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coustic keyboard instruments, such as the piano
and the harpsichord, are particularly interesting
for sound synthesis, because they are large in
size and are prone to wear and tear. The high
cost of acoustic keyboard instruments makes

modeling them financially attractive. They may require amplifi-
cation during performances, which causes difficulties related to
the use of microphones. Digital versions of these instruments
benefit from the fact that Musical Instrument Digital Interface
(MIDI) keyboard controllers are commonly available. Digital
pianos imitating grand pianos are currently among the most
popular electronic musical instruments. 

Commercial products implementing synthesis of keyboard
instrument sounds are often based on sampling and wavetable

synthesis techniques. These methods employ recorded acoustic
waveforms of instrument sounds. In extreme cases, tones of all
the keys of the instrument are sampled at several velocity levels
to cover the whole dynamic range, and these samples are as long
as necessary, even about a minute each for the low piano tones.
Very high sound quality can be achieved, but it is dependent on
the size of the sample memory. Limitations in memory reduce
the obtainable quality, because samples must be shortened or
their bit rate must be compressed.

In this article, alternative approaches to digital keyboard
instrument synthesis are looked into. Physics-based sound syn-
thesis, which aims at generating natural-sounding musical
instrument tones algorithmically without using a large sample
database, is a promising approach. It would provide high-quality
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music synthesis to systems that cannot afford a large memory,
such as mobile phones and portable electronic games. The real-
istic parametric synthesis of musical instrument sounds is still a
challenge, but physical modeling techniques introduced during
the last few decades can help to solve it [1], [2]. Recently, the
first commercial products have been introduced, for example, by
Pianoteq [3]. Three keyboard instruments, the clavichord, the
harpsichord, and the grand piano, are focused on here. The
sound production principles and acoustics of these instruments
are first discussed. Then, the previous parametric synthesis
algorithms developed for these instruments are reviewed. The
remaining part of this article concentrates on new signal pro-
cessing methods for parametric synthesis of the piano.

ACOUSTICS OF KEYBOARD INSTRUMENTS
Before considering the modeling of keyboard instruments, the
acoustics of the keyboard instruments are presented.

CLAVICHORD
The clavichord is a struck string instrument with a long history
dating back to the 12th century. The sound of a clavichord is
soft, and it was used mainly as a solo instrument. During the
18th century it was totally dwarfed by the piano, which was able
to produce a louder sound. The playing range of a clavichord is
usually four octaves covering the notes from C2 to C6. A typical
clavichord has a small, rectangular box, and the strings are
organized in pairs. The strings in each pair are slightly detuned,
which causes beating and a two-stage decay [4]. The strings are
positioned in the long direction of the box, and they are termi-
nated with hitch pins at one end and with tuning pins at the
other end. 

When the player presses down a key, a metal tangent,
attached to the other end of the key, strikes against a pair of
strings. Actually, this mechanism does not only set the strings
into vibration but also defines the speaking length of the strings
to be the length between the tangent and the bridge. The other
part of the strings, that is, the stretch from the hitch pin to the
tangent, is damped by a piece of felt. With this mechanism, it is
possible to use a single pair of strings for producing several,
usually two or three, notes.

The advantage of the clavichord is its expressiveness. The
tone can be modified in loudness as well as in terms of vibrato.
When the tangent still remains in contact with the string after
depressing the key, the player can vary the tension of the string
by varying the pressure on a key, and thus execute a pitch vibra-
to. Figure 1 shows the structure of the string register and the
keyboard of a clavichord that was used in [5]. A more exhaustive
overview of the acoustics of the clavichord is given in [6].

HARPSICHORD
The harpsichord is known especially from the baroque era,
when it was used both as a solo instrument and as an important
part of the baroque orchestra. It was widely used until the 19th
century, when it was eclipsed by the piano, as the dynamical
range of the harpsichord was not enough to compete with the

loudness of a large symphony orchestra. However, its dynami-
cal output is still greater than that of a clavichord. 

