ability to reduce the common problems of hierarchical
clustering: sensitivity to noise and the propensity to local maxima. Segal and
Koller (2002) apply probabilistic abstraction hierarchies (PAH) to gene expression
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HLFGQALAQDLSQFSYLDTLALQYMNDLLLAAHSETLCHQATQAHQVLLNFLATCGYKVSKPKAQLC

HLFGQZLAQDLSQFSYLDILVLQYVDDLLLATRSETLCHQTTQALLTSSPPVA-----VSKPKAQLC

HLFGQALAQDLSQFSYLDTLVLQYGDDLILATRSETWCHQATQALLNFLATCG---YKVSKQNAQLC

HLFDQALAQDLGHFSSPGTLVLQYVDDLFLATISEASYQQATLDLLKFLANQG---YKVSRSKAQLC

HLFDQALAQDLGHFSSPGTLVLQYVDDLFLATISEASYQQATLDLLKFLANQG---YKVSRSKAQLC

HLFGQALAQDLGHVSSPGTLFLQYLDDLLLATSSEASCQQATVDLLNFLANQG---YKVSRSKAQLC

HLFGQALAQDLGHFSSPGTLVLQYVDDLLLATSSEASCQQATLALLNFLANQG---Y-ASRSKAQLC

HLFGQALPR-LEPILIPGHLSFG-VDDLLLAAHSETLCHQATQALFNFLATCG---YMVSKPKAQLC

***.* *.: * . . * : :**:**: **: :*:* . .*: :****

Table 3.1: A segment of a multiple sequence alignment (MSA) of HERV pol proteins. MSA is
a sequence alignment of three or more biological sequences. In general, the input sequences are
assumed to have an evolutionary relationship. The common portions of the sequences are aligned
to reveal blocks of evolutionary conserved positions (marked with ’*’ below the columns of the
alignment). Columns marked with ’:’ or ’.’ are also more or less conserved; they contain amino
acids with similar properties. A dash in a column denotes a deletion in one of the sequences and
a letter in a column full of dashes denotes an insertion in one of the sequence.

and biological sequence data. Hierarchical mixture models for text collection have
been presented, e.g., by Vinokourov and Girolami (2000, 2002) and Toutanova
et al. (2001).

Phylogenetic trees

A phylogenetic tree (PT) is not an exploratory method, but a model for evolution
of the species. It is introduced here as a comparison method for a SOM of se-
quence data. However, the heuristic versions of PT inference algorithms resemble
hierarchical clustering, and can be considered to be forms of clustering.

A PT is a tree showing the evolutionary relationships among various species or
other entities that are believed to have a common ancestor. In a PT, each node with
descendants represents the most recent common ancestor of the descendants, with
edge lengths sometimes corresponding to time estimates. Neighbor joining (NJ) is
a heuristic algorithm that works on a similarity matrix of the sequences obtained
from a multiple sequence alignment (MSA) (MSA is explained in Table 3.1). Once
the similarity matrix is obtained, the NJ works similarly as hierarchical clustering.

In addition to the heuristic NJ algorithm more rigorous PT inference methods
also exist. The maximum parsimony method (Fitch, 1971) tries to reconstruct the
ancestor sequence in each node of the tree; trees that require the least number of
evolutionary changes are preferred. Maximum likelihood (Felsenstein, 1981) and
Bayesian methods are popular; they introduce a probabilistic model for the evolu-
tion of sequences and then solve the parameters of the model to get the PT. These
rigorous methods are unable to handle massive amounts of sequences, because of
the high computational complexity of the algorithms. Furthermore, the multiple
alignment step, that is needed in the heuristic NJ algorithm, is also very heavy to
compute. A dynamic programming approach that can find the best alignment has
a computational complexity of O(lk), with k sequences of mean length l. There are
several heuristic methods for reconstructing the multiple alignment, for example
the popular CLUSTAL W algorithm (Thompson et al., 1994) that constructs the
MSA by progressively combining smaller alignments based on a guide tree. The
guide tree is obtained from a pairwise similarity matrix using the NJ algorithm.
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The multiple alignment step makes even the heuristic neighbor joining method
very heavy to use when the the number and lengths of the sequences to be aligned
are in thousands.

K-means

In K-means clustering the data samples are divided into a predefined number,
K, of clusters. Each cluster is represented by a centroid which is the mean of
the samples in that cluster (MacQueen, 1967; Jain and Dubes, 1988). K-means
clustering has been, in addition to HC, used extensively in gene expression data
analysis, see, e.g., Tavazoie et al. (1999), Beer and Tavazoie (2004) and Vilo et al.
(2000).

The K-means algorithm begins by choosing K initial centroids for the K clus-
ters. The algorithm proceeds by repeating the following two steps. One: each data
point is assigned to the cluster whose centroid is closest to it. Two: the centroids
are recomputed as means of the samples assigned to the cluster. The algorithm
ends when the centroids have stabilized. An example K-means clustering is shown
in Figure 3.2.

K-means is very sensitive to the set of initial centroids, and may converge to
a different clustering when different initialization is used. The clustering result is
a local minimum in the search space. Usually the algorithm is run several times
with different initializations to find the best local minimum.

A drawback of K-means clustering, besides the local minima problem, is the
fact that it produces just a bunch of clusters without describing the relationships
between the clusters. Furthermore, the number of clusters, K, is a free parameter
that needs to be guessed beforehand or validated rigorously.

Mixture model-based clustering

In mixture model based clustering the density distribution of the data is modeled
with a mixture of distributions, see, e.g., Hand et al. (2001) and Eq. 3.2. Each
mixture component corresponds to one cluster and is commonly modeled with
a Gaussian distribution. Mixture model based clustering is very similar to K-
means if K Gaussians with diagonal covariance matrices are used as the mixture
distributions. As opposed to K-means the mixture model gives a soft clustering
of the samples. Each sample has a probability to belong to each cluster. A hard
clustering can be achieved by assigning each sample to the cluster with the highest
probability for that sample. Mixture models have been used in clustering gene
expression profiles for example by Yeung et al. (2001).

3.3.2 Visualization methods

Visualization is a powerful data analysis tool. Visualization methods aim to present
the data to the analyst graphically in such way that the information processing
benefits from the strong pattern recognition capabilities of the human brain.

In a visualization the originally multidimensional and complex data is presented
on a (usually 2-dimensional) display. For this purpose the information in the data
needs to be reduced in a meaningful fashion as it is impossible to present all the
high-dimensional information on a 2-d display. The reduction can be done, for
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example by projecting the data onto a 2-d subspace of the original data space. So,
visualization and dimensionality reduction usually go hand in hand.

An extensive comparison of different visualization methods can be found in
Venna (2007) and publications therein (Venna and Kaski, 2006, 2007a). Here
only a few basic visualization methods, those used later in the publications, are
reviewed.

Simple visualizations

There exist numerous simple visualization methods, such as histograms, bar plots,
box plots, pie charts and scatter plots (Tufte, 1983). The simple visualizations are
good tools for the initial stage of data analysis. They can be used to explore general
properties of the data in order to get a feeling of the data. The visualizations are,
of course, also good when the results of the data analysis task need to be illustrated
graphically (like done in Publication 6 for example).

Principal component analysis

Principal component analysis (PCA) is a linear dimensionality reduction method.
The goal of principal component analysis (PCA) (Hotelling, 1933) is to find lin-
ear projections that maximally preserve the variance in the data. The projection
directions can be found by solving an eigenvalue problem Ca = λa, where C
is the covariance matrix of the data, λ an eigenvalue, and a the corresponding
eigenvector. The data is then projected into the space spanned by the eigenvector
corresponding to the two or three largest eigenvalues. An example PCA visualiza-
tion is shown in Figure 3.2.

In general, the aim of linear dimensionality reduction methods is to obtain a
lower-dimensional representation of the data. This is achieved by projecting the
data linearly onto the low-dimensional space. The projection is selected such that
the resulting visualization is useful for the analysis goal. There exist different linear
projection methods, each having their own definition of usefulness; for example,
in PCA it is assumed that maximum variance directions are the most interesting.

The linear methods are simple to understand and easy to use, but they perform
poorly in cases where the interesting variation in the data forms a non-linear
manifold in the original high-dimensional space.

Multidimensional scaling

Multidimensional scaling (MDS) attempts to represent the data as points in a
small-dimensional space such that pairwise distances of data points are preserved
(see Borg and Groenen, 1997). It can be used for constructing a non-linear pro-
jection from the high-dimensional data space to a two-dimensional display plane.

There are several variants of multidimensional scaling that differ in the details
of the cost function. The cost function of metric MDS (Kruskal, 1964) is

E =
∑

ij

(d(xi,xj) − d(yi,yj))
2, (3.3)

where d(xi,xj) is the distance in the input space and d(yi,yj) is the distance in the
output space. Usually Euclidean distance is used. The cost function is minimized
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Figure 3.2: Visualizations and clusterings of a gene expression data set. The gene expression
data matrix from Figure 2.5 has been explored using hierarchical clustering (top left), principal
component analysis (top right), K-means clustering (bottom left) and multi-dimensional scaling
(bottom right). For the K-means the gene expression profile of the centroid of each cluster is
shown. The last three methods have been applied to the analysis of genes; the coloring for the
genes in the figures on the right are derived from the K-means clustering result.

with respect to the yi:s; they are the representations (locations) of the points xi

in the output space. An example of a MDS visualization is shown in Figure 3.2.
In Sammon’s projection (Sammon Jr., 1969) the mean-square error of the pair-

wise distances is normalized by the original distances in the cost function. Hence, it
emphasizes the preservation of short distances. Non-metric MDS (Kruskal, 1964)
attempts to preserve the rank order of the distances. In the cost function of non-
metric MDS a monotonically increasing (order-preserving) function f is used. The
function acts on the original distances, and always maps them to such values that
best preserve the rank order. The cost function then becomes:

E =

∑

ij(f(d(xi,xj)) − f(d(yi,yj)))
2

∑

ij d(yi,yj)2
(3.4)

Above, for any given configuration of the projected points yi, the function f is
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chosen so that the cost function is minimized.

MDS, as a non-linear projection method, is able to find a low-dimensional sub-
space even from complicated data sets. This is a major advantage over linear di-
mensionality reduction methods that must limit themselves onto linear subspaces.
The visualization with all points presented in a (usually 2-d) display is an intuitive
way to show the data. Unfortunately, the coordinate axes of a non-metric MDS
display have no meaning and no relation to the original data co-ordinates. This
makes it difficult to interpret the observations made based on the MDS visualiza-
tion.

A disadvantage of MDS and other scatter plot visualizations of the whole data
set is the amount of data squeezed onto the display. Even though the dimension-
ality of data is reduced the amount of points is not. For gene expression data sets
this may mean tens of thousands of points on a single display. An ideal solution
would be a method that is both able to reduce the dimensionality of the data, visu-
alize it in 2-d and group the data to clusters. The self-organizing map, introduced
in the next section is able to do just that.

Manifold learning and other new visualization methods

Manifold learning methods are based on the assumption that the data lies on a low-
dimensional manifold in the high-dimensional input space. The goal of manifold
learning is to find and unfold this manifold. Local linear embedding (LLE) (Roweis
and Saul, 2000) and Laplacian eigenmap (Belkin and Niyogi, 2002) algorithms are
examples of manifold learning methods. Both form a presentation of the manifold
with the help of local neighborhoods, in LLE each point is represented as a weighted
sum of k neighboring points and in Laplacian eigenmap a k-nearest-neighbor graph
is formed. When the manifold learning methods are used for visualization the
output dimension needs to be set to two (or three). If the manifold actually is of
higher dimensionality, the methods may end up in problems (Venna and Kaski,
2007a).

Stochastic neighbor embedding (SNE) (Hinton and Roweis, 2002) is very similar
to MDS, but instead of trying to preserve pairwise distances of samples it preserves
the probabilities of points being neighbors. Neighbor retrieval visualizer (NeRV)
(Venna and Kaski, 2007b) extends the SNE by adding another term into the cost
function. In addition to trying to maximize smoothed recall (preserve probabilities
of points being neighbors) also smoothed precision is taken into account. The
trade-off between recall and precision is familiar from the information retrieval
field. Local MDS (Venna and Kaski, 2006) can be considered to be a faster heuristic
version of NeRV.

3.3.3 The self-organizing map

The self-organizing map (SOM) (Kohonen, 1982, 2001) is an algorithm that maps
high-dimensional data non-linearly onto a low-dimensional map lattice that can be
visualized. The SOM can be used as both a non-linear projection and a clustering
method; clusters can be extracted from the SOM display either automatically
(Vesanto and Alhoniemi, 2000) or manually (see Chapter 5 and Publication 5).

The SOMs have been used widely in various application areas, including speech
recognition, image analysis, text, biomedical and business applications. For a
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Figure 3.3: The self-organizing map of a gene expression data set. Left: A SOM display. Each
hexagon presents one map unit. The density distribution of an auxiliary variable is shown on the
display. In the darkest map unit, there are 9 genes that belong to the amino acid metabolism
class. In white units there are no genes that belong to the class. Right: A U-matrix visualization
(see section “The SOM visualization display”). Light gray areas display clustered data and darker
gray areas are borders between clusters.

comprehensive list of 7718 references to works applying or developing SOMs (see
Pöllä et al., 2008; Oja et al., 2003; Kaski et al., 1998).

SOMs for gene expression data are discussed in Chapter 4 and SOMs for bio-
logical sequence data in Chapter 5.

The algorithm

The SOM is a discrete lattice of map units (as shown on the left side of Fig. 3.3).
There is a model vector mi attached to each map unit i. A data sample x is
projected onto the SOM display to the map unit having the closest model vector
mc, defined in the basic version of SOM by

c(x) = arg min
i

d2(x,mi) . (3.5)

Here d is the distance measure, which can be for example the Euclidean distance
or a correlation based distance.

The input data are represented in an ordered fashion on the map: Map units
close-by on the lattice represent more similar samples and units farther away pro-
gressively more different samples. The mapping becomes ordered and represents
the data after the values for the model vectors have been computed in an iterative
training process. In “on-line” type of computation at step t one data sample x(t)
is selected at random, the closest model vector mc is found by (3.5), and the model
vectors are adapted according to

mi(t + 1) = mi(t) −
1

2
hc,i(t)

∂

∂mi

d2(x(t),mi(t)) . (3.6)

In the above equations a squared form of the distance is used to make derivation
easier. For example, in the case of Euclidean distance measure d2(x,m) = ||x −
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m||2, the update rule becomes

mi(t + 1) = mi(t) + hc,i(t)(x(t) − mi).

In the above hc,i(t) is the neighborhood function, a decreasing function of the
distance d(u(c), u(i)) of the units c and i on the map grid. A typical choice is a
Gaussian function

hc,i(t) = α(t) exp
(

−
d2(u(c), u(i))

2σ2(t)

)

.

where σ(t) defines the width and α(t) the height of the kernel. The height corre-
sponds to the learning rate that controls how much the model vectors are updated
at each stage. Both the σ(t) and α(t) decrease monotonically during the iterative
training. For more details, variants, and different methods of computing SOMs
(see Kohonen, 2001; Pöllä et al., 2008).

