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Uniformly controlled one-qubit gates are quantum gates which can be represented as direct sums of two-
dimensional unitary operators acting on a single qubit. We present a quantum gate array which implements any
n-qubit gate of this type using at most2-1 controllednoT gates, 271 one-qubit gates, and a single diagonal
n-qubit gate. To illustrate the versatility of these gates we then apply them to the decomposition of a general
n-qubit gate and a state preparation procedure. Moreover, we study their implementation using only nearest-
neighbor gates. We give upper bounds for the one-qubit and contradiedrate counts for all the aforemen-
tioned applications. In all four cases, the proposed circuit topologies either improve on or achieve the previ-
ously reported upper bounds for the gate counts. Thus, they provide the most efficient method for general gate
decompositions currently known.

DOI: 10.1103/PhysRevA.71.052330 PACS nuniber03.67.Lx, 03.65.Fd

I. INTRODUCTION The properties of the quantum compiler and the avai
. . . __gate primitives strongly influence the execution time
A quantum computer is an eémerging computational device, .anwm algorithm, as is the case with their classical ¢
based on encoding cla}ssmal information into a q!J"’m_tumferparts. However, owing to the short decoherence time
mechamcal syster[jl]. Since the break?hrough factorization ¢\ ciq) to keep the usage of the computational resourc
algorithm by Shor in 19942], progress in research on quan- |, a5 possible, even for the very first demonstratior
tum computing has been expeditio{i8]. Most quantum quantum computation
computers inv_olve a coIIecti_on of twp-le\_/el systems, a quan-, g paper, we discuss the properties of uniformly
tum register, in which the information is stored. The two-;.,|aq one-qubit gates which extend the concept of
level systems themselves, called qubits, can e_also be repIaceF mly controlled rotations introduced in Re]. We give
by arbltra_lry q-level systems, known as qudifg5]. The . an efficient implementation for these gates in terms of
computation is performed by the unitary temporal evolutlonqubit gates and controlledoT gates(CNOTS). Moreover, wi
of the register, followed by a measurement. In order 0 €xy,qerve that our construction can be implemented effec
ecute the desired algorithm, one has to be able to exert sufy. by using only nearest-neighbor gates. To illustrat
ficient control on the Hamiltonian of the register to obtain cafiiness of the uniformly controlled gateé we apply |
the required propagators. These unitary propagators, acting yyq concrete examples: the decomposition of an arb

On_lt_?]e register, are (;jalled f(:|uqntur|n gates. | guantum gate and a state preparation procedure. TF
e current paradigm for implementing quantum algo-,ineq quantum circuits are quite compact; in terms o

r@thms is the quantum circuit modg6], in WhiCh the algo- ._number ofcNOT's involved, the general gate decomposi
rithms are compiled into a sequence of simple gates acting, brought on par with the most efficient currently knc

on one or more qubits._The detailed decomposition of a eneral gate decompositiofl0] while requiring roughl
arbitrary quantum gate into such a sequence was first prézoo, jess one-qubit gates, whereas the gate counts re
sented by Barencet al. [7]. Recently, several effective i njement the state preparation circuit are halved

methods for implementing arbitrary quantum gates havepared to the previous implementatidd®,12). In addition tc

these examples, we expect that uniformly controlled
‘?ﬂjbit gates could serve as general intermediate-level bu
blocks in quantum compilers when performing local opt
zation of polynomial quantum circuits.

This paper is organized as follows. Section Il defines
ormly controlled gates. In Sec. lll, the circuit topolc
implementing the uniformly controlled one-qubit gate
constructed. The implementation is based on the soluti
€an eigenvalue equation and is thus cognate to the qu:
multiplexor operation first introduced in Ref10]. In Sec
IV, the cosine-sine decompositiofCSD) of an arbitrar
n-qubit gate[9] and a state preparation proced(ii?] are
improved using this construction. Finally, in Sec. V, we «
sider the implementation of the uniformly controlled c
qubit gates in a linear chain of qubits with only near
*Electronic address: vberghol@focus.hut.fi neighbor couplings. Section VI is devoted to a discus

considered: the preparation of quantum stdtEs,12—-14,
diagonal[15,16,, and block-diagonal quantum computations
[17]. The important problem of the gate-optimal implemen-
tation of an arbitrary two-qubit gate has also been recentl
solved[18-21]. These generic quantum circuit constructions
will serve as basic building blocks for a low-level quantum
compiler and facilitate the optimization of the quantum gat
arrays.