The playing range of a harpsichord covers four to five
octaves, depending on the instrument. The shape of the instru-
ment is triangular, and one of its sides is curved. The sound-
board is made of thin wood, such as spruce, and it is stiffened
by light ribs. A harpsichord may have one to four sets of
strings, which are usually called choirs or registers. The basic
set is called the 8′ (8 foot) register, borrowing from organ ter-
minology. One of the string sets may be tuned an octave higher
(4′) and one octave lower (16′). A harpsichord may have one or
two manuals, which can be used to control different registers in
order to vary the loudness and timbre of the instrument. When
a player depresses a key, a jack is raised, which, in turn, causes
a plectrum to pluck the string. Unlike in the clavichord and the
piano, the strings are single. Figure 2 shows the manuals and
the string register of the harpsichord that was used in [7]. A
more comprehensive description of the acoustics of the harpsi-
chord is given in [6].

[FIG1] A clavichord showing the tangents that hit the string
groups, and the damping felts are visible under the strings. The
hitch pins and the tuning pins to which the strings are attached
are visible on the left and right side of the strings, respectively.

[FIG2] A harpsichord being tuned. This instrument has two
manuals and three sets of string choirs.



PIANO
The piano, which is nowadays probably the most popular musical
instrument, has a more complex structure and sound than its
predecessors. It has a wide dynamic range, and its playing range
is more than seven octaves. The roots of the modern piano go
back to the beginning of the 18th century, when Bartolomeo
Christofori of Florence modified
the harpsichord by replacing the
jacks with hammers. He called
the new instrument the “grav-
icembalo col piano et forte,”
because it was capable of dynami-
cal variations in tone [6]. During
the last 3 centuries, the instru-
ment has evolved into two dis-
tinct instruments: the grand
piano and the upright piano. This
article concentrates on the acoustics and modeling of the grand
piano, but the same principles are applicable to the upright piano
as well. A grand piano, opened for its structure to be seen, is
shown in Figure 3. 

The grand piano consists of five main parts: the keyboard,
the action, the strings, the soundboard, and the frame. From the
keystroke the information message is transmitted to the action,
which controls the hammer. The hammer hits the string and
sets it into vibration. The kinetic energy of the hammer is trans-
formed into vibrational energy, which is stored in the normal
modes of the string. This energy is transmitted to the sound-
board, the main radiating part of the piano, via the bridge. The
soundboard is a thin, wooden plate positioned under the frame.
The cast-iron frame, positioned at the upper part of the wooden
case, keeps the instrument together, and it is designed to with-
stand the high tension of the strings. The strings are attached to
the tuning pins at the player end and to the hitch-pin rail at the
other end. The speaking length of the string, however, is
restricted to the bridge.

The most important characteristics of the piano sound are
inharmonicity, complicated decay, and beating. A concert
grand piano has 243 steel strings. The lowest strings are long
and massive (length of even 2 m) while the strings correspon-
ding to the highest keys are thin and short (approximately 5
cm). The first eight strings are single strings and the rest of

the strings, corresponding to the
80 highest keys, are in groups of
two or three strings, depending
on the instrument.

The inharmonicity in the
piano strings is caused by stiff-
ness. It makes the higher par-
tials travel faster in the piano
string, which means that their
frequencies are a little higher
compared to those of an ideal

string. In the spectrum, the partial components are slightly
shifted making the series of overtones “stretch” upward.
Usually, strong inharmonicity is considered to be an unde-
sired feature of the piano sound. On the other hand, it is not
desired to get totally rid of this inharmonicity, since a slight
inharmonicity adds warmth to the sound [8].

The decay process of a piano tone is very complicated. The
decay rate is two-fold; the tone begins to decay fast, but after a
few seconds the decay rate changes and becomes slower. This is
due, among other factors, to the change in the predominant
vibration of the strings. The vertical (perpendicular to the
soundboard) vibration decays rapidly whereas the horizontal
(parallel to the soundboard) vibration decays slowly [4]. In addi-
tion, the partials decay at different rates. Some of them may
sound even dozens of seconds whereas others decay in a few sec-
onds. The spectrum varies over time and differs from key to key;
at the bass end over 50 partials can be extracted while at the tre-
ble end the corresponding number is only about 3 or 4.

Another important phenomenon in the piano sound is beat-
ing, which results from the vibration of unison groups of
strings. When the hammer excites a tricord, that is, a set of
three unison strings, the strings begin to vibrate in the same
phase. Due to small differences in frequency between the strings
in the tricord, the tone starts to beat soon. The strings can be
considered by no means as independent, since they are coupled
to the bridge. This coupling allows energy leakage between the
strings resulting in a highly complicated system.