The computational complexity of the SOM training algorithm is O(N2) (Ko-
honen et al., 2000) when the size of the SOM lattice is selected to be proportional
to the number of data samples N . In a general case the computational complexity
of the SOM is O(U2), where U is the number of map units.

Training a SOM

The SOM can be initialized by giving random initial values for the model vectors
(Kohonen, 2001). However, an initialization where the SOM grid is already ordered
is preferable as it leads to faster learning. In practice, SOM is often initialized by
setting the ordered SOM grid on the 2-dimensional subspace spanned by the two
largest principal components of the data. This way the map roughly approximates
the data density in the beginning, which speeds up learning.

The SOM is usually trained in two phases. In the first, organization phase both
the height and width of the neighborhood function are large and a large number of
model vectors are adapted at each step. Model vectors of neighboring units on the
SOM lattice all learn from the same input x which results in local smoothing effect
on the model vectors in this neighborhood. In continued learning this smoothing
effect will lead to global ordering of the SOM lattice (Kohonen, 2001). In the
second fine-tuning phase the neighborhoods will be smaller and the adaptation
steps focused on a smaller set of map units. The learning rate is also small which
means that only small changes are made. Note that the order in which the samples
are presented to the algorithm (the learning sequence) affects the training. The
algorithm is usually trained with several learning sequences and the resulting maps
are compared. The one with the smallest quantization error

∑N

j=1 d(xj ,mc(xj)) is
eventually selected.

There are several things to consider when constructing a SOM. First of all
the dimensionality, topology and size of the SOM lattice need to be selected. For
visualization purposes a practical choice is a 2-dimensional lattice of hexagons.
Hexagonal lattices are preferred because they do not favor horizontal and vertical
directions as much as rectangular arrays (Kohonen, 2001). The size of the map,
i.e. the number of map units, is sometimes considered to be the number of clusters
in the data. A more reasonable approach is, however, to use a larger number of
map units and define clusters as groups of map units. When the aim of the SOM
analysis is to do visualization in addition to clustering, then the number of SOM
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units should be large. For example, in publications 1-5 the average number of
samples per SOM units is less than seven in all of the maps. The SOMs with
hundreds of units are very flexible and care should be taken to avoid over-fitting.
The final width of the neighborhood function with respect to the size of the SOM
controls the flexibility of the SOM lattice. The neighborhood width should be set
so that it contains more than one unit in the end of the fine tuning phase. This
choice makes the SOM lattice stiffer and over-fitting can be avoided.

The SOM suffers from the same local maximum problem as many other meth-
ods, but to a lesser degree (Mangiameli et al., 1996). In practice the SOM will
generally find a similar cluster structure in different runs of the algorithm. The
same behavior was also observed in experiments conducted in this thesis. The
SOM has also been empirically found to be fairly robust to the choice of param-
eters and to noise in the data set (Kohonen, 2001). The same observation was
made in this thesis: the exact choice of neighborhood function height and width
in different phases of the SOM algorithm does not seem to affect the results. Nat-
urally, the parameters need to be set in the proper range. Guidelines for this can
be found from the book by Kohonen (2001).

In the batch-learning version of the SOM (Kohonen, 2001) all model vectors
are updated simultaneously. The closest model vector mc(xj) for each data sample
xj is sought similarly as above and then the model vectors are updated according
to

mi(t + 1) =

∑

j hc(xj),i(t)xj
∑

j hc(xj),i(t)
(3.7)

The batch version of the SOM does not have a learning rate parameter and thus
has less convergence problems (Kohonen, 2001). It is also faster to optimize than
the iterative SOM (Kohonen, 2001).

The SOM visualization display

The SOM is usually displayed by presenting each map unit as a hexagon (see
Fig. 3.3). Then various properties of the data can be visualized on the SOM
display. For example, text labels can be added on the visualization; the labels
describe the contents in that part of the map (for an example see Fig. 5.1 on page
56). Another example is the component planes, where the values of one variable are
shown with gray shades on the map display. Annotation data, such as class labels
of the samples, can also be visualized on the display. For example, in Figure 3.3
the density of a functional class of the genes in each unit is shown.

The cluster structure of the data can be displayed on the SOM using the
U-matrix visualization (Ultsch and Siemon, 1990), where the distances between
neighboring units are visualized with gray shading (for an example see Fig. 3.3).
An extra hexagon is added between each map unit hexagon and shaded based on
the distance between the map units. A cluster is an area of the map where the
models of neighboring units are close to each other, that is, the extra hexagons
have light shading inside a cluster. Borders between clusters appear as dark edges:
at the borders distances between neighboring units are considerably larger. The
U-matrix visualization of a SOM can be likened to a topographic geographical
map: dense clustered areas of the data space can be thought as hills and sparser
areas as valleys between the clusters.
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Advantages of SOM-based EDA

The SOM has several advantages over clustering methods presented in the previous
sections. First of all, the SOM can, at the same time, visualize both the clusters
and the similarities of individual samples. Centroid base clustering methods, such
as K-means, give only the clusters. In addition, the number of clusters in the data
can be estimated visually from the SOM display and need not be fixed before-
hand (the number of map units is preselected to exceed the expected number of
clusters). Furthermore, the SOM visualizes the relationships of the clusters on a
two-dimensional display (see right side of Fig. 3.3). Distances between clusters are
shown as well as the relative sizes and positions of the clusters. Other clustering
methods are unable to do this; centroid based clustering methods (K-means or
mixture models) output an unordered set of clusters and in the visualizations of
the dendrograms from HC the clusters have, basically, only one dimensional rela-
tionships (see Fig. 3.1 and the text related to it for a discussion about the order of
samples and clusters in a hierarchical clustering tree.) However, some might argue
that the dendrogram from HC is easy to understand and contains enough infor-
mation about the relationships of the clusters. HC and centroid based clustering
methods have problems in presenting similarities of samples that fall into different
clusters. Naturally, the SOM also suffers from this problem for the samples in the
units on the border of the 2-d map.

The SOM has advantages over visualization methods as well. The SOM outper-
forms linear dimensionality reduction methods because it is able to non-linearly
map the data onto the 2-d display. Unlike the projection methods, the SOM
reduces the amount of visualized points during the mapping; this can be advanta-
geous in many situations. With SOMs tens of thousands of genes can be visualized
with only hundreds of map units. Furthermore, the SOM performs both visualiza-
tion and clustering at the same time. Naturally, projection methods, such as MDS
or PCA, can be combined with clustering. A simple approach where the data is
first projected onto a 2-d display and then clustered is not generally feasible, as
the 2-dimensional representation may be unable to capture the cluster structure
(Yeung and Ruzzo, 2001). However, a clustering result can be visualized in a 2-d
visualization display as shown in Figure 3.2.

The SOM has also some limitations. The standard SOM algorithm lacks a
proper cost function and there is no probabilistic interpretation for it. These facts
make the assessment of the uncertainty of the SOM visualization relatively difficult.
In this work new approaches for estimating the reliability of SOM visualizations
are presented (see section 5.4 and Publications 4-5).

SOM-based data analysis approaches and applications are presented in Publi-
cations 1-5. Visualization ability of SOMs is studied in Publications 2, 4 and 5.

3.4 Hidden Markov models

A hidden Markov model (HMM) is a probabilistic model for sequential data (Baum
and Petrie, 1966; Rabiner, 1989). Even though the HMM is not generally consid-
ered to be an EDA method, in this thesis it is used in an exploratory fashion in
Chapter 6: A mixture of HMMs is used to explore a collection of HERVs and sug-
gest which of them are active. On the other hand, the structure of the component
HMMs of the mixture is fixed based on prior biological information, contrary to
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the definition of EDA methods as flexible models with few prior assumptions.
The HMM is a generative model that produces data following a Markov pro-

cess. For example, in a first order Markov process the current state of the process
depends only on the previous state. The transition parameters govern how proba-
ble it is to move from one state to another. The transition parameters are usually
collected into a square matrix T where the entry tij tells how probable it is to move
from state i to state j. In addition to the transition parameters, the probabilities
of different initial states are needed; these are represented with the vector a whose
entry ai is the probability of state i to be the first state in a path (sequence of
states) through the HMM. In an HMM the states are hidden from the observer:
only the emissions from the states can be observed. Each state has a distinct emis-
sion distribution. When the emissions are discrete, for example symbols from a
limited alphabet, then emission distributions can be parameterized using a matrix
E whose entry eio tells how probable it is to emit symbol o from state i. Formally
the probability distribution of a sequence of observations o = {o1, ..., ol, ..., oL}
given the HMM and its parameters θ = (T,E,a) is

P (o|θ) =
∑

π

P (o, π|θ) =
∑

π

P (o|π, θ)P (π|θ), (3.8)

where π = {π1, ...., πl, ....πL} is the unknown sequence of hidden states, i.e., the
path through the HMM. In the above

P (o|π, θ) =

L
∏

l=1

eπlol
and P (π|θ) = aπ1

L−1
∏

l=1

tπlπl+1
. (3.9)

Above the left equation holds if observations are conditionally independent given
the state sequence. The right equation follows directly from the definition of a
first order Markov process. For continuous observations the emission probabilities
eio need to be replaced by a continuous distribution p(o|i) = p(o|φi) with some
parameters φi for each state. Note that the mixture model (Eq. 3.2) is a special
case of HMMs when the rows of the transition matrix T are all equal, i.e., the
probability to move to a state does not depend on the previous state. If the initial
value distribution a is also the same as all rows of T then

P (o|θ) =
∑

π

[
L

∏

l=1

p(ol|φπl
)]aπ1

[
L

∏

l=2

aπl
] (3.10)

=
∑

π

[
L

∏

l=1

aπl
p(ol|φπl

)] =
L

∏

l=1

∑

i

aip(ol|φi),

i.e., the model is a mixture model for each observation ol. In such a case the
probability to move to a state corresponds to the mixture weights and the states
correspond to the mixture components.

HMMs are used in a wide selection of applications, such as speech recognition
(Rabiner, 1989), communications engineering, finance, and bioinformatics.

The profile HMM

The profile HMM (Krogh et al., 1994) is an HMM for biological sequences and
has a special sequential structure (see Fig. 3.4). The profile HMMs are generally
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start end
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Figure 3.4: Profile hidden Markov model. Match states and insert states are emitting states and
emit nucleotides or amino acids according to an emission distribution. Delete states are silent
states and do not emit anything.

used to model protein domains1. A profile HMM has three kinds of states, match
states, insert states and delete states. The delete states are special because they
do not emit anything. Note that the transition matrix T of a profile HMM is
very sparse as only transitions between nearby states are possible. The profile
HMM can, in some cases, be considered to be a probabilistic representation of
a multiple sequence alignment (example alignment is shown in Table 3.1): the
match states correspond to the conserved amino-acids making up the backbone
of the alignment, insert states are used to insert amino-acids not appearing in
all sequences and delete states are used to represent sequence positions which are
missing from a sequence when compared to the backbone of the alignment.

The Baum-Welch algorithm

The HMM inference task is to learn the model parameters from a set of training
sequences that are assumed to have been generated by the HMM model. The
HMMs can be trained using the Baum-Welch algorithm, which is practically an
Expectation Maximization (EM) algorithm. In the expectation (E) step of the
algorithm the expectation over the hidden variables (the path through the model)
is computed and in the maximization (M) step the likelihood is maximized with
respect to the parameters keeping the expected value of the hidden parameters
fixed. The Baum-Welch algorithm is also referred to as the forward-backward
algorithm, because in the E-step the likelihood is propagated through the model
first from the beginning to the end and then vice versa.

Another inference problem in HMMs is to find the most probable path through
the hidden states that could have produced the observed sequence. The Viterbi
algorithm handles this task (Viterbi, 1967; Forney, 1973).

HMMs in bioinformatics applications

HMMs are extensively used in bioinformatics applications. Protein domain mod-
eling using profile HMMs was already mentioned above. There are several imple-
mentations and databases for the task, for example, SAM (Hughey and Krogh,
1995) is a tool for constructing an HMM model for a set of protein sequences. The
Pfam database (Bateman et al., 2002) is a large collection of multiple sequence
alignments and hidden Markov models covering many common protein domains
and families.

1A protein domain is a part of a protein sequence that is conserved in sequence, structure and
function in a range of similar proteins.
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Other application areas of HMMs in biology include haplotype reconstruction
(Sohn and Xing, 2007; Huang et al., 2007), comparative genomics (Lunter, 2007)
and models for preprocessing tiling arrays (Shah et al., 2007).

In this thesis mixtures of HMMs are used for the estimation of human endoge-
nous retrovirus activities (see Chapter 5). HMM mixtures have also been used
in other bioinformatics applications, for example by Krogh et al. (1994) to clus-
ter protein sequences, and by Schliep et al. (2005) to model gene expression time
courses.

The HMMs used in bioinformatics are very diverse. The models most similar to
the model used in this thesis are the profile HMM models for proteins domains or
families. The main difference is in how the the emission distribution of the match
states are defined. In protein domain modeling the match states are learned based
on a group of proteins, whereas in the HMM used here the match state emissions
are partially fixed based on a given HERV sequence (see Chapter 5). Furthermore,
in this thesis the structure of the profile HMM is set based on biological assump-
tions of the data generation process. The idea of using a mixture of profile HMMs
is not new as it has already been used for protein clustering by Krogh et al. (1994).

3.5 Estimating the reliability of exploratory data

analysis results

Reliability is a major issue in any data analysis task. In exploratory data analysis
it is particularly important to be able to rely on the visualized similarities.

Visualization of similarities of high-dimensional data items, such as gene ex-
pression profiles, is a difficult task and usually results in compromises regarding
which kinds of relationships to visualize. Reliability of the ensuing visualizations
need to be measured so that a visualization technique most suitable for the task
at hand can be selected.

Estimation of the reliability of clusters obtained from a clustering method or
manually from a visualization is also important. It is necessary to verify that
the cluster is truly present in the data and not only an artifact of the clustering
method.

In this section measures used to estimate the reliability of visualizations and
clusterings are presented. The methods will be discussed more thoroughly in
the following chapters where they are applied and extended in the context of
exploratory data analysis for genomic data sets.

3.5.1 Trustworthiness and continuity

The compromises made by dimensionality reduction and visualization algorithms
result in two kinds of errors: i) samples that were not proximate in the original
space are placed close to each other on the display and ii) samples that were
proximate in the original data are not close to each other in the visualization.
Venna and Kaski (2001) introduced two new measures are to quantify these errors
in different parts of a visualization display. The trustworthiness measure quantifies
the first kinds of error and the continuity measure the second kind. It can be
argued that the trustworthiness of the visualization is more important of these
two in exploratory data analysis.
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An area on a display is considered trustworthy if all samples close to each
other on the display can be trusted to have been proximate in the original space as
well. The trustworthiness of the whole visualization display is measured as a sum
of trustworthiness scores over all samples included in the visualization. For each
sample xi the set of samples Uk(xi) that are among the k nearest neighbors of it
in the visualization display but not among the k nearest in the original data space
is first sought. The unreliability induced by these samples is measured using rank
distances: r(xi,xj) is the rank of the data sample xj in the ordering according to
the distance from xi in the original space. The measure of trustworthiness of the
visualization, M1, is then defined by

M1(k) = 1 − A(k)

N
∑

i=1

∑

xj∈Uk(xi)

(r(xi,xj) − k) , (3.11)

where A(k) = 2/(Nk(2N − 3k − 1)) scales the values between zero and one.