The underlying motivation for the pursuit of the optimal
guantum circuit decomposition is decoheren2€] which
plagues the practical realizations of quantum compulrs
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FIG. 2. Two-qubit constant quantum multiplexor wherandu
are SU2) gates,D is a fixed diagonal gate, ariflis an adjustable
diagonal gate.

FIG. 1. Uniformly controlled one-qubit galé‘[U(Z)] stands for
a sequence df-fold controlled gated); € U(2), wherei=1, ... X ) )
acting on the qubit. Ctk is used to denote aNOT whose control and target qubi

are thekth andtth, respectively. SimilarIyD} refers to aD

and summary of the results obtained. In addition, a conjecdat€ acting on the qubiisandj.

ture is presented.
lll. CONSTANT QUANTUM MULTIPLEXOR

Il UNIFORMLY CONTROLLED GATES Let us start by studying the two-qubit gag[U(2)], the
matrix representation of which consists of two unit:
2X 2 blocks. We show that it can be implemented using
circuit presented in Fig. 2. We call this circuit a const
guantum multiplexor after a related circuit in R¢L0]. It
can be used to construct anyK2 block-diagonal two-qubi
gate by multiplexing the contents of the one-qubit gaie
andv together with the help of a fixed diagonal entangl
K two-qubit gate, whence the name.
{Uikze ) The main difference between the proposed and the ¢
Let us now consider the s&(2") CU(2") of all gates of  ng| constructions is that we can effect the operation usil
the form F{™{U(2)]. EachU € G(2") is a Z-dimensional  fixed entangling gated, which is locally equivalent to :
unitary operator that can be expressed as a direct sum @fngle cnoT. The trade-off is an additional diagonal gaRe
two-dimensional unitary operatoks;, all operating in sub- trailing the circuit, but in many applications it can be elir
spaces whose basis vectors differ only in the qubit nated by merging it with an adjacent gate.

We define a uniformly controlled one-qubit ga{U(2)]
to be a sequence df-fold controlled one-qubit gates in
which all the Z control node configurations are utilized. All
the one-qubit gates in the sequence act on the dqulisiée
Fig. 1. We use the symb@l{{U(2)] to denote a generic gate
of this type, whereas the full definition of a particular
Ff[U(Z)] gate entails the definition of all the (B) gates

Uzeaizznilui. Since all the operators i&,(2") have identical In matrix form, the implementation of the gafg[U(2)]
invariant subspaces, the set is closed under multiplicatiois
and inversion; assuming that B e G(2"), we have +
AB—ZHAB G(2" 1 RANLAS AN
- i?l iB; = G(2), @ R I9u D v (3)
- wherea, b, u, andv are unitary and andd are diagonal
2 . ; S . .
unitary 2X 2 matrices. This yields the matrix equations
A= @ AleG(2Y). ) y y q
i=1

a=r'udv, (4)
These properties make,(2") a subgroup of (2"). We point

out that the matrix representations of all the gate&i(2") b=rudv 5)
can be m_ade ;lmulta_ne_ou_sly<2 block dla_gonal in the stan- or, equivalently,

dard basis using a similarity transformation—namely, a per-

mutation of the qubits, in which the quliiis mapped to the X:=ab' =rfuddu’r, (6)
qubitn.
As a special case of uniformly controlled one-qubit gates, v=dulr’b=d'u'ra. 7)

we define uniformly controlled rotation9], in which all the

two-dimensional operatord); belong to the same one- Equation(6) may be recast into a form reminiscent of

parameter subgroup of (2)—e.g., the group of rotations eigenvalue decomposition:

about thez axis. The elements of this particular subgroup are _ +

denoted aFH[R,]. X =udiu’. ®)
We extend the notation to accommodate also uniformlyNote thatX is fixed by the matrices andb, butr can be

controlled multiqubit gates; byk[U(2%] we denote a se- chosen freely. By diagonalizing the matriXr, we find the

quence ok-fold controlleds-qubit gates which act on the set similarity transformatioru and the eigenvalue matrdé. The

