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We consider a unitary transformation which maps any given pure state of an n-qubit
quantum register into another one. This transformation has applications in the ini-
tialization of a quantum computer, and also in some quantum algorithms. Employing
uniformly controlled rotations, we present a quantum circuit of 27”+2 — 4n — 4 CNOT
gates and 2712 — 5 one-qubit elementary rotations that effects the state transforma-
tion. The complexity of the circuit is noticeably lower than the previously published
results. Moreover, we present an analytic expression for the rotation angles needed for
the transformation.
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1 Introduction

Quantum algorithms are based on unitary transformations and projective measurements act-
ing on a quantum register of n qubits [1]. Successful execution of an algorithm usually requires
a certain initial state as input. However, depending on the physical realization of the quantum
computer, available initialization procedures may only produce a limited range of states which
may not contain the desired initial state. This brings up the problem of state preparation,
i.e., how to implement the transformation of an arbitrary quantum state into another one.

Experimentalists face this same problem when trying to synthesize non-trivial multi-qubit
states having desired entanglement properties, for example, the n-qubit generalization of
the GHZ state. Moreover, state preparation may be useful in speeding up some known
quantum algorithms. As a concrete example, it can be used to construct initial states with
non-flat probability distributions for the quantum database search algorithm, which may be
advantageous if there is some prior knowledge on the distribution of the data constituting the
database.

The recent progress [5, 6, 7] in implementing general n-qubit gates using elementary gates
has resulted in efficient gate synthesis techniques including uniformly controlled rotations [6],
and more recently, quantum multiplexors [7]. These techniques are amenable also for im-
plementing quantum gates of certain special classes of unitary transformations, such as in-
completely specified transformations. These transformations have been recently discussed in
Ref. [8], in which an efficient gate decomposition was given in the case of two qubits.
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468 Transformation of quantum states using uniformly controlled rotations

The complexity of a quantum circuit is measured by the number of elementary gates
included. Generally, elementary gates are unitary transformations acting on one or two qubits.
We take the library of elementary gates to be the conventional set of the controlled NOT
(CNOT) gate and all one-qubit rotations about the y and z axes.

The configuration space of the n-qubit quantum register is 2"”-dimensional complex space.
Excluding the global phase and state normalization, we find that the general unitary trans-
formation transforming a given n-qubit state into another must have at least 2 x 2™ — 2 real
degrees of freedom. Hence, in the worst-case scenario, the corresponding quantum circuit
should involve at least 2"+! — 2 elementary rotations, each carrying one degree of freedom.

One CNOT gate can bind at most four elementary rotations [9]. This is seen by considering
a circuit consisting of a CNOT gate followed by an arbitrary local transformation on each
qubit. Writing the one-qubit gates as Euler rotations about the x and z axes and noting that
z rotations commute with the control node and z rotations commute with the target node of
the CNOT, we find that all but four of the elementary rotations may be commuted through
the CNOT gate. Thus at least [1(2""! — 3n — 2)] CNOT gates are needed. However, no
quantum circuit construction embodying the minimal complexity has been presented in the
literature. Previously, the upper bound for the number of gates needed for state preparation
has been considered by Knill [10], who found that no more than O(n2") gates are needed for
the circuit implementing the transformation. A sufficient circuit of O(2") elementary gates
is obtained as a special case of the method developed for QR decomposition of a general
quantum gate in Ref. [5], as was first pointed out in Ref. [8].

In this paper, we describe in detail how to build a generic quantum circuit for making
any desired pure state transformation employing uniformly controlled rotations. A uniformly
controlled rotation, defined explicitly in Sec. 2, is a sequence of multiply controlled one-qubit
rotations about a common axis. In the sequence, all the different control node combinations
are present. We begin from the transformation which equalizes the phases of the elements of
the input vector |a) and rotates it to the direction of the basis vector |e;). In the next phase
the absolute values of elements of the target vector |b) are generated and finally the phases
are adjusted to match of those of |b). We simplify the circuit by merging certain consecutive
gates together. The resulting circuit topology of 2"*2 — 4n — 4 CNOT gates and 2"*2 — 5
one-qubit elementary rotations gives, in principle, the exact transformation from the n-qubit
quantum state |a) into the desired one, |b).