The projection from a high-dimensional space to a lower-dimensional visual-
ization may have discontinuities. These result in displays where neighborhoods of
points in the original space are not preserved. The errors caused by discontinuities
are quantified similarly as the errors in trustworthiness. Let Vk(xi) be the set
of those data samples that are in the neighborhood of the data sample xi in the
original space but not in the visualization, and let r̂(xi,xj) be the rank of the
data sample xj in the ordering according to distance from xi in the visualization
display. The effects of discontinuities of the projection are quantified by how well
the original neighborhoods are preserved, measured by

M2(k) = 1 − A(k)

N
∑

i=1

∑

xj∈Vk(xi)

(r̂(xi,xj) − k) . (3.12)

Sometimes the definition of the k nearest neighbors is not unique. There might
be ties in the rank ordering, caused by equal distances. In such cases all compat-
ible rank orders are considered to be equally likely. For practical reasons, only
the orders that produce the best and worst measures are considered and an aver-
age of these is then used. Equal distances occur, for example, in SOM and HC
visualizations. When collecting a set of k nearest samples on the SOM display
samples are first selected from the same unit. Then the neighboring SOM units
are considered in the order of their U-matrix distances (see section “The SOM
visualization display” under section 3.3.3).

The trustworthiness and continuity measures were first introduced by Venna
and Kaski (2001). Projection methods have been compared earlier for other kinds
of data (Mao and Jain, 1995; Goodhill and Sejnowski, 1997). In the earlier compar-
isons the capability to preserve (all) the actual distances was evaluated, whereas
here the criterion is the ability to preserve the proximities (neighborhoods). Fur-
thermore, the previous approaches have not considered the trade-off between the
two types of errors made in the projection (the trustworthiness and continuity
aspects). The trustworthiness and continuity measures are used for the first time
in conjunction with gene expression data in Publication 2. The trustworthiness
measure is extended to estimating the reliability of different areas of a visualization
display in Publication 5.
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3.5.2 Bootstrap

Bootstrap (Efron, 1979; Efron and Tibshirani, 1993) is a resampling method used
for estimating the sampling distribution of a given quantity. The bootstrap method
is applicable to the following problem: Given a random sample X = (X1,X2, ...,Xn)
from an unknown distribution F , estimate the sampling distribution of some pre-
specified random variable R(X, F ), on the basis of observed data D. The sampling
distribution of R(X, F ) is estimated by producing new samples X∗ with replace-
ment from D and computing R(X∗, F ) for each sample. The histogram of R(X∗, F )
values represents the sampling distribution. The sampling distribution can then
be used to compute summary statistics for R(X, F ). When bootstrap is applied
to clustering, the random variable of interest is the full clustering result.

The bootstrap method has been used in conjunction with clustering (Jain and
Moreau, 1987; Levine and Domany, 2001; Bhattacharjee et al., 2001; Monti et al.,
2003) to estimate the stability of the discovered clusters. It is assumed that the
cluster composition should not change radically between two sets of samples from
the same underlying data distribution. Therefore, robustness of a clustering to
sampling variability gives support to its validity. However, a new result by Ben-
David et al. (2006) argues that stability of a clustering result does not necessarily
mean that the clustering would have found the “natural” clusters in the data. The
stability may result from an asymmetry of the underlying data distribution, which
results in a unique, though incorrect, clustering result. The new result does not,
however, invalidate the reasoning that stable results are more likely to be “correct”
than unstable results. Thus, it may be sensible to prefer stable clusterings over
unstable ones.

Bootstrapping can be used to estimate the stability of both hierarchical and
K-means clustering. The idea is to count, for all pairs of samples, how often they
appear together (in the same cluster) in the clusterings constructed from resampled
data sets. For example, Monti et al. (2003) define a consensus matrix as a square
matrix that stores, for each pair of items, the proportion fi,j of clustering runs
in which the two items, i and j, are clustered together. The matrix can be used
to compute various statistics describing the cluster stability. Monti et al. (2003)
define the cluster’s consensus as

Mc(u) =
1

Nu(Nu − 1)/2

∑

i<j,i,j∈ cluster u

fi,j , (3.13)

where Nu is the number of samples in the cluster u.
The bootstrapping procedure can also be applied to SOMs. In this thesis the

bootstrap is used for estimating the reliability of groups of samples extracted from
the SOM visualization (see Section 5.4.3) and the reliability of different areas of a
visualization (Section 5.4.2).
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Chapter 4

SOMs for visualization and

clustering of gene expression

data

This chapter introduces self-organizing map (SOM) based exploratory data analy-
sis approaches for gene expression data (Publications 1 and 2). The chapter begins
by defining the biological problems the SOM-based analysis is trying to address.
Then two important aspects of gene expression data analysis, namely preprocess-
ing and the selection of metric, are discussed. Finally, the SOM-based methods
are introduced and applied to analyze the functions of yeast genes. The chapter
closes with a discussion on the reliability of visualizations produced by SOMs and
rival methods, and how the reliability can be measured.

4.1 Problem setting

The function of an organism can be studied with gene expression measurements.
Usually this means that the functions of genes are studied by measuring their
activities in several conditions.

One typical type of study is a case vs. control study where the aim is to
find those genes whose expression is distinctly different in the case samples (such
as patients suffering from a particular disease) from the control samples (healthy
patients). Genes found to be differentially expressed between the cases and controls
are then assigned a disease related function.

Another approach, the one used in this thesis, is to study the genes over larger
sets of conditions, for example in different tissues, and then to look at the gene
expression profiles of the genes, see, e.g., Su et al. (2002). By modeling and com-
paring the expression profiles it is possible to learn something about the function
of the genes. For example, if the fluctuation of the gene expression level over time
follows closely the rhythm of the cell cycle we might infer that the gene is working
as a part of the cell cycle mechanism. Furthermore, genes behaving similarly in
the analyzed conditions might share functions. The reasoning is that genes that
are parts of a pathway or respond to a common environmental signal, are likely to
be co-regulated. Furthermore, co-regulated genes exhibit co-expression (Quacken-
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bush, 2001). Thus, in the spirit of the ’guilt-by-association’ method (see Section
2.3) it may be assumed, with reasonable confidence, that a set of co-expressed
genes have a similar function in the cell.

In this chapter the self-organizing map is used to cluster genes. At the same
time two important issues of exploratory data analysis are addressed, namely the
choice of metric and the reliability of visualization displays.

Gene expression data is problematic because the data obtained with microar-
rays is very noisy and may contain systematic errors. For example, the zero level of
gene expression measurements across arrays may be unreliable, making the mea-
surements from different arrays uncomparable. In such a case the distance measure
used to compare gene expression profiles should be invariant to the zero level. An-
other option is to correct the zero level during preprocessing. Good choices of
metric for gene expression data are discussed in the following sections.

4.1.1 Compendium of mutated yeast strains

Because many genes have homologous counterparts1 in different organisms, simple
model organisms have been exploited in the analysis of gene function. A popular
model organism is baker’s yeast, Saccharomyces cerevisiae, a unicellular eukaryote
species.

One way to study the function of a yeast gene is to remove (or knock out) the
gene from the organism and observe the phenotype of the mutant. Giaver et al.
(2002) mutated every single gene in yeast and observed the viability and growth
of the mutants. One of the problems that has hampered functional analysis is
that simple organisms display only a limited number of observable phenotypes
and many mutations do not produce any phenotype at all.

Gene expression analysis has been proposed as an alternative means to analyze
phenotypes of mutated yeast strains. The global transcriptional response, i.e. the
expression level of all the genes, can be regarded as a detailed molecular phenotype
of the mutant. Hughes et al. (2000) produced a large compendium of mutated yeast
strains, with microarray measurements of the expression of all yeast genes in each
mutant. The compendium contains measurements of 300 mutated/treated yeast
strains. Of the three hundred strains, 276 were deletion (knock-out) mutants
of diverse yeast genes, 11 were mutants with tetracycline-regulatable alleles of
essential genes and 13 were strains treated with well-characterized compounds.

Hughes et al. analyzed their data set in an exploratory fashion to make sug-
gestions about gene function. They used hierarchical clustering for this task. In
this thesis an exploratory approach based on self-organizing maps is presented.

In Publication 1, the mutated yeast strains were grouped in order to find mu-
tants that induce similar behavior on the rest of the genes. In Publication 2, the
gene expression profiles were clustered to groups of genes behaving similarly in the
mutant strains. This way also genes that were not knocked out can be studied.

4.2 Preprocessing gene expression data

In this thesis the important issue of gene expression data preprocessing is not
considered in depth. Instead, ready-made preprocessing schemes are used for the

1Homologous genes have evolved from a common ancestral gene. The homologues have usually
also retained the original function of their ancestor.
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gene expression data sets analyzed in the Publications. For the yeast compendium
data set analyzed in Publications 1 and 2, the approach of the original publication
is used.

Generally, the preprocessing of cDNA microarray data (such as the yeast com-
pendium data) has the following steps (Drǎghici, 2003): taking the log-ratio of
sample vs. control measurements, normalizing arrays so that they have compara-
ble means and scales, averaging the measurements from replicate arrays or probes,
and computing standard deviations for the log-ratios. For each of these steps both
simple and sophisticated solutions have been proposed.

Preprocessing of yeast compendium data

The yeast compendium data set (described in section 4.1.1) was preprocessed sim-
ilarly as in the original publication (Hughes et al., 2000). This was done to make
the SOM results directly comparable to those of Hughes et al. (2000).

The steps taken in the original publication are briefly outlined below. The nat-
ural biological variation of each gene was estimated with replicate measurements
of normal yeast strains (untreated normal yeast strain is compared to another
untreated strain); this enabled the determination of a gene-specific scaling factor
that measures the typical noise level of the gene. The scaling factor could then be
used to scale the gene’s standard deviation in the measurements of mutated yeast
strains; this was done to get more accurate noise estimates. Finally, a p-value
was computed to report whether a gene was differentially expressed in the mutant
yeast strain. Details about the process can be found from the original publication
(Hughes et al., 2000).

In Publication 1 the final yeast compendium data was obtained by first pruning
and then normalizing the complete data. First, mutations where only very few
genes were differentially (p-value less than 0.01) and/or highly (log-ratio above
3.2) expressed were removed from the data set. Simultaneously, also genes with
overall low expression were removed. Then different normalization techniques were
tested (for details see Publication 1), and it was concluded that it was a good idea
to normalize by the measurement noise, but normalization of gene variance (when
the data was analyzed finally in the mutant direction) was not beneficial. The
yeast data set used in Publication 2 was preprocessed in a similar fashion.

4.3 Distance measures for gene expression data

In Publication 1 the goal was to cluster mutant yeast strains into groups of (func-
tionally) similar mutants and, at the same time, to maximize the dissimilarity
between clusters. The results of such a clustering will depend heavily on the defi-
nition of similarity.

The most common distance or similarity measures for real-valued data, such
as gene expression profiles, are based on either the Euclidean distance or the
correlation coefficient. In this section variants of these two measures are considered
and their suitability for gene expression data is discussed.

The suitability of different measures depends both on the accuracy of the data
and on the goal of the analysis. The questions that need be answered include: (i)
Is the zero level of the measurements reliable enough? (ii) Which is interesting,
the absolute magnitude of expression ratios or the relative values?
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When the focus of the analysis is on the arrays, like when comparing the
knock-out mutants, the issue of reliability of the zero level is highly relevant.
The scanned microarrays usually have different intensity distributions even though
it is reasonable to expect that between two different arrays approximately the
same amount of changes in gene expression have occurred. In each array different
genes may be up-regulated, but overall the amount of up-regulation is probably
approximately the same. The fact that most of the genes are anyway very lowly
expressed supports the claim that the means of the arrays should be equal. The
differences in the intensity distributions may be the results of, for example, different
amounts of mRNA, different settings of the scanner, differences between individual
arrays, etc. (Drǎghici, 2003). Possible errors in the zero level are usually handled
already in the preprocessing step by setting the means of different arrays to be
equal. Alternatively, the errors can be taken into account by selecting a metric
that is invariant to the zero level.

When the focus is on the analysis of gene expression profiles the reasons for
adjusting the zero level are different than in the case of arrays. The zero level is
considered uninteresting when the expression pattern of each gene across experi-
ments is more important than the knowledge of whether the gene is primarily up-
or down-regulated2 (Quackenbush, 2001). If the mean expression level of a gene
is subtracted from each experimental measurement, the shape of the expression
pattern of each gene across experiments is enhanced (see Fig. 4.1 displays A and
B).

In Figure 4.1 displays B and C show the same gene expression profile with
absolute magnitudes and normalized such that only the relative differences are
shown. In this case the shape of the gene expression pattern is very similar even
though for one of the genes the fluctuation is stronger. It depends on the analysis
task whether the absolute magnitudes are meaningful. It may be reasonable to
expect that genes whose expression patterns have similar shapes are under the
same control machinery and belong to the same pathway. In that case the shape is
the informative feature of the expression pattern, and the magnitude of expression
is irrelevant.

Which measure to use?

When the zero level is not very reliable or interesting then the similarity measures
should be invariant to it. In the correlation coefficient the average of the measure-
ments is subtracted before the analysis, and the same could in principle be done
for the Euclidean measure as well.

If only the relative magnitudes are interesting then it makes sense to normalize
the expression profiles to unit length. In the correlation measure this is done
anyway, but the normalization can be applied also to inner product and Euclidean
measures.

In Publications 1 and 2 three distance measures were selected for comparison:
The correlation that is invariant to both the zero level and the scale of gene ex-
pressions, the inner product of normalized vectors, which is invariant to scale, and
the Euclidean distance (of the original vectors) that takes into account differences
in both zero level and scale. The ability to reflect the similarities of functional
classifications of genes is used as the criterion.

2Up-regulated genes are more highly expressed in the sample (mutant yeast) than in the
control (normal yeast). Respectively, down-regulated genes are less expressed in the sample.
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Figure 4.1: A: Unnormalized expression profiles. B: The zero level of the experiments is consid-
ered uninteresting and the mean of both has been normalized to 0. C: When only the relative
magnitudes are considered interesting the gene expression profiles can be normalized so that the
length of the gene expression vectors is one. These profiles have both zero mean and unit length.

Publication 1 discusses the choice of metric for the yeast compendium and
arrives at the conclusion that the correlation measure is the most suitable for the
analysis of mutant strains (arrays). In the experiments conducted in Publication 2
the correlation measure was found to be the most reliable in the task of comparing
gene expression profiles. In both cases the data was ratio-based cDNA microarray
data. The work of Hautaniemi et al. (2003) supports the above results; they found
the correlation distance to agree better than the Euclidean distance (for ratio-based
data) with the similarity relationships assigned by an expert committee of nine
biologists. Gibbons and Roth (2002) compared different distance measures in their
ability to produce functionally coherent clusters when applied in conjunction with
k-means clustering. Contrary to the results reported above it was the Euclidean
distance that gave consistently good results for ratio-based data. The correlation
distance was found to be best suited for data from oligonucleotide arrays. The
difference between the distance measures was, however, not clear for all studied
data sets. Furthermore, the performance criterion was different from above. It
seems that the suitability of the distance measure is dependent on both the data
set and the analysis task.