7 of target qubits. matrix v is obtained by inserting the results into E@).
For convenience, we use a shorthand notation for the SinceX e U(2), we may express it using the parametri:

cNoT and the below-defined two-qubit gaB2 The symbol  tion

052330-2
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FIG. 3. Elementary gate sequence for hegate, whereH is the
Hadamard gate an@d,=R,(7/2). GateP=e74 is an adjustment of
the global phase and may be omitted.

X X .
x=( “ _z)e"f”z,
X2 X

9

where|x,[>+|x,|?=1 and deftX)=€¢. The characteristic poly-
nomial of the matrixXr is

det(rXr — M) = N2 = \(r2x, + rax)e?? + r2r3d?®.  (10)

The main result of this section is that for aky we can find

r such that the roots of the polynomial, and hence the eige
values ofrXr, are two fixed antipodal points on the unit

n-
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FIG. 5. Constant multiplexor step for &-fold uniformly
controlled U2) gate, eliminating the uniform control node on
qubit m.

=

FlUQ)]=FRIFFIUIDIFTU)].

This elimination step is presented in Fig. 5.

The elimination of uniform control nodes can be cor
ued recursively until only one-qubit gatesyoTs and uni
formly controlledR, gates remain. The recursive decorr

(19

sition f proceeds as follows:

circle in the complex plane. This is accomplished by choosFunction {F{U(2)]):

ing
r, = glif2lo-l2-argx k] 11

e(i/2)[5—¢/2+argx1)+mrr] .

ry= (12

Above, k andm are arbitrary integers witk+m odd ands is
the desired argument for one of the eigenvalnes

ds
e=(" L)

(13

For convenience, let us choose /2. Hence the diagonal

gateD obtains the fixed fornD =€ (™75 |t can be real-

ized straightforwardly using an Ising-type Hamiltonian or,

alternatively, it can be decomposed intocOT and one-

qubit gates as shown in Fig. 3. The resulting diagonal Bate

assumes the form of a uniformly controlledotation in the
most significant bitFYR,]. The entire circuit is shown in
Fig. 4.

Now we turn our attention to the decomposition of an

arbitraryFi{U(2)] gate, wheré> 1. First we pick one of the

control qubits,m. This qubit pairs the two-dimensional in-

(i) If k=0, return.

(ii) Choose one of the control qubits Perform the elim
nation step of Fig. 5 which results in the gatesD, B, anc
R.

(i) Replace thee<™[U(2)] gateA with f(A).

(iv) (optiona) Transform theD gate into acNOT as show
in Fig. 3; merge the resulting one-qubit gates to surrour
gates.

(v) Replace thé¥[U(2)] gateB with f(B).

(vi) If there is aD gate from another level of the recurs
following the FK[R,] gateR, commuteR through it toward
the right and merg® with the nextFi{U(2)] gate. Note th:
diagonal gates always commute.

(vii) Return.

The simplification rules of Fig. 6 are used throughou
decomposition. Because of stéyi), only the rightmost ¢
the F}("[RJ gates actually needs to be implemented on
level of the recursion. The resulting quantum circuit con
of two parts: an alternating sequence &fdhe-qubit gate
and -1 cnoT gates, which we denote @([U(Z)], and ¢
cascade ok distinct uniformly controlledz rotations, whic
corresponds to a single diagor{&ah1)-qubit gateA,, . Fig-

variant subspaces of the gate in a unique fashion. Hence thie 7@ presents this decomposition for the g&fU(2)].

method of Eq(3) may be used ¢! times in parallel, which

IV. EXAMPLES

effectively eliminates the uniform control node on the chosen

qubit m. The operation may be performed using a sirgfé

This section illustrates how the uniformly controlled ¢

gate and a compensating diagonal gate which again assum@gbit gates can be applied to efficiently solve two probl

the form of a uniformly controlled rotation F[R,]:

:

FIG. 4. Constant quantum multiplexor for two qubits. Here the
SU(2) gatesu’ andv’ include some of the local gates which trans-
form the cnoT into a D gate. For the implementation of the gate

FIR,], see Fig. 1.