It should be noted, however, that this is a worst-case complexity. In the case of initial
and target states with suitable internal symmetries, the construction will be significantly
simplified. Hence the proposed method, perhaps with additional simplification algorithms,
can also be used as a practical tool for finding efficient implementations of some specific states,
for example the aforementioned n-qubit GHZ state. On the other hand, certain models
of measurement-based quantum computing require specific, highly entangled initial states
involving all the qubits of the register. An example of such states are the cluster states used
by “one-way quantum computers” [2], attractive due to their fault tolerance and potential
scalability [3]. These states, however, tend to be rather symmetric and efficient methods
to create them are already known, see for example Ref. [4]. Hence we do not expect our
algorithm to be very useful in this specific area.
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2 Uniformly controlled rotations

The quantum state of an n-qubit register may be described by a complex vector of the form

ai
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where N = 27, b; denotes the state of the 4 qubit, and the bit string bib% ... bi, is the binary
presentation of the integer i. The state is taken to be normalized to unity. Furthermore, the
overall phase of the state is not observable and thus irrelevant. This means that an n-qubit
state has 27! — 2 real degrees of freedom. Quantum gates are linear transformations on the
space of these vectors and, hence, may be represented by N x N unitary matrices.

A uniformly controlled rotation F¥ (a, c) is a quantum gate defined by the k control nodes,
the target qubit m, the rotation axis a and the angles {a;}, see Ref. [6]. As shown in Fig. 1,
the uniformly controlled rotation corresponds to a sequence of controlled R,(c;) rotations,
which covers all the 2* possible control node combinations. The rotation Ra(c;) is defined as

Ra(a;) = ®7%/2 = [, , cos% +i(a-o)sin %, (2)
where 0,, 0y, and o, are the Pauli matrices and the dot product a-o = a,0, +ayoy +a,0,.
A black control node restricts the action of the target rotation to the subspace in which the
corresponding qubit is in the state |1), and a white control node to the subspace where the
qubit is in the state |0). The positions of the control nodes in the definition of the gate
Fk (a, o) are implicit and may be, in general, arbitrary with the exception that the target
qubit is the m'" one.
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Fig. 1. Definition of the k-fold uniformly controlled rotation F (a,a) of qubit m about the
axis a. A black control node restricts the action of the target rotation to the subspace in which
the corresponding qubit is in the state |1), and a white control node to the subspace where the
qubit is in the state |0). The left hand side of the figure defines the gate symbol used for the
uniformly controlled rotation. The enumeration of the qubits is arbitrary with the exception that
the target qubit is the m*® one. Above, M = 2%.

Figure 2 reviews a construction for F* (a,a) consisting of 28 CNOT gates and 2* one-
qubit a-rotations. The case k = 3 is shown. In the case of a general k, the gate sequence
may be constructed from the sequence for k£ — 1 by changing the position of the control in the
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rightmost CNOT gate to the new control qubit and repeating the obtained sequence twice
with suitable rotation angles {6;}. The operational principle of the gate sequence requires
that a, = 0. However, this limitation can be circumvented by introducing one-qubit basis
changing gates on both sides of the gate.
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Fig. 2. Efficient gate decomposition for the uniformly controlled rotation F}(a,a) with az = 0.
The relation of the angles {6;} to the angles {a;} is shown in Eq. (3). The last equality shows
that the circuit may be horizontally mirrored.

The angles {0;} can be obtained from {a;} using the equation

01 (651}
=M | : |, My=27F-1)key (3)
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where b,, and g,, stand for the binary code and binary reflected Gray code representations
of the integer m, respectively. In actuality, the position of the controls of the CNOT gates in
Fig. 2 may be chosen in many different ways which results in replacing g in Eq. (3) by another
cyclic Gray code [11]. Additionally, a horizontally mirrored version of the gate sequence in
Fig. 2, where the relative order of the gates has been reversed, also qualifies to simulate the
uniformly controlled rotation.

3 State preparation

We are looking for a gate sequence corresponding to a matrix U such that U |a) = |b) for
given vectors |a) and |b). The problem may be reduced to the problem of finding a matrix
V which takes an arbitrary vector to some fixed vector |r), since then we may take A and
B such that Ala) = |r) = B|b) and, hence, BfA|a) = |b), where the dagger denotes the
Hermitian conjugate. For convenience, we take the fixed vector to be the first basis vector
le;) =1[00...0) = (1,0,0,...,0)T = (1,007 ®...® (1,0)T.

iwy

Our algorithm for transforming |a) = (a1 [€™1, |az|e*2, ..., |anx|e®™)T into |e;) works as

follows:

e First we equalize the phases w; using a cascade of uniformly controlled z-rotations =,,
rendering the vector real up to the global phase ¢: =, |a) = €% |a).

e Then we rotate the real state vector |a) into the direction of |e;) using a similar sequence
of uniformly controlled y-rotations =, thus achieving our goal.