4.3.1 Learning metrics

The learning metrics principle (Kaski and Sinkkonen, 2000, 2004) is a new ap-
proach to finding important aspects of data, and expressing them in a way usable
for standard data analysis and data mining methods. In general, the learning
metrics principle refers to using certain differential-geometric methods for deriv-
ing metrics to data spaces, based on the interrelationship between the (primary)
data set and auxiliary data. The metrics are called “learning metrics” because
they are learned from the two data sets.

Why are learning metrics needed in gene expression data analysis? First of all,
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it is known that gene expression measurements in a variety of treatments poten-
tially contain valuable information about the function and co-regulation of genes.
The important variation is, however, hidden within all the biological and measure-
ment noise in the high-dimensional expression space. Several processes affecting
the gene expression levels are going on in the cell at the same time. Only some
of the processes can be studied in one experiment, the rest will cause biological
noise. Take for example the cell cycle and changes due to knocking out genes.
If only one measurement is taken for each knock-out, it might be that the mea-
surements are at different phases of the cell cycle. In such a setting the cell cycle
related variation is noise and only the knock-out induced variance is interesting. A
method is needed that is able to discern which variation is meaningful and which
is not. For example, when studying the functional similarity of genes in the the
knock-out mutation data, the question is which mutations to select, and how to
weight the mutations so that the functionally meaningful variation is emphasized
and irrelevant variation suppressed. Moreover, the weighting should be different
for different genes, that is, at different locations of the expression space. The sim-
ilarity measures discussed in the previous section are unable to do this, because
all dimensions of the gene expression vectors are treated equally.

Using the learning metrics principle it is possible to guide the analysis to di-
rections that will emphasize meaningful variation. For gene expression data the
primary data space is the gene expression profiles of the genes and the auxiliary
data can be, for example, the functional classifications of the genes; the assumption
then is that variation correlating with the functional classifications is meaningful
and that all other variation is noise. The learning metrics distance will weight
the components of the gene expression vectors locally so that the functionally
meaningful variation is emphasized and irrelevant variation suppressed.

Publication 2 was the first to apply the learning metrics principle together
with SOMs to gene expression data. The learning metrics had earlier been used to
analyze gene expression data in conjunction with clustering (Sinkkonen and Kaski,
2002) and linear discriminant analysis (Kaski and Peltonen, 2003).

The learning metrics distance measure

The learning metrics principle (Kaski and Sinkkonen, 2000, 2004) is based on the
assumption that changes in the primary data space are important if they cause
changes in another (auxiliary) data space. For example, changes in gene expression
(the primary space) are important if they are related to changes in the functional
classification of genes (the auxiliary space), see Fig. 4.2.

The learning metrics are defined using the conditional distribution of the aux-
iliary data given the primary data. The primary data sample is denoted by x
and its functional class by c. During learning, the data occurs in pairs (x, c).
The squared distance measure of the data space is changed locally to measure the
important differences, that is, the differences among the distributions of the func-
tional classes p(c|x). When the differences are measured by the Kullback-Leibler
divergence DKL, the distances become locally

d2
L(x,x + dx) ≡ DKL(p(c|x)||p(c|x + dx)) = dxT J(x)dx , (4.1)
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Figure 4.2: Schematic illustration of the change of metric using functional classes of genes (in
this case there are only two classes) as the auxiliary data. The expression of five genes, A, B, C,
D, and E, has been measured in two treatments. The lines represent the equiprobability lines of
the class distribution. In the top left corner of the 2D expression space all genes belong to class
1 and in the bottom right corner all belong to class 2. In the new metric that takes the contour
lines into account (on the right) the distances along the direction where the class distribution
does not change have been reduced practically to zero. In the new metric the genes B and C
are much closer to each other than A and C. The distance of B and C is equal to the distance
between D and E.

where J(x) is the Fisher information matrix

J(x) = Ep(c|x)

{

(

∂

∂x
log p(c|x)

) (

∂

∂x
log p(c|x)

)T
}

. (4.2)

The Fisher information matrix defines the local scaling of the directions of the
input space at the point x. For details see Kaski et al. (2001), Kaski and Sinkkonen
(2004), Peltonen et al. (2004) and Peltonen (2004). The conditional distribution
p(c|x) can be computed using the Bayes rule from a standard estimator of the joint
distribution, such as the Mixture Discriminant Analysis (MDA2) (Hastie et al.,
1995), or obtained directly from a “mixture of experts” (Peltonen et al., 2002).
The metric can in principle be extended to non-local distances by computing path
integrals or by approximating the non-local distance over T segments of the direct
line connecting two samples (T-point approximation; Peltonen et al., 2004). The
complexity of the path integral version is O(N3) while T-point approximation is
T-times heavier than the local approximation.

For computational reasons only the local approximations are used in this thesis,
i.e., Eq. 4.1 is used even for large dx. The approximation has worked satisfactorily
for nearest-neighbor searches in empirical tests (Peltonen et al., 2004), particularly
when complemented with a kind of regularization: in practice the metric will often
be singular for very high-dimensional spaces, and hence a portion of the Euclidean
distance is added to it,

d2
L(x,x + dx) ≡ dxT [λI + (1 − λ)J(x)] dx , (4.3)

where I is the identity matrix. The coefficient λ is selected using a validation
set. The local-approximations suffice well for the SOM algorithm as the close-by
distances are the most important for the winner search.
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Gene expression data is often normalized such that the length of the gene
expression vectors is one (see section 4.3), i.e. the data lies on the surface of
a hypersphere. For such data, the density estimators should also be defined on
the hypersphere. Technically, instead of using Gaussian kernels, the so-called von
Mises-Fisher kernels that are analogs of Gaussians on the hypersphere (Mardia,
1975), can be used (Sinkkonen and Kaski, 2002).

Related approaches

A lot of research has been conducted on methods that extract features, and also
some work on learning of metrics. Approaches related to the learning metrics are
briefly reviewed here. For a more extensive discussion, see Peltonen (2004) and
Sinkkonen (2003).

First of all, different feature extraction and selection approaches are related
to learning metrics in the sense that they try to discard irrelevant features. The
feature selection methods optimize a transformation into a lower-dimensional out-
put space with a fixed global metric. In contrast, in learning metrics the features
are weighted locally. Traditional unsupervised feature extraction methods, includ-
ing PCA, have been reviewed by Becker and Plumbley (1996). A review on the
similarity of feature extraction methods to learning metrics can be found from
Peltonen (2004).

Distance metric learning (DML) is an approach similar to learning metrics.
In DML a global transformation matrix A is used to replace J(x) in Eq. 4.1;
various criterions have been proposed for the selection of an optimal A. DML
has been applied to clustering with side information in Xing et al. (2003) where
the side information is defined in terms of similarity, but the application is to
categorized data as in the learning metrics setting. In Schultz and Joachims (2004)
a distance metric is learned from relative comparisons. It has also been applied to
comparisons derived from categorized data, although some other constraints are
added. The DML methods use a global metric whereas the learning metric is a
local metric which provides more flexibility.

The genre of genomic data fusion also comes near to the learning metrics prin-
ciple in the sense that an additional information source is used to derive more
informative pairwise-distances. One way to combine similarity information ob-
tained from diverse sources is to present each data source with a kernel and then
use a (weighted) sum of the kernels as the final distance presentation, see for
example Lanckriet et al. (2004). Kustra and Zagdanski (2006) apply a similar
approach: a simple weighted sum of GO annotation derived distances and gene
expression distances is used in the task of clustering genes. Shiga et al. (2007) use
interaction data as a prior in the process of clustering gene expression data. In
the co-clustering method of Hanisch et al. (2002) distance measures are combined
using a sum of distances that are first transformed using a sigmoidal function. The
transformation emphasizes similarities that are shared between the data sources.

In biclustering both the conditions and the genes of a gene expression data
set are clustered simultaneously. The idea is to use only a subset of conditions to
describe a cluster of genes. The rationale behind this approach is the observation
that a set of genes behaves in a co-ordinated fashion only in some situation (like in
one part of the cell cycle) and may have different interaction partners in a different
situation. The connection between biclustering and learning metrics is the idea of
selecting different features at different locations of the data space (in biclustering
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for a cluster at a time). Good reviews of biclustering methods are Madeira and
Oliveira (2004) and Tanay et al. (2006).

4.4 SOMs for gene expression data

This thesis introduces a SOM-based data analysis procedure for gene expression
analysis. The SOM-based data exploration tools can be used to analyze a genome-
wide expression data set and visualize its essential properties.

Compared with most clustering methods the SOM has the advantage that in
addition to extracting a set of clusters it also visualizes the relationships between
them. The SOM display is an overview of the similarity relationships and cluster
structures of the data set. Such visualizations can be used to study clustering of
gene expression patterns as done in Publications 1 and 2.

SOMs have been applied to gene expression data previously, for example, by
Tamayo et al. (1999); Golub et al. (1999); Nikkilä et al. (2002). The first works
Tamayo et al. (1999); Törönen et al. (1999) focused on the ability of the SOM to
place similar clusters close to each other, and Golub et al. (1999) used the SOM
in a suboptimal fashion: the SOM consisted of 4 units and was used purely as a
clustering method in the task of finding subtypes of a cancer. These early works
considered each SOM unit as its own cluster. The one unit one cluster approach
is also commonly seen in publications that apply SOMs to gene expression data
using the GENECLUSTER software (Tamayo et al., 1999), see for example Sesto
et al. (2002). In contrast, in this thesis clusters are defined as groups of SOM units.
Furthermore, here the focus is on the visualization aspect of the SOM, similarly
as in Nikkilä et al. (2002) and Hautaniemi et al. (2003). New in this thesis is the
application of SOMs to the visualization of transcriptional patterns of different
conditions (mutant yeast strains) (Publication 1), whereas Nikkilä et al. (2002)
and Hautaniemi et al. (2003) used the SOM to analyze gene expression profiles.
The task of analyzing conditions is more difficult than the analysis of genes, as the
vectors representing conditions are usually of considerably higher dimensionality.
The combination of SOMs and learning metrics for the analysis of gene expression
data is also new (Publication 2).

4.4.1 SOM of yeast knock-outs

The SOM is used to analyze the knock-out mutants in Publication 1. The SOM
is computed in the metric that was found to correlate well with the functional
classification of genes. The inner product (of vectors of unit length) and correlation
distance were found to be preferable to the Euclidean distance for analyzing gene
expression (Publication 1). In the comparison correlation distance was the best,
but the difference to inner product was not statistically significant. Inner product
of vectors of unit length was selected as the distance measure to make it easier
to compare the SOM results with those of Hughes et al. (2000) who also used the
inner product.
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Inner product SOM

The self-organizing map can be implemented in the inner product metric using the
following winner selection criterion

c(x) = arg min
i

xT mi . (4.4)

and the steepest descent update rule

mi(t + 1) = mi(t) + hc,i(t)x(t) . (4.5)

In the case where the data lies on the unit sphere, the model vectors will also need
to have unit length. Thus the length of mi(t + 1) is normalized after the update.

Visualization of yeast knock-outs

Figure 4.3 shows a SOM visualization of yeast knock-outs. The black contours
are the hierarchical clustering (HC) results from the original publication (Hughes
et al., 2000). As can be seen the SOM finds the same structures as the HC. In
addition, the SOM visualizes the relationships of the clusters in two dimensions
and at the same time represents the similarities of the mutants.

4.4.2 SOM in learning metrics

In this thesis the learning metrics principle is used in conjunction with SOMs to
analyze the yeast gene expression profiles from the knock-out measurements. The
SOM in learning metrics has previously been used to analyze financial data by
Kaski et al. (2001) and diverse data sets by Peltonen et al. (2002).

To use the SOM with learning metrics, it is only necessary to substitute the
learning metrics distance to the SOM formulas. The best-matching unit is sought
in the new metric by

c(x) = arg min
i

d2
L(x,mi) . (4.6)

and the steepest descent update rule for learning metrics (using local approxima-
tions for the distances) turns out (Kaski et al., 2001) to be the same as in the
Euclidean metric

mi(t + 1) = mi(t) + hc,i(t)(x(t) − mi(t)) . (4.7)

For gene expression data lying on the unit sphere, the update is applied on the
tangent plane, and the results are transformed back to the hypersphere by nor-
malizing the mi(t + 1) vectors to unit length. It can be shown that the resulting
update rule moves mi toward x along the shortest route on the hypersphere, such
that their angle reduces by the fraction given by hc,i(t).

SOM-LM of yeast genes

Figure 4.4 displays the yeast genes with SOM in learning metrics (SOM-LM). The
visualization reveals several clusters of mutually similar genes. The marked clus-
ters are analyzed more closely in the publication and found to contain functionally
coherent groups of genes. The clustering can be used to assign hypothetical func-
tions to unknown genes. The novelty in the display, compared with standard SOM
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Figure 4.3: A smoothed U-matrix visualization of the SOM of 127 yeast knock-outs. The areas
encircled with hand-drawn lines are the clusters reported earlier in the literature (Hughes et al.,
2000). The SOM finds the earlier clusters and additionally suggests new groupings (Publication
1). The labels on the map are the names of the genes that have been knocked out in the yeast
strain, and the dots are empty SOM map units. White shade denotes high density of the data
(clusters) and dark low density (sparse, unclustered area in the data space). The boxes and the
circles denote differences between the SOM and the literature clusters: the boxed treatments
were grouped to a different cluster in the literature, and encircled treatments are additions to
the clusters from the literature. The figure is taken from Publication 1.
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displays of gene expression data, is in the metric. Proximate genes both behave
similarly in the mutation experiments, and are likely to have similar functional
classes.

The SOM-LM was compared to the basic SOM. The ability to predict a class
for unknown genes using the SOM display was estimated (see Publication 2). The
results show that the new metric yielded more accurate results.

4.5 Reliability of visualizations

Visualizing similarities in high-dimensional (from a few to hundreds of dimensions)
data items is a difficult task since the displays can be at most three-dimensional
in practice. In particular, it is impossible to project the samples in such a way
that all similarity relationships are preserved. Hence, the methods need to make
compromises regarding which kinds of relationships to visualize.

On one side of the coin, the visualizations should be trustworthy, in the sense
that samples appearing similar (proximate) in the visualization can be trusted to
be similar in actuality. The other side of the coin is whether all original proximities
become visualized. This dualism is analogous to precision and recall in information
retrieval and classification.

The trustworthiness and continuity measures, introduced in section 3.5.1, can
measure how well the visualization display performs in preserving the neighbor-
hoods. The measures are computed as a function of k, the number of nearest
samples the person looking at the visualization will consider ’proximate’. Results
are reported below for several values of k.