IO IXT

! — ! T f

It md B &
(a) (b) ©

FIG. 6. Some simplification rules for uniformly controlled2)
gates.
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FIG. 7. Implementation of the galéi[U(Z)]
using (a) general cNOT's, (b) only nearesi
neighborcnoTs. The gatequ;} and{u/} belong
to SU(2). The alternating sequence afioT's and
SU(2) gates is denoted bF3[U(2)]. The right-
most sequence of uniformly controlledotations
corresponds to a single diagonal gate, denote
A,4. For the nearest-neighbor implementatior
uniformly controlled rotations, see Fig. 11.

T Te

the decomposition of a genenalqubit gate and the prepara- iy
tion of an arbitrary quantum state. uEmH =A, |:rI Tu1 T1 |:n 1 [U(z)]F” Tu@)].
i=1
A. Cosine-sine decomposition (18

Recently, we introduced a meth8l] for decomposing a This decomposition involves™2 1 gates of typeF{“l[U(z)],
given generah-qubit gateU into a sequence of elementary each of which takes™'-1 cnoT's and 2! one-qubit rota
gates using the cosine-sine decomposition. In this approachipns to implement. The final diagonal gate, is imple-
the CSD is applied recursively. Each recursion step deconmmented using the same construction as in Ref. After
poses ak-fold uniformly controlled s-qubit gate, where eliminating onecNOT and n one-qubit gates, we obtain
k+s=n, into two (k+1)-fold uniformly controlled circuit of %4”—%2"—2 CNOT's and %4"+%2”—n—1 one-qubi
(s—1)-qubit gates and a singlen—1)-fold uniformly con-  gates.

trolled y rotation: Table | presents a comparison between the improved
and the most efficient previously known decomposition,

- - - NQ decompositiof10]. The number ofcNOTs in the N
FEU(29)] = Py [UY I [RIFSE, U], Q decompositiort10]. The nu in the NQ

decomposition is from Ref.10]. None of the other resul
(15 have been published previously.

. . B. State preparation
Above, T is the set ofs target qubits for the (25 gates and

m is the operational qubit for the step. Note that, in this Ve have recently addressgtP] the problem of preparir
notation, a 2" gate may be denoted &#[{U(2")], where an arbltraryn-qublt_ quantum stat_{sb}n starting from an arb
Nis the set of all then qubits. When applied to an arbitrary a1y statelay, This transformation could be used, e.g.

n-qubit gate, the recursion of E€L5) finally yields the de- produce complex entangled multiqubit states for studyir
composition to prepare the required initial state for a quantum algor

starting from the natural initial state of the quantum c
puter.
The state preparation circuit first transforms the sfatg
U@y =FU@)] H Fioo[RIFIIUR], (160 into|e,), and, then, using the same strategy, backwards
=1 lepn to |by,. The|ay, to |e,), transformation consists of
sequence of gate pairs

21

where vy is the so-called ruler function, given by Sloane’s
sequence A0015123]. The order of the noncommuting op-
erators in the product is always taken to be from left to right.
Note that thd:ﬂj(i)[Ry] gates may as well be considered as
generalF % [U(2)] gates.

We continue by decomposing the uniformly controlled
gates into one-qubit gates apdoT's. Starting from the last
gate in Eq.(16), we write the diagonal pat,, separately:

So= [TH{FRIF R @ Ion-i}. (19
i=1

The effect of the gate pal¥, '[R/JF| [R,] on the statéa); is
to nullify half of its elements:

TABLE |. Comparison of the upper bounds for the gate co
required to implement a generalqubit gate using tha-qubit (NQ)
decompositior{10] and the improved CSD. The fixed(4) gates

