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ABSTRACT

This paper extends a previously proposed method for designing
filters simulating the dispersion phenomenon occurring in string
instruments. In digital waveguide synthesis, the phenomenon is
traditionally modeled by inserting an allpass filter to the string
model feedback loop. In this paper, the concept of tunable disper-
sion filter design, which provides a closed-form formula to design
a dispersion filter, is applied to a cascade of first-order allpass fil-
ters. Moreover, the method is extended to design a filter cascade
including an arbitrary number of first-order filters. In addition, it is
shown how the designed dispersion filter can be used in a waveg-
uide piano synthesis model.

1. INTRODUCTION

Dispersion is an important phenomenon present in string instru-
ments making produced tones inharmonic. The audibility of the
phenomenon depends on the instrument, for example, in the pi-
ano it is a perceptually important effect that needs to be taken into
account in sound synthesis [1].

In digital waveguide modeling technique [2, 3], dispersion is
modeled by inserting an allpass filter simulating the phase delay
response of the dispersion phenomenon in the string model [2, 3,
4, 5, 6, 7, 8]. A common way to implement the dispersion filter is
to use either a high-order allpass filter [4] or a cascade of low-order
filters [5, 6, 7]. An excellent overview of dispersion filter design is
given in [8].

Van Duyne and Smith [5] proposed the use of a cascade of
first- order filters. In this paper, the idea is extended by introducing
a closed-form formula to determine the filter coefficients based on
the tunable dispersion filter design method [7].

This paper is organized in the following way. In the beginning,
the dispersion phenomenon is introduced in Section 2. Then, the
previously proposed tunable dispersion filter design method for a
cascade of second-order filters is presented is Section 3, followed
by the adaptation for first-order filters in Section 4. The results
from the filter design are shown in Section 5 and the conclusions
are presented in Section 6.

2. DISPERSION PHENOMENON

Dispersion is the property of a string, due to its stiffness, that
causes the frequencies of the partials to be higher than the har-
monic partials. The frequencies of inharmonic partials can be cal-
culated [1]:

fk = kf0

p
1 + Bk2, (1)

where k is the partial number, f0 is the nominal fundamental fre-
quency of the ideal string (non-dispersive), and B is the inhar-
monicity coefficient. The value B can be calculated using string
parameters [1]

B =
π3Qd4

64l2T
, (2)

where Q is Young’s modulus, d is the diameter of the string, l is
the length, and T is the string tension. Hence, there is a strong
relation between the B value and the tension of the string.

Fletcher et al. suggested in 1962 that inharmonicity is a sig-
nificant factor in producing the sound characteristic of the piano
[1]. Even though Galembo et al. recently proposed that the spec-
tral density might be even a more important factor [9], it is still
clear that inharmonicity is an essential property, which needs to be
taken into account in piano synthesis.

Dispersion occurs in all string instruments, especially the pi-
ano is known to have strong inharmonicity [1]. The amount of
inharmonicity depends on the type of the piano; grand pianos tend
to have less inharmonicity than upright pianos. Figure 1 depicts
estimated B values from a Steinway grand piano. The B values
were obtained by an automatic estimation algorithm, which first
uses the fast Fourier transform (FFT) to calculate the frequencies
of the partials, and then estimates the B value by fitting (1) to the
measured data. Some values are missing in Figure 1, because the
estimated values for some keys were unreliable (the most common
reasons for excluding a B estimate were that the nominal funda-
mental frequency was estimated incorrectly, or that our peak pick-
ing algorithm got confused). The solid lines in the figure show the
expected B range for pianos based on our results. Our estimated
range is in line with the results by Askenfelt and Galembo [10].

Although the inharmonicity is stronger at the higher end of the
range, it has been shown by Järveläinen et al. that the inharmonic-
ity is perceived mostly at the lower end of the range [11] (recent
work by Järveläinen and Karjalainen suggest, however, that there
may be variation in the perception depending on the instrument
[12]). The estimated B values, displayed in Figure 1, are all above
the threshold of audibility, which, along with the confidence limits,
are published in [11]. Thus, it can be expected that inharmonicity
is heard through-out the range of the piano.