4.5.1 SOM is trustworthy

The trustworthiness of the SOM was compared to that of three other visualization
methods: Sammon’s projection, non-metric MDS, and hierarchical clustering. In
all cases the inner product (correlation) similarity measure, that was found to be
suitable for gene expression data analysis (see section 4.3), was used. Sammon’s
mapping and non-metric MDS were selected to represent MDS methods since they
have beneficial properties; Sammon’s mapping emphasizes the preservation of short
distances which are the focus of the trustworthiness measure as well. Non-metric
MDS tries to preserve rank orders of distances, which is the error measure used.

The trustworthiness of visualizations of the yeast knock-out data are shown in
the left part of Figure 4.5. The trustworthiness of relatively small neighborhoods,
of the order of some tens of genes, is the most important, because people look-
ing at displays such as Figure 4.4 will consider these small neighborhoods most
saliently proximate. In this range, hierarchical clustering is the best for the small-
est neighborhoods (k < 10), and SOM after that. The excellent performance of
hierarchical clustering at very small neighborhood sizes was to be expected as it
explicitly connects the closest points first. In hierarchical clustering two definitions
for distances in the visualization were used, the ultrametric distance that takes the
tree into account (for details see Publication 5) and a linear ordering along the
leaves. The linear order is not unique as was pointed out in section 3.3.1. Here
the leaf order was fixed using a method recommended by Eisen3: in non-unique
cases the order provided by a one-dimensional SOM is used.

3See the documentation of the program package at http://rana.lbl.gov/
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Figure 4.4: U-matrix visualization of the SOM-LM of gene expression data measured from 300
knock-out mutations. The functional classification of genes is used as the auxiliary data in the
learning metrics distance. The underlined genes are the ones for which the metric changed the
most in comparison to the inner product one. The enumerated clusters are sample clusters: 1:
A cluster associated with mitochondria, 2: Localization of purine biosynthesis pathway, and 3:
An area where the metric has changed. Most of the genes in area 3 have an unknown function;
some are associated to transcription and DNA repair. The figure is taken from Publication 2.
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Figure 4.5: Left: Trustworthiness of the visualized similarities (neighborhoods of k nearest
samples). Right: Capability of the visualizations to preserve the similarities (the neighborhoods
of size k) of the original data space. Sammon: Sammon’s mapping, NMDS: non-metric multidi-
mensional scaling, SOM: self-organizing map, HC: hierarchical clustering, with the ultrametric
distance measure and with the linear distance measure. RP: Random projection, i.e. projection
of the samples to a randomly selected 2-dimensional plane. RP is the approximate worst possible
practical result (the small standard deviation over different projections, approximately 0.01, is
not shown). The theoretical worst case, estimated with random neighborhoods, is approximately
0.5 for both measures. The results are for the yeast compendium data set. Publication 2 presents
results also for mouse gene expression data. The figure is taken from Publication 2.

The continuity of the visualization, i.e., the ability to preserve original neigh-
borhoods, was studied for the same set of methods. The results are shown in the
right part of Figure 4.5. The SOM and multidimensional scaling (Sammon and
non-metric MDS) were the best for preserving small (k < 50) original neighbor-
hoods. Hierarchical clustering was by far the worst.

Trustworthiness of a visualization can be improved by discarding the least
trustworthy data samples and analyzing them separately. This was done for the
visualization of yeast genes shown in Figure 4.4. The trustworthiness of all of the
analyzed methods improves when more and more samples are discarded from the
visualization. However, the other methods do not reach even the starting point of
the SOM before nearly one third of the data set has been discarded.

To conclude, the self-organizing map (SOM) was the most trustworthy except
for the most similar gene expression profiles, where hierarchical clustering was the
best. With regard to the continuity measure, the relative goodness of the methods
depends on the data (see Publication 2 and also Venna and Kaski (2001)). In
the comparisons with gene expression data, the SOM has performed well. Further
proof for the feasibility of SOMs as the clustering and visualization measure for
gene expression data is given by Gibbons and Roth (2002), who found the SOM to
give more functionally coherent clusterings than hierarchical clustering algorithms.

4.6 Conclusions

In this chapter the self-organizing maps were used to study the function of yeast
genes. At the same time, different distance measures suitable for gene expression
data were compared; the correlation measure proved to be the best choice. The
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EXPRESSION DATA

learning metrics principle was used in conjunction with SOMs to further adjust the
distance measures so that the visualized similarities would reflect the functional
similarity even better. It was demonstrated that SOMs can find meaningful biolog-
ical information from gene expression data sets. Furthermore, when the reliability
of a SOM visualization in presenting similarities of genes was compared to that
of other unsupervised methods, the SOM performed the best. To conclude, it is
recommended that the SOMs in learning metrics are applied for gene expression
data analysis.
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Chapter 5

SOMs for grouping and

visualizing retroviruses

In this chapter a variant of the SOM-approach introduced in the previous chapter is
presented. Here the SOM-approach is extended to sequence data and used to study
human endogenous retroviruses (HERVs). HERVs and transposable elements were
introduced in Chapter 2. In this chapter their similarity relationships are studied,
see also Publications 3-5.

The structure of this chapter follows that of the previous one. However, here
more emphasis is put on discussions about the reliability of exploratory data anal-
ysis results. New methods are introduced for measuring the reliability of parts
of a visualization display and for estimating the reliability of groups of samples
manually extracted from a visualization display.

5.1 Problem setting

The taxonomy of HERVs is still incomplete. Currently the HERVs have been
classified into approximately 40 HERV groups (Nelson et al., 2003; Mager and
Medstrand, 2003; Gifford and Tristem, 2003), but the current classification is un-
able to categorize all new instances of HERVs detected in the human genome.
Another problem is that in phylogenetic trees constructed from large HERV col-
lections, some of the families are mixed with sequences from other families. This
reflects the unfinished state of HERV classification. A new classification able to
resolve these problems is needed. A better and clearer classification of the endoge-
nous retroviral sequences will also help organize the “retrovirus universe”, as most
retroviruses are endogenous. In some recent publications the HERV groups are
studied in more detail one by one (see Mayer and Meese, 2002; Jern et al., 2004;
Yi et al., 2004). In contrast, in this chapter the SOM is used to study all HERVs
together. This makes it possible to uncover new relationships between the existing
HERV groups.

The aim of the SOM-based analysis of HERVs is to cluster them into groups
having high sequence similarity within each group, i.e. by definition, originating
from a common ancestor. Each such cluster will be one HERV group, or be formed
of members from groups that were earlier thought to be separate. The clustering
may also reveal groups of functionally similar HERVs, in those cases where the
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HERVs have retained some function of the ancestral virus from which the HERVs
are descending from. For example, the HERVs may have a functional gene that
can code for a retroviral protein.

In this thesis the focus is on HERVs. Additionally, exogenous retroviruses
and retrotransposons are analyzed together with HERVs in one application. The
same approach can also be used to cluster protein sequences from various species,
as demonstrated in (Kohonen and Somervuo, 2002). In such a setting groups of
homologous proteins (protein families) should group together.

5.2 Distance measures for biological sequences

Distance measures that are used in this thesis to compare biological sequences are
introduced here.

5.2.1 N-mer histogram presentation

A biological sequence can be converted into a vectorial representation by enumer-
ating all its subsequences. Each component in the vector measures how often a
specific N -mer, a contiguous subsequence of length N , is observed in the sequence.
For DNA sequences, where the size of the alphabet is 4, a practical choice for N
is 4, which results in 256-dimensional feature vectors. The feature vectors are
normalized to unit length to make the presentation invariant to sequence lengths.
Unfortunately, a practical N -mer length that does not produce prohibitively high
dimensional feature vectors, is usually too short to capture all necessary sequen-
tial information. Still, the N -mer representation is useful because taking averages
of samples is easy for vectors, whereas average of a group of sequences is not
well-defined.

In this thesis the N -mer representation is used in conjunction with the Eu-
clidean distance measure in training the sequence SOMs introduced later in this
chapter. The vectorial representation is used in the organization phase where the
averaging property makes the organization of the SOM easier. In the fine tuning
phase of the SOM the HERVs are presented as sequences to utilize all information
in the sequences.

5.2.2 Pairwise similarity scores

Pairwise sequence alignment algorithms, such as the Smith-Waterman algorithm
(Smith and Waterman, 1981), can be used to measure the similarity of two se-
quences. The two sequences are aligned and then the mismatches and gaps in the
alignment are counted. The final pairwise similarity score will be the sum over the
aligned positions with matches giving a positive and gaps a negative increment to
the score.

Any kind of a sequence alignment algorithm can be used to produce pairwise
similarity scores. Popular alignment methods are, for example, the fast BLAST
(Altschul et al., 1990) and FASTA (Pearson and Lipman, 1988) algorithms. They
do not compute the full alignment, but resort to heuristics to speed up the com-
putation. Of these two, FASTA is a bit slower and presumably more accurate for
less similar sequences. It was used in Publications 3-5 to compare all data samples
to each other. In Publications 6-7 the faster BLAST method was used to perform
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database queries; the less accurate method was adequate because only a set of
most similar database items was needed.

Tanimoto scaling

Pairwise similarity scores depend on the sequence length, because the score is a sum
over all positions in the two sequences. When the sequence lengths of the analyzed
sequences vary greatly, it may be a good idea to normalize the effect caused by the
length. This can be done using Tanimoto scaling (Rogers and Tanimoto, 1960).
The pairwise similarity score between sequences i and j is denoted by s(i, j). These
can be converted to Tanimoto similarities,

sTan(i, j) =
s(i, j)

s(i, i) + s(j, j) − s(i, j)
, (5.1)

The Tanimoto similarities are between 0 and 1. The similarities can be further
converted to the Tanimoto distance dTan(i, j) = − log sTan(i, j).

Other distance measures for sequence data

In addition to the measures used in this thesis, there are, of course, several other
possibilities for measuring the similarity of biological sequences. Measures suitable
for kernel methods, such as support vector machines (Cortes and Vapnik, 1995),
have been proposed. These include the string kernel (Leslie et al., 2004) and Fisher
kernel (Jaakkola et al., 1999), where the kernel function is derived from a hidden
Markov model.

5.3 SOMs of retroviruses

Here the SOM is used for the task of grouping and visualizing a massive collection
of HERVs. The visualization is used to refine the relationship among the HERV
groups, and to detect potentially new groups (see section 5.1).

The traditional way to analyze HERVs is to use phylogenetic trees (PTs) that
are based on a multiple alignment of the sequences. However, the high computa-
tional complexity of the multiple alignment step makes it difficult to use PTs for
more than some hundreds of sequences. Heuristic methods exist to overcome this
limitation, but the results may be biased. In contrast, the SOM is an algorithm
capable of handling large amounts of data (Lagus et al., 2004). The SOM was also
found to be the most reliable alternative among several visualization and clustering
methods used for visualizing relationships of input samples (see Chapter 4). For
these reasons, the SOM was selected as the method to analyze the large HERV
collection.

5.3.1 Median SOM

The SOM can be used to order non-vectorial items such as DNA or protein se-
quences. The only requirement is that some distance measure is definable between
the items. The SOM variant used to order non-vectorial data is called the median
SOM (Kohonen and Somervuo, 2002). It resembles the batch-learning version of
the plain SOM (Kohonen, 2001, 1996).
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In the median SOM, the model of each map unit is defined as the generalized
median of the input samples mapped into the neighborhood of the unit (Kohonen,
2001; Kohonen and Somervuo, 2002). The generalized median m is defined as the
hypothetical data sample from which the sum of distances to the other elements
xj in a data set D is minimized, that is,

m = arg min
ξ

∑

xj∈D

d(xj , ξ), (5.2)

where d(xj , ξ) is some distance measure defined between the xj and ξ. In practice,
the generalized median is often approximated by the set median; in the above
equation ξ is then restricted to being an element of D. The set median is an exact
copy of one of the samples in the data set. If several samples in the data set satisfy
Eq. (5.2), one of them is chosen randomly.

The best matching unit for each sample is selected practically the same way as
in the basic version of the SOM (Eq. 3.5),

c = c(xj) = arg min
i

d(xj ,mi). (5.3)

Here d(xj ,mi) is some distance measure defined between the sample xj and the
model mi. In the adaptation step, the new value for the model mi is determined
as the set median of those input sequences that were mapped to the said unit, or
to its neighborhood on the SOM grid.

The SOM has been previously applied to problems in biological sequence analy-
sis. In several cases the sequences are first transformed into vector representations
and a normal vectorial SOM is used, for example, by Kanaya et al. (2001); Mahony
et al. (2004) and Wang et al. (2001) to study codon usage, by Abe et al. (2003,
2006) to study 3- or 4-mer frequency patterns in different species or genomic areas
and by Ferrán and Ferrara (1991); Hanke and Reich (1996) and Yang and Chou
(2003) to cluster protein sequences. In contrast, in this thesis SOMs that can
directly use the biological sequences are applied. The median SOM algorithm has
previously been applied to clustering of similar protein sequences by Kohonen and
Somervuo (2002). This thesis presents the first real biological application of the
method and demonstrates that new biological knowledge can be gained through
the median SOM analysis. SOMs that can directly use biological sequences have
later been used by Mahony et al. (2005a,b, 2006) to find transcription factor bind-
ing motifs. Their SOMBRERO algorithm differs from the median SOM in that
the model of each SOM unit is a probabilistic presentation of the most likely nu-
cleotides of a transcription factor binding site, and not a simple sequence like in
the median SOM.

5.3.2 SOM of transposable elements and retroviruses

In Publication 3 the median SOM approach is applied to grouping and visualizing
a small collection of retrotransposon consensus sequences (HERVs and LINEs1)
together with genome sequences of exogenous retroviruses. The aim of the study
was to show that the median SOM is able to separate different types of sequences
from each other (LINEs separate from the viruses and so on) and to group similar
sequences together (like Class II HERVs together with betaretroviral retroviruses).

1Long interspersed repeat sequences (LINEs) are one type of retrotransposons

54



5.4. RELIABILITY OF VISUALIZATION RESULTS

The results verified that the median SOM is able to do this. The SOM visualization
and more information about the biological results can be found from Publication
3. The results show that a completely data-driven grouping is able to reflect same
kinds of relationships as more traditional phylogenetic taxonomies.

5.3.3 SOM of human endogenous retroviruses

After the proof of concept application (grouping of clean consensus sequences in
Publication 3) the median SOM was applied to “real data” in Publications 4-5;
it was used to analyze all HERVs that can be automatically detected from the
human genome. The aim of the study was to characterize the HERVs and refine
the existing classification. The study was the first to analyze all HERV sequences
simultaneously. Previous approaches using phylogenetic trees have used only some
subsets of the HERV sequences, due to the high computational complexity of the
PT algorithms. The HERV SOM visualization is shown in Figure 5.1.

Biological results

The SOM finds the division of HERVs into the standard HERV classes I-III: each
class is localized to its own area on the display. Furthermore, the previously char-
acterized HERV groups can also be detected with the SOM. The class distribution
of each group is focused on a set of nearby map units. Only few HERV groups
spread out more, or mix with other established groups, reflecting the uncertainty
in the current HERV classification.