PHYSICS-BASED SYNTHESIS ALGORITHMS 
FOR KEYBOARD INSTRUMENTS
The earlier physics-based synthesis models for the clavichord,
the harpsichord, and the piano are briefly reviewed in the fol-
lowing sections.

CLAVICHORD
A physics-based synthesis model for the clavichord has been pre-
viously developed by Välimäki et al. [5]. The commuted wave-
guide synthesis method [9], [10] is applied by using
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[FIG3] The keyboard and the string register of a grand piano. The
cast iron frame encases the string register, under which is the
soundboard. The contrast between the lengths of the massive
bass and thinner treble strings is clearly visible.
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inverse-filtered recorded clavichord tones as excitation for the
synthesis model. Inverse filtering here refers to the processing
of a signal with the inverted transfer function of a waveguide
string model [12]. In this case, the inverse filtering essentially
cancels the partials of a recorded tone.

The structure of the clavichord synthesis model is shown in
Figure 4. The excitation signals,
which are truncated to a length
of about 0.5 s, are stored in a
database from which they are
retrieved as input signals for the
synthesizer. One such excitation
signal is used for each key. The
effect of coupling of the two basic
string models S1(z) and S2(z) is
simulated with the unconditionally stable technique suggested
in [11]: the output of only one of the string models is fed to the
input of the other and hence there is no feedback and there can
be no stability problems. In practice, the coupling coefficient gc

is selected to have a small value.
Two additional sample databases are needed for realistic

reproduction of the soundbox response and the percussive noise
caused by key release. The reverberation caused by the soundbox
is incorporated in a simplified way by triggering a soundbox
response sample at a low level each time any note is played. This
sample must be at least 5 s long so that it provides the reverber-
ant character of the clavichord. This is particularly important
for short notes, such as staccato playing, for which the output
signal would otherwise stop suddenly in an unnatural manner.

HARPSICHORD
Figure 5 shows the block diagram of the harpsichord synthesis
model developed by Välimäki et al. [7]. The algorithm struc-
ture has been modified from the clavichord synthesizer dis-
cussed above. A version of the commuted waveguide synthesis
approach is used, where each tone is generated with a parallel
combination of the string model S(z) and a second-order res-
onator R(z) that are excited with a common excitation signal.
The second-order resonator, previously proposed for this pur-
pose by Bank [13], approximately simulates the beating effect
appearing in many harpsichord tones. In this approach, a res-
onator is slightly detuned compared to the beating partial,
which produces a perceptu-
ally realistic beating effect.

A modification to the
loss filter of the waveguide
string model S(z) was
introduced in the harpsi-
chord synthesizer [7]. It
allows more flexible control
of decay rates of partials
than is possible with a one-
pole digital filter, which is a
usual choice for the loss fil-
ter. The characteristic key-

release thump terminating harpsichord tones is reproduced
by triggering a sample that has been extracted from a
recording. A digital filter model for the soundboard has been
designed based on recorded bridge impulse responses of the
harpsichord. The output of the string models is injected into
the soundboard filter that imitates the reverberant nature of

the soundbox and the ringing of
the short parts of the strings
behind the bridge.

PIANO
The piano has been considered a
particularly interesting instru-
ment from the modeling point of
view, since it is a prominent

instrument in Western music and it has a complex structure.
The main components that have to be taken into account in the
modeling process are the string, the hammer, the soundboard,
and the pedals, especially the sustaining pedal, which is used in
every professional piano performance. Several physics-based
sound synthesis models for the piano have been proposed (see,
e.g., [13]–[16]). This article emphasizes developing further the
piano synthesis model based on the digital waveguide tech-
nique [1], [2], which the authors consider the most appropriate
for this application. Nevertheless, Ducasse recently showed that
detailed waveguide modeling of dispersive piano strings is a
more complicated task than thought previously [17].