The first step can be readily accomplished using a general diagonal n-qubit quantum gate
first considered in Ref. [12]. It is efficiently produced by a sequence of uniformly controlled
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z-rotations as

[1]

: = HFjj_l(Z,afL—jH)@IZ"*j’ (4)
j=1

where the gate F]] 71(z, a;_; +1) equalizes the phases of the elements connected through the
qubit j. The rotation angles {aj-vk}j, the elements of af, are found to be

zk—l

a‘;’-,k = 217,6 Z ((.()(2j_1)2k—1+l — w(2j—2)2k71+l) 5 (5)
=1

where j =1,2,...,2" *and k=1,2,... ,n.
Next we apply a uniformly controlled y-rotation F" 1(y,aY) with angles

{a]y.} = {2 arcsin(a2j|/ lag;j—1]* + |a2j|2> } .

This has the effect of zeroing the elements of the vector that correspond to the states standing
for bit value one in the qubit n:

F::il(Yaay) |&> = (01,2,0,0,2,2,0, o 7aN/2,270)T = (a1,27a2,2a o 7aN/2,2)T & (130)T (6)

where {aj2} = {\/|az2;j_1|* + |a2;|?}. In effect we have zeroed the last qubit of the register.
This procedure can be repeated on the remaining nonzero elements, until we reach |ey).

Employing the above steps one obtains the desired decomposition

—_— j—1 j—1 z
EyE.la) = H FI7(y,a ji1) ®Ian-s H Fi™(z,a5_ ;1) ® Ln-s | |a)
j=1 j=1
= eizj'vzl“”'/N\eﬁ. (7

The product of non-commuting matrices in Eq. (7) is to be taken from left to right. To
eliminate the remaining global phase one could apply a phase gate. The rotation angles {ag}
in Eq. (7) are found to acquire the values

2k—1 2k
a‘:’;,k = 2arcsin ( Z a(2j_1)2k_1+l|2> / (Z a(j_1)2k+l|2> , (8)
=1 =1

where j = 1,2,...,2" % and k = 1,2,... ,n. Fig. 3 shows the quantum circuit correspond-

ing to Eq. (7). The resulting gate sequence is slightly simplified by noting that uniformly
controlled z-rotations, being diagonal, can always be commuted through the control bits of
another uniformly controlled gate. Hence, uniformly controlled z and y rotations acting on
the same set of qubits can be commuted next to each other, whereby we can cancel two CNOT
gates from each pair by mirroring the circuit for the uniformly controlled y rotation.

To transform the state |a) to |b) we need to construct two circuits; the first one takes |a)
to |e1) and the second one |e;) to |b). Since the k-fold uniformly controlled rotation may
be constructed from 2* CNOT gates and 2* one-qubit rotations, the entire state preparation
circuit requires 2”72 — 4n — 4 CNOT gates and 2”2 — 5 one-qubit rotations.
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Fig. 3. Gate sequence for state preparation using uniformly controlled rotations. The rotation
angles {a? J for the uniformly controlled rotations are given in Egs. (8) and (5).

4 Conclusion

In conclusion, we have shown how to construct a general state preparation circuit using a
sequence of uniformly controlled rotations. The resulting gate sequence of 2"*2 — 4n — 4
CNOT gates and 2"*2 — 5 one-qubit elementary rotations establishes a new upper bound for
the complexity of the transformation. By counting the degrees of freedom of the problem,
we find a lower bound of 2"t — 2 for the number of one-qubit elementary rotations. This
implies the lower bound [1(2"*! — 3n — 2)] for the number of CNOT gates.

Provided that the initial or final state coincides with some basis vector |e;), only half of the
CNOT and one-qubit rotation gates are needed. In other special cases some simplifications to
the gate sequence also occur. We have also introduced a closed-form scheme for determining
the rotation angles in such way that a given arbitrary state of the quantum register transforms
into a desired state.

The gate count is small compared to the incomplete QR decomposition which takes ap-
proximately 6.3 x 2" CNOT gates to transform |a) — |e;) and thus 12.6 x 2™ for the whole
transformation. It is still an open question if the transformation could be done more di-
rectly, i.e., merging some of the consecutive gates together and finding efficient gate array for
implementing them. This would reduce the number of elementary gates required.
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Note added

After the submission of this manuscript, we have managed to further improve the state prepa-
ration algorithm and essentially halve the number of CNOT gates required, see Refs. [13]
and [14]. This has been accomplished by implementing the method presented in this pa-
per using general uniformly controlled one-qubit gates rather than just uniformly controlled
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rotations.
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