In a comparison to phylogenetic trees (PT) constructed from representative
subsets of the HERV sequence collection (500 sequences) the groupings from SOM
and PT were found to be similar. However, the SOM detected biologically in-
teresting sequence groups that were not visible in the phylogenetic trees. One is
a group where three HERV groups, previously thought to be separate, mix to-
gether (marked with number 1 in Figure 5.1). Furthermore, SOM detects several
groups of unclassified sequences (marked with ’?’ in the figure), one of which
turns out to be a group of chimeric HERV elements and another to be a group of
epsilonretroviral sequences. Epsilonretroviruses have not been previously detected
in humans.

The area where sequences from three HERV groups, ERV9, HERVW, and
HUERSP3, are mixed together is called “Area 1” and is analyzed more closely in
Publication 5. A PT is constructed from all HERVs classified to these three HERV
groups. The tree confirms the observation from the SOM: the sequences in Area
1 truly form a new separate group.

5.4 Reliability of visualization results

The SOM-based analysis is complemented with estimation of the reliability of the
results. In addition to measuring the reliability of the whole visualization, measures
are proposed for estimating the reliability of different areas on the visualization
display and of groups of samples extracted manually from the visualization for
further analysis.
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Figure 5.1: A U-matrix visualization of the HERV SOM. The distance between the neighboring
units is denoted by the grey shade of the edge between them and also by the change in the shade
of color between the neighboring nodes (Kaski et al., 1999). The labels, referring to current
HERV classes, are manually assigned descriptions for the map areas. Question marks denote
areas that contain unclassified HERVs. The continuous dark borders separate dissimilar areas
from each other. For example, in the middle of the map the sequences in the HERVH group
(denoted by the label H) are separate from the sequences in the HML5 group (denoted by the
label hml5). The three circled areas are interesting clusters that have been analyzed more closely
in Publication 5: in area 1 HERVs from three HERV groups are mixed together, area 2 contains
chimeric HERVs, and areas 3a and 3b contain epsilonretroviral HERVs.
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5.4.1 Trustworthiness of the median SOM

Similarly as in the case of SOMs for gene expression data, the trustworthiness of
the SOM display was compared to that of the competing method, in this case
the phylogenetic tree. Due to the high computational complexity of the multiple
sequence alignment step, the PTs used in the comparison were computed from
a pairwise similarity matrix and not from a multiple alignment; this effectively
reduces the method to hierarchical clustering.

The results obtained in Publication 5 show that at its best the SOM outper-
forms the PTs, but that the PTs perform better than the SOMs do on average.
However, when the number of sequences in the neighborhood, k, increases to a
number used when analyzing the SOM in practice (40 and above), the difference
between the SOM and PT curves is small. Hence, the SOM is a reasonable al-
though not clearly the most trustworthy choice for large scale sequence analysis.

5.4.2 Reliability of areas of the SOM visualization

In addition to measuring the reliability of a whole visualization, it makes sense to
evaluate the reliability of different parts of the visualization separately. If some ar-
eas of the display are found to be less reliable, then the analysis of the visualization
can be focused on the more reliable areas and new visualizations computed for the
samples in the unreliable areas. Here two measures are presented for measuring
and visualizing the relative reliability of each location on the SOM display.

Reliability by bootstrapping

The reliability of the SOM clustering and visualization is estimated by evaluating
how similar the SOM display is in bootstrap repetitions of the SOM. The SOM
result is called stable if the displays are always similar. In practice, the stability
is measured by counting how frequently a pair of sequences appear nearby on
the SOM display in the bootstrap repetitions. Stability of groupings presented by
individual map units in the visualization are derived as averages over the sequences
in that map unit.

Stability of the SOM is estimated separately for each pair of sequences. Only
the immediate neighborhood on the map (the same map unit and its bordering
units) is considered, but other choices of neighborhood size are possible as well.
The frequency fi,j of samples i and j appearing as neighbors on the bootstrap
maps is counted and a measure for the reliability of each map unit is computed as
the average stability among the pairs of sequences in that unit:

MB(u) =
1

Nu(Nu − 1)

∑

i6=j,i,j∈ unit u

fi,j , (5.4)

where Nu is the number of sequences in the unit u. A measure similar to Eq. 5.4
can be computed for larger groups of sequences as well, for instance for clusters of
SOM units.

A visualization of the reliability scores (Eq. 5.4) for each map unit in the HERV
SOM (the one in Fig. 5.1) is presented in Figure 5.2 (left). The visualization reveals
reliable clusters and areas where the visualized similarities are unreliable. The
overall reliability of the visualization is reasonably good. The average reliability
score of the map units is 0.52, which is much better than a average score for random
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Figure 5.2: Reliability of the map shown in Figure 5.1. Left: reliability by bootstrap. Right:
reliability by the trustworthiness measure. The gray scale is the same in both figures. However,
the absolute values of the reliability scores from the two measures are not directly comparable.
The gray shade differences are meaningful only within one display. The figures are taken from
Publications 4 and 5.

assignment of the sequences into the SOM units (about 0.22). The biologically
interesting areas (circled in the display in Fig. 5.2 (left)) are not the most reliable
ones but still relatively reliable (around 0.65 on average) and thus worth analyzing
further.

Bootstrapping has previously been used in conjunction with clustering to assess
the the stability of the clustering results with respect to sampling variability. For
example, in (Bhattacharjee et al., 2001) the consensus matrix (see section 3.5.2)
from bootstrap repetitions of a partition-based clustering was visualized to provide
support to a hierarchical clustering result. Monti et al. (2003) used the consensus
matrix as a input data to a consensus clustering. They also propose a statistic
to summarize the stability of a cluster (see section 3.5.2). Their cluster consensus
measure is very similar to the measure in Eq. 5.4 (and identical to the R-index
proposed by McShane et al. (2002)); the difference is in the definition of the fre-
quency fi,j . They use the frequency of two samples being in the same cluster,
whereas above, fi,j is defined as the frequency of two samples appearing nearby
on the SOM display, i.e., the visualization aspect of the SOM and the fact that
clusters are usually defined as sets of SOM units are taken into account. Further-
more, the reliability scores are used to visualize the reliability in different areas of
the SOM display. This is a novelty over previous approaches.

The bootstrapping procedure has previously been applied to self-organizing
maps by de Bodt and Cottrell (2000). The article describes significance tests for
the quantization error and for the stability of neighborhoods on the SOM. Here
the aim is not at significance tests but on the ability to look at the stability of the
neighborhoods in each map unit separately.

It should be noted that also other resampling schemes besides bootstrapping
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can be used to estimate the stability of a clustering with respect to sampling
variability. For example Levine and Domany (2001) and Ben-Hur et al. (2002)
use subsampling to produce a set of perturbed data sets. Each of the subsets is
clustered and the obtained clustering is compared to the one obtained from the
complete data set and a stability score is derived for the complete clustering. In
these works the aim is to find the set of parameters (for example the number
of clusters) that produces most stable clusterings. The aim is different from the
one taken in this thesis, where the resampling is used to evaluate each SOM unit
separately and, most importantly, to visualize the relative reliabilities of the units.

Reliability by trustworthiness measure

The trustworthiness measure, introduced in section 3.5.1, is extended here so that
the trustworthiness of different areas on the display can be measured. An area on
a display is considered trustworthy if all samples close to each other in this area
of the display can be trusted to have been proximate in the original space as well.

When measuring the trustworthiness on the SOM display it must be decided
how to define the neighborhood of each sequence s. A practical choice would be
to select the sequences from the same map unit and its neighboring units up to
a pre-selected radius as done in the bootstrap measure above. The problem with
this approach is that it disregards clusteredness in the data as neighboring map
units may belong to different clusters (distance between neighboring units is large).
Furthermore, the number of neighbors would vary and could lead to low quality
trustworthiness estimates when the number is small. To get reliable estimates and
to take into account the clusterings visible on SOM displays, the sequences are
selected from close-by map units in the order of their distance from the unit where
s is. The distance is computed along the minimal path on the map grid where the
distance of neighboring units is defined as their distance in the data space (the
U-matrix distance which measures visual closeness). Sequences are collected until
their number equals or exceeds a preselected number k. Similarly as in the case
of the trustworthiness measure, this number k should be close to the number of
sequences a person looking at the SOM is likely to consider similar. Here it is
assumed that sequences that are located in the same or in neighboring SOM units
are considered similar.

The untrustworthiness of the map display is estimated at each map unit u
separately. Denote the set of sequences within unit u by Iu. A measure of the
untrustworthiness of a map unit is computed as an average over the Nu sequences
in the unit by

MT (k, u) =
1

Nu

∑

si∈Iu

∑

sj∈Uk(si)

(r(si, sj) − k) , (5.5)

where the untrustworthiness of one sequence si is computed similarly as in the
trustworthiness measure (Eq. 3.11). The untrustworthiness scores are converted
to trustworthiness scores with the transformation 1−MT (k, u)/A(k), where A(k)
is used to scale the values between zero and one.

The trustworthiness values of the HERV SOM (the one in Fig. 5.1) are visual-
ized on the SOM display in Figure 5.2 (right). In a white (or light gray) unit the
average trustworthiness of the sequences in the unit is very good, i.e. there are
few sequences in the SOM neighborhood that are not in the neighborhood of the
sequences in the original data space. As can be seen from the image, the whole
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SOM is reasonably reliable. On average the trustworthiness value of a SOM unit
is around 0.8.

Comparison of the two approaches

Both of the measures above serve the same purpose. The idea is to reveal which
parts of the visualization display are more reliable than others. The first, boot-
strap-based measure, focuses on the clustering ability of the SOM. If the set of
samples in a SOM unit is always grouped together in the bootstrap repetitions,
then the set of sequences in the unit is considered a reliable group. The bootstrap-
based method does not quantify the observed vs. original similarities of the sam-
ples, but looks only at the repeatability of clusterings on the SOM. The second
trustworthiness-based measure focuses on the visualization ability of the SOM.
Those areas of the display where the original similarity relationships are conserved
the best are the most reliable.

The trustworthiness-based measure can be considered to be an improved ver-
sion of the earlier measure. It takes the distances of the units along the SOM grid
into account and always computes the measure for a fixed-sized neighborhood on
the SOM display. These same improvements could, in principle, be introduced also
to the bootstrap-based measure by defining the neighborhood of sequences on the
SOM differently in the computation of the co-occurrence frequency fi,j . Then the
difference between the two measures remains in the distinction whether clustering
or visualization ability is more interesting.

5.4.3 Reliability of groups of samples extracted from a vi-

sualization

The SOM visualization can be used to extract interesting groups of mutually sim-
ilar sequences for further analysis. The U-matrix visualization shows with gray
shades how close the models of neighboring map units are, and clusters can be
defined as sets of close-by units. The exact borders of the cluster areas on the
visualization are selected partly subjectively. The decisions are based on various
labelings describing the contents of each SOM area, on the U-matrix visualization,
on the reliability visualization, and on all background knowledge the analyst has
about the data set. Finally, a set of SOM units is selected and the sequences
with them are extracted for further analysis. This group of extracted sequences is
denoted with C. Before the sequences in group C are analyzed further it should be
checked that they really form a reliable cluster.

In this thesis two new measures are proposed for evaluating the reliability of
groups of sequences (C) extracted from one specific SOM visualization. The mea-
sures are based on the bootstrap method (see section 3.5.2) and the assumption
is that if a group of sequences always appear together in SOMs constructed from
sampled data sets, then those sequences represent a true group (cluster) in the
data. Measures of cluster stability (Levine and Domany, 2001; Ben-Hur et al.,
2002; Monti et al., 2003) cannot be directly applied to the SOM because they
apply to a complete clustering, whereas here the primary interest is in single man-
ually extracted clusters that are formed of sets of close-by map units on the SOM
display. The measures also differ from the bootstrap-based stability measures used
in clustering in that they take the orderedness of the SOM display into account.
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Two measures, the compactness and purity of the cluster, are proposed for
the task of estimating deviations from a perfect clustering (on the SOM display)
in bootstrap repetitions of the SOM. The data set visualized on the SOM that
was used to define the group C is resampled and a new SOM is computed for
each resampled data set. Compactness measures how close together the group
of sequences is on the bootstrap SOM. Purity, on the other hand, measures how
many foreign sequences are mapped to the same area as the interesting group.
The purity of the cluster is analogous to precision in information recall, and false
alarms in detection theory. The proposed measures are new, and have not been
previously used in this form. The concept of compactness is, however, not new. It is
commonly used to evaluate the quality of a clustering result (without resampling).
The measure is then the compactness or homogenity of the cluster in the original
data space. For a review of cluster quality measures see Handl et al. (2005). In
contrast, here the compactness is defined on the SOM visualization display and
not in the original data space.

The compactness and purity (Cb and Pb respectively) of the selected group of
sequences are measured in each bootstrap repetition b and a sampling distribution
is obtained for each measure.

Compactness and purity are measured as functions of the varied number of
samples in the group C, to take into account possible substructure in the group.
First the measures are evaluated for the whole group, then the sequence which
most worsens the measure is removed from the group and the measure is eval-
uated again. Ck is used to denote the group of sequences still remaining in the
set after k sequences have been removed. The removal of the worst sequence and
re-evaluation of the measure is repeated until no sequences are left. The removal
of sequences is carried out separately for the two measures. For the purity measure
this removal process is optimal. Usually also the compactness improves steadily
with this removal procedure which is a greedy approximation of an optimal pro-
cedure.

More formally, the compactness Cb(k) after k removals is defined as

Cb(k) = 1 −
maxi,j∈Ck

d(u(i), u(j))

Dmax

, (5.6)

where u(i) is the location of the map unit containing the sequence i, d denotes the
Euclidean distance of the units along the SOM grid (distance between the centers
of bordering units is one), and Dmax is the maximum distance between units on
the SOM. So, the compactness measures how close together the sequences in group
C are on the bootstrap SOM. If the distance d(u(i), u(j)) is very large for some
pair of sequences, it is clear that the group C is not located in a set of nearby units.

The purity Pb(k) after k removals is defined to be

Pb(k) =
1

|Ck|

∑

i∈Ck

∑

j∈Ck
InSameUnit(i, j, b)

∑N

j=1 InSameUnit(i, j, b)
, (5.7)

where InSameUnit(i, j, b) is the indicator function that returns 1 if i and j are in
same unit on the SOM of the bootstrap sample b, and otherwise zero. The purity
is measured as a sum over the sequences in group Ck. For each sequence i it is
computed how large a fraction of the sequences located in the same unit as i are
also from the group Ck. Measures somewhat similar to the purity measure have also
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Figure 5.3: Compactness (left) and purity (right) for the group of sequences in Area 1. The
solid curves represent the average compactness (purity) over the 100 bootstrap maps, the dashed
lines the mean ± standard deviation of the distribution. Note that the compactness value of
one is not attainable in practice for large groups of sequences as they usually do not fit into a
single map unit. For reference, the compactness of the group of sequences in Area 1 in the SOM
computed from complete data (that in Fig. 5.1) is 0.86. The figures are taken from Publication 5.

been proposed earlier. Bryan (2004) and Ben-Hur et al. (2002) present a measure
for a complete clustering: the fraction of sample pairs that are clustered similarly
in a bootstrap clustering as in a reference clustering. In the purity measure, instead
of a global evaluation over all clusters, the situation is looked from the point of
view of a single cluster (the set of SOM units that contain members of group
Ck): how large a fraction of sample pairs in that cluster were also together in the
reference clustering (i.e. both partners of the pair are in the set Ck).