[FIG4] Block diagram of the clavichord synthesis algorithm for
one key (adapted from [5]). The sample databases are common
for all keys.
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[FIG5] Block diagram of the harpsichord synthesis algorithm for a single string (adapted from [7]). The
release sample database and the soundbox reverb are common to all strings of all keys.
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The string model contains four major parts: the delay line,
the tuning filter, the loss filter, and the dispersion filter. The
integer delay line determines the pitch of the tone, and the
tuning filter, which is traditionally designed as an all-pass
fractional delay filter, is used to fine-tune the pitch in those
cases where the length of the delay line corresponding to the
desired pitch is not an integer.
The loss filter, which models the
complicated, frequency-depend-
ent decay of the partials, can be
designed as a lowpass filter [15]
or as a multiripple filter, where
several feedforward paths are
added in cascade with a one-
pole filter [18], [19]. 

The dispersion phenome-
non is usually modeled with a
cascade of low-order all-pass filter sections. As the target is
to make the higher partials stretch upward, a filter with a
proper phase response is needed. The design methods can
employ standard or, in some cases, custom-made filter
design techniques. An excellent overview of design meth-
ods is given in [20].

The interaction between the hammer and the string is high-
ly nonlinear due to the felt covering the hammer. Although the
hammer-string interaction can be described with a simple for-
mula (see, e.g., [20]), there is a mutual dependence between the
hammer position and the interaction force; the hammer posi-
tion should be known before computing the interaction force
and vice versa. However, the implicit relation between the ham-
mer position and the interaction force can be made explicit by
inserting a fictitious delay element in the model. This kind of
approach is widely used in literature, e.g., [21] and [22],
although it can be a possible source of instability. Van Duyne
and Smith [23] described the problem in terms of wave vari-
ables and presented the wave digital hammer model, which is
based on the theory of wave digital filters. By appropriately
choosing the model parameters, they were able to avoid the fic-
titious delay element in the model. Borin et al. presented a
method called the “K method,” which maps the interaction
force as a function of the linear combination of the past values
of the string and hammer positions as well as the interaction
force [24]. The advantage is that the instantaneous dependen-
cies of the variables are dropped. Bank introduced a multirate

hammer model that overcomes the stability problem by dou-
bling the sample rate in order to achieve smaller changes in the
variables of interest [13]. Smith and Van Duyne [14] came up
with the idea that the hammer-string interaction consists of a
few discrete events during the hammer strike. These events can
be approximated with one or more impulses that are lowpass

filtered. In a more recent study,
Bensa et al. presented a source-
resonator model for the hammer-
string interaction, where the
resonator is modeled as a digital
waveguide and the source is
modeled using a subtractive sig-
nal model [25]. 

The modeling of the sound-
board is often implemented with
a reverberation algorithm. This

kind of approach was taken, among others, by Bank [13]. In
addition to the soundboard, the sustaining pedal can be mod-
eled with a reverberation algorithm [26]. Generally, the sus-
taining pedal has an effect on the sound in two ways; it
increases the beating present in the tone and enriches the
sound, and, thus, a properly designed reverberation algorithm
is suitable for the simulation task.

TUNABLE KEYBOARD INSTRUMENT SYNTHESIS MODEL
One great advantage of the physics-based modeling technique in
comparison to the sampling technique is that it offers ways to
control the synthesis model with parameters, both physical and
nonphysical. The latter part of this article considers how the
parameterization can be taken into account in the string model
and the excitation model of a piano synthesis model, which can
be applied to other keyboard instruments as well.

TUNABLE PARAMETERS FOR KEYBOARD 
INSTRUMENT SYNTHESIS
The synthesis parameters can be separated into two categories
from the synthesis model point of view: low-level and high-level
parameters. The low-level parameters are directly used for
designing the synthesis model, whereas the high-level parame-
ters, such as the size of the piano frame, require complex rules
in order to be mapped onto the design parameters. This article
focuses on the low-level parameters.

A list of the low-level keyboard instrument synthesis
parameters for a single string is given in Table 1. When these
parameters are considered in the design of the synthesis
blocks, it is observed that the fundamental frequency and the
inharmonicity coefficient value must be taken into account in
every block, whereas the other parameters are related to only
one synthesis block. 

The fundamental frequency is practically equivalent to the
frequency of the first partial, which determines the perceived
pitch of a single string. The real-time implementation of this
parameter allows the synthesizer to be tuned in real-time,
string by string—similar to the real instrument. Dispersion is

IEEE SIGNAL PROCESSING MAGAZINE [16] MARCH 2007

FUNDAMENTAL FREQUENCY
INHARMONICITY COEFFICIENT VALUE
PARTIAL AMPLITUDES
KEY VELOCITY GAIN
PARTIAL DECAY RATES
PARTIALS WITH BEATING EFFECT
PARTIAL BEATING EFFECT FREQUENCIES
PARTIAL BEATING EFFECT AMPLITUDES
PHANTOM GAIN

[TABLE 1]  TYPICAL LOW-LEVEL PARAMETERS FOR A
SINGLE KEYBOARD INSTRUMENT STRING MODEL.