3. TUNABLE DISPERSION FILTER DESIGN METHOD

The tunable dispersion filter design method provided a way to use
closed-form formulas to design a dispersion filter [7]. The origi-
nal design was made for a cascade of second-order filters, but the
method can be used to design an arbitrary-order filter cascade.
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Figure 1: Measured B values (dots) from a Steinway grand piano1.
The solid lines show the expected B range for the piano, the dashed
line shows the threshold of audibility, and the dash-dotted line its
confidence limit [11].

The tunable dispersion filter design method uses the Thiran
all-pass filter design to determine the filter coefficients [13, 14,
15]. The Thiran allpass design method is commonly used to design
fractional delay filters, but with large delay values the phase delay
response becomes similar to the phase delay required to simulate
the dispersion.

In the Thiran design method, the filter coefficients are deter-
mined by using the desired delay value D at dc. The tunable dis-
persion filter design method offers a formula to compute D ac-
cording to the desired f0 and B [7]:

D(Ikey, B) = e(Cd(B)−Ikeykd(B)), (3)

where

Ikey(f0) = log 12√2

f0
12
√

2

27.5
, (4)

kd(B) = e(k1(ln B)2+k2 ln B+k3), (5)

Cd(B) = e(C1 ln B+C2), (6)

and k1, k2, k3, C1, and C2 are predefined constants presented in
Table 1. It has been noticed that, when the inharmonicity coeffi-
cient value is fixed, the relation between required delay values (on
a logarithmic scale) and key indices can be approximated with a
straight line. Hence, parameter kd can be interpreted as the slope
coefficient of the line and parameter Cd as the remainder of the
line formula. The line parameters kd and Cd are then parameter-
ized, depending on the inharmonicity coefficient, with parameters
k1, k2, k3, C1, and C2.

The dispersion filter, consisting of a cascade of four second-
order allpass filters, produces an extra delay that must be taken into
account in the string model by modifying the delay line length and
the tuning filter coefficients [7]. The extra delay can be estimated
by using D value and multiplying it with M , the number of filters
in cascade.

1Steinway grand piano samples from University of Iowa Electronic
Music Studios, http://theremin.music.uiowa.edu

Parameter Filter 1 (M = 4) Filter 2 (M = 1)
k1 -0.00050469 -0.0026580
k2 -0.0064264 -0.014811
k3 -2.8743 -2.9018
C1 0.069618 0.071089
C2 2.0427 2.1074

Table 1: Predefined parameters for the tunable dispersion filter
using second-order filters [7]. Filter 1 (four filters in a cascade)
is used for key numbers 1-44 and filter 2 (a single filter) for key
numbers 45-88.
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Figure 2: Searched (a) C1 and (b) C2 values for first-order filters
with M values 1 to 8 (solid line). The dashed line illustrates the
parameterized values using the straight line fit.

4. NEW FIRST-ORDER DISPERSION FILTER DESIGN

In this paper, a cascade of first-order filters is used for designing
a dispersion filter originally proposed by Van Duyne and Smith
[5]. A cascade of identical filters is not as effective from the per-
formance point of view as a cascade of filters with different co-
efficient values. However, the advantage of using a cascade of
identical filters is that it is easy to design and, hence, it is used in
this work.

The problem with this idea has been the lack of closed-form
design formulas, as Van Duyne and Smith did not indicate how
the filter cascade can be designed, other than by trial and error or
by using a search algorithm [5]. This problem can be solved by
extending the tunable dispersion filter method [7]. In this section,
the predefined parameters (see equations 3-6) are determined for
the tunable dispersion filter method using a cascade of an arbitrary
number of first-order allpass filters. Hence, the formula should
take the fundamental frequency, the B value, and the number of
filters in cascade M as input parameters.