F{u2)]= Anf:g‘l[u(z)], (17)  may be taken to benoT's.
The dlagonal parl\, can then be merged with the neighbor- Gate type NQ ICSD
ing F 1[Ry] gate, which is transformed into a general gate offFixed U4) Lan_8on4q Lan_lon_o
2 2 2 2
type F “U(2)]. Again, the d|agolna| part can be separatedR R, San-3on43 L
and merged into the next gaf& [U(2)]. Continuing this or SU2) 5@_%2.1_% %4n+%2n_n_l

process sequentially, we finally obtain

052330-4
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¢ = & l
W I
FIG. 8. Quantum circuit for transforming an arbitranyqubit B .- -
state|a), into the standard basis stde),. The diagonal gatea! g e
exactly cancel the\; part of the adjacerf;{U(2)] gate. The re- FIG. 9. cNoT cascade which can be efficiently implementec

sulting gates are of the fornﬁ:‘l[U(Z)] which is efficient to  ing nearest-neighbaNoT's [26].
implement.

A. Uniformly controlled one-qubit gates

FRIF R (&) = [a')i-1 ® [0);. (20) To get the recursion rule for the nearest-neighbor in
ementation of a uniformly controlled one-qubit gate, we ¢
Bly modify the functionf of Sec. Ill by making stefiv)
obligatory and adding a new step after it:

(iv @) Insert an identity in the form of anOT cascade ar
its inverse, a similar cascade, into the circuit next to
cNoT gateC". The cascades consist of the gaBswherei
runs over the qubits connecting the qubitsandt. Absort
one of the cascades into tR U(2)] gateB and replace tt
other, together with the originacNOT, using neares
neighborcNoT's as illustrated in Fig. 9.

Hence, each successive gate pair nullifies half of the el
ments of the state vector that have not yet been nullified, an
we haveS,|a),=|e;), up to a global phase.

Now we note that the pair of gates) [R,JFi[R,]
=F"[U(2)] may be replaced by the gate

Friiu@1=AFTu@)], (21)

since the diagonal gate

T AOT 1t The complexity of the nearest-neighbor implement:

An= Aoy @ [0X0 + Apy ® 1Y 22 depends on the relative order of the target and control q

does not mix the states: and the order in which the uniform control nodes are e
nated. Since the number of nearest-neight»anT’s requirec

AZFﬂ’l[U(Z)ﬂa)n: Ama’)n_l® [0),) = (Agzl\a%—l) ® |0y, increases linearly with the distance between the contrc
. target qubits of the entanglingnoT, we first eliminate th

=[a"n-1®[0)s. (23 nodes that are farthest apart from the target qubit. L

After combining n-1 pairs of adjaceanEﬂ[Ry]Ftﬂ[Rﬂ assume that &/ 1[U§2}] gate acts on a chain af conse
gates wherk=1, ... n—1 we find that the entire circuit for duentqubits. =5, it is advantageous to use a sequen:
transforming|a) to |b) requires 2<2"-2n-2 cNoT's and ~ SWap gates to move th(_e target qubit next to the center «
2% 2"—n-2 one-qubit gates. Ifa) or |b) coincides with one chain b'efore the operation and ba_tck after it. A swap gat
of the basis vector$e), the gate counts are halved in the be reahzeg using three consecutivROTs. Taking this intc
leading order. The method presented here yields a factor-of-@ccount, & *[U(2)] gate can be implemented using at n
improvement in the gate counts compared to the previous
results[12,10. The circuit for this transformation is illus-

trated in Fig. 8. , heven,

5
Cup(n,s) = 62” +2n-6s— (24)

, hodd,

Wl Wik

V. LINEAR CHAIN OF QUBITS
WITH NEAREST-NEIGHBOR COUPLINGS
nearest-neighbocNoTs, wheres=1,...[n/2] is the dis
In many of the proposed physical implementations oftance of the target qubitfrom the end of the chain. Figt
quantum computers, such as charge-coupled quantum dotgp) depicts the resulting circuit for the case 4 ands=1.
[24] and NMR-based systeni25], the qubits are spatially ~ Now consider a&-fold uniformly controlled rotation ga
situated in such a way that only nearest-neighbor interactionsf[Ra], where the rotation axis is perpendicular to the
are feasible. This does not imply that long-range gates argyjs. It can be decomposed using the recursion stef
impossib_le to construct, b_ut it re_nders such o_perations rathefented in Fig. 1(). To minimize thecNOT count, we mirra
hard to implement. In this section we consider a quantunyt each recursion step the circuit of the latter uniformly
register consisting of a chain of qubits with only nearest-rg|led gate, which results in the cancellation of two nea
neighbor inieractions and show that the construction prepeighborcnoT cascades. For the same reason as in the
sented for F{‘[U(z)] can be translated into an efficient vious paragraph, the recursion step is first applied tc
nearest-neighbocNoT implementation. The technique is control qubits furthest apart from the target. The impler
based on the circuit identity shown in Fig. 9. tation for the gateF{“l[Ra] requires at most