ONE GREAT ADVANTAGE OF
THE PHYSICS-BASED MODELING
TECHNIQUE COMPARED TO THE

SAMPLING TECHNIQUE IS THAT IT
OFFERS WAYS TO CONTROL THE

SYNTHESIS MODEL WITH PHYSICAL
AND NONPHYSICAL PARAMETERS.
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an important phenomenon in the piano that is represented
usually with the inharmonicity coefficient value B [6]. In the
piano tones, dispersion is audible particularly in the bass
range making the timbre of the tones warmer and richer [6].
It is interesting to note that if the material parameters are
excluded, the fundamental frequency and dispersion parame-
ters are not completely inde-
pendent of each other, because
both depend on the tension of
the string. 

CONSIDERATIONS IN THE
SYNTHESIS MODEL
The control over the fundamen-
tal frequency and inharmonicity
coefficient parameters must be
taken into account in the design of the synthesis model. A
diagram of the keyboard instrument synthesis model is
shown in Figure 6. A summary of requirements for each
block is presented in Table 2. 

The delay line and tuning filter blocks can be easily parame-
terized, whereas the parameterization of the loss filter is quite
difficult; none of the current implementations offer closed-form
design formulas except for a first-order filter [13]. However, it is

unclear whether the loss filter coefficients should be modified
when the fundamental frequency or dispersion is changed, since
the human ear is insensitive to small changes in the partial
decay times [27]. On the other hand, the excitation model, the
dispersion filter, the phantom model, and the beating model are
blocks that require more effort in the design phase in order to

be parameterized.

EXCITATION MODEL
The main purpose of the excita-
tion model is to produce energy
distributed through the partial
amplitudes of the partial fre-
quencies that forces the wave-
guide string model to resonate.
The excitation model should be

flexible enough to be controlled via the fundamental fre-
quency parameter and the dispersion parameter, which is
not a trivial task. For instance, the traditional commuted
waveguide synthesis model uses excitation signals that are
inverse-filtered from real instrument tones. Hence, the real-
time modification of the fundamental frequency parameter
or the dispersion parameter is practically impossible without
affecting the partial amplitude levels.

[FIG6] An advanced waveguide keyboard instrument synthesis model. The tuning filter and the dispersion filter are usually all-pass
filters, whereas the loss filter is a finite input response/infinite input response filter. Excitation, beating, and phantom models are
described in the text.

Excitation
Model

Loss FilterDelay Line
Dispersion

Filter
Tuning
Filter

Beating
Model

Basic String Model
Phantom

Model

SYNTHESIS BLOCK PRIMARY FUNCTION REQUIREMENTS RELATED TO f0 AND B PARAMETERS
EXCITATION MODEL SET INITIAL LEVEL OF PARTIALS THE PARTIAL FREQUENCIES MUST DEPEND ON f0 AND B
LOSS FILTER DETERMINE THE DECAY RATE THE LOSS FILTER SHOULD HAVE THE DESIRED MAGNITUDE RESPONSE AT THE PARTIAL 

OF PARTIALS FREQUENCIES DEPENDING ON THE VALUES OF f0 AND B.
DELAY LINE TUNING OF THE PITCH THE DELAY LINE LENGTH DEPENDS ON f0. MOREOVER, THE EXTRA PHASE DELAY AT THE 

FUNDAMENTAL FREQUENCY PRODUCED BY THE DISPERSION FILTER MUST BE 
ACCOUNTED FOR.

DISPERSION FILTER SET THE INHARMONICITY THE FILTER MUST PRODUCE A PHASE DELAY RESPONSE ACCORDING TO THE DESIRED f0

AND B VALUES.
TUNING FILTER FINE-TUNING OF THE PITCH THE REQUIRED FRACTIONAL DELAY TO BE PRODUCED BY THE TUNING FILTER DEPENDS 

ON f0 AND ON THE EXTRA PHASE DELAY AT f0 PRODUCED BY THE 
DISPERSION FILTER.