The compactness and purity measures are presented as curves that are a func-
tion of the number of sequences removed. The curves are analogous to receiver
operating characteristic (ROC) curves. A sharply rising curve is better that a
nearly linear one. A sharp incline tells that the group of sequences is very homo-
geneous. Removing merely the few worst sequences brings the group’s performance
to the highest level.

The “Area 1” in the HERV SOM is interesting because sequences from three
HERV groups are mixed together in that area (see Section 5.3.3). The reliability
of the group of sequences extracted from Area 1 was studied to verify that the
observed mixed group is a true cluster in the data. Here the cluster is analyzed as
an example on how compactness and purity can be used in the analysis of a group
of sequences extracted from the SOM display. The compactness and purity of this
cluster are very good compared to an equal-sized randomly sampled control set
(see Fig. 5.3). Both compactness and purity rise rather quickly to the reasonable
level of 0.86 and 1, respectively; these figures are measured from the original SOM
(shown in Fig. 5.1) used for defining the group, and hence represent a kind of best
possible reasonable values. The results suggest that the cluster is not an artifact,
but really exists in the HERV sequence collection. The biological analysis of the
cluster (see Section 5.3.3 and Publication 5) agrees with this statement.
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5.5 Conclusions

In this chapter the median SOM, a self-organizing map for sequential data, was
used to group and visualize a comprehensive collection of human endogenous retro-
viruses and, at the same time, to study the HERV classification. As a result of the
SOM analysis the classification of three HERV groups was redefined. The SOM
also detected a new, previously undiscovered group of epsilonretroviral HERVs.
These results show that the SOM is able to find new information about HERVs
that have previously been studied with phylogenetic trees.

The SOM analysis was complemented with estimates on the reliability of differ-
ent parts of the SOM visualization. Two new measures were presented for estimat-
ing the reliability of each map unit on a SOM display. A reliability visualization
is obtained when the reliabilities of the units are shown on the SOM display. The
reliability visualization can then be used to focus the analysis on the most reliable
areas of the SOM display. Of the two new measures the trustworthiness-based one
is preferred. It can be applied also to various other visualization methods. For
example, all individual points in a projection or all leaves and inner vertices in a
hierarchical clustering tree could be colored according to their trustworthiness.

The SOM visualization is often used to select interesting groups of mutually
similar sequences for further analysis. The selection is usually done manually and
is based on several visualizations of the SOM (U-matrix, reliability, textual labels)
and all sorts of prior information. It is advisable to check the reliability of the
groups of sequences/samples before further analysis. Here two new measures for
estimating the reliability of such groups were presented.
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Chapter 6

Hidden Markov mixture

model for estimating HERV

activation

This chapter introduces a new hidden Markov model (HMM) based probabilistic
model that is designed to solve a specific biological question: Which individual
HERV sequences are active? The chapter begins by defining the biological problem
and then the new model and a heuristic alternative to it are described. The rest
of the chapter is devoted to the experimental results from Publications 6 and 7.

6.1 Problem setting

The thousands of HERVs in the human genome are a huge potential source of
active sequences, yet the HERVs are much less studied than genes. Generally,
from the fundamental research point of view, it would be interesting to understand
whether these repetitive elements are activated and, in particular, when and where
they are activated. The main interest in studying HERV activation is, however,
the connection to diseases; some HERVs are expressed in diseases, but it remains
unclear whether the observed expression is causing the disease (see Section 2.4.3 for
a longer discussion). Thus, it is vital to understand the details, causes and effects
of HERV activation. The first step is to study the potential for activity of all the
HERV integrations in the human genome (Publication 6). In the second stage the
expression profiles of HERVs (over a set of tissues) are studied to get a deeper
understanding of the function of HERVs; this work was started in Publication 7.

Methods used so far for studying HERV activation were already reviewed in
chapter 2. Briefly, HERV activity has been observed but due to limitations of the
laboratory methods, it is not known which individual HERVs are active. Current
HERV activity measurement techniques estimate the activity of a whole HERV
group together, see, e.g., Seifarth et al. (2005); Hu et al. (2006); the only exceptions
so far are Stauffer et al. (2004) where a small test for individual HERVs of one
group was done with a heuristic method and Kim et al. (2005) where HERVs
were sought from gene mRNAs but activities were not compared across HERVs.
However, the genomic locations of active HERVs are needed in order to uncover
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Figure 6.1: The EST matching problem. The sequences on the left are the HERVs. Their
sequences are nearly identical; the darker gray boxes denote locations where the HERVs differ.
The topmost HERV is transcribed and subsequently converted to an EST sequence. Note that the
EST is truncated and contains one sequencing error. The EST is matched against the HERVs in
order to determine where it came from. This is difficult, because the EST matches three HERVs
equally well (the 1st, 4th and 5th HERV from the top).

the control elements causing the activity in each case (see Section 2.4.3). So, a
method able to measure the activity of each individual HERV locus in the genome
is needed.

In this thesis an in silico1 approach for estimating the activities of HERVs is
presented. Evidence of HERV activation can be found from the large database
of expressed sequence tags (ESTs), the dbEST (see Section 2.5). The ESTs, in-
troduced in Section 2.3.3, provide and abundant, albeit noisy, information source
about expressed genomic elements. The EST database contains mainly gene tran-
scripts but also transcripts of other active sequences, such as HERVs. Special
features of the ESTs are the following (Section 2.3.3): they are truncated versions
of either the beginning or end of the mRNA sequence of a gene2, they are not
exact replicates of the mRNA, but contain sequencing errors (mismatches, dele-
tions, insertions), and the ends of the ESTs are of lower quality (more and more
sequencing errors).

In principle, the ESTs can be used to measure HERV activity by counting how
many ESTs match each HERV. Active HERVs will have numerous EST matches
and inactive HERVs none. However, unambiguous matching of ESTs to HERVs
is very difficult. This is because the noise level (sequencing errors) in ESTs can
be larger than the sequence differences between two HERVs. Then it is difficult
to say which of the two nearly identical HERVs was the source of the EST. This
is the EST matching problem (see Fig. 6.1).

In this thesis a solution to the EST matching problem is presented in the form
of a biologically motivated probabilistic model that learns the relative activities of
the HERVs from EST sequence data.

6.1.1 HERV and EST sequence data

This subsection introduces the data sets used in Publications 6 and 7. In Publi-
cation 6 the activation of all HERV sequences was studied. A collection of over
3000 HERV sequences was obtained automatically from the human genome using
the RetroTector program (see Section 2.4.4). In addition to the full HERV collec-
tion, two well-chosen smaller subsets of HERVs were studied in the publications.
The first set contains 181 sequences from three HERV groups: HERVW, HML2,

1In silico means “by computers” and is the opposite of the two terms: in vitro (in the test
tube) and in vivo (within a living cell), that refer to laboratory techniques.

2Sometimes the EST may even come from the middle of the mRNA. However, most of the
ESTs are sequenced from the beginning or end of the transcript.
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and HERVE. The groups were selected based on previous studies where they were
reported to be active, see, e.g., Seifarth et al. (2005); Forsman et al. (2005). The
second, smaller set consists of sixty HML2 sequences, whose activity profiles were
estimated and analyzed in Publication 7. The HML2 group was selected because
it has the most potential for containing active HERVs and because it was found
to be active in Publication 6.

ESTs matching the HERVs were retrieved from the dbEST using BLAST
(Altschul et al., 1990). BLAST (basic local alignment search tool) is a fast algo-
rithm for computing pairwise sequence similarity and is commonly used in database
queries. When constructing the collection of retroviruslike ESTs, each HERV se-
quence in its turn was used to query the dbEST. Details on EST to HERV matching
and EST data preprocessing can be found in Publications 6 and 7.

In Publication 6 the HERV data was pruned by removing those HERVs where
a non-viral3 part of the HERV had EST matches. The removal left out HERVs
where activity comes from suspected non-retroviral areas. The pruning made it
possible to focus on expression of retroviral origin. In the end the HERV collection
contained 2450 HERVs.

6.2 Generative model for HERV expression

Publication 6 introduces a probabilistic model for handling the uncertainty in the
EST to HERV matching.

The model has been designed based on the following assumptions about how
ESTs are generated from HERVs: (i) EST transcription starts at some point of the
HERV sequence; (ii) the EST sequence follows the HERV sequence, but (due to
sequencing errors) can contain mismatches between the EST and HERV nucleotide,
and can skip HERV nucleotides or insert new ones; (iii) lastly, the end of the EST
sequence is of lower quality and does not resemble the HERV sequence.

The new model is a generative mixture model for the set of EST sequences. The
mixture components are the HERV sequences, i.e., the possible sources of ESTs.
The model mimics the actual generation of the ESTs from the set of HERVs.

6.2.1 Hidden Markov mixture model

Each mixture component in the generative model is a hidden Markov model
(HMM) for ESTs from a particular HERV (see Fig. 6.2). Each component HMM
is similar to the profile HMM (Section 3.4 and Krogh et al. (1994)), with the ex-
ception that it is possible to jump from the start state to any of the match states
and from any match state either to the end or to a special EEMIT state that is
used to emit the low quality end of an EST. The match states, one for each posi-
tion of the HERV sequence, can either emit the nucleotide in that position of the
HERV sequence (with probability pt) or one of the other nucleotides (with prob-
abilities (1 − pt)/3). To summarize the model structure, each component HMM
generates data that roughly matches a subsequence of the source HERV, but with
mismatches, insertions, deletions, and a low-quality end part.

3Non-viral meaning here DNA that the RetroTector has not annotated as part of a virus gene
or LTR. The HERV chain from RetroTector may contain these non-viral stretches in between
viral parts. They may be either heavily mutated virus sequence parts or non-viral DNA that has
ended up in the middle of a virus due to genomic rearrangements.
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The complexity of the model is constrained by sharing parameters. The pa-
rameter pt is shared between all match states in the model. Similarly, all the
EEMIT and insert states share parameters: they emit nucleotides using the same
distribution. The emission parameters of the model are summarized in Table 6.1.
The transition parameters are also shared throughout the mixture (see Fig. 6.2):
all the basic blocks of all the sub-HMMs are identical except for the preferred
nucleotide in the match state that depends on the HERV sequence. The transition
parameters of the model are summarized in Figure 6.3.

The mixture model can be interpreted as one large HMM where the first transi-
tion chooses one of the N HERV-specific sub-HMMs (see Fig. 6.2). The transition
parameters of the first transition are the mixture weights a = {a1, ..., aNherv

} and
correspond to the activity estimates for the HERVs. The probability distribution
for one data item (the i:th EST sequence) given the model parameters a (mixture
weights) and θ (transition and emission parameters) is

p(ESTi|a, θ) =

Nherv
∑

j=1

p(ESTi|j,a, θ)p(j|a, θ) =

Nherv
∑

j=1

ajp(ESTi|HERVj , θ), (6.1)

Due to parameters sharing the parameters θ are the same for all the Nherv sub-
HMMs, the only difference between them is the HERV sequence, denoted by
HERVj in the equation.

The basic HMM training procedure, the Baum-Welch algorithm, can be used to
learn the whole mixture. Batch update rules for the shared transition and emission
parameters and mixture weights can be derived similarly as in the case of a full
HMM model. The parameter sharing, however, reduces the number of parameters
drastically and makes it possible to learn the parameters of the complex model
with the limited number of data available. The computational complexity of the
model is discussed in Publication 6.

6.2.2 Estimating HERV expression profiles

The HMM mixture introduced above can be extended for the task of estimating
HERV expression profiles. First, a separate model is learned for each condition,
using a set of ESTs specific to that condition. Then the relative activity distri-
butions of the HERVs from different conditions are combined to form a HERV
expression data matrix (see Fig. 6.4). However, it is not immediately clear how
activity estimates from different conditions should be scaled before they are com-
bined. There are two ways to do the scaling: 1) No scaling is used. In this setting
it is assumed that each EST set, irrespective of its size, is a representative sample
of all HERV-derived mRNAs in the condition. If this is true then the relative
activity distributions from different conditions are directly comparable. 2) The
relative activity distribution of each condition is scaled by the number of ESTs
available from that condition. This transformation makes the activity estimate of
a HERV more directly proportional to the actual number ESTs coming from that
HERV; the activity value of the HERV can be seen as a probabilistic EST count.
In this setting it is assumed that the size of the EST set is relevant. In Publication
7 the second approach was used.

Another problem in the estimation of HERV activity profiles is the cross-talk
arising from HERVs not included into the studied set. Let us consider a case
where the HML2 HERVs are studied. These HERVs are used to retrieve a set of
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A C G T
all insert states eA eC eG eT

all EEMIT states eA eC eG eT

match state when si = A pt
1
3 (1 − pt)

1
3 (1 − pt)

1
3 (1 − pt)

...
...

match state when si = T 1
3 (1 − pt)

1
3 (1 − pt)

1
3 (1 − pt) pt

Table 6.1: Emission parameters of the HMM model. All the insert states and all the EEMIT
states have the same emission distribution. For the match states the emission distribution de-
pends on the HERV sequence. If the i:th nucleotide of the HERV sequence s is A then the
emission distribution for the i:th match state is as shown in the table for the case si = A.
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Figure 6.4: The process of estimating HERV expression profiles.

ESTs from the database. However, the set may contain ESTs that are actually
originating from a non-HML2 HERV. This means that there is cross-talk between
the HERV groups; ESTs coming from a HERV in one group also match HERVs
from another group. To reduce the errors caused by the cross-talk some elements
from other HERV groups (extra HERVs) should be included to the HERV set.
This is done to ensure reliable activity estimates for the interesting HERVs (HML2
HERVs). The extra HERVs will capture the ESTs that are not HML2-derived.

The set of extra HERVs should be as representative as possible. In an ideal
situation it would contain all the HERVs that do cause cross-talk. In practice,
HERVs that may cause cross-talk can be detected by comparing the ESTs re-
trieved using HML2 HERVs to all HERVs. HERVs that match the ESTs very
well potentially cause cross-talk. Thus, the set of extra HERVs should be selected
among these. If it is not computationally feasible to include all of them, then a
representative subset may be obtained by selecting some HERVs from all HERV
groups. This works because HERVs within a family are so similar that they match
each other’s ESTs very well.
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6.2.3 A heuristic alternative

A straightforward alternative to the HMM mixture is to neglect any cross-talk
between the HERVs. Their activities can then be estimated simply by the number
of BLAST hits. The BLAST activity of a HERV is the number of ESTs matching
that HERV better than any other HERV. A similar BLAST approach was used by
Stauffer et al. (2004) for a tiny data set containing only intact HERV sequences.

6.2.4 Estimating the reliability of the activities

The HMM mixture produces an activity distribution over HERVs. The reliability
of the distribution can be estimated with a bootstrap-like method as follows: The
EST data are resampled with replacement several times and then the activities are
reoptimized for each replicate while other parameters are kept fixed (see Publica-
tion 6 for details). A similar approach can also be used to estimate the reliability
of the activity distribution obtained with the BLAST approach; the EST counts
are recomputed for each replicate.