052330-5
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m neighbor gates is straightforward. We follow the reasonit

¢ Sec. IV B and simply replace t@'l[U(Z)] gates with the
A : nearest-neighbor counterparts, using the decompositic
'_T_‘ rived in the beginning of this section. We find that the im

¢
mentation of the state preparation circuit requires at mc
' B Ko

=
I

14
10 3 neven,
—Q—LM Csn)=—=2"+2n-12n+ (27
U TN 3 10 n odd
3 ,
Ra Ra l nearest-neighborNoOTS.

FIG. 10. Recursion step for decomposing a uniformly controlled
rotation using(a) cNoT's and (b) nearest-neighbocNoT's, applied
to the qubitm. Note that the circuit diagrams may also be mirrored
horizontally.

VI. DISCUSSION

In this paper we have studied the properties and the
zation of uniformly controlled one-qubit gates. We have
rived a recursive circuit topology which implements an ¢
trary k-fold uniformly controlled one-qubit gate using
most X one-qubit gates,*2 1 cNoT's and a single diagon

(25) (k+1)-qubit gate. This construction is especially efficiet

, nodd, the gate is to implemented only up to a diagonal—e.g., \
the phase factors of each basis vector can be freely ct

nearest-neighbaeNoTs. Figure 11 displays an example cir- We have also shown that this kind of freedom appears i
cuit for the case1=5 ands=2. implementation of an arbitrarg-qubit quantum gate and
the rotation of an arbitrary state vector into another.

leading-order complexity of the circuit for an arbitr

B. Cosine-sine decomposition n-qubit gate is;4” cNOT's and an equal number of one-qt

The decomposition of an arbitrary-qubit gate is gates, which are the lowest gate counts reported.
achieved exactly as in Sec. IV A, but now the order in which  The techniques presented above are also amenable
the CSD steps of Eq15) are applied to the qubits affects the perimental realizations of a quantum computer in whict
final gate count. As seen in E(R4), it is favorable to have guantum register consists of a one-dimensional chain ¢
the target qubit of a uniformly controlled one-qubit gate asbits with only nearest-neighbor interactions. For exan
close to the center of the chain as possible. Consequently, g€ number of the nearest-neighlmvoT's in the presente
start the decomposition from the ends of the qubit chaindecomposition of am-qubit gate is in the leading ordéﬂ”,
moving alternatingly towards the center. In this fashion, awhich is appreciably below the lowest previously repc
generaln-qubit gate can be implemented using at most value of%4” [10]. Furthermore, the structure of the near
neighbor circuit allows several gate operations to be

5 , neven,
Cgr(n,s) = 62” +3n-6s—

wla wihd

. gzn_ g n even, ?cutedf ;p] palralle_l,hwhich may further reduce the execi
5 o ime of the algorithm.

Cu(m = 64n n2"-2n+ 1 (26) In Ref.[9], it was speculated that the gate count of

52”— 3 " odd, quantum CSD could be reduced by combining adjacen

formly controlled rotations into single uniformly controll

nearest-neighbarNoT's. one-qubit gates, which was realized in this paper. To fu

reduce the number afNOT's in the circuit, also the contr
nodes of theeNoT's should be used to separate the one-(
gates carrying the degrees of freedom. However, unifc

With the help of the results derived above, the implemen-<ontrolled one-qubit gates cannot be used as the sole
tation of the general state preparation circuit using nearesbuilding blocks of the circuit in this kind of a constructic

Ll 1.l
? . | . . G

FIG. 11. Implementation of a uniformly controlledrotation using nearest-neighboroT’s.

C. State preparation
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