BEATING MODEL INTRODUCE BEATING THE PARTIAL FREQUENCIES MUST DEPEND ON f0 AND B. MOREOVER, THE POSSIBLE 
INEXACTNESS OF THE PHASE DELAY RESPONSE OF THE DISPERSION FILTER MUST BE 
ACCOUNTED FOR.

PHANTOM MODEL INTRODUCE NEW PARTIALS FOR B VALUE OF THE PHANTOM PARTIAL FREQUENCIES MUST DEPEND ON THE DISPERSION 
FORTISSIMO TONES OF THE STRING. ADDITIONALLY, THE PHANTOM PARTIAL FREQUENCIES MUST 

DEPEND ON f0.

[TABLE 2]  AN OVERVIEW OF THE REQUIREMENTS FOR THE KEYBOARD INSTRUMENT SYNTHESIS BLOCKS
IN ORDER TO PROVIDE FUNDAMENTAL FREQUENCY AND DISPERSION REAL-TIME PARAMETERIZATION.

THE CONTROL OVER THE
FUNDAMENTAL FREQUENCY AND

INHARMONICITY COEFFICIENT
PARAMETERS MUST BE TAKEN INTO

ACCOUNT IN THE DESIGN OF THE
SYNTHESIS MODEL.



In [28], this problem is solved by combining additive and
subtractive syntheses to create a parameterized model. The
block diagram of the excitation model is seen in Figure 7.
The model consists of five blocks: additive synthesis block,
noise generator block, equalizing filter block, one-pole filter
block, and shaping window block. The source signal is gen-
erated with additive synthesis for the frequencies below the
specific cutoff frequency, which depends on the key number,
and with the noise generator for the high frequencies. The
source signals are then filtered either with the equalizing fil-
ter (additive source signal) or with the one-pole filter (noise
source signal), which depend on the key press velocity and,
therefore, add dynamics to the excitation signal. Finally, the
combined signal is windowed in order to avoid extra compo-
nents in the resulting signal.

DISPERSION FILTER
In waveguide synthesis, the dispersion phenomenon is modeled
with an all-pass filter inserted into the string model. The filter
tries to produce an accurate phase-delay response according to
the desired inharmonicity coefficient value. A common way to
design the dispersion filter is to use a conventional filter design
method. However, as these methods are computationally heavy,
the filter cannot be controlled with the desired parameters in
real time. 

One solution to this problem is the tunable dispersion filter
[29] that offers a closed-form formula to design the dispersion
filter. The design method is based on the Thiran all-pass filter
design method [30], which is commonly used for fractional
delay filter design. The design of the tunable dispersion filter
method is conducted in two phases. First, the delay value that

produces a filter with the desired phase delay
response according to the desired fundamen-
tal frequency and the desired inharmonicity
coefficient value is approximated with closed-
form formulas. Then, the actual filter coeffi-
cients are obtained by feeding the delay value
into the Thiran formulas [30].

The tunable dispersion filter design
includes two filters, a cascade of four second-
order filters for the low fundamental frequen-
cies and a single second-order filter for the
high frequencies. Examples of the phase delay
response errors produced with the filter are
shown in Figure 8.

PHANTOM PARTIAL MODEL
Phantom partials [31] and longitudinal modes
[32] are two phenomena occurring in fortissi-
mo piano bass tones. It has been suggested
that both phenomena are actually the same
phenomenon and, hence, a single synthesis
model is enough to model both of them [33].
The frequencies of the resulting spectral com-
ponents depend on f0 and B [33] (the inhar-
monicity coefficient value of the resulting
partials is roughly one-fourth of the B of the
string). Hence, the model for this phenome-
non, denoted as the phantom model, should
depend on these parameters.