6.3 Experiments

6.3.1 Validation with simulated data

The performance of the HMM mixture was evaluated using a simulated data set
in Publication 6. The mixture model was also compared to the heuristic BLAST
alternative.

A set of artificial ESTs was generated from a representative set of 181 HERVs
(see Section 6.1.1) using the HMM mixture. To make the simulated EST data
realistic, the parameters of the generating HMM were set close to the parameters
learned from real ESTs, and the lengths of the ESTs were controlled by rejecting
too short and too long ESTs. After generation the ESTs were processed exactly
the same way as real data, starting with BLAST to match the HERVs against the
ESTs.

Both the HMM model and the heuristic BLAST approach were applied to the
simulated data set. The relative activity distributions learned by these two models
were compared to the true activity distribution (the one used while generating the
artificial ESTs). The results from this comparison are shown in Figure 6.5. As can
be seen, both the HMM model and the BLAST approach closely follow the true
activity distribution.

The performance of the two approaches was also quantified using the Kullback-
Leibler divergence to measure the distance between the true and the learned dis-
tribution. In this comparison the HMM method performs slightly better than the
BLAST approach (for details see Publication 6). The surprisingly good perfor-
mance of the BLAST approach suggests that it can be used for large-scale studies
where HMM training would be computationally too costly.

The difference between the two approaches was the most notable in the case
of the HML2 group, which is a young HERV group containing almost identical
sequences. For the HML2 group, and for other young families, it is preferable
to use the rigorous probabilistic approach, i.e., the HMM mixture. The mixture
model was used to study HML2 HERVs in Publication 7.
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from Publication 6.
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Figure 6.6: The proportion of active and inactive HERVs varies a lot from group to group. The
proportion of active HERVs in each group is presented with a stacked area plot. The two darkest
gray areas together show the proportion of active HERVs in that group, the lightest gray area
shows the proportion of inactive HERVs. The area in between shows HERVs with 1-4 EST hits;
for these HERVs the activity status is uncertain (see Publication 6 for more details). The widths
of the bars are proportional to the size of the HERV group. The figure is taken from Publication
6.

6.3.2 Overview of HERV activation

In Publication 6 the activities of a large set of 2450 HERVs were explored to get an
overview of HERV expression in humans and to detect individual active HERVs.
To save time the activities were estimated using the fast BLAST-based approach.

Here the main biological results from Publication 6 are briefly reviewed. First,
about 7% of the HERVs were active (had at least 5 EST hits in their gene or LTR
areas) and most of the rest were completely inactive based on the EST collection
used; 1903 HERVs had no EST matches. Second, almost all groups have some
active elements. However, the proportion of active HERVs varies considerably
from group to group (see Fig. 6.6). Third, the observed expression had many
forms. The expectation that only young, intact elements would be able to activate
proved to be wrong as there were several kinds of HERVs among the active ones:
old and young, full-length and those missing several viral genes, HERVs with open
reading frames in their genes and HERVs that can not produce viral proteins.
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Figure 6.7: EST hit locations for a few of the active HERVs. The colored blocks below the
curve represent the HERV structure (genes, LTRs) and the curve presents EST hit intensity
along the HERV structure. The HERVs shown on the top row exhibit fragmented expression. It
is highly unlikely that these HERVs produce retroviral proteins. However, the HERV in the top
right corner is presumably functioning as an (alternative) end for a nearby gene. In contrast, the
HERVs shown on the bottom row may be coding for retroviral proteins. Actually, the HERV
on the right contains the syncytin-2 gene, a known human gene originating from the env-gene
of this HERV locus. The HERV on the left may also be retrovirally active. The figure is taken
from Publication 6.

Fourth, the observed expression patterns were surprising. The EST sequences
do not necessarily match the HERV in the retroviral gene areas, but exhibit frag-
mented expression. This suggests that in many cases the retroviral sequence has
been used as a building block for something else than retroviral proteins, for ex-
ample human gene exons, promoters, or polyadenylation signals. The evidence for
this is (i) only a few of the active elements have viral gene open reading frames,
and (ii) the ESTs often match only a short portion of a viral gene (see the top row
of Fig. 6.7 for examples). However, for some HERVs there may be an alternative
explanation: the retroviral transcripts may have RNA-mediated activities.

6.3.3 Expression profiles of HML2 HERVs

In Publication 7 expression profiles of individual HERV sequences across a set of
tissues were studied. The expression profile enables the study of the differential
expression patterns of individual HERVs, leading to a better understanding of the
function of individual HERVs. For example, HERVs that are more/only active
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in the brain tissue may have functions related to neurodegenerative diseases or
to normal brain functions. The profiling approach is widely used in the study of
human gene function, see Chapter 4.

The HML2 group was selected for analysis because it has the largest propor-
tion of relatively intact elements and because it was found to contain the largest
percentage of active elements (see Publication 6 and Fig. 6.6). Some of the HML2
sequences are full-length, i.e. have retained the typical retrovirus structure “LTR-
gag-pro-pol-env-LTR”, and few of these even have open reading frames for the env
gene, i.e. they could produce retroviral env proteins.

In addition to the HML2 HERVs, some extra HERVs were added to the HERV
set in order to capture cross-talk between the HERV groups. The extra HERVs
were selected broadly from all HERV groups. However, only HERVs that were
estimated to be active by the heuristic BLAST approach were included (see section
6.2.2 and Publication 7).

The HMM model was able to estimate the activity profiles of the HML2 HERVs
reliably, according to the bootstrap-based reliability estimation (Section 6.2.4).
The activity profiles are shown in Figure 6.8A. Many of the HERVs exhibit tissue-
specific expression. There are also some HERVs that are active in all tissues, as
well as HERVs that are not active in any of them. The activities of most HML2
HERVs were previously unknown. Publication 7 gives a more detailed analysis of
sample HERVs.

The results show that several of the extra HERVs (non-HML2 HERVs) are
very active (Fig. 6.8B). Furthermore, in each case the probability mass allotted
to them was more than half of the total (ranging from 63% in the placenta to
52% in the lungs). This verifies the assumption that there is cross-talk between
families. ESTs retrieved using the HML2 HERVs as queries actually match the
extra HERVs better. To conclude, it was necessary to add the extra HERVs to
get reliable activity estimates for HML2 HERVs.

6.4 Discussion and Conclusions

In this chapter a hidden Markov mixture model developed for the task of estimating
HERV activities from EST sequences was introduced. An extended version of the
model can be used to estimate expression profiles of HERVs over a set of conditions.
The results obtained with the HMM mixture were found to be reliable according
to a bootstrap-based reliability estimation.

The HMM model was compared to a heuristic BLAST-based alternative with
experiments on simulated data. Both methods were able to estimate underlying
activities fairly well. The surprisingly good performance of the computationally
simpler alternative justifies its use when the rigorous probabilistic method would
be too slow. It is still recommended that the more accurate HMM model is used
in smaller-scale studies, in particular for the more difficult HERV groups (groups
containing close to identical sequences).

In Publication 6 the activities of all individual HERV sequences were estimated
in order to gain an overall picture of HERV activity in humans. The results are
biologically interesting and merit further study. The individual HERVs reported
as active with our method can later be verified with laboratory methods; by con-
trast, exhaustive search of active HERVs with laboratory methods would be too
expensive.
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Figure 6.8: The activities of the HML2 (panel A) and non-HML2 (panel B) HERVs. In both
panels the rows depict the activity distributions over HERVs and the columns the expression
profiles of individual HERV sequences. The activity values are shown on a logarithmic scale, as
can be seen from the legends on the right. The scale is the same in both panels. The numbers
next to the legend are the probabilistic EST counts for each gray shade. The columns have been
ordered according to a hierarchical clustering based on the (unlogarithmic) Euclidean distances
between the HERV expression profiles. The figure is taken from Publication 7.

In Publications 6 and 7 the quality of the HERV data caused some problems
for the analysis. The aim was to study the expression of all HERVs, not only the
full-length elements but also the fragmented HERVs that are harder to detect from
the human genome. In the process of ensuring that the more mutated HERVs are
not missed some elements that are combinations of retrovirus and retrotransposon
sequences may have been included into the HERV set produced by RetroTector.
The problems caused by such chimeric elements, and elements containing long
portions of DNA not annotated as a viral gene or LTR, were handled differently
in the two publications. In Publication 6 all HERVs where the activity was in
un-annotated portions were removed and the analysis was focused on retrovirus
originating activity. In Publication 7, however, the HERVs were included as is.
Results from the latter publication indicate that some of the activity in the un-
annotated areas is due to active L1 retrotransposons and SVA elements (see the
publication for details).

The proposed HMM method is generally applicable; it can be used to study
endogenous retroviruses in other organisms, or to include other kinds of trans-
posable elements. The source of active sequences could also be something else
than ESTs. For example, the method could be used as a post-processing step in
an RT-PCR reaction where a broadly targeting primer (all members of a HERV
group are amplified) is used. When the PCR products are sequenced, they can be
compared to the members of the targeted HERV group using the HMM mixture.
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Chapter 7

Conclusion

In this thesis self-organizing map (SOM)-based exploratory data analysis (EDA)
approaches were developed and applied successfully to genomic data sets. The
cluster displays constructed with SOMs show similar clusterings as displays formed
by hierarchical clustering (HC) or phylogenetic trees (PT), supporting the validity
of the SOM approach. The advantage of SOM is the two dimensional visualization
display that shows the relationships of the clusters as well as similarities between
individual samples. The SOM presentation allows intuitive exploration of the data.

In the first part of the thesis (Publications 1-2) the SOM was applied to the
analysis of a yeast gene expression data set. It was demonstrated that SOMs can
find meaningful biological information from gene expression data. Naturally, the
SOM approach can be used to analyze gene expression data from other organisms
in an analogous manner.

In the second part of the thesis (Publications 3-5) the SOM was applied to the
study of human endogenous retroviruses (HERVs) and their classification. The
results showed that the SOM was able to extract new knowledge from a HERV
sequence collection, subsets of which had previously been analyzed with PTs. The
PTs and the SOM can complement each other when constructing a final grouping
for all HERV sequences. The PTs represent the evolutionary connections between
groups of sequences, but the rigorous PT inference algorithms are, unfortunately,
not able to handle very large data sets. The SOM, on the other hand, is well suited
for analyzing larger collections of sequences simultaneously. The SOM approach
can be applied to the study of other kinds of (biological) sequences as well. One
potential application area are members of protein families from several organisms.

The choice of metric directly affects EDA results. The metric should be cho-
sen such that the ensuing similarities will be informative for the analysis goal.
In this thesis, the performance of different distance measures in their ability to
represent the functional classification of genes was compared for a few data sets.
The correlation coefficient was the best suggesting that only the relative values of
the expression ratios are important. The functional classification of genes can also
be built directly into the distance measure using the learning metrics principle.
The new location-specific metric measures changes in gene expression but weights
the changes according to how much they contribute to changes in the functional
classes. The learning metrics offer a way to incorporate prior biological knowledge
about the function of the genes into the measurements.

The learning metrics principle is general and can be used with various types
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of vectorial data sets. Furthermore, the auxiliary data can be also something else
than a pre-existing classification. For example, in gene expression data analysis
the auxiliary data may be information about gene expression levels of homologous
genes in another organism. This way information from model organisms, that have
been studied extensively, can be utilized when analyzing the genes of a less studied
organism, like human. Besides SOMs the learning metrics principle can be used
in conjuction with various methods, such as Sammon’s mapping (Peltonen et al.,
2004), discriminant analysis (Peltonen and Kaski, 2005) and clustering (Sinkkonen
and Kaski, 2002; Kaski et al., 2005a,b). Extension of learning metrics for non-
metric data sources, like sequences and other structured data, would enable it to
be used in conjunction with the Median SOM and other methods where the input
data is represented with a pairwise similarity data matrix. This is an idea for
future work.

The visualization aspect of the SOM was compared to other unsupervised meth-
ods using the new trustworthiness measure that gives a good score for visualization
displays with few false positive proximities. For gene expression data sets the SOM
was found to be the most trustworthy alternative. On the other hand, the results
obtained from the comparison of PT and median SOM suggest that the perfor-
mance of the median SOM is not necessarily better than some of the alternatives.
A more extensive comparison is needed to clarify the differences between the me-
dian SOM and other visualization and clustering methods for pairwise data sets.

Results from Publications 4 and 5 demonstrate that visualization of the relia-
bility of different parts of the SOM display is a valuable help in SOM-based data
analysis. In this thesis two new measures were introduced for estimating the relia-
bility of each map unit on a SOM display, a bootstrap-based and a trustworthiness-
based measure. Of these two measures the trustworthiness one is preferred. The
reliability visualization, where each map unit is colored according to its reliability,
is used to help focus the analysis of the SOM to the most reliable areas of the
map. The reliability estimates can also be applied in other cases where a SOM
is used. The estimates are not limited to pairwise distance matrices, but can be
applied also to vectorial SOMs. Furthermore, the trustworthiness based reliability
estimate can be applied to various other visualization methods. For example, all
individual points in a projection or all leaves and inner vertices in a hierarchical
clustering tree could be colored according to their trustworthiness.

The EDA process usually continues with a closer analysis of interesting groups
of samples selected manually based on the SOM display, a reliability visualization,
and all available background information. In this thesis bootstrap-based reliability
estimates for validating the compactness and purity of such groups were presented.
Before the group is analyzed closer it should be verified that the group forms a
true cluster in the data. This can be done using the new measures. Again, the
measures can be applied in all types of SOM applications.

In the last part of the thesis (Publications 6-7) a computational method for es-
timating HERV activities was developed. The generative hidden Markov mixture
(HMM) model estimates the activities of individual HERVs rather than those of
HERV groups, i.e., is able to overcome the limitations of commonly used labora-
tory techniques. HERVs reported as active using the HMM mixture can later be
verified with detailed laboratory methods; by contrast, exhaustive search of active
individual HERVs with the difficult laboratory procedures would be too expensive.
The computational approach allows exploration for potentially active HERVs. Us-
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ing the HMM method a more detailed picture of HERV activity in real data was
obtained. Many of the active HERVs exhibit fragmented activity patterns and
are likely to serve purposes other than the production of retroviral proteins. For
example, they may be human gene exons or promoters, or have an RNA-mediated
function. These as well as the few potentially retrovirally active HERVs that were
detected should be analyzed more closely in future studies.

The proposed HMM method is generally applicable; it can be used to study en-
dogenous retroviruses in other organisms, or to include other kinds of transposable
elements. The source of active sequences could also be something else than ESTs.
The EST matching problem for which the model has been designed is similar to
the cross-hybridization problem in tiling microarrays. A future research direc-
tion could be to extend the HMM model for the microarray cross-hybridization
problem.

The new HMM model can be used for estimating expression profiles of HERVs.
In future studies the HERV expression data set could then be explored using
the SOM-based methods introduced in the first part of this thesis. The problem
of understanding the control mechanisms behind HERV expression is also highly
relevant. Furthermore, the learning metrics principle can be applied to HERVs, for
example, in conjuction with human gene expression data. The HERV sequences
may control the expression of nearby genes. Then it would make sense to guide
the gene expression data analysis with auxiliary information obtained from HERVs
located near to the gene in the DNA.
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