The five predefined constant parameters in equation (5) and
(6) were determined for eight cases with M varying from 1 to 8
in a way similar to [7]. It was noticed that parameters k1, k2, and
k3 lacked any kind of general trend. However, it seems that the
importance of these parameters is minor compared to parameters
C1 and C2, which had a clear linear trend on a logarithmic scale,
as seen in Figure 2. The explanation for this is that the slope coef-
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Parameter Value
k1 -0.00179
k2 -0.0233
k3 -2.93
m1 0.0126
m2 0.0606
m3 -0.00825
m4 1.97

Table 2: Calculated filter design parameters for a cascade of first-
order Thiran allpass filters.
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Figure 3: The dispersion filter coefficient a1 values with B values
from 10−6 to 10−3 when the number of first-order allpass filters in
cascade M is 1, 5, 10, 20, and 40. The fundamental frequency is
65.406 Hz (note C2) in all cases.

ficient kd does not depend on the number of filters in cascade M ,
whereas the remainder term Cd is strongly linked to M . Hence,
by using polynomial approximation, equation (6) can be extended
as

Cd(B, M) = e((m1 ln M+m2) ln M+m3 ln M+m4) (7)

where m1, m2, m3, and m4 are the polynomial coefficients de-
fined in Table 2.

The parameters required by the design formulas (3), (5), and
(7) were optimized using polynomial approximation. Parameter
values k1, k2, and k3 were determined by using M = 8. The
resulting values are shown in Table 2.

In summary, the whole design process goes as follows. First,
the desired B, M , and f0values should be decided. Then, the
required D values can be determined by using equations (3), (4),
(5), and (7). Finally, the first-order allpass filter coefficient a1 can
be computed by using the Thiran allpass filter method [15]:

a1 =
1−D

D + 1
(8)

Two examples on how a1 behaves when the inharmonicity coeffi-
cient value is changed are shown in Figures 3 and 4.

The delay line length and the tuning filter coefficient should be
modified according to the additional delay produced by the disper-
sion filter. It has to be accounted for that the product D ·M may
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Figure 4: The dispersion filter coefficient a1 values with B values
from 10−6 to 10−3 at key indices 4, 16, 28, and 40, which corre-
spond to keys C1, C2, C3, and C4, respectively. The number of
filters in cascade M is 8 in all cases.

not be a sufficient estimate for the delay with large M values, as
suggested in [7] for a cascade of four second-order filters, because
the estimation error is approximately M times larger compared to
a single allpass filter.

5. RESULTS

Figure 5 shows the deviation of the partial frequencies of the ex-
ample filter proposed in this work at three fundamental frequencies
(keys C1, C2, and C3) with reasonable inharmonicity coefficient
values, with the values for the number of filters in cascade M set
to 1, 5, 10, 20, 30, and 40. The partial frequencies are compared to
the target partial frequencies obtained from equation (1). Hence,
an ideal dispersion filter would correspond to zero deviation at all
frequencies. The figure shows that the quality of the filter im-
proves when M is increased. On the other hand, when the number
of filters in cascade M reaches approximately 40, the phase delay
response does not fit within the defined error limits. In practical
cases, M values below 20 are preferred for computational reasons.
Hence, the parameter selection for the filter design is a trade-off
between computational load and quality, but the quality does not
improve limitlessly. Furthermore, the fixing of parameters k1, k2,
and k3 does not add too much bias to the results when M < 40,
since the responses stay within the defined error limits.

The proposed filter, as well as the original tunable dispersion
filter method [7], can be used for providing real-time control over
the inharmonicity coefficient. This can be done by recomputing
equations (3), (5), (7), and (8), and by updating the filter coef-
ficient each time the inharmonicity coefficient value is changed.
The updating process requires eight additions, six multiplications,
and one division from the computational point of view. Addition-
ally, the logarithmic function is called once and the exponential
function three times during the process.