Three different solutions for the phantom
model in digital waveguide synthesis are pro-
posed in [33] and [34]. The first solution is to
filter the original signal produced by the
string model with a low-Q comb filter and to
add it to the original signal by using nonlinear
mixing [34]. The other solutions use a parallel
model (the phantom model shown in Figure 6
is a series model, as is the first solution) using
either a second waveguide or a resonator bank
[33]. All of these solutions can be controlled
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[FIG8] Deviation of the partial frequencies for the proposed filter (solid line with
circles at the partial frequencies) compared to the partial frequencies of an
inharmonic tone, when (a) the inharmonicity coefficient value B = 0.000080, filter
phase delay at dc D = 14.57, number of filters in cascade M = 4, delay line length
L1 = 417, tuning filter phase delay at dc dt = 1.36, f0 = 92.5 Hz (key F#2) and
(b) B = 0.00015, D = 10.91, M = 1, L1 = 107, dt = 1.25, f0 = 370.0 Hz (key F#4).
The dashed line with crosses is the calculated deviation for a harmonic tone.
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[FIG7] The excitation model.
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by f0 and B in real-time. However, the model presented by Bensa
and Daudet seems to have more advantages, as it is suggested to
be simpler than the others [34].

BEATING MODEL
Another distinctive feature in
piano tones is the beating phe-
nomenon. It can be noticed espe-
cially on the low keys a couple of
seconds after the attack of the
tone. The reason for the phenomenon is the coupling of the
piano strings. Moreover, it has been shown that even the lowest
piano keys that do not have multiple strings produce this effect
due to false coupling [35].

In the harpsichord model presented above, a resonator-
based approach [13] is used for modeling the beating.
However, one of the problems with this approach is that
the exact frequencies have to be known in order to con-
trol the amplitude and the frequency of the beating.
This may not be guaranteed, as the dispersion filter may
not produce an accurate enough phase-delay response
for all partials. Hence, it would require compensation
and, thus, the phase delay response of the filter should
be accurately parameterized.

This article proposes a new amplitude modulation-
based approach for the beating-effect modeling. The
general principle of the method is shown in Figure 9.
For each beating partial the model includes the partial
beating model that is presented in Figure 10. The par-
tial beating model includes two components, a band-
pass filter Hbp and a modulator. First, the tone
produced with the string model is filtered with Hbp,
which has a peak at the estimated frequency of the
desired beating partial. Then, the filtered signal is mod-
ulated with a low-frequency oscillator (LFO) block at
the desired beat frequency. Finally, the modulated sig-
nal is added to the original signal. This can be done for
all desired beating partials in parallel.

The model has three parameters: the notch frequen-
cy fc of the bandpass filter Hbp, the beating frequency
fb, and the beating depth gb. The bandpass filter is the
filter presented in [36, pp. 126-129] with a large peak
gain value K producing a very sharp peak. In order to
compensate the notch gain, the filtered signal has to be
multiplied by gc = gb − K. It should be noted that the
beating depth value does not need to be accurate, as the
beating effect is perceived as an on-off process [37]. In
addition, the phase of the beating is not perceptually
important, because the beating phenomenon is audible
after a couple of seconds only. 

The beating model can be easily controlled with
the fundamental frequency parameter and the disper-
sion parameter; when either one is changed, the
equalizing filter parameters should be recalculated.
An advantage of this approach is that it does not need

accurate estimates for the partial frequencies, since the
bandpass filter notch is not extremely sharp. Figure 11

shows envelopes of the second
partials of three tones: a record-
ed piano tone, a synthesized
tone without the beating model,
and a synthesized tone with the
beating model. It can be seen
that the beating model is able to
produce a realistic beating effect

for a synthesized tone. Sound examples are available at the
http://www.acoustics.hut.fi/demos/piano-beating/.

CONCLUSIONS
Physics-based modeling techniques enable the development of
new kinds of digital keyboard instruments. This article gave a

[FIG10] The partial beating model.
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gcx(n) y(n)
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[FIG11] The envelope of the second partial (key E2) of the original
recorded piano tone (solid line), the synthesized tone without the
beating model (dash-dotted line), and the synthesized tone with the
beating model (dashed line). The beating model parameter values were
K = 100 dB, fc = 0.2 f0, fb = 0.45 Hz, and gc = −2 dB. (Recorded tone
obtained from University of Iowa Electronic Music Studios,
http://theremin.music.uiowa.edu.)
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[FIG9] The working principle of the beating model.
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short overview on how keyboard instrument sounds can be syn-
thesized by using physics-based signal processing techniques.
By using the proposed new solutions, it is possible to implement
an advanced keyboard instrument synthesis string model that
can be controlled via parameters, such as fundamental frequen-
cy and dispersion, in real time. Moreover, these techniques can
be applied in synthesis of other keyboard instruments as well.
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