Finally, the filter was included in a simple piano synthesis
model. The number of filters in cascade M was set to 8 in this ex-
ample. The piano model included a basic string model, as shown
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Figure 5: Deviation of the partial frequencies for the proposed
filter (solid line with circles) with the number of filters in cas-
cade M values 1, 5, 10, 20, 30, and 40, when (a) B = 0.00020,
f0 = 32.703 Hz (key C1), (b) B = 0.00010, f0 = 65.406 Hz (key
C2), and (c) B = 0.00015, f0 = 130.82 Hz (key C3). The devia-
tion for a harmonic tone is denoted as a dashed line and the max-
imum number of perceived inharmonic partials [16] is denoted as
a vertical line. The dash-dotted lines are 0.5% error limits corre-
sponding to ±8.39 cents.

Excitation
model

Loss filterDelay lineDispersion
filter

Tuning
filter

Basic string model

Figure 6: An illustration of a basic piano string model.

10 20 30 40 50 60 70 80

10!4

10!3

10!2

Key number

B

100 Hz 440 Hz 1000 Hz 4000 Hz

Figure 7: The inharmonicity coefficient B values used in the ex-
ample piano synthesis model.
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Figure 8: The dispersion filter parameter a1 values for the piano
model when a cascade of M = 8 first-order allpass filters is used.

in Figure 6, and the input signals were extracted from real piano
samples [17]. The defined inharmonicity coefficient values used
in the model are shown in Figure 7. In Figure 8, the correspond-
ing dispersion filter coefficient values are presented. Moreover,
the determined delay line length and the delay produced by the
dispersion filter are illustrated in Figure 9.
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Figure 9: The delay parameters for the piano model: the length of
the delay line (dashed line), the length without the dispersion filter
(solid line) and the difference between these two which is the delay
produced by the dispersion filter (solid line with dots).
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Figure 10: (a) The waveform and (b) the time-frequency plot of
a harmonic tone (f0 = 98.0 Hz, key G2) produced with a string
model with no dispersion filter. The excitation signal is simplified
in order to emphasize the effect.

When equation 3 resulted in a D value less than 1 (for in-
stance, key numbers 75-88 in Figure 9), D was set to be 1, which
corresponds to replacing the allpass filters with the transfer func-
tion A(z) = 1. The tuning filter was implemented with a first-
order Thiran allpass filter, and a delay of one sample was moved
from the delay line to the tuning filter in order to have the frac-
tional delay parameter in the range from 1 to 2. It can be noticed
that the tunable dispersion filter reduces the need for a delay line
memory up of to 200 samples in this case (see Figure 9).

Figure 10 and Figure 11 illustrate how the dispersion filter af-
fects the waveform and the spectral properties of the produced tone
in time domain. This way of visualizing the effect of dispersion by
using a short time window was suggested by Woodhouse [18]. The
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Figure 11: (a) The waveform and (b) the time-frequency plot of an
inharmonic tone (f0 = 98.0 Hz, key G2, B = 0.0001) produced
with a string model with eight first-order allpass filters in cascade.
The excitation signal is simplified in order to emphasize the effect.

excitation of the synthetic tones contains 50 partials with sine start-
ing phases produced by using additive synthesis. Two effects can
be seen: the waveform of the tone becomes more spread out and
the high frequencies travel faster in than the low frequencies in the
feedback loop of the string model. Sound examples as well as Mat-
lab code to calculate the dispersion filter coefficient are available
at http://www.acoustics.hut.fi/demos/ext-disp/.

6. CONCLUSIONS

In this paper, a closed-form formula is proposed to be used in de-
signing first-order allpass filters for dispersion modeling. The tun-
able dispersion filter design method that we introduced recently
provides a technique which is extended in this work to determine
the closed-form formula for an arbitrary number of first-order fil-
ters in cascade. It enables an easy design process for first-order
dispersion filters, and, also, it provides real-time control over the
dispersion phenomenon.
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